vnode_pager.c revision 331722
1/*-
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD: stable/11/sys/vm/vnode_pager.c 331722 2018-03-29 02:50:57Z eadler $");
55
56#include "opt_vm.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/proc.h>
61#include <sys/vnode.h>
62#include <sys/mount.h>
63#include <sys/bio.h>
64#include <sys/buf.h>
65#include <sys/vmmeter.h>
66#include <sys/limits.h>
67#include <sys/conf.h>
68#include <sys/rwlock.h>
69#include <sys/sf_buf.h>
70
71#include <machine/atomic.h>
72
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <vm/vm_object.h>
76#include <vm/vm_page.h>
77#include <vm/vm_pager.h>
78#include <vm/vm_map.h>
79#include <vm/vnode_pager.h>
80#include <vm/vm_extern.h>
81
82static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
83    daddr_t *rtaddress, int *run);
84static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
85static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
86static void vnode_pager_dealloc(vm_object_t);
87static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
88static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
89    int *, vop_getpages_iodone_t, void *);
90static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
91static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
92static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
93    vm_ooffset_t, struct ucred *cred);
94static int vnode_pager_generic_getpages_done(struct buf *);
95static void vnode_pager_generic_getpages_done_async(struct buf *);
96
97struct pagerops vnodepagerops = {
98	.pgo_alloc =	vnode_pager_alloc,
99	.pgo_dealloc =	vnode_pager_dealloc,
100	.pgo_getpages =	vnode_pager_getpages,
101	.pgo_getpages_async = vnode_pager_getpages_async,
102	.pgo_putpages =	vnode_pager_putpages,
103	.pgo_haspage =	vnode_pager_haspage,
104};
105
106int vnode_pbuf_freecnt;
107int vnode_async_pbuf_freecnt;
108
109/* Create the VM system backing object for this vnode */
110int
111vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
112{
113	vm_object_t object;
114	vm_ooffset_t size = isize;
115	struct vattr va;
116
117	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
118		return (0);
119
120	while ((object = vp->v_object) != NULL) {
121		VM_OBJECT_WLOCK(object);
122		if (!(object->flags & OBJ_DEAD)) {
123			VM_OBJECT_WUNLOCK(object);
124			return (0);
125		}
126		VOP_UNLOCK(vp, 0);
127		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
128		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
129		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
130	}
131
132	if (size == 0) {
133		if (vn_isdisk(vp, NULL)) {
134			size = IDX_TO_OFF(INT_MAX);
135		} else {
136			if (VOP_GETATTR(vp, &va, td->td_ucred))
137				return (0);
138			size = va.va_size;
139		}
140	}
141
142	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
143	/*
144	 * Dereference the reference we just created.  This assumes
145	 * that the object is associated with the vp.
146	 */
147	VM_OBJECT_WLOCK(object);
148	object->ref_count--;
149	VM_OBJECT_WUNLOCK(object);
150	vrele(vp);
151
152	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
153
154	return (0);
155}
156
157void
158vnode_destroy_vobject(struct vnode *vp)
159{
160	struct vm_object *obj;
161
162	obj = vp->v_object;
163	if (obj == NULL)
164		return;
165	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
166	VM_OBJECT_WLOCK(obj);
167	umtx_shm_object_terminated(obj);
168	if (obj->ref_count == 0) {
169		/*
170		 * don't double-terminate the object
171		 */
172		if ((obj->flags & OBJ_DEAD) == 0) {
173			vm_object_terminate(obj);
174		} else {
175			/*
176			 * Waiters were already handled during object
177			 * termination.  The exclusive vnode lock hopefully
178			 * prevented new waiters from referencing the dying
179			 * object.
180			 */
181			KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
182			    ("OBJ_DISCONNECTWNT set obj %p flags %x",
183			    obj, obj->flags));
184			vp->v_object = NULL;
185			VM_OBJECT_WUNLOCK(obj);
186		}
187	} else {
188		/*
189		 * Woe to the process that tries to page now :-).
190		 */
191		vm_pager_deallocate(obj);
192		VM_OBJECT_WUNLOCK(obj);
193	}
194	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
195}
196
197
198/*
199 * Allocate (or lookup) pager for a vnode.
200 * Handle is a vnode pointer.
201 *
202 * MPSAFE
203 */
204vm_object_t
205vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
206    vm_ooffset_t offset, struct ucred *cred)
207{
208	vm_object_t object;
209	struct vnode *vp;
210
211	/*
212	 * Pageout to vnode, no can do yet.
213	 */
214	if (handle == NULL)
215		return (NULL);
216
217	vp = (struct vnode *) handle;
218
219	/*
220	 * If the object is being terminated, wait for it to
221	 * go away.
222	 */
223retry:
224	while ((object = vp->v_object) != NULL) {
225		VM_OBJECT_WLOCK(object);
226		if ((object->flags & OBJ_DEAD) == 0)
227			break;
228		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
229		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
230	}
231
232	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
233
234	if (object == NULL) {
235		/*
236		 * Add an object of the appropriate size
237		 */
238		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
239
240		object->un_pager.vnp.vnp_size = size;
241		object->un_pager.vnp.writemappings = 0;
242
243		object->handle = handle;
244		VI_LOCK(vp);
245		if (vp->v_object != NULL) {
246			/*
247			 * Object has been created while we were sleeping
248			 */
249			VI_UNLOCK(vp);
250			VM_OBJECT_WLOCK(object);
251			KASSERT(object->ref_count == 1,
252			    ("leaked ref %p %d", object, object->ref_count));
253			object->type = OBJT_DEAD;
254			object->ref_count = 0;
255			VM_OBJECT_WUNLOCK(object);
256			vm_object_destroy(object);
257			goto retry;
258		}
259		vp->v_object = object;
260		VI_UNLOCK(vp);
261	} else {
262		object->ref_count++;
263#if VM_NRESERVLEVEL > 0
264		vm_object_color(object, 0);
265#endif
266		VM_OBJECT_WUNLOCK(object);
267	}
268	vrefact(vp);
269	return (object);
270}
271
272/*
273 *	The object must be locked.
274 */
275static void
276vnode_pager_dealloc(vm_object_t object)
277{
278	struct vnode *vp;
279	int refs;
280
281	vp = object->handle;
282	if (vp == NULL)
283		panic("vnode_pager_dealloc: pager already dealloced");
284
285	VM_OBJECT_ASSERT_WLOCKED(object);
286	vm_object_pip_wait(object, "vnpdea");
287	refs = object->ref_count;
288
289	object->handle = NULL;
290	object->type = OBJT_DEAD;
291	if (object->flags & OBJ_DISCONNECTWNT) {
292		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
293		wakeup(object);
294	}
295	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
296	if (object->un_pager.vnp.writemappings > 0) {
297		object->un_pager.vnp.writemappings = 0;
298		VOP_ADD_WRITECOUNT(vp, -1);
299		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
300		    __func__, vp, vp->v_writecount);
301	}
302	vp->v_object = NULL;
303	VOP_UNSET_TEXT(vp);
304	VM_OBJECT_WUNLOCK(object);
305	while (refs-- > 0)
306		vunref(vp);
307	VM_OBJECT_WLOCK(object);
308}
309
310static boolean_t
311vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
312    int *after)
313{
314	struct vnode *vp = object->handle;
315	daddr_t bn;
316	int err;
317	daddr_t reqblock;
318	int poff;
319	int bsize;
320	int pagesperblock, blocksperpage;
321
322	VM_OBJECT_ASSERT_WLOCKED(object);
323	/*
324	 * If no vp or vp is doomed or marked transparent to VM, we do not
325	 * have the page.
326	 */
327	if (vp == NULL || vp->v_iflag & VI_DOOMED)
328		return FALSE;
329	/*
330	 * If the offset is beyond end of file we do
331	 * not have the page.
332	 */
333	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
334		return FALSE;
335
336	bsize = vp->v_mount->mnt_stat.f_iosize;
337	pagesperblock = bsize / PAGE_SIZE;
338	blocksperpage = 0;
339	if (pagesperblock > 0) {
340		reqblock = pindex / pagesperblock;
341	} else {
342		blocksperpage = (PAGE_SIZE / bsize);
343		reqblock = pindex * blocksperpage;
344	}
345	VM_OBJECT_WUNLOCK(object);
346	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
347	VM_OBJECT_WLOCK(object);
348	if (err)
349		return TRUE;
350	if (bn == -1)
351		return FALSE;
352	if (pagesperblock > 0) {
353		poff = pindex - (reqblock * pagesperblock);
354		if (before) {
355			*before *= pagesperblock;
356			*before += poff;
357		}
358		if (after) {
359			/*
360			 * The BMAP vop can report a partial block in the
361			 * 'after', but must not report blocks after EOF.
362			 * Assert the latter, and truncate 'after' in case
363			 * of the former.
364			 */
365			KASSERT((reqblock + *after) * pagesperblock <
366			    roundup2(object->size, pagesperblock),
367			    ("%s: reqblock %jd after %d size %ju", __func__,
368			    (intmax_t )reqblock, *after,
369			    (uintmax_t )object->size));
370			*after *= pagesperblock;
371			*after += pagesperblock - (poff + 1);
372			if (pindex + *after >= object->size)
373				*after = object->size - 1 - pindex;
374		}
375	} else {
376		if (before) {
377			*before /= blocksperpage;
378		}
379
380		if (after) {
381			*after /= blocksperpage;
382		}
383	}
384	return TRUE;
385}
386
387/*
388 * Lets the VM system know about a change in size for a file.
389 * We adjust our own internal size and flush any cached pages in
390 * the associated object that are affected by the size change.
391 *
392 * Note: this routine may be invoked as a result of a pager put
393 * operation (possibly at object termination time), so we must be careful.
394 */
395void
396vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
397{
398	vm_object_t object;
399	vm_page_t m;
400	vm_pindex_t nobjsize;
401
402	if ((object = vp->v_object) == NULL)
403		return;
404/* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
405	VM_OBJECT_WLOCK(object);
406	if (object->type == OBJT_DEAD) {
407		VM_OBJECT_WUNLOCK(object);
408		return;
409	}
410	KASSERT(object->type == OBJT_VNODE,
411	    ("not vnode-backed object %p", object));
412	if (nsize == object->un_pager.vnp.vnp_size) {
413		/*
414		 * Hasn't changed size
415		 */
416		VM_OBJECT_WUNLOCK(object);
417		return;
418	}
419	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
420	if (nsize < object->un_pager.vnp.vnp_size) {
421		/*
422		 * File has shrunk. Toss any cached pages beyond the new EOF.
423		 */
424		if (nobjsize < object->size)
425			vm_object_page_remove(object, nobjsize, object->size,
426			    0);
427		/*
428		 * this gets rid of garbage at the end of a page that is now
429		 * only partially backed by the vnode.
430		 *
431		 * XXX for some reason (I don't know yet), if we take a
432		 * completely invalid page and mark it partially valid
433		 * it can screw up NFS reads, so we don't allow the case.
434		 */
435		if ((nsize & PAGE_MASK) &&
436		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
437		    m->valid != 0) {
438			int base = (int)nsize & PAGE_MASK;
439			int size = PAGE_SIZE - base;
440
441			/*
442			 * Clear out partial-page garbage in case
443			 * the page has been mapped.
444			 */
445			pmap_zero_page_area(m, base, size);
446
447			/*
448			 * Update the valid bits to reflect the blocks that
449			 * have been zeroed.  Some of these valid bits may
450			 * have already been set.
451			 */
452			vm_page_set_valid_range(m, base, size);
453
454			/*
455			 * Round "base" to the next block boundary so that the
456			 * dirty bit for a partially zeroed block is not
457			 * cleared.
458			 */
459			base = roundup2(base, DEV_BSIZE);
460
461			/*
462			 * Clear out partial-page dirty bits.
463			 *
464			 * note that we do not clear out the valid
465			 * bits.  This would prevent bogus_page
466			 * replacement from working properly.
467			 */
468			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
469		}
470	}
471	object->un_pager.vnp.vnp_size = nsize;
472	object->size = nobjsize;
473	VM_OBJECT_WUNLOCK(object);
474}
475
476/*
477 * calculate the linear (byte) disk address of specified virtual
478 * file address
479 */
480static int
481vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
482    int *run)
483{
484	int bsize;
485	int err;
486	daddr_t vblock;
487	daddr_t voffset;
488
489	if (address < 0)
490		return -1;
491
492	if (vp->v_iflag & VI_DOOMED)
493		return -1;
494
495	bsize = vp->v_mount->mnt_stat.f_iosize;
496	vblock = address / bsize;
497	voffset = address % bsize;
498
499	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
500	if (err == 0) {
501		if (*rtaddress != -1)
502			*rtaddress += voffset / DEV_BSIZE;
503		if (run) {
504			*run += 1;
505			*run *= bsize/PAGE_SIZE;
506			*run -= voffset/PAGE_SIZE;
507		}
508	}
509
510	return (err);
511}
512
513/*
514 * small block filesystem vnode pager input
515 */
516static int
517vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
518{
519	struct vnode *vp;
520	struct bufobj *bo;
521	struct buf *bp;
522	struct sf_buf *sf;
523	daddr_t fileaddr;
524	vm_offset_t bsize;
525	vm_page_bits_t bits;
526	int error, i;
527
528	error = 0;
529	vp = object->handle;
530	if (vp->v_iflag & VI_DOOMED)
531		return VM_PAGER_BAD;
532
533	bsize = vp->v_mount->mnt_stat.f_iosize;
534
535	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
536
537	sf = sf_buf_alloc(m, 0);
538
539	for (i = 0; i < PAGE_SIZE / bsize; i++) {
540		vm_ooffset_t address;
541
542		bits = vm_page_bits(i * bsize, bsize);
543		if (m->valid & bits)
544			continue;
545
546		address = IDX_TO_OFF(m->pindex) + i * bsize;
547		if (address >= object->un_pager.vnp.vnp_size) {
548			fileaddr = -1;
549		} else {
550			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
551			if (error)
552				break;
553		}
554		if (fileaddr != -1) {
555			bp = getpbuf(&vnode_pbuf_freecnt);
556
557			/* build a minimal buffer header */
558			bp->b_iocmd = BIO_READ;
559			bp->b_iodone = bdone;
560			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
561			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
562			bp->b_rcred = crhold(curthread->td_ucred);
563			bp->b_wcred = crhold(curthread->td_ucred);
564			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
565			bp->b_blkno = fileaddr;
566			pbgetbo(bo, bp);
567			bp->b_vp = vp;
568			bp->b_bcount = bsize;
569			bp->b_bufsize = bsize;
570			bp->b_runningbufspace = bp->b_bufsize;
571			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
572
573			/* do the input */
574			bp->b_iooffset = dbtob(bp->b_blkno);
575			bstrategy(bp);
576
577			bwait(bp, PVM, "vnsrd");
578
579			if ((bp->b_ioflags & BIO_ERROR) != 0)
580				error = EIO;
581
582			/*
583			 * free the buffer header back to the swap buffer pool
584			 */
585			bp->b_vp = NULL;
586			pbrelbo(bp);
587			relpbuf(bp, &vnode_pbuf_freecnt);
588			if (error)
589				break;
590		} else
591			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
592		KASSERT((m->dirty & bits) == 0,
593		    ("vnode_pager_input_smlfs: page %p is dirty", m));
594		VM_OBJECT_WLOCK(object);
595		m->valid |= bits;
596		VM_OBJECT_WUNLOCK(object);
597	}
598	sf_buf_free(sf);
599	if (error) {
600		return VM_PAGER_ERROR;
601	}
602	return VM_PAGER_OK;
603}
604
605/*
606 * old style vnode pager input routine
607 */
608static int
609vnode_pager_input_old(vm_object_t object, vm_page_t m)
610{
611	struct uio auio;
612	struct iovec aiov;
613	int error;
614	int size;
615	struct sf_buf *sf;
616	struct vnode *vp;
617
618	VM_OBJECT_ASSERT_WLOCKED(object);
619	error = 0;
620
621	/*
622	 * Return failure if beyond current EOF
623	 */
624	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
625		return VM_PAGER_BAD;
626	} else {
627		size = PAGE_SIZE;
628		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
629			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
630		vp = object->handle;
631		VM_OBJECT_WUNLOCK(object);
632
633		/*
634		 * Allocate a kernel virtual address and initialize so that
635		 * we can use VOP_READ/WRITE routines.
636		 */
637		sf = sf_buf_alloc(m, 0);
638
639		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
640		aiov.iov_len = size;
641		auio.uio_iov = &aiov;
642		auio.uio_iovcnt = 1;
643		auio.uio_offset = IDX_TO_OFF(m->pindex);
644		auio.uio_segflg = UIO_SYSSPACE;
645		auio.uio_rw = UIO_READ;
646		auio.uio_resid = size;
647		auio.uio_td = curthread;
648
649		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
650		if (!error) {
651			int count = size - auio.uio_resid;
652
653			if (count == 0)
654				error = EINVAL;
655			else if (count != PAGE_SIZE)
656				bzero((caddr_t)sf_buf_kva(sf) + count,
657				    PAGE_SIZE - count);
658		}
659		sf_buf_free(sf);
660
661		VM_OBJECT_WLOCK(object);
662	}
663	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
664	if (!error)
665		m->valid = VM_PAGE_BITS_ALL;
666	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
667}
668
669/*
670 * generic vnode pager input routine
671 */
672
673/*
674 * Local media VFS's that do not implement their own VOP_GETPAGES
675 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
676 * to implement the previous behaviour.
677 *
678 * All other FS's should use the bypass to get to the local media
679 * backing vp's VOP_GETPAGES.
680 */
681static int
682vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
683    int *rahead)
684{
685	struct vnode *vp;
686	int rtval;
687
688	vp = object->handle;
689	VM_OBJECT_WUNLOCK(object);
690	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
691	KASSERT(rtval != EOPNOTSUPP,
692	    ("vnode_pager: FS getpages not implemented\n"));
693	VM_OBJECT_WLOCK(object);
694	return rtval;
695}
696
697static int
698vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
699    int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
700{
701	struct vnode *vp;
702	int rtval;
703
704	vp = object->handle;
705	VM_OBJECT_WUNLOCK(object);
706	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
707	KASSERT(rtval != EOPNOTSUPP,
708	    ("vnode_pager: FS getpages_async not implemented\n"));
709	VM_OBJECT_WLOCK(object);
710	return (rtval);
711}
712
713/*
714 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
715 * local filesystems, where partially valid pages can only occur at
716 * the end of file.
717 */
718int
719vnode_pager_local_getpages(struct vop_getpages_args *ap)
720{
721
722	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
723	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
724}
725
726int
727vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
728{
729
730	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
731	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
732}
733
734/*
735 * This is now called from local media FS's to operate against their
736 * own vnodes if they fail to implement VOP_GETPAGES.
737 */
738int
739vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
740    int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
741{
742	vm_object_t object;
743	struct bufobj *bo;
744	struct buf *bp;
745	off_t foff;
746	int bsize, pagesperblock, *freecnt;
747	int error, before, after, rbehind, rahead, poff, i;
748	int bytecount, secmask;
749
750	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
751	    ("%s does not support devices", __func__));
752
753	if (vp->v_iflag & VI_DOOMED)
754		return (VM_PAGER_BAD);
755
756	object = vp->v_object;
757	foff = IDX_TO_OFF(m[0]->pindex);
758	bsize = vp->v_mount->mnt_stat.f_iosize;
759	pagesperblock = bsize / PAGE_SIZE;
760
761	KASSERT(foff < object->un_pager.vnp.vnp_size,
762	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
763	KASSERT(count <= sizeof(bp->b_pages),
764	    ("%s: requested %d pages", __func__, count));
765
766	/*
767	 * The last page has valid blocks.  Invalid part can only
768	 * exist at the end of file, and the page is made fully valid
769	 * by zeroing in vm_pager_get_pages().
770	 */
771	if (m[count - 1]->valid != 0 && --count == 0) {
772		if (iodone != NULL)
773			iodone(arg, m, 1, 0);
774		return (VM_PAGER_OK);
775	}
776
777	/*
778	 * Synchronous and asynchronous paging operations use different
779	 * free pbuf counters.  This is done to avoid asynchronous requests
780	 * to consume all pbufs.
781	 * Allocate the pbuf at the very beginning of the function, so that
782	 * if we are low on certain kind of pbufs don't even proceed to BMAP,
783	 * but sleep.
784	 */
785	freecnt = iodone != NULL ?
786	    &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt;
787	bp = getpbuf(freecnt);
788
789	/*
790	 * Get the underlying device blocks for the file with VOP_BMAP().
791	 * If the file system doesn't support VOP_BMAP, use old way of
792	 * getting pages via VOP_READ.
793	 */
794	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
795	if (error == EOPNOTSUPP) {
796		relpbuf(bp, freecnt);
797		VM_OBJECT_WLOCK(object);
798		for (i = 0; i < count; i++) {
799			PCPU_INC(cnt.v_vnodein);
800			PCPU_INC(cnt.v_vnodepgsin);
801			error = vnode_pager_input_old(object, m[i]);
802			if (error)
803				break;
804		}
805		VM_OBJECT_WUNLOCK(object);
806		return (error);
807	} else if (error != 0) {
808		relpbuf(bp, freecnt);
809		return (VM_PAGER_ERROR);
810	}
811
812	/*
813	 * If the file system supports BMAP, but blocksize is smaller
814	 * than a page size, then use special small filesystem code.
815	 */
816	if (pagesperblock == 0) {
817		relpbuf(bp, freecnt);
818		for (i = 0; i < count; i++) {
819			PCPU_INC(cnt.v_vnodein);
820			PCPU_INC(cnt.v_vnodepgsin);
821			error = vnode_pager_input_smlfs(object, m[i]);
822			if (error)
823				break;
824		}
825		return (error);
826	}
827
828	/*
829	 * A sparse file can be encountered only for a single page request,
830	 * which may not be preceded by call to vm_pager_haspage().
831	 */
832	if (bp->b_blkno == -1) {
833		KASSERT(count == 1,
834		    ("%s: array[%d] request to a sparse file %p", __func__,
835		    count, vp));
836		relpbuf(bp, freecnt);
837		pmap_zero_page(m[0]);
838		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
839		    __func__, m[0]));
840		VM_OBJECT_WLOCK(object);
841		m[0]->valid = VM_PAGE_BITS_ALL;
842		VM_OBJECT_WUNLOCK(object);
843		return (VM_PAGER_OK);
844	}
845
846	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
847
848	/* Recalculate blocks available after/before to pages. */
849	poff = (foff % bsize) / PAGE_SIZE;
850	before *= pagesperblock;
851	before += poff;
852	after *= pagesperblock;
853	after += pagesperblock - (poff + 1);
854	if (m[0]->pindex + after >= object->size)
855		after = object->size - 1 - m[0]->pindex;
856	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
857	    __func__, count, after + 1));
858	after -= count - 1;
859
860	/* Trim requested rbehind/rahead to possible values. */
861	rbehind = a_rbehind ? *a_rbehind : 0;
862	rahead = a_rahead ? *a_rahead : 0;
863	rbehind = min(rbehind, before);
864	rbehind = min(rbehind, m[0]->pindex);
865	rahead = min(rahead, after);
866	rahead = min(rahead, object->size - m[count - 1]->pindex);
867	KASSERT(rbehind + rahead + count <= sizeof(bp->b_pages),
868	    ("%s: behind %d ahead %d count %d", __func__,
869	    rbehind, rahead, count));
870
871	/*
872	 * Fill in the bp->b_pages[] array with requested and optional
873	 * read behind or read ahead pages.  Read behind pages are looked
874	 * up in a backward direction, down to a first cached page.  Same
875	 * for read ahead pages, but there is no need to shift the array
876	 * in case of encountering a cached page.
877	 */
878	i = bp->b_npages = 0;
879	if (rbehind) {
880		vm_pindex_t startpindex, tpindex;
881		vm_page_t p;
882
883		VM_OBJECT_WLOCK(object);
884		startpindex = m[0]->pindex - rbehind;
885		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
886		    p->pindex >= startpindex)
887			startpindex = p->pindex + 1;
888
889		/* tpindex is unsigned; beware of numeric underflow. */
890		for (tpindex = m[0]->pindex - 1;
891		    tpindex >= startpindex && tpindex < m[0]->pindex;
892		    tpindex--, i++) {
893			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
894			if (p == NULL) {
895				/* Shift the array. */
896				for (int j = 0; j < i; j++)
897					bp->b_pages[j] = bp->b_pages[j +
898					    tpindex + 1 - startpindex];
899				break;
900			}
901			bp->b_pages[tpindex - startpindex] = p;
902		}
903
904		bp->b_pgbefore = i;
905		bp->b_npages += i;
906		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
907	} else
908		bp->b_pgbefore = 0;
909
910	/* Requested pages. */
911	for (int j = 0; j < count; j++, i++)
912		bp->b_pages[i] = m[j];
913	bp->b_npages += count;
914
915	if (rahead) {
916		vm_pindex_t endpindex, tpindex;
917		vm_page_t p;
918
919		if (!VM_OBJECT_WOWNED(object))
920			VM_OBJECT_WLOCK(object);
921		endpindex = m[count - 1]->pindex + rahead + 1;
922		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
923		    p->pindex < endpindex)
924			endpindex = p->pindex;
925		if (endpindex > object->size)
926			endpindex = object->size;
927
928		for (tpindex = m[count - 1]->pindex + 1;
929		    tpindex < endpindex; i++, tpindex++) {
930			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
931			if (p == NULL)
932				break;
933			bp->b_pages[i] = p;
934		}
935
936		bp->b_pgafter = i - bp->b_npages;
937		bp->b_npages = i;
938	} else
939		bp->b_pgafter = 0;
940
941	if (VM_OBJECT_WOWNED(object))
942		VM_OBJECT_WUNLOCK(object);
943
944	/* Report back actual behind/ahead read. */
945	if (a_rbehind)
946		*a_rbehind = bp->b_pgbefore;
947	if (a_rahead)
948		*a_rahead = bp->b_pgafter;
949
950	KASSERT(bp->b_npages <= sizeof(bp->b_pages),
951	    ("%s: buf %p overflowed", __func__, bp));
952
953	/*
954	 * Recalculate first offset and bytecount with regards to read behind.
955	 * Truncate bytecount to vnode real size and round up physical size
956	 * for real devices.
957	 */
958	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
959	bytecount = bp->b_npages << PAGE_SHIFT;
960	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
961		bytecount = object->un_pager.vnp.vnp_size - foff;
962	secmask = bo->bo_bsize - 1;
963	KASSERT(secmask < PAGE_SIZE && secmask > 0,
964	    ("%s: sector size %d too large", __func__, secmask + 1));
965	bytecount = (bytecount + secmask) & ~secmask;
966
967	/*
968	 * And map the pages to be read into the kva, if the filesystem
969	 * requires mapped buffers.
970	 */
971	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
972	    unmapped_buf_allowed) {
973		bp->b_data = unmapped_buf;
974		bp->b_offset = 0;
975	} else {
976		bp->b_data = bp->b_kvabase;
977		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
978	}
979
980	/* Build a minimal buffer header. */
981	bp->b_iocmd = BIO_READ;
982	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
983	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
984	bp->b_rcred = crhold(curthread->td_ucred);
985	bp->b_wcred = crhold(curthread->td_ucred);
986	pbgetbo(bo, bp);
987	bp->b_vp = vp;
988	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
989	bp->b_iooffset = dbtob(bp->b_blkno);
990
991	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
992	PCPU_INC(cnt.v_vnodein);
993	PCPU_ADD(cnt.v_vnodepgsin, bp->b_npages);
994
995	if (iodone != NULL) { /* async */
996		bp->b_pgiodone = iodone;
997		bp->b_caller1 = arg;
998		bp->b_iodone = vnode_pager_generic_getpages_done_async;
999		bp->b_flags |= B_ASYNC;
1000		BUF_KERNPROC(bp);
1001		bstrategy(bp);
1002		return (VM_PAGER_OK);
1003	} else {
1004		bp->b_iodone = bdone;
1005		bstrategy(bp);
1006		bwait(bp, PVM, "vnread");
1007		error = vnode_pager_generic_getpages_done(bp);
1008		for (i = 0; i < bp->b_npages; i++)
1009			bp->b_pages[i] = NULL;
1010		bp->b_vp = NULL;
1011		pbrelbo(bp);
1012		relpbuf(bp, &vnode_pbuf_freecnt);
1013		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1014	}
1015}
1016
1017static void
1018vnode_pager_generic_getpages_done_async(struct buf *bp)
1019{
1020	int error;
1021
1022	error = vnode_pager_generic_getpages_done(bp);
1023	/* Run the iodone upon the requested range. */
1024	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1025	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1026	for (int i = 0; i < bp->b_npages; i++)
1027		bp->b_pages[i] = NULL;
1028	bp->b_vp = NULL;
1029	pbrelbo(bp);
1030	relpbuf(bp, &vnode_async_pbuf_freecnt);
1031}
1032
1033static int
1034vnode_pager_generic_getpages_done(struct buf *bp)
1035{
1036	vm_object_t object;
1037	off_t tfoff, nextoff;
1038	int i, error;
1039
1040	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1041	object = bp->b_vp->v_object;
1042
1043	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1044		if (!buf_mapped(bp)) {
1045			bp->b_data = bp->b_kvabase;
1046			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1047			    bp->b_npages);
1048		}
1049		bzero(bp->b_data + bp->b_bcount,
1050		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1051	}
1052	if (buf_mapped(bp)) {
1053		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1054		bp->b_data = unmapped_buf;
1055	}
1056
1057	VM_OBJECT_WLOCK(object);
1058	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1059	    i < bp->b_npages; i++, tfoff = nextoff) {
1060		vm_page_t mt;
1061
1062		nextoff = tfoff + PAGE_SIZE;
1063		mt = bp->b_pages[i];
1064
1065		if (nextoff <= object->un_pager.vnp.vnp_size) {
1066			/*
1067			 * Read filled up entire page.
1068			 */
1069			mt->valid = VM_PAGE_BITS_ALL;
1070			KASSERT(mt->dirty == 0,
1071			    ("%s: page %p is dirty", __func__, mt));
1072			KASSERT(!pmap_page_is_mapped(mt),
1073			    ("%s: page %p is mapped", __func__, mt));
1074		} else {
1075			/*
1076			 * Read did not fill up entire page.
1077			 *
1078			 * Currently we do not set the entire page valid,
1079			 * we just try to clear the piece that we couldn't
1080			 * read.
1081			 */
1082			vm_page_set_valid_range(mt, 0,
1083			    object->un_pager.vnp.vnp_size - tfoff);
1084			KASSERT((mt->dirty & vm_page_bits(0,
1085			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1086			    ("%s: page %p is dirty", __func__, mt));
1087		}
1088
1089		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1090			vm_page_readahead_finish(mt);
1091	}
1092	VM_OBJECT_WUNLOCK(object);
1093	if (error != 0)
1094		printf("%s: I/O read error %d\n", __func__, error);
1095
1096	return (error);
1097}
1098
1099/*
1100 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1101 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1102 * vnode_pager_generic_putpages() to implement the previous behaviour.
1103 *
1104 * All other FS's should use the bypass to get to the local media
1105 * backing vp's VOP_PUTPAGES.
1106 */
1107static void
1108vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1109    int flags, int *rtvals)
1110{
1111	int rtval;
1112	struct vnode *vp;
1113	int bytes = count * PAGE_SIZE;
1114
1115	/*
1116	 * Force synchronous operation if we are extremely low on memory
1117	 * to prevent a low-memory deadlock.  VOP operations often need to
1118	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1119	 * operation ).  The swapper handles the case by limiting the amount
1120	 * of asynchronous I/O, but that sort of solution doesn't scale well
1121	 * for the vnode pager without a lot of work.
1122	 *
1123	 * Also, the backing vnode's iodone routine may not wake the pageout
1124	 * daemon up.  This should be probably be addressed XXX.
1125	 */
1126
1127	if (vm_cnt.v_free_count < vm_cnt.v_pageout_free_min)
1128		flags |= VM_PAGER_PUT_SYNC;
1129
1130	/*
1131	 * Call device-specific putpages function
1132	 */
1133	vp = object->handle;
1134	VM_OBJECT_WUNLOCK(object);
1135	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1136	KASSERT(rtval != EOPNOTSUPP,
1137	    ("vnode_pager: stale FS putpages\n"));
1138	VM_OBJECT_WLOCK(object);
1139}
1140
1141static int
1142vn_off2bidx(vm_ooffset_t offset)
1143{
1144
1145	return ((offset & PAGE_MASK) / DEV_BSIZE);
1146}
1147
1148static bool
1149vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1150{
1151
1152	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1153	    offset < IDX_TO_OFF(m->pindex + 1),
1154	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1155	    (uintmax_t)offset));
1156	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1157}
1158
1159/*
1160 * This is now called from local media FS's to operate against their
1161 * own vnodes if they fail to implement VOP_PUTPAGES.
1162 *
1163 * This is typically called indirectly via the pageout daemon and
1164 * clustering has already typically occurred, so in general we ask the
1165 * underlying filesystem to write the data out asynchronously rather
1166 * then delayed.
1167 */
1168int
1169vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1170    int flags, int *rtvals)
1171{
1172	vm_object_t object;
1173	vm_page_t m;
1174	vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1175	struct uio auio;
1176	struct iovec aiov;
1177	off_t prev_resid, wrsz;
1178	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1179	bool in_hole;
1180	static struct timeval lastfail;
1181	static int curfail;
1182
1183	object = vp->v_object;
1184	count = bytecount / PAGE_SIZE;
1185
1186	for (i = 0; i < count; i++)
1187		rtvals[i] = VM_PAGER_ERROR;
1188
1189	if ((int64_t)ma[0]->pindex < 0) {
1190		printf("vnode_pager_generic_putpages: "
1191		    "attempt to write meta-data 0x%jx(%lx)\n",
1192		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1193		rtvals[0] = VM_PAGER_BAD;
1194		return (VM_PAGER_BAD);
1195	}
1196
1197	maxsize = count * PAGE_SIZE;
1198	ncount = count;
1199
1200	poffset = IDX_TO_OFF(ma[0]->pindex);
1201
1202	/*
1203	 * If the page-aligned write is larger then the actual file we
1204	 * have to invalidate pages occurring beyond the file EOF.  However,
1205	 * there is an edge case where a file may not be page-aligned where
1206	 * the last page is partially invalid.  In this case the filesystem
1207	 * may not properly clear the dirty bits for the entire page (which
1208	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1209	 * With the page locked we are free to fix-up the dirty bits here.
1210	 *
1211	 * We do not under any circumstances truncate the valid bits, as
1212	 * this will screw up bogus page replacement.
1213	 */
1214	VM_OBJECT_RLOCK(object);
1215	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1216		if (!VM_OBJECT_TRYUPGRADE(object)) {
1217			VM_OBJECT_RUNLOCK(object);
1218			VM_OBJECT_WLOCK(object);
1219			if (maxsize + poffset <= object->un_pager.vnp.vnp_size)
1220				goto downgrade;
1221		}
1222		if (object->un_pager.vnp.vnp_size > poffset) {
1223			maxsize = object->un_pager.vnp.vnp_size - poffset;
1224			ncount = btoc(maxsize);
1225			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1226				pgoff = roundup2(pgoff, DEV_BSIZE);
1227
1228				/*
1229				 * If the object is locked and the following
1230				 * conditions hold, then the page's dirty
1231				 * field cannot be concurrently changed by a
1232				 * pmap operation.
1233				 */
1234				m = ma[ncount - 1];
1235				vm_page_assert_sbusied(m);
1236				KASSERT(!pmap_page_is_write_mapped(m),
1237		("vnode_pager_generic_putpages: page %p is not read-only", m));
1238				MPASS(m->dirty != 0);
1239				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1240				    pgoff);
1241			}
1242		} else {
1243			maxsize = 0;
1244			ncount = 0;
1245		}
1246		for (i = ncount; i < count; i++)
1247			rtvals[i] = VM_PAGER_BAD;
1248downgrade:
1249		VM_OBJECT_LOCK_DOWNGRADE(object);
1250	}
1251
1252	auio.uio_iov = &aiov;
1253	auio.uio_segflg = UIO_NOCOPY;
1254	auio.uio_rw = UIO_WRITE;
1255	auio.uio_td = NULL;
1256	maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1257
1258	for (prev_offset = poffset; prev_offset < maxblksz;) {
1259		/* Skip clean blocks. */
1260		for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1261			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1262			for (i = vn_off2bidx(prev_offset);
1263			    i < sizeof(vm_page_bits_t) * NBBY &&
1264			    prev_offset < maxblksz; i++) {
1265				if (vn_dirty_blk(m, prev_offset)) {
1266					in_hole = false;
1267					break;
1268				}
1269				prev_offset += DEV_BSIZE;
1270			}
1271		}
1272		if (in_hole)
1273			goto write_done;
1274
1275		/* Find longest run of dirty blocks. */
1276		for (next_offset = prev_offset; next_offset < maxblksz;) {
1277			m = ma[OFF_TO_IDX(next_offset - poffset)];
1278			for (i = vn_off2bidx(next_offset);
1279			    i < sizeof(vm_page_bits_t) * NBBY &&
1280			    next_offset < maxblksz; i++) {
1281				if (!vn_dirty_blk(m, next_offset))
1282					goto start_write;
1283				next_offset += DEV_BSIZE;
1284			}
1285		}
1286start_write:
1287		if (next_offset > poffset + maxsize)
1288			next_offset = poffset + maxsize;
1289
1290		/*
1291		 * Getting here requires finding a dirty block in the
1292		 * 'skip clean blocks' loop.
1293		 */
1294		MPASS(prev_offset < next_offset);
1295
1296		VM_OBJECT_RUNLOCK(object);
1297		aiov.iov_base = NULL;
1298		auio.uio_iovcnt = 1;
1299		auio.uio_offset = prev_offset;
1300		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1301		    prev_offset;
1302		error = VOP_WRITE(vp, &auio,
1303		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1304
1305		wrsz = prev_resid - auio.uio_resid;
1306		if (wrsz == 0) {
1307			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1308				vn_printf(vp, "vnode_pager_putpages: "
1309				    "zero-length write at %ju resid %zd\n",
1310				    auio.uio_offset, auio.uio_resid);
1311			}
1312			VM_OBJECT_RLOCK(object);
1313			break;
1314		}
1315
1316		/* Adjust the starting offset for next iteration. */
1317		prev_offset += wrsz;
1318		MPASS(auio.uio_offset == prev_offset);
1319
1320		ppscheck = 0;
1321		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1322		    &curfail, 1)) != 0)
1323			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1324			    error);
1325		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1326		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1327			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1328			    "at %ju\n", auio.uio_resid,
1329			    (uintmax_t)ma[0]->pindex);
1330		VM_OBJECT_RLOCK(object);
1331		if (error != 0 || auio.uio_resid != 0)
1332			break;
1333	}
1334write_done:
1335	/* Mark completely processed pages. */
1336	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1337		rtvals[i] = VM_PAGER_OK;
1338	/* Mark partial EOF page. */
1339	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1340		rtvals[i++] = VM_PAGER_OK;
1341	/* Unwritten pages in range, free bonus if the page is clean. */
1342	for (; i < ncount; i++)
1343		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1344	VM_OBJECT_RUNLOCK(object);
1345	PCPU_ADD(cnt.v_vnodepgsout, i);
1346	PCPU_INC(cnt.v_vnodeout);
1347	return (rtvals[0]);
1348}
1349
1350int
1351vnode_pager_putpages_ioflags(int pager_flags)
1352{
1353	int ioflags;
1354
1355	/*
1356	 * Pageouts are already clustered, use IO_ASYNC to force a
1357	 * bawrite() rather then a bdwrite() to prevent paging I/O
1358	 * from saturating the buffer cache.  Dummy-up the sequential
1359	 * heuristic to cause large ranges to cluster.  If neither
1360	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1361	 * cluster.
1362	 */
1363	ioflags = IO_VMIO;
1364	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1365		ioflags |= IO_SYNC;
1366	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1367		ioflags |= IO_ASYNC;
1368	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1369	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1370	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1371	return (ioflags);
1372}
1373
1374/*
1375 * vnode_pager_undirty_pages().
1376 *
1377 * A helper to mark pages as clean after pageout that was possibly
1378 * done with a short write.  The lpos argument specifies the page run
1379 * length in bytes, and the written argument specifies how many bytes
1380 * were actually written.  eof is the offset past the last valid byte
1381 * in the vnode using the absolute file position of the first byte in
1382 * the run as the base from which it is computed.
1383 */
1384void
1385vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1386    int lpos)
1387{
1388	vm_object_t obj;
1389	int i, pos, pos_devb;
1390
1391	if (written == 0 && eof >= lpos)
1392		return;
1393	obj = ma[0]->object;
1394	VM_OBJECT_WLOCK(obj);
1395	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1396		if (pos < trunc_page(written)) {
1397			rtvals[i] = VM_PAGER_OK;
1398			vm_page_undirty(ma[i]);
1399		} else {
1400			/* Partially written page. */
1401			rtvals[i] = VM_PAGER_AGAIN;
1402			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1403		}
1404	}
1405	if (eof >= lpos) /* avoid truncation */
1406		goto done;
1407	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1408		if (pos != trunc_page(pos)) {
1409			/*
1410			 * The page contains the last valid byte in
1411			 * the vnode, mark the rest of the page as
1412			 * clean, potentially making the whole page
1413			 * clean.
1414			 */
1415			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1416			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1417			    pos_devb);
1418
1419			/*
1420			 * If the page was cleaned, report the pageout
1421			 * on it as successful.  msync() no longer
1422			 * needs to write out the page, endlessly
1423			 * creating write requests and dirty buffers.
1424			 */
1425			if (ma[i]->dirty == 0)
1426				rtvals[i] = VM_PAGER_OK;
1427
1428			pos = round_page(pos);
1429		} else {
1430			/* vm_pageout_flush() clears dirty */
1431			rtvals[i] = VM_PAGER_BAD;
1432			pos += PAGE_SIZE;
1433		}
1434	}
1435done:
1436	VM_OBJECT_WUNLOCK(obj);
1437}
1438
1439void
1440vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1441    vm_offset_t end)
1442{
1443	struct vnode *vp;
1444	vm_ooffset_t old_wm;
1445
1446	VM_OBJECT_WLOCK(object);
1447	if (object->type != OBJT_VNODE) {
1448		VM_OBJECT_WUNLOCK(object);
1449		return;
1450	}
1451	old_wm = object->un_pager.vnp.writemappings;
1452	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1453	vp = object->handle;
1454	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1455		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1456		VOP_ADD_WRITECOUNT(vp, 1);
1457		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1458		    __func__, vp, vp->v_writecount);
1459	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1460		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1461		VOP_ADD_WRITECOUNT(vp, -1);
1462		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1463		    __func__, vp, vp->v_writecount);
1464	}
1465	VM_OBJECT_WUNLOCK(object);
1466}
1467
1468void
1469vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1470    vm_offset_t end)
1471{
1472	struct vnode *vp;
1473	struct mount *mp;
1474	vm_offset_t inc;
1475
1476	VM_OBJECT_WLOCK(object);
1477
1478	/*
1479	 * First, recheck the object type to account for the race when
1480	 * the vnode is reclaimed.
1481	 */
1482	if (object->type != OBJT_VNODE) {
1483		VM_OBJECT_WUNLOCK(object);
1484		return;
1485	}
1486
1487	/*
1488	 * Optimize for the case when writemappings is not going to
1489	 * zero.
1490	 */
1491	inc = end - start;
1492	if (object->un_pager.vnp.writemappings != inc) {
1493		object->un_pager.vnp.writemappings -= inc;
1494		VM_OBJECT_WUNLOCK(object);
1495		return;
1496	}
1497
1498	vp = object->handle;
1499	vhold(vp);
1500	VM_OBJECT_WUNLOCK(object);
1501	mp = NULL;
1502	vn_start_write(vp, &mp, V_WAIT);
1503	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1504
1505	/*
1506	 * Decrement the object's writemappings, by swapping the start
1507	 * and end arguments for vnode_pager_update_writecount().  If
1508	 * there was not a race with vnode reclaimation, then the
1509	 * vnode's v_writecount is decremented.
1510	 */
1511	vnode_pager_update_writecount(object, end, start);
1512	VOP_UNLOCK(vp, 0);
1513	vdrop(vp);
1514	if (mp != NULL)
1515		vn_finished_write(mp);
1516}
1517