vm_radix.c revision 248449
1/*
2 * Copyright (c) 2013 EMC Corp.
3 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30/*
31 * Path-compressed radix trie implementation.
32 * The following code is not generalized into a general purpose library
33 * because there are way too many parameters embedded that should really
34 * be decided by the library consumers.  At the same time, consumers
35 * of this code must achieve highest possible performance.
36 *
37 * The implementation takes into account the following rationale:
38 * - Size of the nodes should be as small as possible but still big enough
39 *   to avoid a large maximum depth for the trie.  This is a balance
40 *   between the necessity to not wire too much physical memory for the nodes
41 *   and the necessity to avoid too much cache pollution during the trie
42 *   operations.
43 * - There is not a huge bias toward the number of lookup operations over
44 *   the number of insert and remove operations.  This basically implies
45 *   that optimizations supposedly helping one operation but hurting the
46 *   other might be carefully evaluated.
47 * - On average not many nodes are expected to be fully populated, hence
48 *   level compression may just complicate things.
49 */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/vm/vm_radix.c 248449 2013-03-18 00:25:02Z attilio $");
53
54#include "opt_ddb.h"
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/kernel.h>
59#include <sys/vmmeter.h>
60
61#include <vm/uma.h>
62#include <vm/vm.h>
63#include <vm/vm_param.h>
64#include <vm/vm_page.h>
65#include <vm/vm_radix.h>
66
67#ifdef DDB
68#include <ddb/ddb.h>
69#endif
70
71/*
72 * These widths should allow the pointers to a node's children to fit within
73 * a single cache line.  The extra levels from a narrow width should not be
74 * a problem thanks to path compression.
75 */
76#ifdef __LP64__
77#define	VM_RADIX_WIDTH	4
78#else
79#define	VM_RADIX_WIDTH	3
80#endif
81
82#define	VM_RADIX_COUNT	(1 << VM_RADIX_WIDTH)
83#define	VM_RADIX_MASK	(VM_RADIX_COUNT - 1)
84#define	VM_RADIX_LIMIT							\
85	(howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1)
86
87/* Flag bits stored in node pointers. */
88#define	VM_RADIX_ISLEAF	0x1
89#define	VM_RADIX_FLAGS	0x1
90#define	VM_RADIX_PAD	VM_RADIX_FLAGS
91
92/* Returns one unit associated with specified level. */
93#define	VM_RADIX_UNITLEVEL(lev)						\
94	((vm_pindex_t)1 << ((VM_RADIX_LIMIT - (lev)) * VM_RADIX_WIDTH))
95
96struct vm_radix_node {
97	void		*rn_child[VM_RADIX_COUNT];	/* Child nodes. */
98	vm_pindex_t	 rn_owner;			/* Owner of record. */
99	uint16_t	 rn_count;			/* Valid children. */
100	uint16_t	 rn_clev;			/* Current level. */
101};
102
103static uma_zone_t vm_radix_node_zone;
104
105/*
106 * Allocate a radix node.  Pre-allocation should ensure that the request
107 * will always be satisfied.
108 */
109static __inline struct vm_radix_node *
110vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
111{
112	struct vm_radix_node *rnode;
113
114	rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT);
115
116	/*
117	 * The required number of nodes should already be pre-allocated
118	 * by vm_radix_prealloc().  However, UMA can hold a few nodes
119	 * in per-CPU buckets, which will not be accessible by the
120	 * current CPU.  Thus, the allocation could return NULL when
121	 * the pre-allocated pool is close to exhaustion.  Anyway,
122	 * in practice this should never occur because a new node
123	 * is not always required for insert.  Thus, the pre-allocated
124	 * pool should have some extra pages that prevent this from
125	 * becoming a problem.
126	 */
127	if (rnode == NULL)
128		panic("%s: uma_zalloc() returned NULL for a new node",
129		    __func__);
130	rnode->rn_owner = owner;
131	rnode->rn_count = count;
132	rnode->rn_clev = clevel;
133	return (rnode);
134}
135
136/*
137 * Free radix node.
138 */
139static __inline void
140vm_radix_node_put(struct vm_radix_node *rnode)
141{
142
143	uma_zfree(vm_radix_node_zone, rnode);
144}
145
146/*
147 * Return the position in the array for a given level.
148 */
149static __inline int
150vm_radix_slot(vm_pindex_t index, uint16_t level)
151{
152
153	return ((index >> ((VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH)) &
154	    VM_RADIX_MASK);
155}
156
157/* Trims the key after the specified level. */
158static __inline vm_pindex_t
159vm_radix_trimkey(vm_pindex_t index, uint16_t level)
160{
161	vm_pindex_t ret;
162
163	ret = index;
164	if (level < VM_RADIX_LIMIT) {
165		ret >>= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH;
166		ret <<= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH;
167	}
168	return (ret);
169}
170
171/*
172 * Get the root node for a radix tree.
173 */
174static __inline struct vm_radix_node *
175vm_radix_getroot(struct vm_radix *rtree)
176{
177
178	return ((struct vm_radix_node *)(rtree->rt_root & ~VM_RADIX_FLAGS));
179}
180
181/*
182 * Set the root node for a radix tree.
183 */
184static __inline void
185vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
186{
187
188	rtree->rt_root = (uintptr_t)rnode;
189}
190
191/*
192 * Returns the associated page extracted from rnode if available,
193 * and NULL otherwise.
194 */
195static __inline vm_page_t
196vm_radix_node_page(struct vm_radix_node *rnode)
197{
198
199	return ((((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0) ?
200	    (vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS) : NULL);
201}
202
203/*
204 * Adds the page as a child of the provided node.
205 */
206static __inline void
207vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
208    vm_page_t page)
209{
210	int slot;
211
212	slot = vm_radix_slot(index, clev);
213	rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
214}
215
216/*
217 * Returns the slot where two keys differ.
218 * It cannot accept 2 equal keys.
219 */
220static __inline uint16_t
221vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
222{
223	uint16_t clev;
224
225	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
226	    __func__, (uintmax_t)index1));
227
228	index1 ^= index2;
229	for (clev = 0; clev <= VM_RADIX_LIMIT ; clev++)
230		if (vm_radix_slot(index1, clev))
231			return (clev);
232	panic("%s: cannot reach this point", __func__);
233	return (0);
234}
235
236/*
237 * Returns TRUE if it can be determined that key does not belong to the
238 * specified rnode.  Otherwise, returns FALSE.
239 */
240static __inline boolean_t
241vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
242{
243
244	if (rnode->rn_clev > 0) {
245		idx = vm_radix_trimkey(idx, rnode->rn_clev - 1);
246		idx -= rnode->rn_owner;
247		if (idx != 0)
248			return (TRUE);
249	}
250	return (FALSE);
251}
252
253/*
254 * Adjusts the idx key to the first upper level available, based on a valid
255 * initial level and map of available levels.
256 * Returns a value bigger than 0 to signal that there are not valid levels
257 * available.
258 */
259static __inline int
260vm_radix_addlev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev)
261{
262	vm_pindex_t wrapidx;
263
264	for (; levels[ilev] == FALSE ||
265	    vm_radix_slot(*idx, ilev) == (VM_RADIX_COUNT - 1); ilev--)
266		if (ilev == 0)
267			break;
268	KASSERT(ilev > 0 || levels[0],
269	    ("%s: levels back-scanning problem", __func__));
270	if (ilev == 0 && vm_radix_slot(*idx, ilev) == (VM_RADIX_COUNT - 1))
271		return (1);
272	wrapidx = *idx;
273	*idx = vm_radix_trimkey(*idx, ilev);
274	*idx += VM_RADIX_UNITLEVEL(ilev);
275	return (*idx < wrapidx);
276}
277
278/*
279 * Adjusts the idx key to the first lower level available, based on a valid
280 * initial level and map of available levels.
281 * Returns a value bigger than 0 to signal that there are not valid levels
282 * available.
283 */
284static __inline int
285vm_radix_declev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev)
286{
287	vm_pindex_t wrapidx;
288
289	for (; levels[ilev] == FALSE ||
290	    vm_radix_slot(*idx, ilev) == 0; ilev--)
291		if (ilev == 0)
292			break;
293	KASSERT(ilev > 0 || levels[0],
294	    ("%s: levels back-scanning problem", __func__));
295	if (ilev == 0 && vm_radix_slot(*idx, ilev) == 0)
296		return (1);
297	wrapidx = *idx;
298	*idx = vm_radix_trimkey(*idx, ilev);
299	*idx |= VM_RADIX_UNITLEVEL(ilev) - 1;
300	*idx -= VM_RADIX_UNITLEVEL(ilev);
301	return (*idx > wrapidx);
302}
303
304/*
305 * Internal helper for vm_radix_reclaim_allnodes().
306 * This function is recursive.
307 */
308static void
309vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
310{
311	int slot;
312
313	for (slot = 0; slot < VM_RADIX_COUNT && rnode->rn_count != 0; slot++) {
314		if (rnode->rn_child[slot] == NULL)
315			continue;
316		if (vm_radix_node_page(rnode->rn_child[slot]) == NULL)
317			vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
318		rnode->rn_child[slot] = NULL;
319		rnode->rn_count--;
320	}
321	vm_radix_node_put(rnode);
322}
323
324#ifdef INVARIANTS
325/*
326 * Radix node zone destructor.
327 */
328static void
329vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
330{
331	struct vm_radix_node *rnode;
332	int slot;
333
334	rnode = mem;
335	KASSERT(rnode->rn_count == 0,
336	    ("vm_radix_node_put: rnode %p has %d children", rnode,
337	    rnode->rn_count));
338	for (slot = 0; slot < VM_RADIX_COUNT; slot++)
339		KASSERT(rnode->rn_child[slot] == NULL,
340		    ("vm_radix_node_put: rnode %p has a child", rnode));
341}
342#endif
343
344/*
345 * Radix node zone initializer.
346 */
347static int
348vm_radix_node_zone_init(void *mem, int size __unused, int flags __unused)
349{
350	struct vm_radix_node *rnode;
351
352	rnode = mem;
353	memset(rnode->rn_child, 0, sizeof(rnode->rn_child));
354	return (0);
355}
356
357/*
358 * Pre-allocate intermediate nodes from the UMA slab zone.
359 */
360static void
361vm_radix_prealloc(void *arg __unused)
362{
363
364	if (!uma_zone_reserve_kva(vm_radix_node_zone, cnt.v_page_count))
365		panic("%s: unable to create new zone", __func__);
366	uma_prealloc(vm_radix_node_zone, cnt.v_page_count);
367}
368SYSINIT(vm_radix_prealloc, SI_SUB_KMEM, SI_ORDER_SECOND, vm_radix_prealloc,
369    NULL);
370
371/*
372 * Initialize the UMA slab zone.
373 * Until vm_radix_prealloc() is called, the zone will be served by the
374 * UMA boot-time pre-allocated pool of pages.
375 */
376void
377vm_radix_init(void)
378{
379
380	vm_radix_node_zone = uma_zcreate("RADIX NODE",
381	    sizeof(struct vm_radix_node), NULL,
382#ifdef INVARIANTS
383	    vm_radix_node_zone_dtor,
384#else
385	    NULL,
386#endif
387	    vm_radix_node_zone_init, NULL, VM_RADIX_PAD, UMA_ZONE_VM |
388	    UMA_ZONE_NOFREE);
389}
390
391/*
392 * Inserts the key-value pair into the trie.
393 * Panics if the key already exists.
394 */
395void
396vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
397{
398	vm_pindex_t index, newind;
399	struct vm_radix_node *rnode, *tmp, *tmp2;
400	vm_page_t m;
401	int slot;
402	uint16_t clev;
403
404	index = page->pindex;
405
406	/*
407	 * The owner of record for root is not really important because it
408	 * will never be used.
409	 */
410	rnode = vm_radix_getroot(rtree);
411	if (rnode == NULL) {
412		rnode = vm_radix_node_get(0, 1, 0);
413		vm_radix_setroot(rtree, rnode);
414		vm_radix_addpage(rnode, index, 0, page);
415		return;
416	}
417	while (rnode != NULL) {
418		if (vm_radix_keybarr(rnode, index))
419			break;
420		slot = vm_radix_slot(index, rnode->rn_clev);
421		m = vm_radix_node_page(rnode->rn_child[slot]);
422		if (m != NULL) {
423			if (m->pindex == index)
424				panic("%s: key %jx is already present",
425				    __func__, (uintmax_t)index);
426			clev = vm_radix_keydiff(m->pindex, index);
427			tmp = vm_radix_node_get(vm_radix_trimkey(index,
428			    clev - 1), 2, clev);
429			rnode->rn_child[slot] = tmp;
430			vm_radix_addpage(tmp, index, clev, page);
431			vm_radix_addpage(tmp, m->pindex, clev, m);
432			return;
433		}
434		if (rnode->rn_child[slot] == NULL) {
435			rnode->rn_count++;
436			vm_radix_addpage(rnode, index, rnode->rn_clev, page);
437			return;
438		}
439		rnode = rnode->rn_child[slot];
440	}
441	if (rnode == NULL)
442		panic("%s: path traversal ended unexpectedly", __func__);
443
444	/*
445	 * Scan the trie from the top and find the parent to insert
446	 * the new object.
447	 */
448	newind = rnode->rn_owner;
449	clev = vm_radix_keydiff(newind, index);
450	slot = VM_RADIX_COUNT;
451	for (rnode = vm_radix_getroot(rtree); ; rnode = tmp) {
452		KASSERT(rnode != NULL, ("%s: edge cannot be NULL in the scan",
453		    __func__));
454		KASSERT(clev >= rnode->rn_clev,
455		    ("%s: unexpected trie depth: clev: %d, rnode->rn_clev: %d",
456		    __func__, clev, rnode->rn_clev));
457		slot = vm_radix_slot(index, rnode->rn_clev);
458		tmp = rnode->rn_child[slot];
459		KASSERT(tmp != NULL && vm_radix_node_page(tmp) == NULL,
460		    ("%s: unexpected lookup interruption", __func__));
461		if (tmp->rn_clev > clev)
462			break;
463	}
464	KASSERT(rnode != NULL && tmp != NULL && slot < VM_RADIX_COUNT,
465	    ("%s: invalid scan parameters rnode: %p, tmp: %p, slot: %d",
466	    __func__, (void *)rnode, (void *)tmp, slot));
467
468	/*
469	 * A new node is needed because the right insertion level is reached.
470	 * Setup the new intermediate node and add the 2 children: the
471	 * new object and the older edge.
472	 */
473	tmp2 = vm_radix_node_get(vm_radix_trimkey(index, clev - 1), 2,
474	    clev);
475	rnode->rn_child[slot] = tmp2;
476	vm_radix_addpage(tmp2, index, clev, page);
477	slot = vm_radix_slot(newind, clev);
478	tmp2->rn_child[slot] = tmp;
479}
480
481/*
482 * Returns the value stored at the index.  If the index is not present,
483 * NULL is returned.
484 */
485vm_page_t
486vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
487{
488	struct vm_radix_node *rnode;
489	vm_page_t m;
490	int slot;
491
492	rnode = vm_radix_getroot(rtree);
493	while (rnode != NULL) {
494		if (vm_radix_keybarr(rnode, index))
495			return (NULL);
496		slot = vm_radix_slot(index, rnode->rn_clev);
497		rnode = rnode->rn_child[slot];
498		m = vm_radix_node_page(rnode);
499		if (m != NULL) {
500			if (m->pindex == index)
501				return (m);
502			else
503				return (NULL);
504		}
505	}
506	return (NULL);
507}
508
509/*
510 * Look up the nearest entry at a position bigger than or equal to index.
511 */
512vm_page_t
513vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
514{
515	vm_pindex_t inc;
516	vm_page_t m;
517	struct vm_radix_node *rnode;
518	int slot;
519	uint16_t difflev;
520	boolean_t maplevels[VM_RADIX_LIMIT + 1];
521#ifdef INVARIANTS
522	int loops = 0;
523#endif
524
525restart:
526	KASSERT(++loops < 1000, ("%s: too many loops", __func__));
527	for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++)
528		maplevels[difflev] = FALSE;
529	rnode = vm_radix_getroot(rtree);
530	while (rnode != NULL) {
531		maplevels[rnode->rn_clev] = TRUE;
532
533		/*
534		 * If the keys differ before the current bisection node
535		 * the search key might rollback to the earliest
536		 * available bisection node, or to the smaller value
537		 * in the current domain (if the owner is bigger than the
538		 * search key).
539		 * The maplevels array records any node has been seen
540		 * at a given level.  This aids the search for a valid
541		 * bisection node.
542		 */
543		if (vm_radix_keybarr(rnode, index)) {
544			difflev = vm_radix_keydiff(index, rnode->rn_owner);
545			if (index > rnode->rn_owner) {
546				if (vm_radix_addlev(&index, maplevels,
547				    difflev) > 0)
548					break;
549			} else
550				index = vm_radix_trimkey(rnode->rn_owner,
551				    difflev);
552			goto restart;
553		}
554		slot = vm_radix_slot(index, rnode->rn_clev);
555		m = vm_radix_node_page(rnode->rn_child[slot]);
556		if (m != NULL && m->pindex >= index)
557			return (m);
558		if (rnode->rn_child[slot] != NULL && m == NULL) {
559			rnode = rnode->rn_child[slot];
560			continue;
561		}
562
563		/*
564		 * Look for an available edge or page within the current
565		 * bisection node.
566		 */
567                if (slot < (VM_RADIX_COUNT - 1)) {
568			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
569			index = vm_radix_trimkey(index, rnode->rn_clev);
570			index += inc;
571			slot++;
572			for (;; index += inc, slot++) {
573				m = vm_radix_node_page(rnode->rn_child[slot]);
574				if (m != NULL && m->pindex >= index)
575					return (m);
576				if ((rnode->rn_child[slot] != NULL &&
577				    m == NULL) || slot == (VM_RADIX_COUNT - 1))
578					break;
579			}
580		}
581
582		/*
583		 * If a valid page or edge bigger than the search slot is
584		 * found in the traversal, skip to the next higher-level key.
585		 */
586		if (slot == (VM_RADIX_COUNT - 1) &&
587		    (rnode->rn_child[slot] == NULL || m != NULL)) {
588			if (rnode->rn_clev == 0  || vm_radix_addlev(&index,
589			    maplevels, rnode->rn_clev - 1) > 0)
590				break;
591			goto restart;
592		}
593		rnode = rnode->rn_child[slot];
594	}
595	return (NULL);
596}
597
598/*
599 * Look up the nearest entry at a position less than or equal to index.
600 */
601vm_page_t
602vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
603{
604	vm_pindex_t inc;
605	vm_page_t m;
606	struct vm_radix_node *rnode;
607	int slot;
608	uint16_t difflev;
609	boolean_t maplevels[VM_RADIX_LIMIT + 1];
610#ifdef INVARIANTS
611	int loops = 0;
612#endif
613
614restart:
615	KASSERT(++loops < 1000, ("%s: too many loops", __func__));
616	for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++)
617		maplevels[difflev] = FALSE;
618	rnode = vm_radix_getroot(rtree);
619	while (rnode != NULL) {
620		maplevels[rnode->rn_clev] = TRUE;
621
622		/*
623		 * If the keys differ before the current bisection node
624		 * the search key might rollback to the earliest
625		 * available bisection node, or to the higher value
626		 * in the current domain (if the owner is smaller than the
627		 * search key).
628		 * The maplevels array records any node has been seen
629		 * at a given level.  This aids the search for a valid
630		 * bisection node.
631		 */
632		if (vm_radix_keybarr(rnode, index)) {
633			difflev = vm_radix_keydiff(index, rnode->rn_owner);
634			if (index > rnode->rn_owner) {
635				index = vm_radix_trimkey(rnode->rn_owner,
636				    difflev);
637				index |= VM_RADIX_UNITLEVEL(difflev) - 1;
638			} else if (vm_radix_declev(&index, maplevels,
639			    difflev) > 0)
640				break;
641			goto restart;
642		}
643		slot = vm_radix_slot(index, rnode->rn_clev);
644		m = vm_radix_node_page(rnode->rn_child[slot]);
645		if (m != NULL && m->pindex <= index)
646			return (m);
647		if (rnode->rn_child[slot] != NULL && m == NULL) {
648			rnode = rnode->rn_child[slot];
649			continue;
650		}
651
652		/*
653		 * Look for an available edge or page within the current
654		 * bisection node.
655		 */
656		if (slot > 0) {
657			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
658			index = vm_radix_trimkey(index, rnode->rn_clev);
659			index |= inc - 1;
660			index -= inc;
661			slot--;
662			for (;; index -= inc, slot--) {
663				m = vm_radix_node_page(rnode->rn_child[slot]);
664				if (m != NULL && m->pindex <= index)
665					return (m);
666				if ((rnode->rn_child[slot] != NULL &&
667				    m == NULL) || slot == 0)
668					break;
669			}
670		}
671
672		/*
673		 * If a valid page or edge smaller than the search slot is
674		 * found in the traversal, skip to the next higher-level key.
675		 */
676		if (slot == 0 && (rnode->rn_child[slot] == NULL || m != NULL)) {
677			if (rnode->rn_clev == 0 || vm_radix_declev(&index,
678			    maplevels, rnode->rn_clev - 1) > 0)
679				break;
680			goto restart;
681		}
682		rnode = rnode->rn_child[slot];
683	}
684	return (NULL);
685}
686
687/*
688 * Remove the specified index from the tree.
689 * Panics if the key is not present.
690 */
691void
692vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
693{
694	struct vm_radix_node *rnode, *parent;
695	vm_page_t m;
696	int i, slot;
697
698	parent = NULL;
699	rnode = vm_radix_getroot(rtree);
700	for (;;) {
701		if (rnode == NULL)
702			panic("vm_radix_remove: impossible to locate the key");
703		slot = vm_radix_slot(index, rnode->rn_clev);
704		m = vm_radix_node_page(rnode->rn_child[slot]);
705		if (m != NULL && m->pindex == index) {
706			rnode->rn_child[slot] = NULL;
707			rnode->rn_count--;
708			if (rnode->rn_count > 1)
709				break;
710			if (parent == NULL) {
711				if (rnode->rn_count == 0) {
712					vm_radix_node_put(rnode);
713					vm_radix_setroot(rtree, NULL);
714				}
715				break;
716			}
717			for (i = 0; i < VM_RADIX_COUNT; i++)
718				if (rnode->rn_child[i] != NULL)
719					break;
720			KASSERT(i != VM_RADIX_COUNT,
721			    ("%s: invalid node configuration", __func__));
722			slot = vm_radix_slot(index, parent->rn_clev);
723			KASSERT(parent->rn_child[slot] == rnode,
724			    ("%s: invalid child value", __func__));
725			parent->rn_child[slot] = rnode->rn_child[i];
726			rnode->rn_count--;
727			rnode->rn_child[i] = NULL;
728			vm_radix_node_put(rnode);
729			break;
730		}
731		if (m != NULL && m->pindex != index)
732			panic("%s: invalid key found", __func__);
733		parent = rnode;
734		rnode = rnode->rn_child[slot];
735	}
736}
737
738/*
739 * Remove and free all the nodes from the radix tree.
740 * This function is recursive but there is a tight control on it as the
741 * maximum depth of the tree is fixed.
742 */
743void
744vm_radix_reclaim_allnodes(struct vm_radix *rtree)
745{
746	struct vm_radix_node *root;
747
748	root = vm_radix_getroot(rtree);
749	if (root == NULL)
750		return;
751	vm_radix_reclaim_allnodes_int(root);
752	vm_radix_setroot(rtree, NULL);
753}
754
755#ifdef DDB
756/*
757 * Show details about the given radix node.
758 */
759DB_SHOW_COMMAND(radixnode, db_show_radixnode)
760{
761	struct vm_radix_node *rnode;
762	int i;
763
764        if (!have_addr)
765                return;
766	rnode = (struct vm_radix_node *)addr;
767	db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
768	    (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
769	    rnode->rn_clev);
770	for (i = 0; i < VM_RADIX_COUNT; i++)
771		if (rnode->rn_child[i] != NULL)
772			db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
773			    i, (void *)rnode->rn_child[i],
774			    (void *)vm_radix_node_page(rnode->rn_child[i]),
775			    rnode->rn_clev);
776}
777#endif /* DDB */
778