vm_object.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *	Virtual memory object module.
65 */
66
67#include <sys/cdefs.h>
68__FBSDID("$FreeBSD: stable/11/sys/vm/vm_object.c 330897 2018-03-14 03:19:51Z eadler $");
69
70#include "opt_vm.h"
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/lock.h>
75#include <sys/mman.h>
76#include <sys/mount.h>
77#include <sys/kernel.h>
78#include <sys/pctrie.h>
79#include <sys/sysctl.h>
80#include <sys/mutex.h>
81#include <sys/proc.h>		/* for curproc, pageproc */
82#include <sys/socket.h>
83#include <sys/resourcevar.h>
84#include <sys/rwlock.h>
85#include <sys/user.h>
86#include <sys/vnode.h>
87#include <sys/vmmeter.h>
88#include <sys/sx.h>
89
90#include <vm/vm.h>
91#include <vm/vm_param.h>
92#include <vm/pmap.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_page.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/swap_pager.h>
99#include <vm/vm_kern.h>
100#include <vm/vm_extern.h>
101#include <vm/vm_radix.h>
102#include <vm/vm_reserv.h>
103#include <vm/uma.h>
104
105static int old_msync;
106SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
107    "Use old (insecure) msync behavior");
108
109static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
110		    int pagerflags, int flags, boolean_t *clearobjflags,
111		    boolean_t *eio);
112static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
113		    boolean_t *clearobjflags);
114static void	vm_object_qcollapse(vm_object_t object);
115static void	vm_object_vndeallocate(vm_object_t object);
116
117/*
118 *	Virtual memory objects maintain the actual data
119 *	associated with allocated virtual memory.  A given
120 *	page of memory exists within exactly one object.
121 *
122 *	An object is only deallocated when all "references"
123 *	are given up.  Only one "reference" to a given
124 *	region of an object should be writeable.
125 *
126 *	Associated with each object is a list of all resident
127 *	memory pages belonging to that object; this list is
128 *	maintained by the "vm_page" module, and locked by the object's
129 *	lock.
130 *
131 *	Each object also records a "pager" routine which is
132 *	used to retrieve (and store) pages to the proper backing
133 *	storage.  In addition, objects may be backed by other
134 *	objects from which they were virtual-copied.
135 *
136 *	The only items within the object structure which are
137 *	modified after time of creation are:
138 *		reference count		locked by object's lock
139 *		pager routine		locked by object's lock
140 *
141 */
142
143struct object_q vm_object_list;
144struct mtx vm_object_list_mtx;	/* lock for object list and count */
145
146struct vm_object kernel_object_store;
147struct vm_object kmem_object_store;
148
149static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
150    "VM object stats");
151
152static long object_collapses;
153SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
154    &object_collapses, 0, "VM object collapses");
155
156static long object_bypasses;
157SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158    &object_bypasses, 0, "VM object bypasses");
159
160static uma_zone_t obj_zone;
161
162static int vm_object_zinit(void *mem, int size, int flags);
163
164#ifdef INVARIANTS
165static void vm_object_zdtor(void *mem, int size, void *arg);
166
167static void
168vm_object_zdtor(void *mem, int size, void *arg)
169{
170	vm_object_t object;
171
172	object = (vm_object_t)mem;
173	KASSERT(object->ref_count == 0,
174	    ("object %p ref_count = %d", object, object->ref_count));
175	KASSERT(TAILQ_EMPTY(&object->memq),
176	    ("object %p has resident pages in its memq", object));
177	KASSERT(vm_radix_is_empty(&object->rtree),
178	    ("object %p has resident pages in its trie", object));
179#if VM_NRESERVLEVEL > 0
180	KASSERT(LIST_EMPTY(&object->rvq),
181	    ("object %p has reservations",
182	    object));
183#endif
184	KASSERT(object->paging_in_progress == 0,
185	    ("object %p paging_in_progress = %d",
186	    object, object->paging_in_progress));
187	KASSERT(object->resident_page_count == 0,
188	    ("object %p resident_page_count = %d",
189	    object, object->resident_page_count));
190	KASSERT(object->shadow_count == 0,
191	    ("object %p shadow_count = %d",
192	    object, object->shadow_count));
193	KASSERT(object->type == OBJT_DEAD,
194	    ("object %p has non-dead type %d",
195	    object, object->type));
196}
197#endif
198
199static int
200vm_object_zinit(void *mem, int size, int flags)
201{
202	vm_object_t object;
203
204	object = (vm_object_t)mem;
205	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
206
207	/* These are true for any object that has been freed */
208	object->type = OBJT_DEAD;
209	object->ref_count = 0;
210	vm_radix_init(&object->rtree);
211	object->paging_in_progress = 0;
212	object->resident_page_count = 0;
213	object->shadow_count = 0;
214	object->flags = OBJ_DEAD;
215
216	mtx_lock(&vm_object_list_mtx);
217	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
218	mtx_unlock(&vm_object_list_mtx);
219	return (0);
220}
221
222static void
223_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
224{
225
226	TAILQ_INIT(&object->memq);
227	LIST_INIT(&object->shadow_head);
228
229	object->type = type;
230	if (type == OBJT_SWAP)
231		pctrie_init(&object->un_pager.swp.swp_blks);
232
233	/*
234	 * Ensure that swap_pager_swapoff() iteration over object_list
235	 * sees up to date type and pctrie head if it observed
236	 * non-dead object.
237	 */
238	atomic_thread_fence_rel();
239
240	switch (type) {
241	case OBJT_DEAD:
242		panic("_vm_object_allocate: can't create OBJT_DEAD");
243	case OBJT_DEFAULT:
244	case OBJT_SWAP:
245		object->flags = OBJ_ONEMAPPING;
246		break;
247	case OBJT_DEVICE:
248	case OBJT_SG:
249		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
250		break;
251	case OBJT_MGTDEVICE:
252		object->flags = OBJ_FICTITIOUS;
253		break;
254	case OBJT_PHYS:
255		object->flags = OBJ_UNMANAGED;
256		break;
257	case OBJT_VNODE:
258		object->flags = 0;
259		break;
260	default:
261		panic("_vm_object_allocate: type %d is undefined", type);
262	}
263	object->size = size;
264	object->generation = 1;
265	object->ref_count = 1;
266	object->memattr = VM_MEMATTR_DEFAULT;
267	object->cred = NULL;
268	object->charge = 0;
269	object->handle = NULL;
270	object->backing_object = NULL;
271	object->backing_object_offset = (vm_ooffset_t) 0;
272#if VM_NRESERVLEVEL > 0
273	LIST_INIT(&object->rvq);
274#endif
275	umtx_shm_object_init(object);
276}
277
278/*
279 *	vm_object_init:
280 *
281 *	Initialize the VM objects module.
282 */
283void
284vm_object_init(void)
285{
286	TAILQ_INIT(&vm_object_list);
287	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
288
289	rw_init(&kernel_object->lock, "kernel vm object");
290	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
291	    VM_MIN_KERNEL_ADDRESS), kernel_object);
292#if VM_NRESERVLEVEL > 0
293	kernel_object->flags |= OBJ_COLORED;
294	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295#endif
296
297	rw_init(&kmem_object->lock, "kmem vm object");
298	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
299	    VM_MIN_KERNEL_ADDRESS), kmem_object);
300#if VM_NRESERVLEVEL > 0
301	kmem_object->flags |= OBJ_COLORED;
302	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
303#endif
304
305	/*
306	 * The lock portion of struct vm_object must be type stable due
307	 * to vm_pageout_fallback_object_lock locking a vm object
308	 * without holding any references to it.
309	 */
310	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
311#ifdef INVARIANTS
312	    vm_object_zdtor,
313#else
314	    NULL,
315#endif
316	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
317
318	vm_radix_zinit();
319}
320
321void
322vm_object_clear_flag(vm_object_t object, u_short bits)
323{
324
325	VM_OBJECT_ASSERT_WLOCKED(object);
326	object->flags &= ~bits;
327}
328
329/*
330 *	Sets the default memory attribute for the specified object.  Pages
331 *	that are allocated to this object are by default assigned this memory
332 *	attribute.
333 *
334 *	Presently, this function must be called before any pages are allocated
335 *	to the object.  In the future, this requirement may be relaxed for
336 *	"default" and "swap" objects.
337 */
338int
339vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
340{
341
342	VM_OBJECT_ASSERT_WLOCKED(object);
343	switch (object->type) {
344	case OBJT_DEFAULT:
345	case OBJT_DEVICE:
346	case OBJT_MGTDEVICE:
347	case OBJT_PHYS:
348	case OBJT_SG:
349	case OBJT_SWAP:
350	case OBJT_VNODE:
351		if (!TAILQ_EMPTY(&object->memq))
352			return (KERN_FAILURE);
353		break;
354	case OBJT_DEAD:
355		return (KERN_INVALID_ARGUMENT);
356	default:
357		panic("vm_object_set_memattr: object %p is of undefined type",
358		    object);
359	}
360	object->memattr = memattr;
361	return (KERN_SUCCESS);
362}
363
364void
365vm_object_pip_add(vm_object_t object, short i)
366{
367
368	VM_OBJECT_ASSERT_WLOCKED(object);
369	object->paging_in_progress += i;
370}
371
372void
373vm_object_pip_subtract(vm_object_t object, short i)
374{
375
376	VM_OBJECT_ASSERT_WLOCKED(object);
377	object->paging_in_progress -= i;
378}
379
380void
381vm_object_pip_wakeup(vm_object_t object)
382{
383
384	VM_OBJECT_ASSERT_WLOCKED(object);
385	object->paging_in_progress--;
386	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
387		vm_object_clear_flag(object, OBJ_PIPWNT);
388		wakeup(object);
389	}
390}
391
392void
393vm_object_pip_wakeupn(vm_object_t object, short i)
394{
395
396	VM_OBJECT_ASSERT_WLOCKED(object);
397	if (i)
398		object->paging_in_progress -= i;
399	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
400		vm_object_clear_flag(object, OBJ_PIPWNT);
401		wakeup(object);
402	}
403}
404
405void
406vm_object_pip_wait(vm_object_t object, char *waitid)
407{
408
409	VM_OBJECT_ASSERT_WLOCKED(object);
410	while (object->paging_in_progress) {
411		object->flags |= OBJ_PIPWNT;
412		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
413	}
414}
415
416/*
417 *	vm_object_allocate:
418 *
419 *	Returns a new object with the given size.
420 */
421vm_object_t
422vm_object_allocate(objtype_t type, vm_pindex_t size)
423{
424	vm_object_t object;
425
426	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
427	_vm_object_allocate(type, size, object);
428	return (object);
429}
430
431
432/*
433 *	vm_object_reference:
434 *
435 *	Gets another reference to the given object.  Note: OBJ_DEAD
436 *	objects can be referenced during final cleaning.
437 */
438void
439vm_object_reference(vm_object_t object)
440{
441	if (object == NULL)
442		return;
443	VM_OBJECT_WLOCK(object);
444	vm_object_reference_locked(object);
445	VM_OBJECT_WUNLOCK(object);
446}
447
448/*
449 *	vm_object_reference_locked:
450 *
451 *	Gets another reference to the given object.
452 *
453 *	The object must be locked.
454 */
455void
456vm_object_reference_locked(vm_object_t object)
457{
458	struct vnode *vp;
459
460	VM_OBJECT_ASSERT_WLOCKED(object);
461	object->ref_count++;
462	if (object->type == OBJT_VNODE) {
463		vp = object->handle;
464		vref(vp);
465	}
466}
467
468/*
469 * Handle deallocating an object of type OBJT_VNODE.
470 */
471static void
472vm_object_vndeallocate(vm_object_t object)
473{
474	struct vnode *vp = (struct vnode *) object->handle;
475
476	VM_OBJECT_ASSERT_WLOCKED(object);
477	KASSERT(object->type == OBJT_VNODE,
478	    ("vm_object_vndeallocate: not a vnode object"));
479	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
480#ifdef INVARIANTS
481	if (object->ref_count == 0) {
482		vn_printf(vp, "vm_object_vndeallocate ");
483		panic("vm_object_vndeallocate: bad object reference count");
484	}
485#endif
486
487	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
488		umtx_shm_object_terminated(object);
489
490	/*
491	 * The test for text of vp vnode does not need a bypass to
492	 * reach right VV_TEXT there, since it is obtained from
493	 * object->handle.
494	 */
495	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
496		object->ref_count--;
497		VM_OBJECT_WUNLOCK(object);
498		/* vrele may need the vnode lock. */
499		vrele(vp);
500	} else {
501		vhold(vp);
502		VM_OBJECT_WUNLOCK(object);
503		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
504		vdrop(vp);
505		VM_OBJECT_WLOCK(object);
506		object->ref_count--;
507		if (object->type == OBJT_DEAD) {
508			VM_OBJECT_WUNLOCK(object);
509			VOP_UNLOCK(vp, 0);
510		} else {
511			if (object->ref_count == 0)
512				VOP_UNSET_TEXT(vp);
513			VM_OBJECT_WUNLOCK(object);
514			vput(vp);
515		}
516	}
517}
518
519/*
520 *	vm_object_deallocate:
521 *
522 *	Release a reference to the specified object,
523 *	gained either through a vm_object_allocate
524 *	or a vm_object_reference call.  When all references
525 *	are gone, storage associated with this object
526 *	may be relinquished.
527 *
528 *	No object may be locked.
529 */
530void
531vm_object_deallocate(vm_object_t object)
532{
533	vm_object_t temp;
534	struct vnode *vp;
535
536	while (object != NULL) {
537		VM_OBJECT_WLOCK(object);
538		if (object->type == OBJT_VNODE) {
539			vm_object_vndeallocate(object);
540			return;
541		}
542
543		KASSERT(object->ref_count != 0,
544			("vm_object_deallocate: object deallocated too many times: %d", object->type));
545
546		/*
547		 * If the reference count goes to 0 we start calling
548		 * vm_object_terminate() on the object chain.
549		 * A ref count of 1 may be a special case depending on the
550		 * shadow count being 0 or 1.
551		 */
552		object->ref_count--;
553		if (object->ref_count > 1) {
554			VM_OBJECT_WUNLOCK(object);
555			return;
556		} else if (object->ref_count == 1) {
557			if (object->type == OBJT_SWAP &&
558			    (object->flags & OBJ_TMPFS) != 0) {
559				vp = object->un_pager.swp.swp_tmpfs;
560				vhold(vp);
561				VM_OBJECT_WUNLOCK(object);
562				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
563				VM_OBJECT_WLOCK(object);
564				if (object->type == OBJT_DEAD ||
565				    object->ref_count != 1) {
566					VM_OBJECT_WUNLOCK(object);
567					VOP_UNLOCK(vp, 0);
568					vdrop(vp);
569					return;
570				}
571				if ((object->flags & OBJ_TMPFS) != 0)
572					VOP_UNSET_TEXT(vp);
573				VOP_UNLOCK(vp, 0);
574				vdrop(vp);
575			}
576			if (object->shadow_count == 0 &&
577			    object->handle == NULL &&
578			    (object->type == OBJT_DEFAULT ||
579			    (object->type == OBJT_SWAP &&
580			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
581				vm_object_set_flag(object, OBJ_ONEMAPPING);
582			} else if ((object->shadow_count == 1) &&
583			    (object->handle == NULL) &&
584			    (object->type == OBJT_DEFAULT ||
585			     object->type == OBJT_SWAP)) {
586				vm_object_t robject;
587
588				robject = LIST_FIRST(&object->shadow_head);
589				KASSERT(robject != NULL,
590				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
591					 object->ref_count,
592					 object->shadow_count));
593				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
594				    ("shadowed tmpfs v_object %p", object));
595				if (!VM_OBJECT_TRYWLOCK(robject)) {
596					/*
597					 * Avoid a potential deadlock.
598					 */
599					object->ref_count++;
600					VM_OBJECT_WUNLOCK(object);
601					/*
602					 * More likely than not the thread
603					 * holding robject's lock has lower
604					 * priority than the current thread.
605					 * Let the lower priority thread run.
606					 */
607					pause("vmo_de", 1);
608					continue;
609				}
610				/*
611				 * Collapse object into its shadow unless its
612				 * shadow is dead.  In that case, object will
613				 * be deallocated by the thread that is
614				 * deallocating its shadow.
615				 */
616				if ((robject->flags & OBJ_DEAD) == 0 &&
617				    (robject->handle == NULL) &&
618				    (robject->type == OBJT_DEFAULT ||
619				     robject->type == OBJT_SWAP)) {
620
621					robject->ref_count++;
622retry:
623					if (robject->paging_in_progress) {
624						VM_OBJECT_WUNLOCK(object);
625						vm_object_pip_wait(robject,
626						    "objde1");
627						temp = robject->backing_object;
628						if (object == temp) {
629							VM_OBJECT_WLOCK(object);
630							goto retry;
631						}
632					} else if (object->paging_in_progress) {
633						VM_OBJECT_WUNLOCK(robject);
634						object->flags |= OBJ_PIPWNT;
635						VM_OBJECT_SLEEP(object, object,
636						    PDROP | PVM, "objde2", 0);
637						VM_OBJECT_WLOCK(robject);
638						temp = robject->backing_object;
639						if (object == temp) {
640							VM_OBJECT_WLOCK(object);
641							goto retry;
642						}
643					} else
644						VM_OBJECT_WUNLOCK(object);
645
646					if (robject->ref_count == 1) {
647						robject->ref_count--;
648						object = robject;
649						goto doterm;
650					}
651					object = robject;
652					vm_object_collapse(object);
653					VM_OBJECT_WUNLOCK(object);
654					continue;
655				}
656				VM_OBJECT_WUNLOCK(robject);
657			}
658			VM_OBJECT_WUNLOCK(object);
659			return;
660		}
661doterm:
662		umtx_shm_object_terminated(object);
663		temp = object->backing_object;
664		if (temp != NULL) {
665			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
666			    ("shadowed tmpfs v_object 2 %p", object));
667			VM_OBJECT_WLOCK(temp);
668			LIST_REMOVE(object, shadow_list);
669			temp->shadow_count--;
670			VM_OBJECT_WUNLOCK(temp);
671			object->backing_object = NULL;
672		}
673		/*
674		 * Don't double-terminate, we could be in a termination
675		 * recursion due to the terminate having to sync data
676		 * to disk.
677		 */
678		if ((object->flags & OBJ_DEAD) == 0)
679			vm_object_terminate(object);
680		else
681			VM_OBJECT_WUNLOCK(object);
682		object = temp;
683	}
684}
685
686/*
687 *	vm_object_destroy removes the object from the global object list
688 *      and frees the space for the object.
689 */
690void
691vm_object_destroy(vm_object_t object)
692{
693
694	/*
695	 * Release the allocation charge.
696	 */
697	if (object->cred != NULL) {
698		swap_release_by_cred(object->charge, object->cred);
699		object->charge = 0;
700		crfree(object->cred);
701		object->cred = NULL;
702	}
703
704	/*
705	 * Free the space for the object.
706	 */
707	uma_zfree(obj_zone, object);
708}
709
710/*
711 *	vm_object_terminate_pages removes any remaining pageable pages
712 *	from the object and resets the object to an empty state.
713 */
714static void
715vm_object_terminate_pages(vm_object_t object)
716{
717	vm_page_t p, p_next;
718	struct mtx *mtx, *mtx1;
719	struct vm_pagequeue *pq, *pq1;
720
721	VM_OBJECT_ASSERT_WLOCKED(object);
722
723	mtx = NULL;
724	pq = NULL;
725
726	/*
727	 * Free any remaining pageable pages.  This also removes them from the
728	 * paging queues.  However, don't free wired pages, just remove them
729	 * from the object.  Rather than incrementally removing each page from
730	 * the object, the page and object are reset to any empty state.
731	 */
732	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
733		vm_page_assert_unbusied(p);
734		if ((object->flags & OBJ_UNMANAGED) == 0) {
735			/*
736			 * vm_page_free_prep() only needs the page
737			 * lock for managed pages.
738			 */
739			mtx1 = vm_page_lockptr(p);
740			if (mtx1 != mtx) {
741				if (mtx != NULL)
742					mtx_unlock(mtx);
743				if (pq != NULL) {
744					vm_pagequeue_unlock(pq);
745					pq = NULL;
746				}
747				mtx = mtx1;
748				mtx_lock(mtx);
749			}
750		}
751		p->object = NULL;
752		if (p->wire_count != 0)
753			goto unlist;
754		PCPU_INC(cnt.v_pfree);
755		p->flags &= ~PG_ZERO;
756		if (p->queue != PQ_NONE) {
757			KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: "
758			    "page %p is not queued", p));
759			pq1 = vm_page_pagequeue(p);
760			if (pq != pq1) {
761				if (pq != NULL)
762					vm_pagequeue_unlock(pq);
763				pq = pq1;
764				vm_pagequeue_lock(pq);
765			}
766		}
767		if (vm_page_free_prep(p, true))
768			continue;
769unlist:
770		TAILQ_REMOVE(&object->memq, p, listq);
771	}
772	if (pq != NULL)
773		vm_pagequeue_unlock(pq);
774	if (mtx != NULL)
775		mtx_unlock(mtx);
776
777	vm_page_free_phys_pglist(&object->memq);
778
779	/*
780	 * If the object contained any pages, then reset it to an empty state.
781	 * None of the object's fields, including "resident_page_count", were
782	 * modified by the preceding loop.
783	 */
784	if (object->resident_page_count != 0) {
785		vm_radix_reclaim_allnodes(&object->rtree);
786		TAILQ_INIT(&object->memq);
787		object->resident_page_count = 0;
788		if (object->type == OBJT_VNODE)
789			vdrop(object->handle);
790	}
791}
792
793/*
794 *	vm_object_terminate actually destroys the specified object, freeing
795 *	up all previously used resources.
796 *
797 *	The object must be locked.
798 *	This routine may block.
799 */
800void
801vm_object_terminate(vm_object_t object)
802{
803
804	VM_OBJECT_ASSERT_WLOCKED(object);
805
806	/*
807	 * Make sure no one uses us.
808	 */
809	vm_object_set_flag(object, OBJ_DEAD);
810
811	/*
812	 * wait for the pageout daemon to be done with the object
813	 */
814	vm_object_pip_wait(object, "objtrm");
815
816	KASSERT(!object->paging_in_progress,
817		("vm_object_terminate: pageout in progress"));
818
819	/*
820	 * Clean and free the pages, as appropriate. All references to the
821	 * object are gone, so we don't need to lock it.
822	 */
823	if (object->type == OBJT_VNODE) {
824		struct vnode *vp = (struct vnode *)object->handle;
825
826		/*
827		 * Clean pages and flush buffers.
828		 */
829		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
830		VM_OBJECT_WUNLOCK(object);
831
832		vinvalbuf(vp, V_SAVE, 0, 0);
833
834		BO_LOCK(&vp->v_bufobj);
835		vp->v_bufobj.bo_flag |= BO_DEAD;
836		BO_UNLOCK(&vp->v_bufobj);
837
838		VM_OBJECT_WLOCK(object);
839	}
840
841	KASSERT(object->ref_count == 0,
842		("vm_object_terminate: object with references, ref_count=%d",
843		object->ref_count));
844
845	if ((object->flags & OBJ_PG_DTOR) == 0)
846		vm_object_terminate_pages(object);
847
848#if VM_NRESERVLEVEL > 0
849	if (__predict_false(!LIST_EMPTY(&object->rvq)))
850		vm_reserv_break_all(object);
851#endif
852
853	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
854	    object->type == OBJT_SWAP,
855	    ("%s: non-swap obj %p has cred", __func__, object));
856
857	/*
858	 * Let the pager know object is dead.
859	 */
860	vm_pager_deallocate(object);
861	VM_OBJECT_WUNLOCK(object);
862
863	vm_object_destroy(object);
864}
865
866/*
867 * Make the page read-only so that we can clear the object flags.  However, if
868 * this is a nosync mmap then the object is likely to stay dirty so do not
869 * mess with the page and do not clear the object flags.  Returns TRUE if the
870 * page should be flushed, and FALSE otherwise.
871 */
872static boolean_t
873vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
874{
875
876	/*
877	 * If we have been asked to skip nosync pages and this is a
878	 * nosync page, skip it.  Note that the object flags were not
879	 * cleared in this case so we do not have to set them.
880	 */
881	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
882		*clearobjflags = FALSE;
883		return (FALSE);
884	} else {
885		pmap_remove_write(p);
886		return (p->dirty != 0);
887	}
888}
889
890/*
891 *	vm_object_page_clean
892 *
893 *	Clean all dirty pages in the specified range of object.  Leaves page
894 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
895 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
896 *	leaving the object dirty.
897 *
898 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
899 *	synchronous clustering mode implementation.
900 *
901 *	Odd semantics: if start == end, we clean everything.
902 *
903 *	The object must be locked.
904 *
905 *	Returns FALSE if some page from the range was not written, as
906 *	reported by the pager, and TRUE otherwise.
907 */
908boolean_t
909vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
910    int flags)
911{
912	vm_page_t np, p;
913	vm_pindex_t pi, tend, tstart;
914	int curgeneration, n, pagerflags;
915	boolean_t clearobjflags, eio, res;
916
917	VM_OBJECT_ASSERT_WLOCKED(object);
918
919	/*
920	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
921	 * objects.  The check below prevents the function from
922	 * operating on non-vnode objects.
923	 */
924	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
925	    object->resident_page_count == 0)
926		return (TRUE);
927
928	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
929	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
930	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
931
932	tstart = OFF_TO_IDX(start);
933	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
934	clearobjflags = tstart == 0 && tend >= object->size;
935	res = TRUE;
936
937rescan:
938	curgeneration = object->generation;
939
940	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
941		pi = p->pindex;
942		if (pi >= tend)
943			break;
944		np = TAILQ_NEXT(p, listq);
945		if (p->valid == 0)
946			continue;
947		if (vm_page_sleep_if_busy(p, "vpcwai")) {
948			if (object->generation != curgeneration) {
949				if ((flags & OBJPC_SYNC) != 0)
950					goto rescan;
951				else
952					clearobjflags = FALSE;
953			}
954			np = vm_page_find_least(object, pi);
955			continue;
956		}
957		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
958			continue;
959
960		n = vm_object_page_collect_flush(object, p, pagerflags,
961		    flags, &clearobjflags, &eio);
962		if (eio) {
963			res = FALSE;
964			clearobjflags = FALSE;
965		}
966		if (object->generation != curgeneration) {
967			if ((flags & OBJPC_SYNC) != 0)
968				goto rescan;
969			else
970				clearobjflags = FALSE;
971		}
972
973		/*
974		 * If the VOP_PUTPAGES() did a truncated write, so
975		 * that even the first page of the run is not fully
976		 * written, vm_pageout_flush() returns 0 as the run
977		 * length.  Since the condition that caused truncated
978		 * write may be permanent, e.g. exhausted free space,
979		 * accepting n == 0 would cause an infinite loop.
980		 *
981		 * Forwarding the iterator leaves the unwritten page
982		 * behind, but there is not much we can do there if
983		 * filesystem refuses to write it.
984		 */
985		if (n == 0) {
986			n = 1;
987			clearobjflags = FALSE;
988		}
989		np = vm_page_find_least(object, pi + n);
990	}
991#if 0
992	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
993#endif
994
995	if (clearobjflags)
996		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
997	return (res);
998}
999
1000static int
1001vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1002    int flags, boolean_t *clearobjflags, boolean_t *eio)
1003{
1004	vm_page_t ma[vm_pageout_page_count], p_first, tp;
1005	int count, i, mreq, runlen;
1006
1007	vm_page_lock_assert(p, MA_NOTOWNED);
1008	VM_OBJECT_ASSERT_WLOCKED(object);
1009
1010	count = 1;
1011	mreq = 0;
1012
1013	for (tp = p; count < vm_pageout_page_count; count++) {
1014		tp = vm_page_next(tp);
1015		if (tp == NULL || vm_page_busied(tp))
1016			break;
1017		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1018			break;
1019	}
1020
1021	for (p_first = p; count < vm_pageout_page_count; count++) {
1022		tp = vm_page_prev(p_first);
1023		if (tp == NULL || vm_page_busied(tp))
1024			break;
1025		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1026			break;
1027		p_first = tp;
1028		mreq++;
1029	}
1030
1031	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1032		ma[i] = tp;
1033
1034	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1035	return (runlen);
1036}
1037
1038/*
1039 * Note that there is absolutely no sense in writing out
1040 * anonymous objects, so we track down the vnode object
1041 * to write out.
1042 * We invalidate (remove) all pages from the address space
1043 * for semantic correctness.
1044 *
1045 * If the backing object is a device object with unmanaged pages, then any
1046 * mappings to the specified range of pages must be removed before this
1047 * function is called.
1048 *
1049 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1050 * may start out with a NULL object.
1051 */
1052boolean_t
1053vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1054    boolean_t syncio, boolean_t invalidate)
1055{
1056	vm_object_t backing_object;
1057	struct vnode *vp;
1058	struct mount *mp;
1059	int error, flags, fsync_after;
1060	boolean_t res;
1061
1062	if (object == NULL)
1063		return (TRUE);
1064	res = TRUE;
1065	error = 0;
1066	VM_OBJECT_WLOCK(object);
1067	while ((backing_object = object->backing_object) != NULL) {
1068		VM_OBJECT_WLOCK(backing_object);
1069		offset += object->backing_object_offset;
1070		VM_OBJECT_WUNLOCK(object);
1071		object = backing_object;
1072		if (object->size < OFF_TO_IDX(offset + size))
1073			size = IDX_TO_OFF(object->size) - offset;
1074	}
1075	/*
1076	 * Flush pages if writing is allowed, invalidate them
1077	 * if invalidation requested.  Pages undergoing I/O
1078	 * will be ignored by vm_object_page_remove().
1079	 *
1080	 * We cannot lock the vnode and then wait for paging
1081	 * to complete without deadlocking against vm_fault.
1082	 * Instead we simply call vm_object_page_remove() and
1083	 * allow it to block internally on a page-by-page
1084	 * basis when it encounters pages undergoing async
1085	 * I/O.
1086	 */
1087	if (object->type == OBJT_VNODE &&
1088	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1089	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1090		VM_OBJECT_WUNLOCK(object);
1091		(void) vn_start_write(vp, &mp, V_WAIT);
1092		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1093		if (syncio && !invalidate && offset == 0 &&
1094		    atop(size) == object->size) {
1095			/*
1096			 * If syncing the whole mapping of the file,
1097			 * it is faster to schedule all the writes in
1098			 * async mode, also allowing the clustering,
1099			 * and then wait for i/o to complete.
1100			 */
1101			flags = 0;
1102			fsync_after = TRUE;
1103		} else {
1104			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1105			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1106			fsync_after = FALSE;
1107		}
1108		VM_OBJECT_WLOCK(object);
1109		res = vm_object_page_clean(object, offset, offset + size,
1110		    flags);
1111		VM_OBJECT_WUNLOCK(object);
1112		if (fsync_after)
1113			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1114		VOP_UNLOCK(vp, 0);
1115		vn_finished_write(mp);
1116		if (error != 0)
1117			res = FALSE;
1118		VM_OBJECT_WLOCK(object);
1119	}
1120	if ((object->type == OBJT_VNODE ||
1121	     object->type == OBJT_DEVICE) && invalidate) {
1122		if (object->type == OBJT_DEVICE)
1123			/*
1124			 * The option OBJPR_NOTMAPPED must be passed here
1125			 * because vm_object_page_remove() cannot remove
1126			 * unmanaged mappings.
1127			 */
1128			flags = OBJPR_NOTMAPPED;
1129		else if (old_msync)
1130			flags = 0;
1131		else
1132			flags = OBJPR_CLEANONLY;
1133		vm_object_page_remove(object, OFF_TO_IDX(offset),
1134		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1135	}
1136	VM_OBJECT_WUNLOCK(object);
1137	return (res);
1138}
1139
1140/*
1141 * Determine whether the given advice can be applied to the object.  Advice is
1142 * not applied to unmanaged pages since they never belong to page queues, and
1143 * since MADV_FREE is destructive, it can apply only to anonymous pages that
1144 * have been mapped at most once.
1145 */
1146static bool
1147vm_object_advice_applies(vm_object_t object, int advice)
1148{
1149
1150	if ((object->flags & OBJ_UNMANAGED) != 0)
1151		return (false);
1152	if (advice != MADV_FREE)
1153		return (true);
1154	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1155	    (object->flags & OBJ_ONEMAPPING) != 0);
1156}
1157
1158static void
1159vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1160    vm_size_t size)
1161{
1162
1163	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1164		swap_pager_freespace(object, pindex, size);
1165}
1166
1167/*
1168 *	vm_object_madvise:
1169 *
1170 *	Implements the madvise function at the object/page level.
1171 *
1172 *	MADV_WILLNEED	(any object)
1173 *
1174 *	    Activate the specified pages if they are resident.
1175 *
1176 *	MADV_DONTNEED	(any object)
1177 *
1178 *	    Deactivate the specified pages if they are resident.
1179 *
1180 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1181 *			 OBJ_ONEMAPPING only)
1182 *
1183 *	    Deactivate and clean the specified pages if they are
1184 *	    resident.  This permits the process to reuse the pages
1185 *	    without faulting or the kernel to reclaim the pages
1186 *	    without I/O.
1187 */
1188void
1189vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1190    int advice)
1191{
1192	vm_pindex_t tpindex;
1193	vm_object_t backing_object, tobject;
1194	vm_page_t m, tm;
1195
1196	if (object == NULL)
1197		return;
1198
1199relookup:
1200	VM_OBJECT_WLOCK(object);
1201	if (!vm_object_advice_applies(object, advice)) {
1202		VM_OBJECT_WUNLOCK(object);
1203		return;
1204	}
1205	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1206		tobject = object;
1207
1208		/*
1209		 * If the next page isn't resident in the top-level object, we
1210		 * need to search the shadow chain.  When applying MADV_FREE, we
1211		 * take care to release any swap space used to store
1212		 * non-resident pages.
1213		 */
1214		if (m == NULL || pindex < m->pindex) {
1215			/*
1216			 * Optimize a common case: if the top-level object has
1217			 * no backing object, we can skip over the non-resident
1218			 * range in constant time.
1219			 */
1220			if (object->backing_object == NULL) {
1221				tpindex = (m != NULL && m->pindex < end) ?
1222				    m->pindex : end;
1223				vm_object_madvise_freespace(object, advice,
1224				    pindex, tpindex - pindex);
1225				if ((pindex = tpindex) == end)
1226					break;
1227				goto next_page;
1228			}
1229
1230			tpindex = pindex;
1231			do {
1232				vm_object_madvise_freespace(tobject, advice,
1233				    tpindex, 1);
1234				/*
1235				 * Prepare to search the next object in the
1236				 * chain.
1237				 */
1238				backing_object = tobject->backing_object;
1239				if (backing_object == NULL)
1240					goto next_pindex;
1241				VM_OBJECT_WLOCK(backing_object);
1242				tpindex +=
1243				    OFF_TO_IDX(tobject->backing_object_offset);
1244				if (tobject != object)
1245					VM_OBJECT_WUNLOCK(tobject);
1246				tobject = backing_object;
1247				if (!vm_object_advice_applies(tobject, advice))
1248					goto next_pindex;
1249			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1250			    NULL);
1251		} else {
1252next_page:
1253			tm = m;
1254			m = TAILQ_NEXT(m, listq);
1255		}
1256
1257		/*
1258		 * If the page is not in a normal state, skip it.
1259		 */
1260		if (tm->valid != VM_PAGE_BITS_ALL)
1261			goto next_pindex;
1262		vm_page_lock(tm);
1263		if (tm->hold_count != 0 || tm->wire_count != 0) {
1264			vm_page_unlock(tm);
1265			goto next_pindex;
1266		}
1267		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1268		    ("vm_object_madvise: page %p is fictitious", tm));
1269		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1270		    ("vm_object_madvise: page %p is not managed", tm));
1271		if (vm_page_busied(tm)) {
1272			if (object != tobject)
1273				VM_OBJECT_WUNLOCK(tobject);
1274			VM_OBJECT_WUNLOCK(object);
1275			if (advice == MADV_WILLNEED) {
1276				/*
1277				 * Reference the page before unlocking and
1278				 * sleeping so that the page daemon is less
1279				 * likely to reclaim it.
1280				 */
1281				vm_page_aflag_set(tm, PGA_REFERENCED);
1282			}
1283			vm_page_busy_sleep(tm, "madvpo", false);
1284  			goto relookup;
1285		}
1286		vm_page_advise(tm, advice);
1287		vm_page_unlock(tm);
1288		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1289next_pindex:
1290		if (tobject != object)
1291			VM_OBJECT_WUNLOCK(tobject);
1292	}
1293	VM_OBJECT_WUNLOCK(object);
1294}
1295
1296/*
1297 *	vm_object_shadow:
1298 *
1299 *	Create a new object which is backed by the
1300 *	specified existing object range.  The source
1301 *	object reference is deallocated.
1302 *
1303 *	The new object and offset into that object
1304 *	are returned in the source parameters.
1305 */
1306void
1307vm_object_shadow(
1308	vm_object_t *object,	/* IN/OUT */
1309	vm_ooffset_t *offset,	/* IN/OUT */
1310	vm_size_t length)
1311{
1312	vm_object_t source;
1313	vm_object_t result;
1314
1315	source = *object;
1316
1317	/*
1318	 * Don't create the new object if the old object isn't shared.
1319	 */
1320	if (source != NULL) {
1321		VM_OBJECT_WLOCK(source);
1322		if (source->ref_count == 1 &&
1323		    source->handle == NULL &&
1324		    (source->type == OBJT_DEFAULT ||
1325		     source->type == OBJT_SWAP)) {
1326			VM_OBJECT_WUNLOCK(source);
1327			return;
1328		}
1329		VM_OBJECT_WUNLOCK(source);
1330	}
1331
1332	/*
1333	 * Allocate a new object with the given length.
1334	 */
1335	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1336
1337	/*
1338	 * The new object shadows the source object, adding a reference to it.
1339	 * Our caller changes his reference to point to the new object,
1340	 * removing a reference to the source object.  Net result: no change
1341	 * of reference count.
1342	 *
1343	 * Try to optimize the result object's page color when shadowing
1344	 * in order to maintain page coloring consistency in the combined
1345	 * shadowed object.
1346	 */
1347	result->backing_object = source;
1348	/*
1349	 * Store the offset into the source object, and fix up the offset into
1350	 * the new object.
1351	 */
1352	result->backing_object_offset = *offset;
1353	if (source != NULL) {
1354		VM_OBJECT_WLOCK(source);
1355		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1356		source->shadow_count++;
1357#if VM_NRESERVLEVEL > 0
1358		result->flags |= source->flags & OBJ_COLORED;
1359		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1360		    ((1 << (VM_NFREEORDER - 1)) - 1);
1361#endif
1362		VM_OBJECT_WUNLOCK(source);
1363	}
1364
1365
1366	/*
1367	 * Return the new things
1368	 */
1369	*offset = 0;
1370	*object = result;
1371}
1372
1373/*
1374 *	vm_object_split:
1375 *
1376 * Split the pages in a map entry into a new object.  This affords
1377 * easier removal of unused pages, and keeps object inheritance from
1378 * being a negative impact on memory usage.
1379 */
1380void
1381vm_object_split(vm_map_entry_t entry)
1382{
1383	vm_page_t m, m_next;
1384	vm_object_t orig_object, new_object, source;
1385	vm_pindex_t idx, offidxstart;
1386	vm_size_t size;
1387
1388	orig_object = entry->object.vm_object;
1389	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1390		return;
1391	if (orig_object->ref_count <= 1)
1392		return;
1393	VM_OBJECT_WUNLOCK(orig_object);
1394
1395	offidxstart = OFF_TO_IDX(entry->offset);
1396	size = atop(entry->end - entry->start);
1397
1398	/*
1399	 * If swap_pager_copy() is later called, it will convert new_object
1400	 * into a swap object.
1401	 */
1402	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1403
1404	/*
1405	 * At this point, the new object is still private, so the order in
1406	 * which the original and new objects are locked does not matter.
1407	 */
1408	VM_OBJECT_WLOCK(new_object);
1409	VM_OBJECT_WLOCK(orig_object);
1410	source = orig_object->backing_object;
1411	if (source != NULL) {
1412		VM_OBJECT_WLOCK(source);
1413		if ((source->flags & OBJ_DEAD) != 0) {
1414			VM_OBJECT_WUNLOCK(source);
1415			VM_OBJECT_WUNLOCK(orig_object);
1416			VM_OBJECT_WUNLOCK(new_object);
1417			vm_object_deallocate(new_object);
1418			VM_OBJECT_WLOCK(orig_object);
1419			return;
1420		}
1421		LIST_INSERT_HEAD(&source->shadow_head,
1422				  new_object, shadow_list);
1423		source->shadow_count++;
1424		vm_object_reference_locked(source);	/* for new_object */
1425		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1426		VM_OBJECT_WUNLOCK(source);
1427		new_object->backing_object_offset =
1428			orig_object->backing_object_offset + entry->offset;
1429		new_object->backing_object = source;
1430	}
1431	if (orig_object->cred != NULL) {
1432		new_object->cred = orig_object->cred;
1433		crhold(orig_object->cred);
1434		new_object->charge = ptoa(size);
1435		KASSERT(orig_object->charge >= ptoa(size),
1436		    ("orig_object->charge < 0"));
1437		orig_object->charge -= ptoa(size);
1438	}
1439retry:
1440	m = vm_page_find_least(orig_object, offidxstart);
1441	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1442	    m = m_next) {
1443		m_next = TAILQ_NEXT(m, listq);
1444
1445		/*
1446		 * We must wait for pending I/O to complete before we can
1447		 * rename the page.
1448		 *
1449		 * We do not have to VM_PROT_NONE the page as mappings should
1450		 * not be changed by this operation.
1451		 */
1452		if (vm_page_busied(m)) {
1453			VM_OBJECT_WUNLOCK(new_object);
1454			vm_page_lock(m);
1455			VM_OBJECT_WUNLOCK(orig_object);
1456			vm_page_busy_sleep(m, "spltwt", false);
1457			VM_OBJECT_WLOCK(orig_object);
1458			VM_OBJECT_WLOCK(new_object);
1459			goto retry;
1460		}
1461
1462		/* vm_page_rename() will dirty the page. */
1463		if (vm_page_rename(m, new_object, idx)) {
1464			VM_OBJECT_WUNLOCK(new_object);
1465			VM_OBJECT_WUNLOCK(orig_object);
1466			vm_radix_wait();
1467			VM_OBJECT_WLOCK(orig_object);
1468			VM_OBJECT_WLOCK(new_object);
1469			goto retry;
1470		}
1471#if VM_NRESERVLEVEL > 0
1472		/*
1473		 * If some of the reservation's allocated pages remain with
1474		 * the original object, then transferring the reservation to
1475		 * the new object is neither particularly beneficial nor
1476		 * particularly harmful as compared to leaving the reservation
1477		 * with the original object.  If, however, all of the
1478		 * reservation's allocated pages are transferred to the new
1479		 * object, then transferring the reservation is typically
1480		 * beneficial.  Determining which of these two cases applies
1481		 * would be more costly than unconditionally renaming the
1482		 * reservation.
1483		 */
1484		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1485#endif
1486		if (orig_object->type == OBJT_SWAP)
1487			vm_page_xbusy(m);
1488	}
1489	if (orig_object->type == OBJT_SWAP) {
1490		/*
1491		 * swap_pager_copy() can sleep, in which case the orig_object's
1492		 * and new_object's locks are released and reacquired.
1493		 */
1494		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1495		TAILQ_FOREACH(m, &new_object->memq, listq)
1496			vm_page_xunbusy(m);
1497	}
1498	VM_OBJECT_WUNLOCK(orig_object);
1499	VM_OBJECT_WUNLOCK(new_object);
1500	entry->object.vm_object = new_object;
1501	entry->offset = 0LL;
1502	vm_object_deallocate(orig_object);
1503	VM_OBJECT_WLOCK(new_object);
1504}
1505
1506#define	OBSC_COLLAPSE_NOWAIT	0x0002
1507#define	OBSC_COLLAPSE_WAIT	0x0004
1508
1509static vm_page_t
1510vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1511    int op)
1512{
1513	vm_object_t backing_object;
1514
1515	VM_OBJECT_ASSERT_WLOCKED(object);
1516	backing_object = object->backing_object;
1517	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1518
1519	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1520	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1521	    ("invalid ownership %p %p %p", p, object, backing_object));
1522	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1523		return (next);
1524	if (p != NULL)
1525		vm_page_lock(p);
1526	VM_OBJECT_WUNLOCK(object);
1527	VM_OBJECT_WUNLOCK(backing_object);
1528	/* The page is only NULL when rename fails. */
1529	if (p == NULL)
1530		vm_radix_wait();
1531	else
1532		vm_page_busy_sleep(p, "vmocol", false);
1533	VM_OBJECT_WLOCK(object);
1534	VM_OBJECT_WLOCK(backing_object);
1535	return (TAILQ_FIRST(&backing_object->memq));
1536}
1537
1538static bool
1539vm_object_scan_all_shadowed(vm_object_t object)
1540{
1541	vm_object_t backing_object;
1542	vm_page_t p, pp;
1543	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1544
1545	VM_OBJECT_ASSERT_WLOCKED(object);
1546	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1547
1548	backing_object = object->backing_object;
1549
1550	/*
1551	 * Initial conditions:
1552	 *
1553	 * We do not want to have to test for the existence of swap
1554	 * pages in the backing object.  XXX but with the new swapper this
1555	 * would be pretty easy to do.
1556	 */
1557	if (backing_object->type != OBJT_DEFAULT &&
1558	    backing_object->type != OBJT_SWAP)
1559		return (false);
1560
1561	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1562	p = vm_page_find_least(backing_object, pi);
1563	ps = swap_pager_find_least(backing_object, pi);
1564
1565	/*
1566	 * Only check pages inside the parent object's range and
1567	 * inside the parent object's mapping of the backing object.
1568	 */
1569	for (;; pi++) {
1570		if (p != NULL && p->pindex < pi)
1571			p = TAILQ_NEXT(p, listq);
1572		if (ps < pi)
1573			ps = swap_pager_find_least(backing_object, pi);
1574		if (p == NULL && ps >= backing_object->size)
1575			break;
1576		else if (p == NULL)
1577			pi = ps;
1578		else
1579			pi = MIN(p->pindex, ps);
1580
1581		new_pindex = pi - backing_offset_index;
1582		if (new_pindex >= object->size)
1583			break;
1584
1585		/*
1586		 * See if the parent has the page or if the parent's object
1587		 * pager has the page.  If the parent has the page but the page
1588		 * is not valid, the parent's object pager must have the page.
1589		 *
1590		 * If this fails, the parent does not completely shadow the
1591		 * object and we might as well give up now.
1592		 */
1593		pp = vm_page_lookup(object, new_pindex);
1594		if ((pp == NULL || pp->valid == 0) &&
1595		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1596			return (false);
1597	}
1598	return (true);
1599}
1600
1601static bool
1602vm_object_collapse_scan(vm_object_t object, int op)
1603{
1604	vm_object_t backing_object;
1605	vm_page_t next, p, pp;
1606	vm_pindex_t backing_offset_index, new_pindex;
1607
1608	VM_OBJECT_ASSERT_WLOCKED(object);
1609	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1610
1611	backing_object = object->backing_object;
1612	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1613
1614	/*
1615	 * Initial conditions
1616	 */
1617	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1618		vm_object_set_flag(backing_object, OBJ_DEAD);
1619
1620	/*
1621	 * Our scan
1622	 */
1623	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1624		next = TAILQ_NEXT(p, listq);
1625		new_pindex = p->pindex - backing_offset_index;
1626
1627		/*
1628		 * Check for busy page
1629		 */
1630		if (vm_page_busied(p)) {
1631			next = vm_object_collapse_scan_wait(object, p, next, op);
1632			continue;
1633		}
1634
1635		KASSERT(p->object == backing_object,
1636		    ("vm_object_collapse_scan: object mismatch"));
1637
1638		if (p->pindex < backing_offset_index ||
1639		    new_pindex >= object->size) {
1640			if (backing_object->type == OBJT_SWAP)
1641				swap_pager_freespace(backing_object, p->pindex,
1642				    1);
1643
1644			/*
1645			 * Page is out of the parent object's range, we can
1646			 * simply destroy it.
1647			 */
1648			vm_page_lock(p);
1649			KASSERT(!pmap_page_is_mapped(p),
1650			    ("freeing mapped page %p", p));
1651			if (p->wire_count == 0)
1652				vm_page_free(p);
1653			else
1654				vm_page_remove(p);
1655			vm_page_unlock(p);
1656			continue;
1657		}
1658
1659		pp = vm_page_lookup(object, new_pindex);
1660		if (pp != NULL && vm_page_busied(pp)) {
1661			/*
1662			 * The page in the parent is busy and possibly not
1663			 * (yet) valid.  Until its state is finalized by the
1664			 * busy bit owner, we can't tell whether it shadows the
1665			 * original page.  Therefore, we must either skip it
1666			 * and the original (backing_object) page or wait for
1667			 * its state to be finalized.
1668			 *
1669			 * This is due to a race with vm_fault() where we must
1670			 * unbusy the original (backing_obj) page before we can
1671			 * (re)lock the parent.  Hence we can get here.
1672			 */
1673			next = vm_object_collapse_scan_wait(object, pp, next,
1674			    op);
1675			continue;
1676		}
1677
1678		KASSERT(pp == NULL || pp->valid != 0,
1679		    ("unbusy invalid page %p", pp));
1680
1681		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1682			NULL)) {
1683			/*
1684			 * The page already exists in the parent OR swap exists
1685			 * for this location in the parent.  Leave the parent's
1686			 * page alone.  Destroy the original page from the
1687			 * backing object.
1688			 */
1689			if (backing_object->type == OBJT_SWAP)
1690				swap_pager_freespace(backing_object, p->pindex,
1691				    1);
1692			vm_page_lock(p);
1693			KASSERT(!pmap_page_is_mapped(p),
1694			    ("freeing mapped page %p", p));
1695			if (p->wire_count == 0)
1696				vm_page_free(p);
1697			else
1698				vm_page_remove(p);
1699			vm_page_unlock(p);
1700			continue;
1701		}
1702
1703		/*
1704		 * Page does not exist in parent, rename the page from the
1705		 * backing object to the main object.
1706		 *
1707		 * If the page was mapped to a process, it can remain mapped
1708		 * through the rename.  vm_page_rename() will dirty the page.
1709		 */
1710		if (vm_page_rename(p, object, new_pindex)) {
1711			next = vm_object_collapse_scan_wait(object, NULL, next,
1712			    op);
1713			continue;
1714		}
1715
1716		/* Use the old pindex to free the right page. */
1717		if (backing_object->type == OBJT_SWAP)
1718			swap_pager_freespace(backing_object,
1719			    new_pindex + backing_offset_index, 1);
1720
1721#if VM_NRESERVLEVEL > 0
1722		/*
1723		 * Rename the reservation.
1724		 */
1725		vm_reserv_rename(p, object, backing_object,
1726		    backing_offset_index);
1727#endif
1728	}
1729	return (true);
1730}
1731
1732
1733/*
1734 * this version of collapse allows the operation to occur earlier and
1735 * when paging_in_progress is true for an object...  This is not a complete
1736 * operation, but should plug 99.9% of the rest of the leaks.
1737 */
1738static void
1739vm_object_qcollapse(vm_object_t object)
1740{
1741	vm_object_t backing_object = object->backing_object;
1742
1743	VM_OBJECT_ASSERT_WLOCKED(object);
1744	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1745
1746	if (backing_object->ref_count != 1)
1747		return;
1748
1749	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1750}
1751
1752/*
1753 *	vm_object_collapse:
1754 *
1755 *	Collapse an object with the object backing it.
1756 *	Pages in the backing object are moved into the
1757 *	parent, and the backing object is deallocated.
1758 */
1759void
1760vm_object_collapse(vm_object_t object)
1761{
1762	vm_object_t backing_object, new_backing_object;
1763
1764	VM_OBJECT_ASSERT_WLOCKED(object);
1765
1766	while (TRUE) {
1767		/*
1768		 * Verify that the conditions are right for collapse:
1769		 *
1770		 * The object exists and the backing object exists.
1771		 */
1772		if ((backing_object = object->backing_object) == NULL)
1773			break;
1774
1775		/*
1776		 * we check the backing object first, because it is most likely
1777		 * not collapsable.
1778		 */
1779		VM_OBJECT_WLOCK(backing_object);
1780		if (backing_object->handle != NULL ||
1781		    (backing_object->type != OBJT_DEFAULT &&
1782		     backing_object->type != OBJT_SWAP) ||
1783		    (backing_object->flags & OBJ_DEAD) ||
1784		    object->handle != NULL ||
1785		    (object->type != OBJT_DEFAULT &&
1786		     object->type != OBJT_SWAP) ||
1787		    (object->flags & OBJ_DEAD)) {
1788			VM_OBJECT_WUNLOCK(backing_object);
1789			break;
1790		}
1791
1792		if (object->paging_in_progress != 0 ||
1793		    backing_object->paging_in_progress != 0) {
1794			vm_object_qcollapse(object);
1795			VM_OBJECT_WUNLOCK(backing_object);
1796			break;
1797		}
1798
1799		/*
1800		 * We know that we can either collapse the backing object (if
1801		 * the parent is the only reference to it) or (perhaps) have
1802		 * the parent bypass the object if the parent happens to shadow
1803		 * all the resident pages in the entire backing object.
1804		 *
1805		 * This is ignoring pager-backed pages such as swap pages.
1806		 * vm_object_collapse_scan fails the shadowing test in this
1807		 * case.
1808		 */
1809		if (backing_object->ref_count == 1) {
1810			vm_object_pip_add(object, 1);
1811			vm_object_pip_add(backing_object, 1);
1812
1813			/*
1814			 * If there is exactly one reference to the backing
1815			 * object, we can collapse it into the parent.
1816			 */
1817			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1818
1819#if VM_NRESERVLEVEL > 0
1820			/*
1821			 * Break any reservations from backing_object.
1822			 */
1823			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1824				vm_reserv_break_all(backing_object);
1825#endif
1826
1827			/*
1828			 * Move the pager from backing_object to object.
1829			 */
1830			if (backing_object->type == OBJT_SWAP) {
1831				/*
1832				 * swap_pager_copy() can sleep, in which case
1833				 * the backing_object's and object's locks are
1834				 * released and reacquired.
1835				 * Since swap_pager_copy() is being asked to
1836				 * destroy the source, it will change the
1837				 * backing_object's type to OBJT_DEFAULT.
1838				 */
1839				swap_pager_copy(
1840				    backing_object,
1841				    object,
1842				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1843			}
1844			/*
1845			 * Object now shadows whatever backing_object did.
1846			 * Note that the reference to
1847			 * backing_object->backing_object moves from within
1848			 * backing_object to within object.
1849			 */
1850			LIST_REMOVE(object, shadow_list);
1851			backing_object->shadow_count--;
1852			if (backing_object->backing_object) {
1853				VM_OBJECT_WLOCK(backing_object->backing_object);
1854				LIST_REMOVE(backing_object, shadow_list);
1855				LIST_INSERT_HEAD(
1856				    &backing_object->backing_object->shadow_head,
1857				    object, shadow_list);
1858				/*
1859				 * The shadow_count has not changed.
1860				 */
1861				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1862			}
1863			object->backing_object = backing_object->backing_object;
1864			object->backing_object_offset +=
1865			    backing_object->backing_object_offset;
1866
1867			/*
1868			 * Discard backing_object.
1869			 *
1870			 * Since the backing object has no pages, no pager left,
1871			 * and no object references within it, all that is
1872			 * necessary is to dispose of it.
1873			 */
1874			KASSERT(backing_object->ref_count == 1, (
1875"backing_object %p was somehow re-referenced during collapse!",
1876			    backing_object));
1877			vm_object_pip_wakeup(backing_object);
1878			backing_object->type = OBJT_DEAD;
1879			backing_object->ref_count = 0;
1880			VM_OBJECT_WUNLOCK(backing_object);
1881			vm_object_destroy(backing_object);
1882
1883			vm_object_pip_wakeup(object);
1884			object_collapses++;
1885		} else {
1886			/*
1887			 * If we do not entirely shadow the backing object,
1888			 * there is nothing we can do so we give up.
1889			 */
1890			if (object->resident_page_count != object->size &&
1891			    !vm_object_scan_all_shadowed(object)) {
1892				VM_OBJECT_WUNLOCK(backing_object);
1893				break;
1894			}
1895
1896			/*
1897			 * Make the parent shadow the next object in the
1898			 * chain.  Deallocating backing_object will not remove
1899			 * it, since its reference count is at least 2.
1900			 */
1901			LIST_REMOVE(object, shadow_list);
1902			backing_object->shadow_count--;
1903
1904			new_backing_object = backing_object->backing_object;
1905			if ((object->backing_object = new_backing_object) != NULL) {
1906				VM_OBJECT_WLOCK(new_backing_object);
1907				LIST_INSERT_HEAD(
1908				    &new_backing_object->shadow_head,
1909				    object,
1910				    shadow_list
1911				);
1912				new_backing_object->shadow_count++;
1913				vm_object_reference_locked(new_backing_object);
1914				VM_OBJECT_WUNLOCK(new_backing_object);
1915				object->backing_object_offset +=
1916					backing_object->backing_object_offset;
1917			}
1918
1919			/*
1920			 * Drop the reference count on backing_object. Since
1921			 * its ref_count was at least 2, it will not vanish.
1922			 */
1923			backing_object->ref_count--;
1924			VM_OBJECT_WUNLOCK(backing_object);
1925			object_bypasses++;
1926		}
1927
1928		/*
1929		 * Try again with this object's new backing object.
1930		 */
1931	}
1932}
1933
1934/*
1935 *	vm_object_page_remove:
1936 *
1937 *	For the given object, either frees or invalidates each of the
1938 *	specified pages.  In general, a page is freed.  However, if a page is
1939 *	wired for any reason other than the existence of a managed, wired
1940 *	mapping, then it may be invalidated but not removed from the object.
1941 *	Pages are specified by the given range ["start", "end") and the option
1942 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1943 *	extends from "start" to the end of the object.  If the option
1944 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1945 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1946 *	specified, then the pages within the specified range must have no
1947 *	mappings.  Otherwise, if this option is not specified, any mappings to
1948 *	the specified pages are removed before the pages are freed or
1949 *	invalidated.
1950 *
1951 *	In general, this operation should only be performed on objects that
1952 *	contain managed pages.  There are, however, two exceptions.  First, it
1953 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1954 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1955 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1956 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1957 *
1958 *	The object must be locked.
1959 */
1960void
1961vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1962    int options)
1963{
1964	vm_page_t p, next;
1965	struct mtx *mtx;
1966	struct pglist pgl;
1967
1968	VM_OBJECT_ASSERT_WLOCKED(object);
1969	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1970	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1971	    ("vm_object_page_remove: illegal options for object %p", object));
1972	if (object->resident_page_count == 0)
1973		return;
1974	vm_object_pip_add(object, 1);
1975	TAILQ_INIT(&pgl);
1976again:
1977	p = vm_page_find_least(object, start);
1978	mtx = NULL;
1979
1980	/*
1981	 * Here, the variable "p" is either (1) the page with the least pindex
1982	 * greater than or equal to the parameter "start" or (2) NULL.
1983	 */
1984	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1985		next = TAILQ_NEXT(p, listq);
1986
1987		/*
1988		 * If the page is wired for any reason besides the existence
1989		 * of managed, wired mappings, then it cannot be freed.  For
1990		 * example, fictitious pages, which represent device memory,
1991		 * are inherently wired and cannot be freed.  They can,
1992		 * however, be invalidated if the option OBJPR_CLEANONLY is
1993		 * not specified.
1994		 */
1995		vm_page_change_lock(p, &mtx);
1996		if (vm_page_xbusied(p)) {
1997			VM_OBJECT_WUNLOCK(object);
1998			vm_page_busy_sleep(p, "vmopax", true);
1999			VM_OBJECT_WLOCK(object);
2000			goto again;
2001		}
2002		if (p->wire_count != 0) {
2003			if ((options & OBJPR_NOTMAPPED) == 0 &&
2004			    object->ref_count != 0)
2005				pmap_remove_all(p);
2006			if ((options & OBJPR_CLEANONLY) == 0) {
2007				p->valid = 0;
2008				vm_page_undirty(p);
2009			}
2010			continue;
2011		}
2012		if (vm_page_busied(p)) {
2013			VM_OBJECT_WUNLOCK(object);
2014			vm_page_busy_sleep(p, "vmopar", false);
2015			VM_OBJECT_WLOCK(object);
2016			goto again;
2017		}
2018		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2019		    ("vm_object_page_remove: page %p is fictitious", p));
2020		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
2021			if ((options & OBJPR_NOTMAPPED) == 0 &&
2022			    object->ref_count != 0)
2023				pmap_remove_write(p);
2024			if (p->dirty != 0)
2025				continue;
2026		}
2027		if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
2028			pmap_remove_all(p);
2029		p->flags &= ~PG_ZERO;
2030		if (vm_page_free_prep(p, false))
2031			TAILQ_INSERT_TAIL(&pgl, p, listq);
2032	}
2033	if (mtx != NULL)
2034		mtx_unlock(mtx);
2035	vm_page_free_phys_pglist(&pgl);
2036	vm_object_pip_wakeup(object);
2037}
2038
2039/*
2040 *	vm_object_page_noreuse:
2041 *
2042 *	For the given object, attempt to move the specified pages to
2043 *	the head of the inactive queue.  This bypasses regular LRU
2044 *	operation and allows the pages to be reused quickly under memory
2045 *	pressure.  If a page is wired for any reason, then it will not
2046 *	be queued.  Pages are specified by the range ["start", "end").
2047 *	As a special case, if "end" is zero, then the range extends from
2048 *	"start" to the end of the object.
2049 *
2050 *	This operation should only be performed on objects that
2051 *	contain non-fictitious, managed pages.
2052 *
2053 *	The object must be locked.
2054 */
2055void
2056vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2057{
2058	struct mtx *mtx;
2059	vm_page_t p, next;
2060
2061	VM_OBJECT_ASSERT_LOCKED(object);
2062	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2063	    ("vm_object_page_noreuse: illegal object %p", object));
2064	if (object->resident_page_count == 0)
2065		return;
2066	p = vm_page_find_least(object, start);
2067
2068	/*
2069	 * Here, the variable "p" is either (1) the page with the least pindex
2070	 * greater than or equal to the parameter "start" or (2) NULL.
2071	 */
2072	mtx = NULL;
2073	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2074		next = TAILQ_NEXT(p, listq);
2075		vm_page_change_lock(p, &mtx);
2076		vm_page_deactivate_noreuse(p);
2077	}
2078	if (mtx != NULL)
2079		mtx_unlock(mtx);
2080}
2081
2082/*
2083 *	Populate the specified range of the object with valid pages.  Returns
2084 *	TRUE if the range is successfully populated and FALSE otherwise.
2085 *
2086 *	Note: This function should be optimized to pass a larger array of
2087 *	pages to vm_pager_get_pages() before it is applied to a non-
2088 *	OBJT_DEVICE object.
2089 *
2090 *	The object must be locked.
2091 */
2092boolean_t
2093vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2094{
2095	vm_page_t m;
2096	vm_pindex_t pindex;
2097	int rv;
2098
2099	VM_OBJECT_ASSERT_WLOCKED(object);
2100	for (pindex = start; pindex < end; pindex++) {
2101		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2102		if (m->valid != VM_PAGE_BITS_ALL) {
2103			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2104			if (rv != VM_PAGER_OK) {
2105				vm_page_lock(m);
2106				vm_page_free(m);
2107				vm_page_unlock(m);
2108				break;
2109			}
2110		}
2111		/*
2112		 * Keep "m" busy because a subsequent iteration may unlock
2113		 * the object.
2114		 */
2115	}
2116	if (pindex > start) {
2117		m = vm_page_lookup(object, start);
2118		while (m != NULL && m->pindex < pindex) {
2119			vm_page_xunbusy(m);
2120			m = TAILQ_NEXT(m, listq);
2121		}
2122	}
2123	return (pindex == end);
2124}
2125
2126/*
2127 *	Routine:	vm_object_coalesce
2128 *	Function:	Coalesces two objects backing up adjoining
2129 *			regions of memory into a single object.
2130 *
2131 *	returns TRUE if objects were combined.
2132 *
2133 *	NOTE:	Only works at the moment if the second object is NULL -
2134 *		if it's not, which object do we lock first?
2135 *
2136 *	Parameters:
2137 *		prev_object	First object to coalesce
2138 *		prev_offset	Offset into prev_object
2139 *		prev_size	Size of reference to prev_object
2140 *		next_size	Size of reference to the second object
2141 *		reserved	Indicator that extension region has
2142 *				swap accounted for
2143 *
2144 *	Conditions:
2145 *	The object must *not* be locked.
2146 */
2147boolean_t
2148vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2149    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2150{
2151	vm_pindex_t next_pindex;
2152
2153	if (prev_object == NULL)
2154		return (TRUE);
2155	VM_OBJECT_WLOCK(prev_object);
2156	if ((prev_object->type != OBJT_DEFAULT &&
2157	    prev_object->type != OBJT_SWAP) ||
2158	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2159		VM_OBJECT_WUNLOCK(prev_object);
2160		return (FALSE);
2161	}
2162
2163	/*
2164	 * Try to collapse the object first
2165	 */
2166	vm_object_collapse(prev_object);
2167
2168	/*
2169	 * Can't coalesce if: . more than one reference . paged out . shadows
2170	 * another object . has a copy elsewhere (any of which mean that the
2171	 * pages not mapped to prev_entry may be in use anyway)
2172	 */
2173	if (prev_object->backing_object != NULL) {
2174		VM_OBJECT_WUNLOCK(prev_object);
2175		return (FALSE);
2176	}
2177
2178	prev_size >>= PAGE_SHIFT;
2179	next_size >>= PAGE_SHIFT;
2180	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2181
2182	if ((prev_object->ref_count > 1) &&
2183	    (prev_object->size != next_pindex)) {
2184		VM_OBJECT_WUNLOCK(prev_object);
2185		return (FALSE);
2186	}
2187
2188	/*
2189	 * Account for the charge.
2190	 */
2191	if (prev_object->cred != NULL) {
2192
2193		/*
2194		 * If prev_object was charged, then this mapping,
2195		 * although not charged now, may become writable
2196		 * later. Non-NULL cred in the object would prevent
2197		 * swap reservation during enabling of the write
2198		 * access, so reserve swap now. Failed reservation
2199		 * cause allocation of the separate object for the map
2200		 * entry, and swap reservation for this entry is
2201		 * managed in appropriate time.
2202		 */
2203		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2204		    prev_object->cred)) {
2205			VM_OBJECT_WUNLOCK(prev_object);
2206			return (FALSE);
2207		}
2208		prev_object->charge += ptoa(next_size);
2209	}
2210
2211	/*
2212	 * Remove any pages that may still be in the object from a previous
2213	 * deallocation.
2214	 */
2215	if (next_pindex < prev_object->size) {
2216		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2217		    next_size, 0);
2218		if (prev_object->type == OBJT_SWAP)
2219			swap_pager_freespace(prev_object,
2220					     next_pindex, next_size);
2221#if 0
2222		if (prev_object->cred != NULL) {
2223			KASSERT(prev_object->charge >=
2224			    ptoa(prev_object->size - next_pindex),
2225			    ("object %p overcharged 1 %jx %jx", prev_object,
2226				(uintmax_t)next_pindex, (uintmax_t)next_size));
2227			prev_object->charge -= ptoa(prev_object->size -
2228			    next_pindex);
2229		}
2230#endif
2231	}
2232
2233	/*
2234	 * Extend the object if necessary.
2235	 */
2236	if (next_pindex + next_size > prev_object->size)
2237		prev_object->size = next_pindex + next_size;
2238
2239	VM_OBJECT_WUNLOCK(prev_object);
2240	return (TRUE);
2241}
2242
2243void
2244vm_object_set_writeable_dirty(vm_object_t object)
2245{
2246
2247	VM_OBJECT_ASSERT_WLOCKED(object);
2248	if (object->type != OBJT_VNODE) {
2249		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2250			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2251			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2252		}
2253		return;
2254	}
2255	object->generation++;
2256	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2257		return;
2258	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2259}
2260
2261/*
2262 *	vm_object_unwire:
2263 *
2264 *	For each page offset within the specified range of the given object,
2265 *	find the highest-level page in the shadow chain and unwire it.  A page
2266 *	must exist at every page offset, and the highest-level page must be
2267 *	wired.
2268 */
2269void
2270vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2271    uint8_t queue)
2272{
2273	vm_object_t tobject, t1object;
2274	vm_page_t m, tm;
2275	vm_pindex_t end_pindex, pindex, tpindex;
2276	int depth, locked_depth;
2277
2278	KASSERT((offset & PAGE_MASK) == 0,
2279	    ("vm_object_unwire: offset is not page aligned"));
2280	KASSERT((length & PAGE_MASK) == 0,
2281	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2282	/* The wired count of a fictitious page never changes. */
2283	if ((object->flags & OBJ_FICTITIOUS) != 0)
2284		return;
2285	pindex = OFF_TO_IDX(offset);
2286	end_pindex = pindex + atop(length);
2287again:
2288	locked_depth = 1;
2289	VM_OBJECT_RLOCK(object);
2290	m = vm_page_find_least(object, pindex);
2291	while (pindex < end_pindex) {
2292		if (m == NULL || pindex < m->pindex) {
2293			/*
2294			 * The first object in the shadow chain doesn't
2295			 * contain a page at the current index.  Therefore,
2296			 * the page must exist in a backing object.
2297			 */
2298			tobject = object;
2299			tpindex = pindex;
2300			depth = 0;
2301			do {
2302				tpindex +=
2303				    OFF_TO_IDX(tobject->backing_object_offset);
2304				tobject = tobject->backing_object;
2305				KASSERT(tobject != NULL,
2306				    ("vm_object_unwire: missing page"));
2307				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2308					goto next_page;
2309				depth++;
2310				if (depth == locked_depth) {
2311					locked_depth++;
2312					VM_OBJECT_RLOCK(tobject);
2313				}
2314			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2315			    NULL);
2316		} else {
2317			tm = m;
2318			m = TAILQ_NEXT(m, listq);
2319		}
2320		vm_page_lock(tm);
2321		if (vm_page_xbusied(tm)) {
2322			for (tobject = object; locked_depth >= 1;
2323			    locked_depth--) {
2324				t1object = tobject->backing_object;
2325				VM_OBJECT_RUNLOCK(tobject);
2326				tobject = t1object;
2327			}
2328			vm_page_busy_sleep(tm, "unwbo", true);
2329			goto again;
2330		}
2331		vm_page_unwire(tm, queue);
2332		vm_page_unlock(tm);
2333next_page:
2334		pindex++;
2335	}
2336	/* Release the accumulated object locks. */
2337	for (tobject = object; locked_depth >= 1; locked_depth--) {
2338		t1object = tobject->backing_object;
2339		VM_OBJECT_RUNLOCK(tobject);
2340		tobject = t1object;
2341	}
2342}
2343
2344struct vnode *
2345vm_object_vnode(vm_object_t object)
2346{
2347
2348	VM_OBJECT_ASSERT_LOCKED(object);
2349	if (object->type == OBJT_VNODE)
2350		return (object->handle);
2351	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2352		return (object->un_pager.swp.swp_tmpfs);
2353	return (NULL);
2354}
2355
2356static int
2357sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2358{
2359	struct kinfo_vmobject *kvo;
2360	char *fullpath, *freepath;
2361	struct vnode *vp;
2362	struct vattr va;
2363	vm_object_t obj;
2364	vm_page_t m;
2365	int count, error;
2366
2367	if (req->oldptr == NULL) {
2368		/*
2369		 * If an old buffer has not been provided, generate an
2370		 * estimate of the space needed for a subsequent call.
2371		 */
2372		mtx_lock(&vm_object_list_mtx);
2373		count = 0;
2374		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2375			if (obj->type == OBJT_DEAD)
2376				continue;
2377			count++;
2378		}
2379		mtx_unlock(&vm_object_list_mtx);
2380		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2381		    count * 11 / 10));
2382	}
2383
2384	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2385	error = 0;
2386
2387	/*
2388	 * VM objects are type stable and are never removed from the
2389	 * list once added.  This allows us to safely read obj->object_list
2390	 * after reacquiring the VM object lock.
2391	 */
2392	mtx_lock(&vm_object_list_mtx);
2393	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2394		if (obj->type == OBJT_DEAD)
2395			continue;
2396		VM_OBJECT_RLOCK(obj);
2397		if (obj->type == OBJT_DEAD) {
2398			VM_OBJECT_RUNLOCK(obj);
2399			continue;
2400		}
2401		mtx_unlock(&vm_object_list_mtx);
2402		kvo->kvo_size = ptoa(obj->size);
2403		kvo->kvo_resident = obj->resident_page_count;
2404		kvo->kvo_ref_count = obj->ref_count;
2405		kvo->kvo_shadow_count = obj->shadow_count;
2406		kvo->kvo_memattr = obj->memattr;
2407		kvo->kvo_active = 0;
2408		kvo->kvo_inactive = 0;
2409		TAILQ_FOREACH(m, &obj->memq, listq) {
2410			/*
2411			 * A page may belong to the object but be
2412			 * dequeued and set to PQ_NONE while the
2413			 * object lock is not held.  This makes the
2414			 * reads of m->queue below racy, and we do not
2415			 * count pages set to PQ_NONE.  However, this
2416			 * sysctl is only meant to give an
2417			 * approximation of the system anyway.
2418			 */
2419			if (vm_page_active(m))
2420				kvo->kvo_active++;
2421			else if (vm_page_inactive(m))
2422				kvo->kvo_inactive++;
2423		}
2424
2425		kvo->kvo_vn_fileid = 0;
2426		kvo->kvo_vn_fsid = 0;
2427		freepath = NULL;
2428		fullpath = "";
2429		vp = NULL;
2430		switch (obj->type) {
2431		case OBJT_DEFAULT:
2432			kvo->kvo_type = KVME_TYPE_DEFAULT;
2433			break;
2434		case OBJT_VNODE:
2435			kvo->kvo_type = KVME_TYPE_VNODE;
2436			vp = obj->handle;
2437			vref(vp);
2438			break;
2439		case OBJT_SWAP:
2440			kvo->kvo_type = KVME_TYPE_SWAP;
2441			break;
2442		case OBJT_DEVICE:
2443			kvo->kvo_type = KVME_TYPE_DEVICE;
2444			break;
2445		case OBJT_PHYS:
2446			kvo->kvo_type = KVME_TYPE_PHYS;
2447			break;
2448		case OBJT_DEAD:
2449			kvo->kvo_type = KVME_TYPE_DEAD;
2450			break;
2451		case OBJT_SG:
2452			kvo->kvo_type = KVME_TYPE_SG;
2453			break;
2454		case OBJT_MGTDEVICE:
2455			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2456			break;
2457		default:
2458			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2459			break;
2460		}
2461		VM_OBJECT_RUNLOCK(obj);
2462		if (vp != NULL) {
2463			vn_fullpath(curthread, vp, &fullpath, &freepath);
2464			vn_lock(vp, LK_SHARED | LK_RETRY);
2465			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2466				kvo->kvo_vn_fileid = va.va_fileid;
2467				kvo->kvo_vn_fsid = va.va_fsid;
2468			}
2469			vput(vp);
2470		}
2471
2472		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2473		if (freepath != NULL)
2474			free(freepath, M_TEMP);
2475
2476		/* Pack record size down */
2477		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2478		    + strlen(kvo->kvo_path) + 1;
2479		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2480		    sizeof(uint64_t));
2481		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2482		mtx_lock(&vm_object_list_mtx);
2483		if (error)
2484			break;
2485	}
2486	mtx_unlock(&vm_object_list_mtx);
2487	free(kvo, M_TEMP);
2488	return (error);
2489}
2490SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2491    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2492    "List of VM objects");
2493
2494#include "opt_ddb.h"
2495#ifdef DDB
2496#include <sys/kernel.h>
2497
2498#include <sys/cons.h>
2499
2500#include <ddb/ddb.h>
2501
2502static int
2503_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2504{
2505	vm_map_t tmpm;
2506	vm_map_entry_t tmpe;
2507	vm_object_t obj;
2508	int entcount;
2509
2510	if (map == 0)
2511		return 0;
2512
2513	if (entry == 0) {
2514		tmpe = map->header.next;
2515		entcount = map->nentries;
2516		while (entcount-- && (tmpe != &map->header)) {
2517			if (_vm_object_in_map(map, object, tmpe)) {
2518				return 1;
2519			}
2520			tmpe = tmpe->next;
2521		}
2522	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2523		tmpm = entry->object.sub_map;
2524		tmpe = tmpm->header.next;
2525		entcount = tmpm->nentries;
2526		while (entcount-- && tmpe != &tmpm->header) {
2527			if (_vm_object_in_map(tmpm, object, tmpe)) {
2528				return 1;
2529			}
2530			tmpe = tmpe->next;
2531		}
2532	} else if ((obj = entry->object.vm_object) != NULL) {
2533		for (; obj; obj = obj->backing_object)
2534			if (obj == object) {
2535				return 1;
2536			}
2537	}
2538	return 0;
2539}
2540
2541static int
2542vm_object_in_map(vm_object_t object)
2543{
2544	struct proc *p;
2545
2546	/* sx_slock(&allproc_lock); */
2547	FOREACH_PROC_IN_SYSTEM(p) {
2548		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2549			continue;
2550		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2551			/* sx_sunlock(&allproc_lock); */
2552			return 1;
2553		}
2554	}
2555	/* sx_sunlock(&allproc_lock); */
2556	if (_vm_object_in_map(kernel_map, object, 0))
2557		return 1;
2558	return 0;
2559}
2560
2561DB_SHOW_COMMAND(vmochk, vm_object_check)
2562{
2563	vm_object_t object;
2564
2565	/*
2566	 * make sure that internal objs are in a map somewhere
2567	 * and none have zero ref counts.
2568	 */
2569	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2570		if (object->handle == NULL &&
2571		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2572			if (object->ref_count == 0) {
2573				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2574					(long)object->size);
2575			}
2576			if (!vm_object_in_map(object)) {
2577				db_printf(
2578			"vmochk: internal obj is not in a map: "
2579			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2580				    object->ref_count, (u_long)object->size,
2581				    (u_long)object->size,
2582				    (void *)object->backing_object);
2583			}
2584		}
2585	}
2586}
2587
2588/*
2589 *	vm_object_print:	[ debug ]
2590 */
2591DB_SHOW_COMMAND(object, vm_object_print_static)
2592{
2593	/* XXX convert args. */
2594	vm_object_t object = (vm_object_t)addr;
2595	boolean_t full = have_addr;
2596
2597	vm_page_t p;
2598
2599	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2600#define	count	was_count
2601
2602	int count;
2603
2604	if (object == NULL)
2605		return;
2606
2607	db_iprintf(
2608	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2609	    object, (int)object->type, (uintmax_t)object->size,
2610	    object->resident_page_count, object->ref_count, object->flags,
2611	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2612	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2613	    object->shadow_count,
2614	    object->backing_object ? object->backing_object->ref_count : 0,
2615	    object->backing_object, (uintmax_t)object->backing_object_offset);
2616
2617	if (!full)
2618		return;
2619
2620	db_indent += 2;
2621	count = 0;
2622	TAILQ_FOREACH(p, &object->memq, listq) {
2623		if (count == 0)
2624			db_iprintf("memory:=");
2625		else if (count == 6) {
2626			db_printf("\n");
2627			db_iprintf(" ...");
2628			count = 0;
2629		} else
2630			db_printf(",");
2631		count++;
2632
2633		db_printf("(off=0x%jx,page=0x%jx)",
2634		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2635	}
2636	if (count != 0)
2637		db_printf("\n");
2638	db_indent -= 2;
2639}
2640
2641/* XXX. */
2642#undef count
2643
2644/* XXX need this non-static entry for calling from vm_map_print. */
2645void
2646vm_object_print(
2647        /* db_expr_t */ long addr,
2648	boolean_t have_addr,
2649	/* db_expr_t */ long count,
2650	char *modif)
2651{
2652	vm_object_print_static(addr, have_addr, count, modif);
2653}
2654
2655DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2656{
2657	vm_object_t object;
2658	vm_pindex_t fidx;
2659	vm_paddr_t pa;
2660	vm_page_t m, prev_m;
2661	int rcount, nl, c;
2662
2663	nl = 0;
2664	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2665		db_printf("new object: %p\n", (void *)object);
2666		if (nl > 18) {
2667			c = cngetc();
2668			if (c != ' ')
2669				return;
2670			nl = 0;
2671		}
2672		nl++;
2673		rcount = 0;
2674		fidx = 0;
2675		pa = -1;
2676		TAILQ_FOREACH(m, &object->memq, listq) {
2677			if (m->pindex > 128)
2678				break;
2679			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2680			    prev_m->pindex + 1 != m->pindex) {
2681				if (rcount) {
2682					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2683						(long)fidx, rcount, (long)pa);
2684					if (nl > 18) {
2685						c = cngetc();
2686						if (c != ' ')
2687							return;
2688						nl = 0;
2689					}
2690					nl++;
2691					rcount = 0;
2692				}
2693			}
2694			if (rcount &&
2695				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2696				++rcount;
2697				continue;
2698			}
2699			if (rcount) {
2700				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2701					(long)fidx, rcount, (long)pa);
2702				if (nl > 18) {
2703					c = cngetc();
2704					if (c != ' ')
2705						return;
2706					nl = 0;
2707				}
2708				nl++;
2709			}
2710			fidx = m->pindex;
2711			pa = VM_PAGE_TO_PHYS(m);
2712			rcount = 1;
2713		}
2714		if (rcount) {
2715			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2716				(long)fidx, rcount, (long)pa);
2717			if (nl > 18) {
2718				c = cngetc();
2719				if (c != ' ')
2720					return;
2721				nl = 0;
2722			}
2723			nl++;
2724		}
2725	}
2726}
2727#endif /* DDB */
2728