vm_object.c revision 327785
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/11/sys/vm/vm_object.c 327785 2018-01-10 20:39:26Z markj $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/pctrie.h>
77#include <sys/sysctl.h>
78#include <sys/mutex.h>
79#include <sys/proc.h>		/* for curproc, pageproc */
80#include <sys/socket.h>
81#include <sys/resourcevar.h>
82#include <sys/rwlock.h>
83#include <sys/user.h>
84#include <sys/vnode.h>
85#include <sys/vmmeter.h>
86#include <sys/sx.h>
87
88#include <vm/vm.h>
89#include <vm/vm_param.h>
90#include <vm/pmap.h>
91#include <vm/vm_map.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/vm_kern.h>
98#include <vm/vm_extern.h>
99#include <vm/vm_radix.h>
100#include <vm/vm_reserv.h>
101#include <vm/uma.h>
102
103static int old_msync;
104SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
105    "Use old (insecure) msync behavior");
106
107static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
108		    int pagerflags, int flags, boolean_t *clearobjflags,
109		    boolean_t *eio);
110static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
111		    boolean_t *clearobjflags);
112static void	vm_object_qcollapse(vm_object_t object);
113static void	vm_object_vndeallocate(vm_object_t object);
114
115/*
116 *	Virtual memory objects maintain the actual data
117 *	associated with allocated virtual memory.  A given
118 *	page of memory exists within exactly one object.
119 *
120 *	An object is only deallocated when all "references"
121 *	are given up.  Only one "reference" to a given
122 *	region of an object should be writeable.
123 *
124 *	Associated with each object is a list of all resident
125 *	memory pages belonging to that object; this list is
126 *	maintained by the "vm_page" module, and locked by the object's
127 *	lock.
128 *
129 *	Each object also records a "pager" routine which is
130 *	used to retrieve (and store) pages to the proper backing
131 *	storage.  In addition, objects may be backed by other
132 *	objects from which they were virtual-copied.
133 *
134 *	The only items within the object structure which are
135 *	modified after time of creation are:
136 *		reference count		locked by object's lock
137 *		pager routine		locked by object's lock
138 *
139 */
140
141struct object_q vm_object_list;
142struct mtx vm_object_list_mtx;	/* lock for object list and count */
143
144struct vm_object kernel_object_store;
145struct vm_object kmem_object_store;
146
147static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
148    "VM object stats");
149
150static long object_collapses;
151SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
152    &object_collapses, 0, "VM object collapses");
153
154static long object_bypasses;
155SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
156    &object_bypasses, 0, "VM object bypasses");
157
158static uma_zone_t obj_zone;
159
160static int vm_object_zinit(void *mem, int size, int flags);
161
162#ifdef INVARIANTS
163static void vm_object_zdtor(void *mem, int size, void *arg);
164
165static void
166vm_object_zdtor(void *mem, int size, void *arg)
167{
168	vm_object_t object;
169
170	object = (vm_object_t)mem;
171	KASSERT(object->ref_count == 0,
172	    ("object %p ref_count = %d", object, object->ref_count));
173	KASSERT(TAILQ_EMPTY(&object->memq),
174	    ("object %p has resident pages in its memq", object));
175	KASSERT(vm_radix_is_empty(&object->rtree),
176	    ("object %p has resident pages in its trie", object));
177#if VM_NRESERVLEVEL > 0
178	KASSERT(LIST_EMPTY(&object->rvq),
179	    ("object %p has reservations",
180	    object));
181#endif
182	KASSERT(object->paging_in_progress == 0,
183	    ("object %p paging_in_progress = %d",
184	    object, object->paging_in_progress));
185	KASSERT(object->resident_page_count == 0,
186	    ("object %p resident_page_count = %d",
187	    object, object->resident_page_count));
188	KASSERT(object->shadow_count == 0,
189	    ("object %p shadow_count = %d",
190	    object, object->shadow_count));
191	KASSERT(object->type == OBJT_DEAD,
192	    ("object %p has non-dead type %d",
193	    object, object->type));
194}
195#endif
196
197static int
198vm_object_zinit(void *mem, int size, int flags)
199{
200	vm_object_t object;
201
202	object = (vm_object_t)mem;
203	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
204
205	/* These are true for any object that has been freed */
206	object->type = OBJT_DEAD;
207	object->ref_count = 0;
208	vm_radix_init(&object->rtree);
209	object->paging_in_progress = 0;
210	object->resident_page_count = 0;
211	object->shadow_count = 0;
212	object->flags = OBJ_DEAD;
213
214	mtx_lock(&vm_object_list_mtx);
215	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
216	mtx_unlock(&vm_object_list_mtx);
217	return (0);
218}
219
220static void
221_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
222{
223
224	TAILQ_INIT(&object->memq);
225	LIST_INIT(&object->shadow_head);
226
227	object->type = type;
228	if (type == OBJT_SWAP)
229		pctrie_init(&object->un_pager.swp.swp_blks);
230
231	/*
232	 * Ensure that swap_pager_swapoff() iteration over object_list
233	 * sees up to date type and pctrie head if it observed
234	 * non-dead object.
235	 */
236	atomic_thread_fence_rel();
237
238	switch (type) {
239	case OBJT_DEAD:
240		panic("_vm_object_allocate: can't create OBJT_DEAD");
241	case OBJT_DEFAULT:
242	case OBJT_SWAP:
243		object->flags = OBJ_ONEMAPPING;
244		break;
245	case OBJT_DEVICE:
246	case OBJT_SG:
247		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
248		break;
249	case OBJT_MGTDEVICE:
250		object->flags = OBJ_FICTITIOUS;
251		break;
252	case OBJT_PHYS:
253		object->flags = OBJ_UNMANAGED;
254		break;
255	case OBJT_VNODE:
256		object->flags = 0;
257		break;
258	default:
259		panic("_vm_object_allocate: type %d is undefined", type);
260	}
261	object->size = size;
262	object->generation = 1;
263	object->ref_count = 1;
264	object->memattr = VM_MEMATTR_DEFAULT;
265	object->cred = NULL;
266	object->charge = 0;
267	object->handle = NULL;
268	object->backing_object = NULL;
269	object->backing_object_offset = (vm_ooffset_t) 0;
270#if VM_NRESERVLEVEL > 0
271	LIST_INIT(&object->rvq);
272#endif
273	umtx_shm_object_init(object);
274}
275
276/*
277 *	vm_object_init:
278 *
279 *	Initialize the VM objects module.
280 */
281void
282vm_object_init(void)
283{
284	TAILQ_INIT(&vm_object_list);
285	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
286
287	rw_init(&kernel_object->lock, "kernel vm object");
288	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
289	    VM_MIN_KERNEL_ADDRESS), kernel_object);
290#if VM_NRESERVLEVEL > 0
291	kernel_object->flags |= OBJ_COLORED;
292	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
293#endif
294
295	rw_init(&kmem_object->lock, "kmem vm object");
296	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
297	    VM_MIN_KERNEL_ADDRESS), kmem_object);
298#if VM_NRESERVLEVEL > 0
299	kmem_object->flags |= OBJ_COLORED;
300	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
301#endif
302
303	/*
304	 * The lock portion of struct vm_object must be type stable due
305	 * to vm_pageout_fallback_object_lock locking a vm object
306	 * without holding any references to it.
307	 */
308	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
309#ifdef INVARIANTS
310	    vm_object_zdtor,
311#else
312	    NULL,
313#endif
314	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315
316	vm_radix_zinit();
317}
318
319void
320vm_object_clear_flag(vm_object_t object, u_short bits)
321{
322
323	VM_OBJECT_ASSERT_WLOCKED(object);
324	object->flags &= ~bits;
325}
326
327/*
328 *	Sets the default memory attribute for the specified object.  Pages
329 *	that are allocated to this object are by default assigned this memory
330 *	attribute.
331 *
332 *	Presently, this function must be called before any pages are allocated
333 *	to the object.  In the future, this requirement may be relaxed for
334 *	"default" and "swap" objects.
335 */
336int
337vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
338{
339
340	VM_OBJECT_ASSERT_WLOCKED(object);
341	switch (object->type) {
342	case OBJT_DEFAULT:
343	case OBJT_DEVICE:
344	case OBJT_MGTDEVICE:
345	case OBJT_PHYS:
346	case OBJT_SG:
347	case OBJT_SWAP:
348	case OBJT_VNODE:
349		if (!TAILQ_EMPTY(&object->memq))
350			return (KERN_FAILURE);
351		break;
352	case OBJT_DEAD:
353		return (KERN_INVALID_ARGUMENT);
354	default:
355		panic("vm_object_set_memattr: object %p is of undefined type",
356		    object);
357	}
358	object->memattr = memattr;
359	return (KERN_SUCCESS);
360}
361
362void
363vm_object_pip_add(vm_object_t object, short i)
364{
365
366	VM_OBJECT_ASSERT_WLOCKED(object);
367	object->paging_in_progress += i;
368}
369
370void
371vm_object_pip_subtract(vm_object_t object, short i)
372{
373
374	VM_OBJECT_ASSERT_WLOCKED(object);
375	object->paging_in_progress -= i;
376}
377
378void
379vm_object_pip_wakeup(vm_object_t object)
380{
381
382	VM_OBJECT_ASSERT_WLOCKED(object);
383	object->paging_in_progress--;
384	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
385		vm_object_clear_flag(object, OBJ_PIPWNT);
386		wakeup(object);
387	}
388}
389
390void
391vm_object_pip_wakeupn(vm_object_t object, short i)
392{
393
394	VM_OBJECT_ASSERT_WLOCKED(object);
395	if (i)
396		object->paging_in_progress -= i;
397	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
398		vm_object_clear_flag(object, OBJ_PIPWNT);
399		wakeup(object);
400	}
401}
402
403void
404vm_object_pip_wait(vm_object_t object, char *waitid)
405{
406
407	VM_OBJECT_ASSERT_WLOCKED(object);
408	while (object->paging_in_progress) {
409		object->flags |= OBJ_PIPWNT;
410		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
411	}
412}
413
414/*
415 *	vm_object_allocate:
416 *
417 *	Returns a new object with the given size.
418 */
419vm_object_t
420vm_object_allocate(objtype_t type, vm_pindex_t size)
421{
422	vm_object_t object;
423
424	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
425	_vm_object_allocate(type, size, object);
426	return (object);
427}
428
429
430/*
431 *	vm_object_reference:
432 *
433 *	Gets another reference to the given object.  Note: OBJ_DEAD
434 *	objects can be referenced during final cleaning.
435 */
436void
437vm_object_reference(vm_object_t object)
438{
439	if (object == NULL)
440		return;
441	VM_OBJECT_WLOCK(object);
442	vm_object_reference_locked(object);
443	VM_OBJECT_WUNLOCK(object);
444}
445
446/*
447 *	vm_object_reference_locked:
448 *
449 *	Gets another reference to the given object.
450 *
451 *	The object must be locked.
452 */
453void
454vm_object_reference_locked(vm_object_t object)
455{
456	struct vnode *vp;
457
458	VM_OBJECT_ASSERT_WLOCKED(object);
459	object->ref_count++;
460	if (object->type == OBJT_VNODE) {
461		vp = object->handle;
462		vref(vp);
463	}
464}
465
466/*
467 * Handle deallocating an object of type OBJT_VNODE.
468 */
469static void
470vm_object_vndeallocate(vm_object_t object)
471{
472	struct vnode *vp = (struct vnode *) object->handle;
473
474	VM_OBJECT_ASSERT_WLOCKED(object);
475	KASSERT(object->type == OBJT_VNODE,
476	    ("vm_object_vndeallocate: not a vnode object"));
477	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
478#ifdef INVARIANTS
479	if (object->ref_count == 0) {
480		vn_printf(vp, "vm_object_vndeallocate ");
481		panic("vm_object_vndeallocate: bad object reference count");
482	}
483#endif
484
485	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
486		umtx_shm_object_terminated(object);
487
488	/*
489	 * The test for text of vp vnode does not need a bypass to
490	 * reach right VV_TEXT there, since it is obtained from
491	 * object->handle.
492	 */
493	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
494		object->ref_count--;
495		VM_OBJECT_WUNLOCK(object);
496		/* vrele may need the vnode lock. */
497		vrele(vp);
498	} else {
499		vhold(vp);
500		VM_OBJECT_WUNLOCK(object);
501		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
502		vdrop(vp);
503		VM_OBJECT_WLOCK(object);
504		object->ref_count--;
505		if (object->type == OBJT_DEAD) {
506			VM_OBJECT_WUNLOCK(object);
507			VOP_UNLOCK(vp, 0);
508		} else {
509			if (object->ref_count == 0)
510				VOP_UNSET_TEXT(vp);
511			VM_OBJECT_WUNLOCK(object);
512			vput(vp);
513		}
514	}
515}
516
517/*
518 *	vm_object_deallocate:
519 *
520 *	Release a reference to the specified object,
521 *	gained either through a vm_object_allocate
522 *	or a vm_object_reference call.  When all references
523 *	are gone, storage associated with this object
524 *	may be relinquished.
525 *
526 *	No object may be locked.
527 */
528void
529vm_object_deallocate(vm_object_t object)
530{
531	vm_object_t temp;
532	struct vnode *vp;
533
534	while (object != NULL) {
535		VM_OBJECT_WLOCK(object);
536		if (object->type == OBJT_VNODE) {
537			vm_object_vndeallocate(object);
538			return;
539		}
540
541		KASSERT(object->ref_count != 0,
542			("vm_object_deallocate: object deallocated too many times: %d", object->type));
543
544		/*
545		 * If the reference count goes to 0 we start calling
546		 * vm_object_terminate() on the object chain.
547		 * A ref count of 1 may be a special case depending on the
548		 * shadow count being 0 or 1.
549		 */
550		object->ref_count--;
551		if (object->ref_count > 1) {
552			VM_OBJECT_WUNLOCK(object);
553			return;
554		} else if (object->ref_count == 1) {
555			if (object->type == OBJT_SWAP &&
556			    (object->flags & OBJ_TMPFS) != 0) {
557				vp = object->un_pager.swp.swp_tmpfs;
558				vhold(vp);
559				VM_OBJECT_WUNLOCK(object);
560				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
561				VM_OBJECT_WLOCK(object);
562				if (object->type == OBJT_DEAD ||
563				    object->ref_count != 1) {
564					VM_OBJECT_WUNLOCK(object);
565					VOP_UNLOCK(vp, 0);
566					vdrop(vp);
567					return;
568				}
569				if ((object->flags & OBJ_TMPFS) != 0)
570					VOP_UNSET_TEXT(vp);
571				VOP_UNLOCK(vp, 0);
572				vdrop(vp);
573			}
574			if (object->shadow_count == 0 &&
575			    object->handle == NULL &&
576			    (object->type == OBJT_DEFAULT ||
577			    (object->type == OBJT_SWAP &&
578			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
579				vm_object_set_flag(object, OBJ_ONEMAPPING);
580			} else if ((object->shadow_count == 1) &&
581			    (object->handle == NULL) &&
582			    (object->type == OBJT_DEFAULT ||
583			     object->type == OBJT_SWAP)) {
584				vm_object_t robject;
585
586				robject = LIST_FIRST(&object->shadow_head);
587				KASSERT(robject != NULL,
588				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
589					 object->ref_count,
590					 object->shadow_count));
591				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
592				    ("shadowed tmpfs v_object %p", object));
593				if (!VM_OBJECT_TRYWLOCK(robject)) {
594					/*
595					 * Avoid a potential deadlock.
596					 */
597					object->ref_count++;
598					VM_OBJECT_WUNLOCK(object);
599					/*
600					 * More likely than not the thread
601					 * holding robject's lock has lower
602					 * priority than the current thread.
603					 * Let the lower priority thread run.
604					 */
605					pause("vmo_de", 1);
606					continue;
607				}
608				/*
609				 * Collapse object into its shadow unless its
610				 * shadow is dead.  In that case, object will
611				 * be deallocated by the thread that is
612				 * deallocating its shadow.
613				 */
614				if ((robject->flags & OBJ_DEAD) == 0 &&
615				    (robject->handle == NULL) &&
616				    (robject->type == OBJT_DEFAULT ||
617				     robject->type == OBJT_SWAP)) {
618
619					robject->ref_count++;
620retry:
621					if (robject->paging_in_progress) {
622						VM_OBJECT_WUNLOCK(object);
623						vm_object_pip_wait(robject,
624						    "objde1");
625						temp = robject->backing_object;
626						if (object == temp) {
627							VM_OBJECT_WLOCK(object);
628							goto retry;
629						}
630					} else if (object->paging_in_progress) {
631						VM_OBJECT_WUNLOCK(robject);
632						object->flags |= OBJ_PIPWNT;
633						VM_OBJECT_SLEEP(object, object,
634						    PDROP | PVM, "objde2", 0);
635						VM_OBJECT_WLOCK(robject);
636						temp = robject->backing_object;
637						if (object == temp) {
638							VM_OBJECT_WLOCK(object);
639							goto retry;
640						}
641					} else
642						VM_OBJECT_WUNLOCK(object);
643
644					if (robject->ref_count == 1) {
645						robject->ref_count--;
646						object = robject;
647						goto doterm;
648					}
649					object = robject;
650					vm_object_collapse(object);
651					VM_OBJECT_WUNLOCK(object);
652					continue;
653				}
654				VM_OBJECT_WUNLOCK(robject);
655			}
656			VM_OBJECT_WUNLOCK(object);
657			return;
658		}
659doterm:
660		umtx_shm_object_terminated(object);
661		temp = object->backing_object;
662		if (temp != NULL) {
663			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
664			    ("shadowed tmpfs v_object 2 %p", object));
665			VM_OBJECT_WLOCK(temp);
666			LIST_REMOVE(object, shadow_list);
667			temp->shadow_count--;
668			VM_OBJECT_WUNLOCK(temp);
669			object->backing_object = NULL;
670		}
671		/*
672		 * Don't double-terminate, we could be in a termination
673		 * recursion due to the terminate having to sync data
674		 * to disk.
675		 */
676		if ((object->flags & OBJ_DEAD) == 0)
677			vm_object_terminate(object);
678		else
679			VM_OBJECT_WUNLOCK(object);
680		object = temp;
681	}
682}
683
684/*
685 *	vm_object_destroy removes the object from the global object list
686 *      and frees the space for the object.
687 */
688void
689vm_object_destroy(vm_object_t object)
690{
691
692	/*
693	 * Release the allocation charge.
694	 */
695	if (object->cred != NULL) {
696		swap_release_by_cred(object->charge, object->cred);
697		object->charge = 0;
698		crfree(object->cred);
699		object->cred = NULL;
700	}
701
702	/*
703	 * Free the space for the object.
704	 */
705	uma_zfree(obj_zone, object);
706}
707
708/*
709 *	vm_object_terminate_pages removes any remaining pageable pages
710 *	from the object and resets the object to an empty state.
711 */
712static void
713vm_object_terminate_pages(vm_object_t object)
714{
715	vm_page_t p, p_next;
716	struct mtx *mtx, *mtx1;
717	struct vm_pagequeue *pq, *pq1;
718
719	VM_OBJECT_ASSERT_WLOCKED(object);
720
721	mtx = NULL;
722	pq = NULL;
723
724	/*
725	 * Free any remaining pageable pages.  This also removes them from the
726	 * paging queues.  However, don't free wired pages, just remove them
727	 * from the object.  Rather than incrementally removing each page from
728	 * the object, the page and object are reset to any empty state.
729	 */
730	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
731		vm_page_assert_unbusied(p);
732		if ((object->flags & OBJ_UNMANAGED) == 0) {
733			/*
734			 * vm_page_free_prep() only needs the page
735			 * lock for managed pages.
736			 */
737			mtx1 = vm_page_lockptr(p);
738			if (mtx1 != mtx) {
739				if (mtx != NULL)
740					mtx_unlock(mtx);
741				if (pq != NULL) {
742					vm_pagequeue_unlock(pq);
743					pq = NULL;
744				}
745				mtx = mtx1;
746				mtx_lock(mtx);
747			}
748		}
749		p->object = NULL;
750		if (p->wire_count != 0)
751			goto unlist;
752		PCPU_INC(cnt.v_pfree);
753		p->flags &= ~PG_ZERO;
754		if (p->queue != PQ_NONE) {
755			KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: "
756			    "page %p is not queued", p));
757			pq1 = vm_page_pagequeue(p);
758			if (pq != pq1) {
759				if (pq != NULL)
760					vm_pagequeue_unlock(pq);
761				pq = pq1;
762				vm_pagequeue_lock(pq);
763			}
764		}
765		if (vm_page_free_prep(p, true))
766			continue;
767unlist:
768		TAILQ_REMOVE(&object->memq, p, listq);
769	}
770	if (pq != NULL)
771		vm_pagequeue_unlock(pq);
772	if (mtx != NULL)
773		mtx_unlock(mtx);
774
775	vm_page_free_phys_pglist(&object->memq);
776
777	/*
778	 * If the object contained any pages, then reset it to an empty state.
779	 * None of the object's fields, including "resident_page_count", were
780	 * modified by the preceding loop.
781	 */
782	if (object->resident_page_count != 0) {
783		vm_radix_reclaim_allnodes(&object->rtree);
784		TAILQ_INIT(&object->memq);
785		object->resident_page_count = 0;
786		if (object->type == OBJT_VNODE)
787			vdrop(object->handle);
788	}
789}
790
791/*
792 *	vm_object_terminate actually destroys the specified object, freeing
793 *	up all previously used resources.
794 *
795 *	The object must be locked.
796 *	This routine may block.
797 */
798void
799vm_object_terminate(vm_object_t object)
800{
801
802	VM_OBJECT_ASSERT_WLOCKED(object);
803
804	/*
805	 * Make sure no one uses us.
806	 */
807	vm_object_set_flag(object, OBJ_DEAD);
808
809	/*
810	 * wait for the pageout daemon to be done with the object
811	 */
812	vm_object_pip_wait(object, "objtrm");
813
814	KASSERT(!object->paging_in_progress,
815		("vm_object_terminate: pageout in progress"));
816
817	/*
818	 * Clean and free the pages, as appropriate. All references to the
819	 * object are gone, so we don't need to lock it.
820	 */
821	if (object->type == OBJT_VNODE) {
822		struct vnode *vp = (struct vnode *)object->handle;
823
824		/*
825		 * Clean pages and flush buffers.
826		 */
827		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
828		VM_OBJECT_WUNLOCK(object);
829
830		vinvalbuf(vp, V_SAVE, 0, 0);
831
832		BO_LOCK(&vp->v_bufobj);
833		vp->v_bufobj.bo_flag |= BO_DEAD;
834		BO_UNLOCK(&vp->v_bufobj);
835
836		VM_OBJECT_WLOCK(object);
837	}
838
839	KASSERT(object->ref_count == 0,
840		("vm_object_terminate: object with references, ref_count=%d",
841		object->ref_count));
842
843	if ((object->flags & OBJ_PG_DTOR) == 0)
844		vm_object_terminate_pages(object);
845
846#if VM_NRESERVLEVEL > 0
847	if (__predict_false(!LIST_EMPTY(&object->rvq)))
848		vm_reserv_break_all(object);
849#endif
850
851	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
852	    object->type == OBJT_SWAP,
853	    ("%s: non-swap obj %p has cred", __func__, object));
854
855	/*
856	 * Let the pager know object is dead.
857	 */
858	vm_pager_deallocate(object);
859	VM_OBJECT_WUNLOCK(object);
860
861	vm_object_destroy(object);
862}
863
864/*
865 * Make the page read-only so that we can clear the object flags.  However, if
866 * this is a nosync mmap then the object is likely to stay dirty so do not
867 * mess with the page and do not clear the object flags.  Returns TRUE if the
868 * page should be flushed, and FALSE otherwise.
869 */
870static boolean_t
871vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
872{
873
874	/*
875	 * If we have been asked to skip nosync pages and this is a
876	 * nosync page, skip it.  Note that the object flags were not
877	 * cleared in this case so we do not have to set them.
878	 */
879	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
880		*clearobjflags = FALSE;
881		return (FALSE);
882	} else {
883		pmap_remove_write(p);
884		return (p->dirty != 0);
885	}
886}
887
888/*
889 *	vm_object_page_clean
890 *
891 *	Clean all dirty pages in the specified range of object.  Leaves page
892 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
893 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
894 *	leaving the object dirty.
895 *
896 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
897 *	synchronous clustering mode implementation.
898 *
899 *	Odd semantics: if start == end, we clean everything.
900 *
901 *	The object must be locked.
902 *
903 *	Returns FALSE if some page from the range was not written, as
904 *	reported by the pager, and TRUE otherwise.
905 */
906boolean_t
907vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
908    int flags)
909{
910	vm_page_t np, p;
911	vm_pindex_t pi, tend, tstart;
912	int curgeneration, n, pagerflags;
913	boolean_t clearobjflags, eio, res;
914
915	VM_OBJECT_ASSERT_WLOCKED(object);
916
917	/*
918	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
919	 * objects.  The check below prevents the function from
920	 * operating on non-vnode objects.
921	 */
922	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
923	    object->resident_page_count == 0)
924		return (TRUE);
925
926	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
927	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
928	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
929
930	tstart = OFF_TO_IDX(start);
931	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
932	clearobjflags = tstart == 0 && tend >= object->size;
933	res = TRUE;
934
935rescan:
936	curgeneration = object->generation;
937
938	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
939		pi = p->pindex;
940		if (pi >= tend)
941			break;
942		np = TAILQ_NEXT(p, listq);
943		if (p->valid == 0)
944			continue;
945		if (vm_page_sleep_if_busy(p, "vpcwai")) {
946			if (object->generation != curgeneration) {
947				if ((flags & OBJPC_SYNC) != 0)
948					goto rescan;
949				else
950					clearobjflags = FALSE;
951			}
952			np = vm_page_find_least(object, pi);
953			continue;
954		}
955		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
956			continue;
957
958		n = vm_object_page_collect_flush(object, p, pagerflags,
959		    flags, &clearobjflags, &eio);
960		if (eio) {
961			res = FALSE;
962			clearobjflags = FALSE;
963		}
964		if (object->generation != curgeneration) {
965			if ((flags & OBJPC_SYNC) != 0)
966				goto rescan;
967			else
968				clearobjflags = FALSE;
969		}
970
971		/*
972		 * If the VOP_PUTPAGES() did a truncated write, so
973		 * that even the first page of the run is not fully
974		 * written, vm_pageout_flush() returns 0 as the run
975		 * length.  Since the condition that caused truncated
976		 * write may be permanent, e.g. exhausted free space,
977		 * accepting n == 0 would cause an infinite loop.
978		 *
979		 * Forwarding the iterator leaves the unwritten page
980		 * behind, but there is not much we can do there if
981		 * filesystem refuses to write it.
982		 */
983		if (n == 0) {
984			n = 1;
985			clearobjflags = FALSE;
986		}
987		np = vm_page_find_least(object, pi + n);
988	}
989#if 0
990	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
991#endif
992
993	if (clearobjflags)
994		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
995	return (res);
996}
997
998static int
999vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1000    int flags, boolean_t *clearobjflags, boolean_t *eio)
1001{
1002	vm_page_t ma[vm_pageout_page_count], p_first, tp;
1003	int count, i, mreq, runlen;
1004
1005	vm_page_lock_assert(p, MA_NOTOWNED);
1006	VM_OBJECT_ASSERT_WLOCKED(object);
1007
1008	count = 1;
1009	mreq = 0;
1010
1011	for (tp = p; count < vm_pageout_page_count; count++) {
1012		tp = vm_page_next(tp);
1013		if (tp == NULL || vm_page_busied(tp))
1014			break;
1015		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1016			break;
1017	}
1018
1019	for (p_first = p; count < vm_pageout_page_count; count++) {
1020		tp = vm_page_prev(p_first);
1021		if (tp == NULL || vm_page_busied(tp))
1022			break;
1023		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1024			break;
1025		p_first = tp;
1026		mreq++;
1027	}
1028
1029	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1030		ma[i] = tp;
1031
1032	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1033	return (runlen);
1034}
1035
1036/*
1037 * Note that there is absolutely no sense in writing out
1038 * anonymous objects, so we track down the vnode object
1039 * to write out.
1040 * We invalidate (remove) all pages from the address space
1041 * for semantic correctness.
1042 *
1043 * If the backing object is a device object with unmanaged pages, then any
1044 * mappings to the specified range of pages must be removed before this
1045 * function is called.
1046 *
1047 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1048 * may start out with a NULL object.
1049 */
1050boolean_t
1051vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1052    boolean_t syncio, boolean_t invalidate)
1053{
1054	vm_object_t backing_object;
1055	struct vnode *vp;
1056	struct mount *mp;
1057	int error, flags, fsync_after;
1058	boolean_t res;
1059
1060	if (object == NULL)
1061		return (TRUE);
1062	res = TRUE;
1063	error = 0;
1064	VM_OBJECT_WLOCK(object);
1065	while ((backing_object = object->backing_object) != NULL) {
1066		VM_OBJECT_WLOCK(backing_object);
1067		offset += object->backing_object_offset;
1068		VM_OBJECT_WUNLOCK(object);
1069		object = backing_object;
1070		if (object->size < OFF_TO_IDX(offset + size))
1071			size = IDX_TO_OFF(object->size) - offset;
1072	}
1073	/*
1074	 * Flush pages if writing is allowed, invalidate them
1075	 * if invalidation requested.  Pages undergoing I/O
1076	 * will be ignored by vm_object_page_remove().
1077	 *
1078	 * We cannot lock the vnode and then wait for paging
1079	 * to complete without deadlocking against vm_fault.
1080	 * Instead we simply call vm_object_page_remove() and
1081	 * allow it to block internally on a page-by-page
1082	 * basis when it encounters pages undergoing async
1083	 * I/O.
1084	 */
1085	if (object->type == OBJT_VNODE &&
1086	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1087	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1088		VM_OBJECT_WUNLOCK(object);
1089		(void) vn_start_write(vp, &mp, V_WAIT);
1090		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1091		if (syncio && !invalidate && offset == 0 &&
1092		    atop(size) == object->size) {
1093			/*
1094			 * If syncing the whole mapping of the file,
1095			 * it is faster to schedule all the writes in
1096			 * async mode, also allowing the clustering,
1097			 * and then wait for i/o to complete.
1098			 */
1099			flags = 0;
1100			fsync_after = TRUE;
1101		} else {
1102			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1103			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1104			fsync_after = FALSE;
1105		}
1106		VM_OBJECT_WLOCK(object);
1107		res = vm_object_page_clean(object, offset, offset + size,
1108		    flags);
1109		VM_OBJECT_WUNLOCK(object);
1110		if (fsync_after)
1111			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1112		VOP_UNLOCK(vp, 0);
1113		vn_finished_write(mp);
1114		if (error != 0)
1115			res = FALSE;
1116		VM_OBJECT_WLOCK(object);
1117	}
1118	if ((object->type == OBJT_VNODE ||
1119	     object->type == OBJT_DEVICE) && invalidate) {
1120		if (object->type == OBJT_DEVICE)
1121			/*
1122			 * The option OBJPR_NOTMAPPED must be passed here
1123			 * because vm_object_page_remove() cannot remove
1124			 * unmanaged mappings.
1125			 */
1126			flags = OBJPR_NOTMAPPED;
1127		else if (old_msync)
1128			flags = 0;
1129		else
1130			flags = OBJPR_CLEANONLY;
1131		vm_object_page_remove(object, OFF_TO_IDX(offset),
1132		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1133	}
1134	VM_OBJECT_WUNLOCK(object);
1135	return (res);
1136}
1137
1138/*
1139 * Determine whether the given advice can be applied to the object.  Advice is
1140 * not applied to unmanaged pages since they never belong to page queues, and
1141 * since MADV_FREE is destructive, it can apply only to anonymous pages that
1142 * have been mapped at most once.
1143 */
1144static bool
1145vm_object_advice_applies(vm_object_t object, int advice)
1146{
1147
1148	if ((object->flags & OBJ_UNMANAGED) != 0)
1149		return (false);
1150	if (advice != MADV_FREE)
1151		return (true);
1152	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1153	    (object->flags & OBJ_ONEMAPPING) != 0);
1154}
1155
1156static void
1157vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1158    vm_size_t size)
1159{
1160
1161	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1162		swap_pager_freespace(object, pindex, size);
1163}
1164
1165/*
1166 *	vm_object_madvise:
1167 *
1168 *	Implements the madvise function at the object/page level.
1169 *
1170 *	MADV_WILLNEED	(any object)
1171 *
1172 *	    Activate the specified pages if they are resident.
1173 *
1174 *	MADV_DONTNEED	(any object)
1175 *
1176 *	    Deactivate the specified pages if they are resident.
1177 *
1178 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1179 *			 OBJ_ONEMAPPING only)
1180 *
1181 *	    Deactivate and clean the specified pages if they are
1182 *	    resident.  This permits the process to reuse the pages
1183 *	    without faulting or the kernel to reclaim the pages
1184 *	    without I/O.
1185 */
1186void
1187vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1188    int advice)
1189{
1190	vm_pindex_t tpindex;
1191	vm_object_t backing_object, tobject;
1192	vm_page_t m, tm;
1193
1194	if (object == NULL)
1195		return;
1196
1197relookup:
1198	VM_OBJECT_WLOCK(object);
1199	if (!vm_object_advice_applies(object, advice)) {
1200		VM_OBJECT_WUNLOCK(object);
1201		return;
1202	}
1203	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1204		tobject = object;
1205
1206		/*
1207		 * If the next page isn't resident in the top-level object, we
1208		 * need to search the shadow chain.  When applying MADV_FREE, we
1209		 * take care to release any swap space used to store
1210		 * non-resident pages.
1211		 */
1212		if (m == NULL || pindex < m->pindex) {
1213			/*
1214			 * Optimize a common case: if the top-level object has
1215			 * no backing object, we can skip over the non-resident
1216			 * range in constant time.
1217			 */
1218			if (object->backing_object == NULL) {
1219				tpindex = (m != NULL && m->pindex < end) ?
1220				    m->pindex : end;
1221				vm_object_madvise_freespace(object, advice,
1222				    pindex, tpindex - pindex);
1223				if ((pindex = tpindex) == end)
1224					break;
1225				goto next_page;
1226			}
1227
1228			tpindex = pindex;
1229			do {
1230				vm_object_madvise_freespace(tobject, advice,
1231				    tpindex, 1);
1232				/*
1233				 * Prepare to search the next object in the
1234				 * chain.
1235				 */
1236				backing_object = tobject->backing_object;
1237				if (backing_object == NULL)
1238					goto next_pindex;
1239				VM_OBJECT_WLOCK(backing_object);
1240				tpindex +=
1241				    OFF_TO_IDX(tobject->backing_object_offset);
1242				if (tobject != object)
1243					VM_OBJECT_WUNLOCK(tobject);
1244				tobject = backing_object;
1245				if (!vm_object_advice_applies(tobject, advice))
1246					goto next_pindex;
1247			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1248			    NULL);
1249		} else {
1250next_page:
1251			tm = m;
1252			m = TAILQ_NEXT(m, listq);
1253		}
1254
1255		/*
1256		 * If the page is not in a normal state, skip it.
1257		 */
1258		if (tm->valid != VM_PAGE_BITS_ALL)
1259			goto next_pindex;
1260		vm_page_lock(tm);
1261		if (tm->hold_count != 0 || tm->wire_count != 0) {
1262			vm_page_unlock(tm);
1263			goto next_pindex;
1264		}
1265		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1266		    ("vm_object_madvise: page %p is fictitious", tm));
1267		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1268		    ("vm_object_madvise: page %p is not managed", tm));
1269		if (vm_page_busied(tm)) {
1270			if (object != tobject)
1271				VM_OBJECT_WUNLOCK(tobject);
1272			VM_OBJECT_WUNLOCK(object);
1273			if (advice == MADV_WILLNEED) {
1274				/*
1275				 * Reference the page before unlocking and
1276				 * sleeping so that the page daemon is less
1277				 * likely to reclaim it.
1278				 */
1279				vm_page_aflag_set(tm, PGA_REFERENCED);
1280			}
1281			vm_page_busy_sleep(tm, "madvpo", false);
1282  			goto relookup;
1283		}
1284		vm_page_advise(tm, advice);
1285		vm_page_unlock(tm);
1286		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1287next_pindex:
1288		if (tobject != object)
1289			VM_OBJECT_WUNLOCK(tobject);
1290	}
1291	VM_OBJECT_WUNLOCK(object);
1292}
1293
1294/*
1295 *	vm_object_shadow:
1296 *
1297 *	Create a new object which is backed by the
1298 *	specified existing object range.  The source
1299 *	object reference is deallocated.
1300 *
1301 *	The new object and offset into that object
1302 *	are returned in the source parameters.
1303 */
1304void
1305vm_object_shadow(
1306	vm_object_t *object,	/* IN/OUT */
1307	vm_ooffset_t *offset,	/* IN/OUT */
1308	vm_size_t length)
1309{
1310	vm_object_t source;
1311	vm_object_t result;
1312
1313	source = *object;
1314
1315	/*
1316	 * Don't create the new object if the old object isn't shared.
1317	 */
1318	if (source != NULL) {
1319		VM_OBJECT_WLOCK(source);
1320		if (source->ref_count == 1 &&
1321		    source->handle == NULL &&
1322		    (source->type == OBJT_DEFAULT ||
1323		     source->type == OBJT_SWAP)) {
1324			VM_OBJECT_WUNLOCK(source);
1325			return;
1326		}
1327		VM_OBJECT_WUNLOCK(source);
1328	}
1329
1330	/*
1331	 * Allocate a new object with the given length.
1332	 */
1333	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1334
1335	/*
1336	 * The new object shadows the source object, adding a reference to it.
1337	 * Our caller changes his reference to point to the new object,
1338	 * removing a reference to the source object.  Net result: no change
1339	 * of reference count.
1340	 *
1341	 * Try to optimize the result object's page color when shadowing
1342	 * in order to maintain page coloring consistency in the combined
1343	 * shadowed object.
1344	 */
1345	result->backing_object = source;
1346	/*
1347	 * Store the offset into the source object, and fix up the offset into
1348	 * the new object.
1349	 */
1350	result->backing_object_offset = *offset;
1351	if (source != NULL) {
1352		VM_OBJECT_WLOCK(source);
1353		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1354		source->shadow_count++;
1355#if VM_NRESERVLEVEL > 0
1356		result->flags |= source->flags & OBJ_COLORED;
1357		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1358		    ((1 << (VM_NFREEORDER - 1)) - 1);
1359#endif
1360		VM_OBJECT_WUNLOCK(source);
1361	}
1362
1363
1364	/*
1365	 * Return the new things
1366	 */
1367	*offset = 0;
1368	*object = result;
1369}
1370
1371/*
1372 *	vm_object_split:
1373 *
1374 * Split the pages in a map entry into a new object.  This affords
1375 * easier removal of unused pages, and keeps object inheritance from
1376 * being a negative impact on memory usage.
1377 */
1378void
1379vm_object_split(vm_map_entry_t entry)
1380{
1381	vm_page_t m, m_next;
1382	vm_object_t orig_object, new_object, source;
1383	vm_pindex_t idx, offidxstart;
1384	vm_size_t size;
1385
1386	orig_object = entry->object.vm_object;
1387	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1388		return;
1389	if (orig_object->ref_count <= 1)
1390		return;
1391	VM_OBJECT_WUNLOCK(orig_object);
1392
1393	offidxstart = OFF_TO_IDX(entry->offset);
1394	size = atop(entry->end - entry->start);
1395
1396	/*
1397	 * If swap_pager_copy() is later called, it will convert new_object
1398	 * into a swap object.
1399	 */
1400	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1401
1402	/*
1403	 * At this point, the new object is still private, so the order in
1404	 * which the original and new objects are locked does not matter.
1405	 */
1406	VM_OBJECT_WLOCK(new_object);
1407	VM_OBJECT_WLOCK(orig_object);
1408	source = orig_object->backing_object;
1409	if (source != NULL) {
1410		VM_OBJECT_WLOCK(source);
1411		if ((source->flags & OBJ_DEAD) != 0) {
1412			VM_OBJECT_WUNLOCK(source);
1413			VM_OBJECT_WUNLOCK(orig_object);
1414			VM_OBJECT_WUNLOCK(new_object);
1415			vm_object_deallocate(new_object);
1416			VM_OBJECT_WLOCK(orig_object);
1417			return;
1418		}
1419		LIST_INSERT_HEAD(&source->shadow_head,
1420				  new_object, shadow_list);
1421		source->shadow_count++;
1422		vm_object_reference_locked(source);	/* for new_object */
1423		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1424		VM_OBJECT_WUNLOCK(source);
1425		new_object->backing_object_offset =
1426			orig_object->backing_object_offset + entry->offset;
1427		new_object->backing_object = source;
1428	}
1429	if (orig_object->cred != NULL) {
1430		new_object->cred = orig_object->cred;
1431		crhold(orig_object->cred);
1432		new_object->charge = ptoa(size);
1433		KASSERT(orig_object->charge >= ptoa(size),
1434		    ("orig_object->charge < 0"));
1435		orig_object->charge -= ptoa(size);
1436	}
1437retry:
1438	m = vm_page_find_least(orig_object, offidxstart);
1439	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1440	    m = m_next) {
1441		m_next = TAILQ_NEXT(m, listq);
1442
1443		/*
1444		 * We must wait for pending I/O to complete before we can
1445		 * rename the page.
1446		 *
1447		 * We do not have to VM_PROT_NONE the page as mappings should
1448		 * not be changed by this operation.
1449		 */
1450		if (vm_page_busied(m)) {
1451			VM_OBJECT_WUNLOCK(new_object);
1452			vm_page_lock(m);
1453			VM_OBJECT_WUNLOCK(orig_object);
1454			vm_page_busy_sleep(m, "spltwt", false);
1455			VM_OBJECT_WLOCK(orig_object);
1456			VM_OBJECT_WLOCK(new_object);
1457			goto retry;
1458		}
1459
1460		/* vm_page_rename() will dirty the page. */
1461		if (vm_page_rename(m, new_object, idx)) {
1462			VM_OBJECT_WUNLOCK(new_object);
1463			VM_OBJECT_WUNLOCK(orig_object);
1464			vm_radix_wait();
1465			VM_OBJECT_WLOCK(orig_object);
1466			VM_OBJECT_WLOCK(new_object);
1467			goto retry;
1468		}
1469#if VM_NRESERVLEVEL > 0
1470		/*
1471		 * If some of the reservation's allocated pages remain with
1472		 * the original object, then transferring the reservation to
1473		 * the new object is neither particularly beneficial nor
1474		 * particularly harmful as compared to leaving the reservation
1475		 * with the original object.  If, however, all of the
1476		 * reservation's allocated pages are transferred to the new
1477		 * object, then transferring the reservation is typically
1478		 * beneficial.  Determining which of these two cases applies
1479		 * would be more costly than unconditionally renaming the
1480		 * reservation.
1481		 */
1482		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1483#endif
1484		if (orig_object->type == OBJT_SWAP)
1485			vm_page_xbusy(m);
1486	}
1487	if (orig_object->type == OBJT_SWAP) {
1488		/*
1489		 * swap_pager_copy() can sleep, in which case the orig_object's
1490		 * and new_object's locks are released and reacquired.
1491		 */
1492		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1493		TAILQ_FOREACH(m, &new_object->memq, listq)
1494			vm_page_xunbusy(m);
1495	}
1496	VM_OBJECT_WUNLOCK(orig_object);
1497	VM_OBJECT_WUNLOCK(new_object);
1498	entry->object.vm_object = new_object;
1499	entry->offset = 0LL;
1500	vm_object_deallocate(orig_object);
1501	VM_OBJECT_WLOCK(new_object);
1502}
1503
1504#define	OBSC_COLLAPSE_NOWAIT	0x0002
1505#define	OBSC_COLLAPSE_WAIT	0x0004
1506
1507static vm_page_t
1508vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1509    int op)
1510{
1511	vm_object_t backing_object;
1512
1513	VM_OBJECT_ASSERT_WLOCKED(object);
1514	backing_object = object->backing_object;
1515	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1516
1517	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1518	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1519	    ("invalid ownership %p %p %p", p, object, backing_object));
1520	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1521		return (next);
1522	if (p != NULL)
1523		vm_page_lock(p);
1524	VM_OBJECT_WUNLOCK(object);
1525	VM_OBJECT_WUNLOCK(backing_object);
1526	/* The page is only NULL when rename fails. */
1527	if (p == NULL)
1528		vm_radix_wait();
1529	else
1530		vm_page_busy_sleep(p, "vmocol", false);
1531	VM_OBJECT_WLOCK(object);
1532	VM_OBJECT_WLOCK(backing_object);
1533	return (TAILQ_FIRST(&backing_object->memq));
1534}
1535
1536static bool
1537vm_object_scan_all_shadowed(vm_object_t object)
1538{
1539	vm_object_t backing_object;
1540	vm_page_t p, pp;
1541	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1542
1543	VM_OBJECT_ASSERT_WLOCKED(object);
1544	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1545
1546	backing_object = object->backing_object;
1547
1548	/*
1549	 * Initial conditions:
1550	 *
1551	 * We do not want to have to test for the existence of swap
1552	 * pages in the backing object.  XXX but with the new swapper this
1553	 * would be pretty easy to do.
1554	 */
1555	if (backing_object->type != OBJT_DEFAULT &&
1556	    backing_object->type != OBJT_SWAP)
1557		return (false);
1558
1559	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1560	p = vm_page_find_least(backing_object, pi);
1561	ps = swap_pager_find_least(backing_object, pi);
1562
1563	/*
1564	 * Only check pages inside the parent object's range and
1565	 * inside the parent object's mapping of the backing object.
1566	 */
1567	for (;; pi++) {
1568		if (p != NULL && p->pindex < pi)
1569			p = TAILQ_NEXT(p, listq);
1570		if (ps < pi)
1571			ps = swap_pager_find_least(backing_object, pi);
1572		if (p == NULL && ps >= backing_object->size)
1573			break;
1574		else if (p == NULL)
1575			pi = ps;
1576		else
1577			pi = MIN(p->pindex, ps);
1578
1579		new_pindex = pi - backing_offset_index;
1580		if (new_pindex >= object->size)
1581			break;
1582
1583		/*
1584		 * See if the parent has the page or if the parent's object
1585		 * pager has the page.  If the parent has the page but the page
1586		 * is not valid, the parent's object pager must have the page.
1587		 *
1588		 * If this fails, the parent does not completely shadow the
1589		 * object and we might as well give up now.
1590		 */
1591		pp = vm_page_lookup(object, new_pindex);
1592		if ((pp == NULL || pp->valid == 0) &&
1593		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1594			return (false);
1595	}
1596	return (true);
1597}
1598
1599static bool
1600vm_object_collapse_scan(vm_object_t object, int op)
1601{
1602	vm_object_t backing_object;
1603	vm_page_t next, p, pp;
1604	vm_pindex_t backing_offset_index, new_pindex;
1605
1606	VM_OBJECT_ASSERT_WLOCKED(object);
1607	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1608
1609	backing_object = object->backing_object;
1610	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1611
1612	/*
1613	 * Initial conditions
1614	 */
1615	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1616		vm_object_set_flag(backing_object, OBJ_DEAD);
1617
1618	/*
1619	 * Our scan
1620	 */
1621	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1622		next = TAILQ_NEXT(p, listq);
1623		new_pindex = p->pindex - backing_offset_index;
1624
1625		/*
1626		 * Check for busy page
1627		 */
1628		if (vm_page_busied(p)) {
1629			next = vm_object_collapse_scan_wait(object, p, next, op);
1630			continue;
1631		}
1632
1633		KASSERT(p->object == backing_object,
1634		    ("vm_object_collapse_scan: object mismatch"));
1635
1636		if (p->pindex < backing_offset_index ||
1637		    new_pindex >= object->size) {
1638			if (backing_object->type == OBJT_SWAP)
1639				swap_pager_freespace(backing_object, p->pindex,
1640				    1);
1641
1642			/*
1643			 * Page is out of the parent object's range, we can
1644			 * simply destroy it.
1645			 */
1646			vm_page_lock(p);
1647			KASSERT(!pmap_page_is_mapped(p),
1648			    ("freeing mapped page %p", p));
1649			if (p->wire_count == 0)
1650				vm_page_free(p);
1651			else
1652				vm_page_remove(p);
1653			vm_page_unlock(p);
1654			continue;
1655		}
1656
1657		pp = vm_page_lookup(object, new_pindex);
1658		if (pp != NULL && vm_page_busied(pp)) {
1659			/*
1660			 * The page in the parent is busy and possibly not
1661			 * (yet) valid.  Until its state is finalized by the
1662			 * busy bit owner, we can't tell whether it shadows the
1663			 * original page.  Therefore, we must either skip it
1664			 * and the original (backing_object) page or wait for
1665			 * its state to be finalized.
1666			 *
1667			 * This is due to a race with vm_fault() where we must
1668			 * unbusy the original (backing_obj) page before we can
1669			 * (re)lock the parent.  Hence we can get here.
1670			 */
1671			next = vm_object_collapse_scan_wait(object, pp, next,
1672			    op);
1673			continue;
1674		}
1675
1676		KASSERT(pp == NULL || pp->valid != 0,
1677		    ("unbusy invalid page %p", pp));
1678
1679		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1680			NULL)) {
1681			/*
1682			 * The page already exists in the parent OR swap exists
1683			 * for this location in the parent.  Leave the parent's
1684			 * page alone.  Destroy the original page from the
1685			 * backing object.
1686			 */
1687			if (backing_object->type == OBJT_SWAP)
1688				swap_pager_freespace(backing_object, p->pindex,
1689				    1);
1690			vm_page_lock(p);
1691			KASSERT(!pmap_page_is_mapped(p),
1692			    ("freeing mapped page %p", p));
1693			if (p->wire_count == 0)
1694				vm_page_free(p);
1695			else
1696				vm_page_remove(p);
1697			vm_page_unlock(p);
1698			continue;
1699		}
1700
1701		/*
1702		 * Page does not exist in parent, rename the page from the
1703		 * backing object to the main object.
1704		 *
1705		 * If the page was mapped to a process, it can remain mapped
1706		 * through the rename.  vm_page_rename() will dirty the page.
1707		 */
1708		if (vm_page_rename(p, object, new_pindex)) {
1709			next = vm_object_collapse_scan_wait(object, NULL, next,
1710			    op);
1711			continue;
1712		}
1713
1714		/* Use the old pindex to free the right page. */
1715		if (backing_object->type == OBJT_SWAP)
1716			swap_pager_freespace(backing_object,
1717			    new_pindex + backing_offset_index, 1);
1718
1719#if VM_NRESERVLEVEL > 0
1720		/*
1721		 * Rename the reservation.
1722		 */
1723		vm_reserv_rename(p, object, backing_object,
1724		    backing_offset_index);
1725#endif
1726	}
1727	return (true);
1728}
1729
1730
1731/*
1732 * this version of collapse allows the operation to occur earlier and
1733 * when paging_in_progress is true for an object...  This is not a complete
1734 * operation, but should plug 99.9% of the rest of the leaks.
1735 */
1736static void
1737vm_object_qcollapse(vm_object_t object)
1738{
1739	vm_object_t backing_object = object->backing_object;
1740
1741	VM_OBJECT_ASSERT_WLOCKED(object);
1742	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1743
1744	if (backing_object->ref_count != 1)
1745		return;
1746
1747	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1748}
1749
1750/*
1751 *	vm_object_collapse:
1752 *
1753 *	Collapse an object with the object backing it.
1754 *	Pages in the backing object are moved into the
1755 *	parent, and the backing object is deallocated.
1756 */
1757void
1758vm_object_collapse(vm_object_t object)
1759{
1760	vm_object_t backing_object, new_backing_object;
1761
1762	VM_OBJECT_ASSERT_WLOCKED(object);
1763
1764	while (TRUE) {
1765		/*
1766		 * Verify that the conditions are right for collapse:
1767		 *
1768		 * The object exists and the backing object exists.
1769		 */
1770		if ((backing_object = object->backing_object) == NULL)
1771			break;
1772
1773		/*
1774		 * we check the backing object first, because it is most likely
1775		 * not collapsable.
1776		 */
1777		VM_OBJECT_WLOCK(backing_object);
1778		if (backing_object->handle != NULL ||
1779		    (backing_object->type != OBJT_DEFAULT &&
1780		     backing_object->type != OBJT_SWAP) ||
1781		    (backing_object->flags & OBJ_DEAD) ||
1782		    object->handle != NULL ||
1783		    (object->type != OBJT_DEFAULT &&
1784		     object->type != OBJT_SWAP) ||
1785		    (object->flags & OBJ_DEAD)) {
1786			VM_OBJECT_WUNLOCK(backing_object);
1787			break;
1788		}
1789
1790		if (object->paging_in_progress != 0 ||
1791		    backing_object->paging_in_progress != 0) {
1792			vm_object_qcollapse(object);
1793			VM_OBJECT_WUNLOCK(backing_object);
1794			break;
1795		}
1796
1797		/*
1798		 * We know that we can either collapse the backing object (if
1799		 * the parent is the only reference to it) or (perhaps) have
1800		 * the parent bypass the object if the parent happens to shadow
1801		 * all the resident pages in the entire backing object.
1802		 *
1803		 * This is ignoring pager-backed pages such as swap pages.
1804		 * vm_object_collapse_scan fails the shadowing test in this
1805		 * case.
1806		 */
1807		if (backing_object->ref_count == 1) {
1808			vm_object_pip_add(object, 1);
1809			vm_object_pip_add(backing_object, 1);
1810
1811			/*
1812			 * If there is exactly one reference to the backing
1813			 * object, we can collapse it into the parent.
1814			 */
1815			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1816
1817#if VM_NRESERVLEVEL > 0
1818			/*
1819			 * Break any reservations from backing_object.
1820			 */
1821			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1822				vm_reserv_break_all(backing_object);
1823#endif
1824
1825			/*
1826			 * Move the pager from backing_object to object.
1827			 */
1828			if (backing_object->type == OBJT_SWAP) {
1829				/*
1830				 * swap_pager_copy() can sleep, in which case
1831				 * the backing_object's and object's locks are
1832				 * released and reacquired.
1833				 * Since swap_pager_copy() is being asked to
1834				 * destroy the source, it will change the
1835				 * backing_object's type to OBJT_DEFAULT.
1836				 */
1837				swap_pager_copy(
1838				    backing_object,
1839				    object,
1840				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1841			}
1842			/*
1843			 * Object now shadows whatever backing_object did.
1844			 * Note that the reference to
1845			 * backing_object->backing_object moves from within
1846			 * backing_object to within object.
1847			 */
1848			LIST_REMOVE(object, shadow_list);
1849			backing_object->shadow_count--;
1850			if (backing_object->backing_object) {
1851				VM_OBJECT_WLOCK(backing_object->backing_object);
1852				LIST_REMOVE(backing_object, shadow_list);
1853				LIST_INSERT_HEAD(
1854				    &backing_object->backing_object->shadow_head,
1855				    object, shadow_list);
1856				/*
1857				 * The shadow_count has not changed.
1858				 */
1859				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1860			}
1861			object->backing_object = backing_object->backing_object;
1862			object->backing_object_offset +=
1863			    backing_object->backing_object_offset;
1864
1865			/*
1866			 * Discard backing_object.
1867			 *
1868			 * Since the backing object has no pages, no pager left,
1869			 * and no object references within it, all that is
1870			 * necessary is to dispose of it.
1871			 */
1872			KASSERT(backing_object->ref_count == 1, (
1873"backing_object %p was somehow re-referenced during collapse!",
1874			    backing_object));
1875			vm_object_pip_wakeup(backing_object);
1876			backing_object->type = OBJT_DEAD;
1877			backing_object->ref_count = 0;
1878			VM_OBJECT_WUNLOCK(backing_object);
1879			vm_object_destroy(backing_object);
1880
1881			vm_object_pip_wakeup(object);
1882			object_collapses++;
1883		} else {
1884			/*
1885			 * If we do not entirely shadow the backing object,
1886			 * there is nothing we can do so we give up.
1887			 */
1888			if (object->resident_page_count != object->size &&
1889			    !vm_object_scan_all_shadowed(object)) {
1890				VM_OBJECT_WUNLOCK(backing_object);
1891				break;
1892			}
1893
1894			/*
1895			 * Make the parent shadow the next object in the
1896			 * chain.  Deallocating backing_object will not remove
1897			 * it, since its reference count is at least 2.
1898			 */
1899			LIST_REMOVE(object, shadow_list);
1900			backing_object->shadow_count--;
1901
1902			new_backing_object = backing_object->backing_object;
1903			if ((object->backing_object = new_backing_object) != NULL) {
1904				VM_OBJECT_WLOCK(new_backing_object);
1905				LIST_INSERT_HEAD(
1906				    &new_backing_object->shadow_head,
1907				    object,
1908				    shadow_list
1909				);
1910				new_backing_object->shadow_count++;
1911				vm_object_reference_locked(new_backing_object);
1912				VM_OBJECT_WUNLOCK(new_backing_object);
1913				object->backing_object_offset +=
1914					backing_object->backing_object_offset;
1915			}
1916
1917			/*
1918			 * Drop the reference count on backing_object. Since
1919			 * its ref_count was at least 2, it will not vanish.
1920			 */
1921			backing_object->ref_count--;
1922			VM_OBJECT_WUNLOCK(backing_object);
1923			object_bypasses++;
1924		}
1925
1926		/*
1927		 * Try again with this object's new backing object.
1928		 */
1929	}
1930}
1931
1932/*
1933 *	vm_object_page_remove:
1934 *
1935 *	For the given object, either frees or invalidates each of the
1936 *	specified pages.  In general, a page is freed.  However, if a page is
1937 *	wired for any reason other than the existence of a managed, wired
1938 *	mapping, then it may be invalidated but not removed from the object.
1939 *	Pages are specified by the given range ["start", "end") and the option
1940 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1941 *	extends from "start" to the end of the object.  If the option
1942 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1943 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1944 *	specified, then the pages within the specified range must have no
1945 *	mappings.  Otherwise, if this option is not specified, any mappings to
1946 *	the specified pages are removed before the pages are freed or
1947 *	invalidated.
1948 *
1949 *	In general, this operation should only be performed on objects that
1950 *	contain managed pages.  There are, however, two exceptions.  First, it
1951 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1952 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1953 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1954 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1955 *
1956 *	The object must be locked.
1957 */
1958void
1959vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1960    int options)
1961{
1962	vm_page_t p, next;
1963	struct mtx *mtx;
1964	struct pglist pgl;
1965
1966	VM_OBJECT_ASSERT_WLOCKED(object);
1967	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1968	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1969	    ("vm_object_page_remove: illegal options for object %p", object));
1970	if (object->resident_page_count == 0)
1971		return;
1972	vm_object_pip_add(object, 1);
1973	TAILQ_INIT(&pgl);
1974again:
1975	p = vm_page_find_least(object, start);
1976	mtx = NULL;
1977
1978	/*
1979	 * Here, the variable "p" is either (1) the page with the least pindex
1980	 * greater than or equal to the parameter "start" or (2) NULL.
1981	 */
1982	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1983		next = TAILQ_NEXT(p, listq);
1984
1985		/*
1986		 * If the page is wired for any reason besides the existence
1987		 * of managed, wired mappings, then it cannot be freed.  For
1988		 * example, fictitious pages, which represent device memory,
1989		 * are inherently wired and cannot be freed.  They can,
1990		 * however, be invalidated if the option OBJPR_CLEANONLY is
1991		 * not specified.
1992		 */
1993		vm_page_change_lock(p, &mtx);
1994		if (vm_page_xbusied(p)) {
1995			VM_OBJECT_WUNLOCK(object);
1996			vm_page_busy_sleep(p, "vmopax", true);
1997			VM_OBJECT_WLOCK(object);
1998			goto again;
1999		}
2000		if (p->wire_count != 0) {
2001			if ((options & OBJPR_NOTMAPPED) == 0 &&
2002			    object->ref_count != 0)
2003				pmap_remove_all(p);
2004			if ((options & OBJPR_CLEANONLY) == 0) {
2005				p->valid = 0;
2006				vm_page_undirty(p);
2007			}
2008			continue;
2009		}
2010		if (vm_page_busied(p)) {
2011			VM_OBJECT_WUNLOCK(object);
2012			vm_page_busy_sleep(p, "vmopar", false);
2013			VM_OBJECT_WLOCK(object);
2014			goto again;
2015		}
2016		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2017		    ("vm_object_page_remove: page %p is fictitious", p));
2018		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
2019			if ((options & OBJPR_NOTMAPPED) == 0 &&
2020			    object->ref_count != 0)
2021				pmap_remove_write(p);
2022			if (p->dirty != 0)
2023				continue;
2024		}
2025		if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
2026			pmap_remove_all(p);
2027		p->flags &= ~PG_ZERO;
2028		if (vm_page_free_prep(p, false))
2029			TAILQ_INSERT_TAIL(&pgl, p, listq);
2030	}
2031	if (mtx != NULL)
2032		mtx_unlock(mtx);
2033	vm_page_free_phys_pglist(&pgl);
2034	vm_object_pip_wakeup(object);
2035}
2036
2037/*
2038 *	vm_object_page_noreuse:
2039 *
2040 *	For the given object, attempt to move the specified pages to
2041 *	the head of the inactive queue.  This bypasses regular LRU
2042 *	operation and allows the pages to be reused quickly under memory
2043 *	pressure.  If a page is wired for any reason, then it will not
2044 *	be queued.  Pages are specified by the range ["start", "end").
2045 *	As a special case, if "end" is zero, then the range extends from
2046 *	"start" to the end of the object.
2047 *
2048 *	This operation should only be performed on objects that
2049 *	contain non-fictitious, managed pages.
2050 *
2051 *	The object must be locked.
2052 */
2053void
2054vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2055{
2056	struct mtx *mtx;
2057	vm_page_t p, next;
2058
2059	VM_OBJECT_ASSERT_LOCKED(object);
2060	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2061	    ("vm_object_page_noreuse: illegal object %p", object));
2062	if (object->resident_page_count == 0)
2063		return;
2064	p = vm_page_find_least(object, start);
2065
2066	/*
2067	 * Here, the variable "p" is either (1) the page with the least pindex
2068	 * greater than or equal to the parameter "start" or (2) NULL.
2069	 */
2070	mtx = NULL;
2071	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2072		next = TAILQ_NEXT(p, listq);
2073		vm_page_change_lock(p, &mtx);
2074		vm_page_deactivate_noreuse(p);
2075	}
2076	if (mtx != NULL)
2077		mtx_unlock(mtx);
2078}
2079
2080/*
2081 *	Populate the specified range of the object with valid pages.  Returns
2082 *	TRUE if the range is successfully populated and FALSE otherwise.
2083 *
2084 *	Note: This function should be optimized to pass a larger array of
2085 *	pages to vm_pager_get_pages() before it is applied to a non-
2086 *	OBJT_DEVICE object.
2087 *
2088 *	The object must be locked.
2089 */
2090boolean_t
2091vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2092{
2093	vm_page_t m;
2094	vm_pindex_t pindex;
2095	int rv;
2096
2097	VM_OBJECT_ASSERT_WLOCKED(object);
2098	for (pindex = start; pindex < end; pindex++) {
2099		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2100		if (m->valid != VM_PAGE_BITS_ALL) {
2101			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2102			if (rv != VM_PAGER_OK) {
2103				vm_page_lock(m);
2104				vm_page_free(m);
2105				vm_page_unlock(m);
2106				break;
2107			}
2108		}
2109		/*
2110		 * Keep "m" busy because a subsequent iteration may unlock
2111		 * the object.
2112		 */
2113	}
2114	if (pindex > start) {
2115		m = vm_page_lookup(object, start);
2116		while (m != NULL && m->pindex < pindex) {
2117			vm_page_xunbusy(m);
2118			m = TAILQ_NEXT(m, listq);
2119		}
2120	}
2121	return (pindex == end);
2122}
2123
2124/*
2125 *	Routine:	vm_object_coalesce
2126 *	Function:	Coalesces two objects backing up adjoining
2127 *			regions of memory into a single object.
2128 *
2129 *	returns TRUE if objects were combined.
2130 *
2131 *	NOTE:	Only works at the moment if the second object is NULL -
2132 *		if it's not, which object do we lock first?
2133 *
2134 *	Parameters:
2135 *		prev_object	First object to coalesce
2136 *		prev_offset	Offset into prev_object
2137 *		prev_size	Size of reference to prev_object
2138 *		next_size	Size of reference to the second object
2139 *		reserved	Indicator that extension region has
2140 *				swap accounted for
2141 *
2142 *	Conditions:
2143 *	The object must *not* be locked.
2144 */
2145boolean_t
2146vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2147    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2148{
2149	vm_pindex_t next_pindex;
2150
2151	if (prev_object == NULL)
2152		return (TRUE);
2153	VM_OBJECT_WLOCK(prev_object);
2154	if ((prev_object->type != OBJT_DEFAULT &&
2155	    prev_object->type != OBJT_SWAP) ||
2156	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2157		VM_OBJECT_WUNLOCK(prev_object);
2158		return (FALSE);
2159	}
2160
2161	/*
2162	 * Try to collapse the object first
2163	 */
2164	vm_object_collapse(prev_object);
2165
2166	/*
2167	 * Can't coalesce if: . more than one reference . paged out . shadows
2168	 * another object . has a copy elsewhere (any of which mean that the
2169	 * pages not mapped to prev_entry may be in use anyway)
2170	 */
2171	if (prev_object->backing_object != NULL) {
2172		VM_OBJECT_WUNLOCK(prev_object);
2173		return (FALSE);
2174	}
2175
2176	prev_size >>= PAGE_SHIFT;
2177	next_size >>= PAGE_SHIFT;
2178	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2179
2180	if ((prev_object->ref_count > 1) &&
2181	    (prev_object->size != next_pindex)) {
2182		VM_OBJECT_WUNLOCK(prev_object);
2183		return (FALSE);
2184	}
2185
2186	/*
2187	 * Account for the charge.
2188	 */
2189	if (prev_object->cred != NULL) {
2190
2191		/*
2192		 * If prev_object was charged, then this mapping,
2193		 * although not charged now, may become writable
2194		 * later. Non-NULL cred in the object would prevent
2195		 * swap reservation during enabling of the write
2196		 * access, so reserve swap now. Failed reservation
2197		 * cause allocation of the separate object for the map
2198		 * entry, and swap reservation for this entry is
2199		 * managed in appropriate time.
2200		 */
2201		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2202		    prev_object->cred)) {
2203			VM_OBJECT_WUNLOCK(prev_object);
2204			return (FALSE);
2205		}
2206		prev_object->charge += ptoa(next_size);
2207	}
2208
2209	/*
2210	 * Remove any pages that may still be in the object from a previous
2211	 * deallocation.
2212	 */
2213	if (next_pindex < prev_object->size) {
2214		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2215		    next_size, 0);
2216		if (prev_object->type == OBJT_SWAP)
2217			swap_pager_freespace(prev_object,
2218					     next_pindex, next_size);
2219#if 0
2220		if (prev_object->cred != NULL) {
2221			KASSERT(prev_object->charge >=
2222			    ptoa(prev_object->size - next_pindex),
2223			    ("object %p overcharged 1 %jx %jx", prev_object,
2224				(uintmax_t)next_pindex, (uintmax_t)next_size));
2225			prev_object->charge -= ptoa(prev_object->size -
2226			    next_pindex);
2227		}
2228#endif
2229	}
2230
2231	/*
2232	 * Extend the object if necessary.
2233	 */
2234	if (next_pindex + next_size > prev_object->size)
2235		prev_object->size = next_pindex + next_size;
2236
2237	VM_OBJECT_WUNLOCK(prev_object);
2238	return (TRUE);
2239}
2240
2241void
2242vm_object_set_writeable_dirty(vm_object_t object)
2243{
2244
2245	VM_OBJECT_ASSERT_WLOCKED(object);
2246	if (object->type != OBJT_VNODE) {
2247		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2248			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2249			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2250		}
2251		return;
2252	}
2253	object->generation++;
2254	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2255		return;
2256	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2257}
2258
2259/*
2260 *	vm_object_unwire:
2261 *
2262 *	For each page offset within the specified range of the given object,
2263 *	find the highest-level page in the shadow chain and unwire it.  A page
2264 *	must exist at every page offset, and the highest-level page must be
2265 *	wired.
2266 */
2267void
2268vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2269    uint8_t queue)
2270{
2271	vm_object_t tobject;
2272	vm_page_t m, tm;
2273	vm_pindex_t end_pindex, pindex, tpindex;
2274	int depth, locked_depth;
2275
2276	KASSERT((offset & PAGE_MASK) == 0,
2277	    ("vm_object_unwire: offset is not page aligned"));
2278	KASSERT((length & PAGE_MASK) == 0,
2279	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2280	/* The wired count of a fictitious page never changes. */
2281	if ((object->flags & OBJ_FICTITIOUS) != 0)
2282		return;
2283	pindex = OFF_TO_IDX(offset);
2284	end_pindex = pindex + atop(length);
2285	locked_depth = 1;
2286	VM_OBJECT_RLOCK(object);
2287	m = vm_page_find_least(object, pindex);
2288	while (pindex < end_pindex) {
2289		if (m == NULL || pindex < m->pindex) {
2290			/*
2291			 * The first object in the shadow chain doesn't
2292			 * contain a page at the current index.  Therefore,
2293			 * the page must exist in a backing object.
2294			 */
2295			tobject = object;
2296			tpindex = pindex;
2297			depth = 0;
2298			do {
2299				tpindex +=
2300				    OFF_TO_IDX(tobject->backing_object_offset);
2301				tobject = tobject->backing_object;
2302				KASSERT(tobject != NULL,
2303				    ("vm_object_unwire: missing page"));
2304				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2305					goto next_page;
2306				depth++;
2307				if (depth == locked_depth) {
2308					locked_depth++;
2309					VM_OBJECT_RLOCK(tobject);
2310				}
2311			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2312			    NULL);
2313		} else {
2314			tm = m;
2315			m = TAILQ_NEXT(m, listq);
2316		}
2317		vm_page_lock(tm);
2318		vm_page_unwire(tm, queue);
2319		vm_page_unlock(tm);
2320next_page:
2321		pindex++;
2322	}
2323	/* Release the accumulated object locks. */
2324	for (depth = 0; depth < locked_depth; depth++) {
2325		tobject = object->backing_object;
2326		VM_OBJECT_RUNLOCK(object);
2327		object = tobject;
2328	}
2329}
2330
2331struct vnode *
2332vm_object_vnode(vm_object_t object)
2333{
2334
2335	VM_OBJECT_ASSERT_LOCKED(object);
2336	if (object->type == OBJT_VNODE)
2337		return (object->handle);
2338	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2339		return (object->un_pager.swp.swp_tmpfs);
2340	return (NULL);
2341}
2342
2343static int
2344sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2345{
2346	struct kinfo_vmobject *kvo;
2347	char *fullpath, *freepath;
2348	struct vnode *vp;
2349	struct vattr va;
2350	vm_object_t obj;
2351	vm_page_t m;
2352	int count, error;
2353
2354	if (req->oldptr == NULL) {
2355		/*
2356		 * If an old buffer has not been provided, generate an
2357		 * estimate of the space needed for a subsequent call.
2358		 */
2359		mtx_lock(&vm_object_list_mtx);
2360		count = 0;
2361		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2362			if (obj->type == OBJT_DEAD)
2363				continue;
2364			count++;
2365		}
2366		mtx_unlock(&vm_object_list_mtx);
2367		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2368		    count * 11 / 10));
2369	}
2370
2371	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2372	error = 0;
2373
2374	/*
2375	 * VM objects are type stable and are never removed from the
2376	 * list once added.  This allows us to safely read obj->object_list
2377	 * after reacquiring the VM object lock.
2378	 */
2379	mtx_lock(&vm_object_list_mtx);
2380	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2381		if (obj->type == OBJT_DEAD)
2382			continue;
2383		VM_OBJECT_RLOCK(obj);
2384		if (obj->type == OBJT_DEAD) {
2385			VM_OBJECT_RUNLOCK(obj);
2386			continue;
2387		}
2388		mtx_unlock(&vm_object_list_mtx);
2389		kvo->kvo_size = ptoa(obj->size);
2390		kvo->kvo_resident = obj->resident_page_count;
2391		kvo->kvo_ref_count = obj->ref_count;
2392		kvo->kvo_shadow_count = obj->shadow_count;
2393		kvo->kvo_memattr = obj->memattr;
2394		kvo->kvo_active = 0;
2395		kvo->kvo_inactive = 0;
2396		TAILQ_FOREACH(m, &obj->memq, listq) {
2397			/*
2398			 * A page may belong to the object but be
2399			 * dequeued and set to PQ_NONE while the
2400			 * object lock is not held.  This makes the
2401			 * reads of m->queue below racy, and we do not
2402			 * count pages set to PQ_NONE.  However, this
2403			 * sysctl is only meant to give an
2404			 * approximation of the system anyway.
2405			 */
2406			if (vm_page_active(m))
2407				kvo->kvo_active++;
2408			else if (vm_page_inactive(m))
2409				kvo->kvo_inactive++;
2410		}
2411
2412		kvo->kvo_vn_fileid = 0;
2413		kvo->kvo_vn_fsid = 0;
2414		freepath = NULL;
2415		fullpath = "";
2416		vp = NULL;
2417		switch (obj->type) {
2418		case OBJT_DEFAULT:
2419			kvo->kvo_type = KVME_TYPE_DEFAULT;
2420			break;
2421		case OBJT_VNODE:
2422			kvo->kvo_type = KVME_TYPE_VNODE;
2423			vp = obj->handle;
2424			vref(vp);
2425			break;
2426		case OBJT_SWAP:
2427			kvo->kvo_type = KVME_TYPE_SWAP;
2428			break;
2429		case OBJT_DEVICE:
2430			kvo->kvo_type = KVME_TYPE_DEVICE;
2431			break;
2432		case OBJT_PHYS:
2433			kvo->kvo_type = KVME_TYPE_PHYS;
2434			break;
2435		case OBJT_DEAD:
2436			kvo->kvo_type = KVME_TYPE_DEAD;
2437			break;
2438		case OBJT_SG:
2439			kvo->kvo_type = KVME_TYPE_SG;
2440			break;
2441		case OBJT_MGTDEVICE:
2442			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2443			break;
2444		default:
2445			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2446			break;
2447		}
2448		VM_OBJECT_RUNLOCK(obj);
2449		if (vp != NULL) {
2450			vn_fullpath(curthread, vp, &fullpath, &freepath);
2451			vn_lock(vp, LK_SHARED | LK_RETRY);
2452			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2453				kvo->kvo_vn_fileid = va.va_fileid;
2454				kvo->kvo_vn_fsid = va.va_fsid;
2455			}
2456			vput(vp);
2457		}
2458
2459		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2460		if (freepath != NULL)
2461			free(freepath, M_TEMP);
2462
2463		/* Pack record size down */
2464		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2465		    + strlen(kvo->kvo_path) + 1;
2466		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2467		    sizeof(uint64_t));
2468		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2469		mtx_lock(&vm_object_list_mtx);
2470		if (error)
2471			break;
2472	}
2473	mtx_unlock(&vm_object_list_mtx);
2474	free(kvo, M_TEMP);
2475	return (error);
2476}
2477SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2478    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2479    "List of VM objects");
2480
2481#include "opt_ddb.h"
2482#ifdef DDB
2483#include <sys/kernel.h>
2484
2485#include <sys/cons.h>
2486
2487#include <ddb/ddb.h>
2488
2489static int
2490_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2491{
2492	vm_map_t tmpm;
2493	vm_map_entry_t tmpe;
2494	vm_object_t obj;
2495	int entcount;
2496
2497	if (map == 0)
2498		return 0;
2499
2500	if (entry == 0) {
2501		tmpe = map->header.next;
2502		entcount = map->nentries;
2503		while (entcount-- && (tmpe != &map->header)) {
2504			if (_vm_object_in_map(map, object, tmpe)) {
2505				return 1;
2506			}
2507			tmpe = tmpe->next;
2508		}
2509	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2510		tmpm = entry->object.sub_map;
2511		tmpe = tmpm->header.next;
2512		entcount = tmpm->nentries;
2513		while (entcount-- && tmpe != &tmpm->header) {
2514			if (_vm_object_in_map(tmpm, object, tmpe)) {
2515				return 1;
2516			}
2517			tmpe = tmpe->next;
2518		}
2519	} else if ((obj = entry->object.vm_object) != NULL) {
2520		for (; obj; obj = obj->backing_object)
2521			if (obj == object) {
2522				return 1;
2523			}
2524	}
2525	return 0;
2526}
2527
2528static int
2529vm_object_in_map(vm_object_t object)
2530{
2531	struct proc *p;
2532
2533	/* sx_slock(&allproc_lock); */
2534	FOREACH_PROC_IN_SYSTEM(p) {
2535		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2536			continue;
2537		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2538			/* sx_sunlock(&allproc_lock); */
2539			return 1;
2540		}
2541	}
2542	/* sx_sunlock(&allproc_lock); */
2543	if (_vm_object_in_map(kernel_map, object, 0))
2544		return 1;
2545	return 0;
2546}
2547
2548DB_SHOW_COMMAND(vmochk, vm_object_check)
2549{
2550	vm_object_t object;
2551
2552	/*
2553	 * make sure that internal objs are in a map somewhere
2554	 * and none have zero ref counts.
2555	 */
2556	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2557		if (object->handle == NULL &&
2558		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2559			if (object->ref_count == 0) {
2560				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2561					(long)object->size);
2562			}
2563			if (!vm_object_in_map(object)) {
2564				db_printf(
2565			"vmochk: internal obj is not in a map: "
2566			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2567				    object->ref_count, (u_long)object->size,
2568				    (u_long)object->size,
2569				    (void *)object->backing_object);
2570			}
2571		}
2572	}
2573}
2574
2575/*
2576 *	vm_object_print:	[ debug ]
2577 */
2578DB_SHOW_COMMAND(object, vm_object_print_static)
2579{
2580	/* XXX convert args. */
2581	vm_object_t object = (vm_object_t)addr;
2582	boolean_t full = have_addr;
2583
2584	vm_page_t p;
2585
2586	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2587#define	count	was_count
2588
2589	int count;
2590
2591	if (object == NULL)
2592		return;
2593
2594	db_iprintf(
2595	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2596	    object, (int)object->type, (uintmax_t)object->size,
2597	    object->resident_page_count, object->ref_count, object->flags,
2598	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2599	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2600	    object->shadow_count,
2601	    object->backing_object ? object->backing_object->ref_count : 0,
2602	    object->backing_object, (uintmax_t)object->backing_object_offset);
2603
2604	if (!full)
2605		return;
2606
2607	db_indent += 2;
2608	count = 0;
2609	TAILQ_FOREACH(p, &object->memq, listq) {
2610		if (count == 0)
2611			db_iprintf("memory:=");
2612		else if (count == 6) {
2613			db_printf("\n");
2614			db_iprintf(" ...");
2615			count = 0;
2616		} else
2617			db_printf(",");
2618		count++;
2619
2620		db_printf("(off=0x%jx,page=0x%jx)",
2621		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2622	}
2623	if (count != 0)
2624		db_printf("\n");
2625	db_indent -= 2;
2626}
2627
2628/* XXX. */
2629#undef count
2630
2631/* XXX need this non-static entry for calling from vm_map_print. */
2632void
2633vm_object_print(
2634        /* db_expr_t */ long addr,
2635	boolean_t have_addr,
2636	/* db_expr_t */ long count,
2637	char *modif)
2638{
2639	vm_object_print_static(addr, have_addr, count, modif);
2640}
2641
2642DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2643{
2644	vm_object_t object;
2645	vm_pindex_t fidx;
2646	vm_paddr_t pa;
2647	vm_page_t m, prev_m;
2648	int rcount, nl, c;
2649
2650	nl = 0;
2651	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2652		db_printf("new object: %p\n", (void *)object);
2653		if (nl > 18) {
2654			c = cngetc();
2655			if (c != ' ')
2656				return;
2657			nl = 0;
2658		}
2659		nl++;
2660		rcount = 0;
2661		fidx = 0;
2662		pa = -1;
2663		TAILQ_FOREACH(m, &object->memq, listq) {
2664			if (m->pindex > 128)
2665				break;
2666			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2667			    prev_m->pindex + 1 != m->pindex) {
2668				if (rcount) {
2669					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2670						(long)fidx, rcount, (long)pa);
2671					if (nl > 18) {
2672						c = cngetc();
2673						if (c != ' ')
2674							return;
2675						nl = 0;
2676					}
2677					nl++;
2678					rcount = 0;
2679				}
2680			}
2681			if (rcount &&
2682				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2683				++rcount;
2684				continue;
2685			}
2686			if (rcount) {
2687				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2688					(long)fidx, rcount, (long)pa);
2689				if (nl > 18) {
2690					c = cngetc();
2691					if (c != ' ')
2692						return;
2693					nl = 0;
2694				}
2695				nl++;
2696			}
2697			fidx = m->pindex;
2698			pa = VM_PAGE_TO_PHYS(m);
2699			rcount = 1;
2700		}
2701		if (rcount) {
2702			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2703				(long)fidx, rcount, (long)pa);
2704			if (nl > 18) {
2705				c = cngetc();
2706				if (c != ' ')
2707					return;
2708				nl = 0;
2709			}
2710			nl++;
2711		}
2712	}
2713}
2714#endif /* DDB */
2715