vm_map.c revision 343426
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/11/sys/vm/vm_map.c 343426 2019-01-25 11:46:07Z kib $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
137    vm_map_entry_t gap_entry);
138static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
139    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
140#ifdef INVARIANTS
141static void vm_map_zdtor(void *mem, int size, void *arg);
142static void vmspace_zdtor(void *mem, int size, void *arg);
143#endif
144static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
145    vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
146    int cow);
147static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
148    vm_offset_t failed_addr);
149
150#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
151    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
152     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
153
154/*
155 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
156 * stable.
157 */
158#define PROC_VMSPACE_LOCK(p) do { } while (0)
159#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
160
161/*
162 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
163 *
164 *	Asserts that the starting and ending region
165 *	addresses fall within the valid range of the map.
166 */
167#define	VM_MAP_RANGE_CHECK(map, start, end)		\
168		{					\
169		if (start < vm_map_min(map))		\
170			start = vm_map_min(map);	\
171		if (end > vm_map_max(map))		\
172			end = vm_map_max(map);		\
173		if (start > end)			\
174			start = end;			\
175		}
176
177/*
178 *	vm_map_startup:
179 *
180 *	Initialize the vm_map module.  Must be called before
181 *	any other vm_map routines.
182 *
183 *	Map and entry structures are allocated from the general
184 *	purpose memory pool with some exceptions:
185 *
186 *	- The kernel map and kmem submap are allocated statically.
187 *	- Kernel map entries are allocated out of a static pool.
188 *
189 *	These restrictions are necessary since malloc() uses the
190 *	maps and requires map entries.
191 */
192
193void
194vm_map_startup(void)
195{
196	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
197	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
198#ifdef INVARIANTS
199	    vm_map_zdtor,
200#else
201	    NULL,
202#endif
203	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204	uma_prealloc(mapzone, MAX_KMAP);
205	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
206	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
207	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
208	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
209	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
210	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
211#ifdef INVARIANTS
212	    vmspace_zdtor,
213#else
214	    NULL,
215#endif
216	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
217}
218
219static int
220vmspace_zinit(void *mem, int size, int flags)
221{
222	struct vmspace *vm;
223
224	vm = (struct vmspace *)mem;
225
226	vm->vm_map.pmap = NULL;
227	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
228	PMAP_LOCK_INIT(vmspace_pmap(vm));
229	return (0);
230}
231
232static int
233vm_map_zinit(void *mem, int size, int flags)
234{
235	vm_map_t map;
236
237	map = (vm_map_t)mem;
238	memset(map, 0, sizeof(*map));
239	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
240	sx_init(&map->lock, "vm map (user)");
241	return (0);
242}
243
244#ifdef INVARIANTS
245static void
246vmspace_zdtor(void *mem, int size, void *arg)
247{
248	struct vmspace *vm;
249
250	vm = (struct vmspace *)mem;
251
252	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
253}
254static void
255vm_map_zdtor(void *mem, int size, void *arg)
256{
257	vm_map_t map;
258
259	map = (vm_map_t)mem;
260	KASSERT(map->nentries == 0,
261	    ("map %p nentries == %d on free.",
262	    map, map->nentries));
263	KASSERT(map->size == 0,
264	    ("map %p size == %lu on free.",
265	    map, (unsigned long)map->size));
266}
267#endif	/* INVARIANTS */
268
269/*
270 * Allocate a vmspace structure, including a vm_map and pmap,
271 * and initialize those structures.  The refcnt is set to 1.
272 *
273 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
274 */
275struct vmspace *
276vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
277{
278	struct vmspace *vm;
279
280	vm = uma_zalloc(vmspace_zone, M_WAITOK);
281	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
282	if (!pinit(vmspace_pmap(vm))) {
283		uma_zfree(vmspace_zone, vm);
284		return (NULL);
285	}
286	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
287	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
288	vm->vm_refcnt = 1;
289	vm->vm_shm = NULL;
290	vm->vm_swrss = 0;
291	vm->vm_tsize = 0;
292	vm->vm_dsize = 0;
293	vm->vm_ssize = 0;
294	vm->vm_taddr = 0;
295	vm->vm_daddr = 0;
296	vm->vm_maxsaddr = 0;
297	return (vm);
298}
299
300#ifdef RACCT
301static void
302vmspace_container_reset(struct proc *p)
303{
304
305	PROC_LOCK(p);
306	racct_set(p, RACCT_DATA, 0);
307	racct_set(p, RACCT_STACK, 0);
308	racct_set(p, RACCT_RSS, 0);
309	racct_set(p, RACCT_MEMLOCK, 0);
310	racct_set(p, RACCT_VMEM, 0);
311	PROC_UNLOCK(p);
312}
313#endif
314
315static inline void
316vmspace_dofree(struct vmspace *vm)
317{
318
319	CTR1(KTR_VM, "vmspace_free: %p", vm);
320
321	/*
322	 * Make sure any SysV shm is freed, it might not have been in
323	 * exit1().
324	 */
325	shmexit(vm);
326
327	/*
328	 * Lock the map, to wait out all other references to it.
329	 * Delete all of the mappings and pages they hold, then call
330	 * the pmap module to reclaim anything left.
331	 */
332	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
333	    vm_map_max(&vm->vm_map));
334
335	pmap_release(vmspace_pmap(vm));
336	vm->vm_map.pmap = NULL;
337	uma_zfree(vmspace_zone, vm);
338}
339
340void
341vmspace_free(struct vmspace *vm)
342{
343
344	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
345	    "vmspace_free() called");
346
347	if (vm->vm_refcnt == 0)
348		panic("vmspace_free: attempt to free already freed vmspace");
349
350	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
351		vmspace_dofree(vm);
352}
353
354void
355vmspace_exitfree(struct proc *p)
356{
357	struct vmspace *vm;
358
359	PROC_VMSPACE_LOCK(p);
360	vm = p->p_vmspace;
361	p->p_vmspace = NULL;
362	PROC_VMSPACE_UNLOCK(p);
363	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
364	vmspace_free(vm);
365}
366
367void
368vmspace_exit(struct thread *td)
369{
370	int refcnt;
371	struct vmspace *vm;
372	struct proc *p;
373
374	/*
375	 * Release user portion of address space.
376	 * This releases references to vnodes,
377	 * which could cause I/O if the file has been unlinked.
378	 * Need to do this early enough that we can still sleep.
379	 *
380	 * The last exiting process to reach this point releases as
381	 * much of the environment as it can. vmspace_dofree() is the
382	 * slower fallback in case another process had a temporary
383	 * reference to the vmspace.
384	 */
385
386	p = td->td_proc;
387	vm = p->p_vmspace;
388	atomic_add_int(&vmspace0.vm_refcnt, 1);
389	do {
390		refcnt = vm->vm_refcnt;
391		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
392			/* Switch now since other proc might free vmspace */
393			PROC_VMSPACE_LOCK(p);
394			p->p_vmspace = &vmspace0;
395			PROC_VMSPACE_UNLOCK(p);
396			pmap_activate(td);
397		}
398	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
399	if (refcnt == 1) {
400		if (p->p_vmspace != vm) {
401			/* vmspace not yet freed, switch back */
402			PROC_VMSPACE_LOCK(p);
403			p->p_vmspace = vm;
404			PROC_VMSPACE_UNLOCK(p);
405			pmap_activate(td);
406		}
407		pmap_remove_pages(vmspace_pmap(vm));
408		/* Switch now since this proc will free vmspace */
409		PROC_VMSPACE_LOCK(p);
410		p->p_vmspace = &vmspace0;
411		PROC_VMSPACE_UNLOCK(p);
412		pmap_activate(td);
413		vmspace_dofree(vm);
414	}
415#ifdef RACCT
416	if (racct_enable)
417		vmspace_container_reset(p);
418#endif
419}
420
421/* Acquire reference to vmspace owned by another process. */
422
423struct vmspace *
424vmspace_acquire_ref(struct proc *p)
425{
426	struct vmspace *vm;
427	int refcnt;
428
429	PROC_VMSPACE_LOCK(p);
430	vm = p->p_vmspace;
431	if (vm == NULL) {
432		PROC_VMSPACE_UNLOCK(p);
433		return (NULL);
434	}
435	do {
436		refcnt = vm->vm_refcnt;
437		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
438			PROC_VMSPACE_UNLOCK(p);
439			return (NULL);
440		}
441	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
442	if (vm != p->p_vmspace) {
443		PROC_VMSPACE_UNLOCK(p);
444		vmspace_free(vm);
445		return (NULL);
446	}
447	PROC_VMSPACE_UNLOCK(p);
448	return (vm);
449}
450
451/*
452 * Switch between vmspaces in an AIO kernel process.
453 *
454 * The AIO kernel processes switch to and from a user process's
455 * vmspace while performing an I/O operation on behalf of a user
456 * process.  The new vmspace is either the vmspace of a user process
457 * obtained from an active AIO request or the initial vmspace of the
458 * AIO kernel process (when it is idling).  Because user processes
459 * will block to drain any active AIO requests before proceeding in
460 * exit() or execve(), the vmspace reference count for these vmspaces
461 * can never be 0.  This allows for a much simpler implementation than
462 * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
463 * processes hold an extra reference on their initial vmspace for the
464 * life of the process so that this guarantee is true for any vmspace
465 * passed as 'newvm'.
466 */
467void
468vmspace_switch_aio(struct vmspace *newvm)
469{
470	struct vmspace *oldvm;
471
472	/* XXX: Need some way to assert that this is an aio daemon. */
473
474	KASSERT(newvm->vm_refcnt > 0,
475	    ("vmspace_switch_aio: newvm unreferenced"));
476
477	oldvm = curproc->p_vmspace;
478	if (oldvm == newvm)
479		return;
480
481	/*
482	 * Point to the new address space and refer to it.
483	 */
484	curproc->p_vmspace = newvm;
485	atomic_add_int(&newvm->vm_refcnt, 1);
486
487	/* Activate the new mapping. */
488	pmap_activate(curthread);
489
490	/* Remove the daemon's reference to the old address space. */
491	KASSERT(oldvm->vm_refcnt > 1,
492	    ("vmspace_switch_aio: oldvm dropping last reference"));
493	vmspace_free(oldvm);
494}
495
496void
497_vm_map_lock(vm_map_t map, const char *file, int line)
498{
499
500	if (map->system_map)
501		mtx_lock_flags_(&map->system_mtx, 0, file, line);
502	else
503		sx_xlock_(&map->lock, file, line);
504	map->timestamp++;
505}
506
507static void
508vm_map_process_deferred(void)
509{
510	struct thread *td;
511	vm_map_entry_t entry, next;
512	vm_object_t object;
513
514	td = curthread;
515	entry = td->td_map_def_user;
516	td->td_map_def_user = NULL;
517	while (entry != NULL) {
518		next = entry->next;
519		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
520			/*
521			 * Decrement the object's writemappings and
522			 * possibly the vnode's v_writecount.
523			 */
524			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
525			    ("Submap with writecount"));
526			object = entry->object.vm_object;
527			KASSERT(object != NULL, ("No object for writecount"));
528			vnode_pager_release_writecount(object, entry->start,
529			    entry->end);
530		}
531		vm_map_entry_deallocate(entry, FALSE);
532		entry = next;
533	}
534}
535
536void
537_vm_map_unlock(vm_map_t map, const char *file, int line)
538{
539
540	if (map->system_map)
541		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
542	else {
543		sx_xunlock_(&map->lock, file, line);
544		vm_map_process_deferred();
545	}
546}
547
548void
549_vm_map_lock_read(vm_map_t map, const char *file, int line)
550{
551
552	if (map->system_map)
553		mtx_lock_flags_(&map->system_mtx, 0, file, line);
554	else
555		sx_slock_(&map->lock, file, line);
556}
557
558void
559_vm_map_unlock_read(vm_map_t map, const char *file, int line)
560{
561
562	if (map->system_map)
563		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
564	else {
565		sx_sunlock_(&map->lock, file, line);
566		vm_map_process_deferred();
567	}
568}
569
570int
571_vm_map_trylock(vm_map_t map, const char *file, int line)
572{
573	int error;
574
575	error = map->system_map ?
576	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
577	    !sx_try_xlock_(&map->lock, file, line);
578	if (error == 0)
579		map->timestamp++;
580	return (error == 0);
581}
582
583int
584_vm_map_trylock_read(vm_map_t map, const char *file, int line)
585{
586	int error;
587
588	error = map->system_map ?
589	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
590	    !sx_try_slock_(&map->lock, file, line);
591	return (error == 0);
592}
593
594/*
595 *	_vm_map_lock_upgrade:	[ internal use only ]
596 *
597 *	Tries to upgrade a read (shared) lock on the specified map to a write
598 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
599 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
600 *	returned without a read or write lock held.
601 *
602 *	Requires that the map be read locked.
603 */
604int
605_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
606{
607	unsigned int last_timestamp;
608
609	if (map->system_map) {
610		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
611	} else {
612		if (!sx_try_upgrade_(&map->lock, file, line)) {
613			last_timestamp = map->timestamp;
614			sx_sunlock_(&map->lock, file, line);
615			vm_map_process_deferred();
616			/*
617			 * If the map's timestamp does not change while the
618			 * map is unlocked, then the upgrade succeeds.
619			 */
620			sx_xlock_(&map->lock, file, line);
621			if (last_timestamp != map->timestamp) {
622				sx_xunlock_(&map->lock, file, line);
623				return (1);
624			}
625		}
626	}
627	map->timestamp++;
628	return (0);
629}
630
631void
632_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
633{
634
635	if (map->system_map) {
636		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
637	} else
638		sx_downgrade_(&map->lock, file, line);
639}
640
641/*
642 *	vm_map_locked:
643 *
644 *	Returns a non-zero value if the caller holds a write (exclusive) lock
645 *	on the specified map and the value "0" otherwise.
646 */
647int
648vm_map_locked(vm_map_t map)
649{
650
651	if (map->system_map)
652		return (mtx_owned(&map->system_mtx));
653	else
654		return (sx_xlocked(&map->lock));
655}
656
657#ifdef INVARIANTS
658static void
659_vm_map_assert_locked(vm_map_t map, const char *file, int line)
660{
661
662	if (map->system_map)
663		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
664	else
665		sx_assert_(&map->lock, SA_XLOCKED, file, line);
666}
667
668#define	VM_MAP_ASSERT_LOCKED(map) \
669    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
670#else
671#define	VM_MAP_ASSERT_LOCKED(map)
672#endif
673
674/*
675 *	_vm_map_unlock_and_wait:
676 *
677 *	Atomically releases the lock on the specified map and puts the calling
678 *	thread to sleep.  The calling thread will remain asleep until either
679 *	vm_map_wakeup() is performed on the map or the specified timeout is
680 *	exceeded.
681 *
682 *	WARNING!  This function does not perform deferred deallocations of
683 *	objects and map	entries.  Therefore, the calling thread is expected to
684 *	reacquire the map lock after reawakening and later perform an ordinary
685 *	unlock operation, such as vm_map_unlock(), before completing its
686 *	operation on the map.
687 */
688int
689_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
690{
691
692	mtx_lock(&map_sleep_mtx);
693	if (map->system_map)
694		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
695	else
696		sx_xunlock_(&map->lock, file, line);
697	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
698	    timo));
699}
700
701/*
702 *	vm_map_wakeup:
703 *
704 *	Awaken any threads that have slept on the map using
705 *	vm_map_unlock_and_wait().
706 */
707void
708vm_map_wakeup(vm_map_t map)
709{
710
711	/*
712	 * Acquire and release map_sleep_mtx to prevent a wakeup()
713	 * from being performed (and lost) between the map unlock
714	 * and the msleep() in _vm_map_unlock_and_wait().
715	 */
716	mtx_lock(&map_sleep_mtx);
717	mtx_unlock(&map_sleep_mtx);
718	wakeup(&map->root);
719}
720
721void
722vm_map_busy(vm_map_t map)
723{
724
725	VM_MAP_ASSERT_LOCKED(map);
726	map->busy++;
727}
728
729void
730vm_map_unbusy(vm_map_t map)
731{
732
733	VM_MAP_ASSERT_LOCKED(map);
734	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
735	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
736		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
737		wakeup(&map->busy);
738	}
739}
740
741void
742vm_map_wait_busy(vm_map_t map)
743{
744
745	VM_MAP_ASSERT_LOCKED(map);
746	while (map->busy) {
747		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
748		if (map->system_map)
749			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
750		else
751			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
752	}
753	map->timestamp++;
754}
755
756long
757vmspace_resident_count(struct vmspace *vmspace)
758{
759	return pmap_resident_count(vmspace_pmap(vmspace));
760}
761
762/*
763 *	vm_map_create:
764 *
765 *	Creates and returns a new empty VM map with
766 *	the given physical map structure, and having
767 *	the given lower and upper address bounds.
768 */
769vm_map_t
770vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
771{
772	vm_map_t result;
773
774	result = uma_zalloc(mapzone, M_WAITOK);
775	CTR1(KTR_VM, "vm_map_create: %p", result);
776	_vm_map_init(result, pmap, min, max);
777	return (result);
778}
779
780/*
781 * Initialize an existing vm_map structure
782 * such as that in the vmspace structure.
783 */
784static void
785_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
786{
787
788	map->header.next = map->header.prev = &map->header;
789	map->needs_wakeup = FALSE;
790	map->system_map = 0;
791	map->pmap = pmap;
792	map->header.end = min;
793	map->header.start = max;
794	map->flags = 0;
795	map->root = NULL;
796	map->timestamp = 0;
797	map->busy = 0;
798}
799
800void
801vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
802{
803
804	_vm_map_init(map, pmap, min, max);
805	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
806	sx_init(&map->lock, "user map");
807}
808
809/*
810 *	vm_map_entry_dispose:	[ internal use only ]
811 *
812 *	Inverse of vm_map_entry_create.
813 */
814static void
815vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
816{
817	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
818}
819
820/*
821 *	vm_map_entry_create:	[ internal use only ]
822 *
823 *	Allocates a VM map entry for insertion.
824 *	No entry fields are filled in.
825 */
826static vm_map_entry_t
827vm_map_entry_create(vm_map_t map)
828{
829	vm_map_entry_t new_entry;
830
831	if (map->system_map)
832		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
833	else
834		new_entry = uma_zalloc(mapentzone, M_WAITOK);
835	if (new_entry == NULL)
836		panic("vm_map_entry_create: kernel resources exhausted");
837	return (new_entry);
838}
839
840/*
841 *	vm_map_entry_set_behavior:
842 *
843 *	Set the expected access behavior, either normal, random, or
844 *	sequential.
845 */
846static inline void
847vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
848{
849	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
850	    (behavior & MAP_ENTRY_BEHAV_MASK);
851}
852
853/*
854 *	vm_map_entry_set_max_free:
855 *
856 *	Set the max_free field in a vm_map_entry.
857 */
858static inline void
859vm_map_entry_set_max_free(vm_map_entry_t entry)
860{
861
862	entry->max_free = entry->adj_free;
863	if (entry->left != NULL && entry->left->max_free > entry->max_free)
864		entry->max_free = entry->left->max_free;
865	if (entry->right != NULL && entry->right->max_free > entry->max_free)
866		entry->max_free = entry->right->max_free;
867}
868
869/*
870 *	vm_map_entry_splay:
871 *
872 *	The Sleator and Tarjan top-down splay algorithm with the
873 *	following variation.  Max_free must be computed bottom-up, so
874 *	on the downward pass, maintain the left and right spines in
875 *	reverse order.  Then, make a second pass up each side to fix
876 *	the pointers and compute max_free.  The time bound is O(log n)
877 *	amortized.
878 *
879 *	The new root is the vm_map_entry containing "addr", or else an
880 *	adjacent entry (lower or higher) if addr is not in the tree.
881 *
882 *	The map must be locked, and leaves it so.
883 *
884 *	Returns: the new root.
885 */
886static vm_map_entry_t
887vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
888{
889	vm_map_entry_t llist, rlist;
890	vm_map_entry_t ltree, rtree;
891	vm_map_entry_t y;
892
893	/* Special case of empty tree. */
894	if (root == NULL)
895		return (root);
896
897	/*
898	 * Pass One: Splay down the tree until we find addr or a NULL
899	 * pointer where addr would go.  llist and rlist are the two
900	 * sides in reverse order (bottom-up), with llist linked by
901	 * the right pointer and rlist linked by the left pointer in
902	 * the vm_map_entry.  Wait until Pass Two to set max_free on
903	 * the two spines.
904	 */
905	llist = NULL;
906	rlist = NULL;
907	for (;;) {
908		/* root is never NULL in here. */
909		if (addr < root->start) {
910			y = root->left;
911			if (y == NULL)
912				break;
913			if (addr < y->start && y->left != NULL) {
914				/* Rotate right and put y on rlist. */
915				root->left = y->right;
916				y->right = root;
917				vm_map_entry_set_max_free(root);
918				root = y->left;
919				y->left = rlist;
920				rlist = y;
921			} else {
922				/* Put root on rlist. */
923				root->left = rlist;
924				rlist = root;
925				root = y;
926			}
927		} else if (addr >= root->end) {
928			y = root->right;
929			if (y == NULL)
930				break;
931			if (addr >= y->end && y->right != NULL) {
932				/* Rotate left and put y on llist. */
933				root->right = y->left;
934				y->left = root;
935				vm_map_entry_set_max_free(root);
936				root = y->right;
937				y->right = llist;
938				llist = y;
939			} else {
940				/* Put root on llist. */
941				root->right = llist;
942				llist = root;
943				root = y;
944			}
945		} else
946			break;
947	}
948
949	/*
950	 * Pass Two: Walk back up the two spines, flip the pointers
951	 * and set max_free.  The subtrees of the root go at the
952	 * bottom of llist and rlist.
953	 */
954	ltree = root->left;
955	while (llist != NULL) {
956		y = llist->right;
957		llist->right = ltree;
958		vm_map_entry_set_max_free(llist);
959		ltree = llist;
960		llist = y;
961	}
962	rtree = root->right;
963	while (rlist != NULL) {
964		y = rlist->left;
965		rlist->left = rtree;
966		vm_map_entry_set_max_free(rlist);
967		rtree = rlist;
968		rlist = y;
969	}
970
971	/*
972	 * Final assembly: add ltree and rtree as subtrees of root.
973	 */
974	root->left = ltree;
975	root->right = rtree;
976	vm_map_entry_set_max_free(root);
977
978	return (root);
979}
980
981/*
982 *	vm_map_entry_{un,}link:
983 *
984 *	Insert/remove entries from maps.
985 */
986static void
987vm_map_entry_link(vm_map_t map,
988		  vm_map_entry_t after_where,
989		  vm_map_entry_t entry)
990{
991
992	CTR4(KTR_VM,
993	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
994	    map->nentries, entry, after_where);
995	VM_MAP_ASSERT_LOCKED(map);
996	KASSERT(after_where->end <= entry->start,
997	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
998	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
999	KASSERT(entry->end <= after_where->next->start,
1000	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1001	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1002
1003	map->nentries++;
1004	entry->prev = after_where;
1005	entry->next = after_where->next;
1006	entry->next->prev = entry;
1007	after_where->next = entry;
1008
1009	if (after_where != &map->header) {
1010		if (after_where != map->root)
1011			vm_map_entry_splay(after_where->start, map->root);
1012		entry->right = after_where->right;
1013		entry->left = after_where;
1014		after_where->right = NULL;
1015		after_where->adj_free = entry->start - after_where->end;
1016		vm_map_entry_set_max_free(after_where);
1017	} else {
1018		entry->right = map->root;
1019		entry->left = NULL;
1020	}
1021	entry->adj_free = entry->next->start - entry->end;
1022	vm_map_entry_set_max_free(entry);
1023	map->root = entry;
1024}
1025
1026static void
1027vm_map_entry_unlink(vm_map_t map,
1028		    vm_map_entry_t entry)
1029{
1030	vm_map_entry_t next, prev, root;
1031
1032	VM_MAP_ASSERT_LOCKED(map);
1033	if (entry != map->root)
1034		vm_map_entry_splay(entry->start, map->root);
1035	if (entry->left == NULL)
1036		root = entry->right;
1037	else {
1038		root = vm_map_entry_splay(entry->start, entry->left);
1039		root->right = entry->right;
1040		root->adj_free = entry->next->start - root->end;
1041		vm_map_entry_set_max_free(root);
1042	}
1043	map->root = root;
1044
1045	prev = entry->prev;
1046	next = entry->next;
1047	next->prev = prev;
1048	prev->next = next;
1049	map->nentries--;
1050	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1051	    map->nentries, entry);
1052}
1053
1054/*
1055 *	vm_map_entry_resize_free:
1056 *
1057 *	Recompute the amount of free space following a vm_map_entry
1058 *	and propagate that value up the tree.  Call this function after
1059 *	resizing a map entry in-place, that is, without a call to
1060 *	vm_map_entry_link() or _unlink().
1061 *
1062 *	The map must be locked, and leaves it so.
1063 */
1064static void
1065vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1066{
1067
1068	/*
1069	 * Using splay trees without parent pointers, propagating
1070	 * max_free up the tree is done by moving the entry to the
1071	 * root and making the change there.
1072	 */
1073	if (entry != map->root)
1074		map->root = vm_map_entry_splay(entry->start, map->root);
1075
1076	entry->adj_free = entry->next->start - entry->end;
1077	vm_map_entry_set_max_free(entry);
1078}
1079
1080/*
1081 *	vm_map_lookup_entry:	[ internal use only ]
1082 *
1083 *	Finds the map entry containing (or
1084 *	immediately preceding) the specified address
1085 *	in the given map; the entry is returned
1086 *	in the "entry" parameter.  The boolean
1087 *	result indicates whether the address is
1088 *	actually contained in the map.
1089 */
1090boolean_t
1091vm_map_lookup_entry(
1092	vm_map_t map,
1093	vm_offset_t address,
1094	vm_map_entry_t *entry)	/* OUT */
1095{
1096	vm_map_entry_t cur;
1097	boolean_t locked;
1098
1099	/*
1100	 * If the map is empty, then the map entry immediately preceding
1101	 * "address" is the map's header.
1102	 */
1103	cur = map->root;
1104	if (cur == NULL)
1105		*entry = &map->header;
1106	else if (address >= cur->start && cur->end > address) {
1107		*entry = cur;
1108		return (TRUE);
1109	} else if ((locked = vm_map_locked(map)) ||
1110	    sx_try_upgrade(&map->lock)) {
1111		/*
1112		 * Splay requires a write lock on the map.  However, it only
1113		 * restructures the binary search tree; it does not otherwise
1114		 * change the map.  Thus, the map's timestamp need not change
1115		 * on a temporary upgrade.
1116		 */
1117		map->root = cur = vm_map_entry_splay(address, cur);
1118		if (!locked)
1119			sx_downgrade(&map->lock);
1120
1121		/*
1122		 * If "address" is contained within a map entry, the new root
1123		 * is that map entry.  Otherwise, the new root is a map entry
1124		 * immediately before or after "address".
1125		 */
1126		if (address >= cur->start) {
1127			*entry = cur;
1128			if (cur->end > address)
1129				return (TRUE);
1130		} else
1131			*entry = cur->prev;
1132	} else
1133		/*
1134		 * Since the map is only locked for read access, perform a
1135		 * standard binary search tree lookup for "address".
1136		 */
1137		for (;;) {
1138			if (address < cur->start) {
1139				if (cur->left == NULL) {
1140					*entry = cur->prev;
1141					break;
1142				}
1143				cur = cur->left;
1144			} else if (cur->end > address) {
1145				*entry = cur;
1146				return (TRUE);
1147			} else {
1148				if (cur->right == NULL) {
1149					*entry = cur;
1150					break;
1151				}
1152				cur = cur->right;
1153			}
1154		}
1155	return (FALSE);
1156}
1157
1158/*
1159 *	vm_map_insert:
1160 *
1161 *	Inserts the given whole VM object into the target
1162 *	map at the specified address range.  The object's
1163 *	size should match that of the address range.
1164 *
1165 *	Requires that the map be locked, and leaves it so.
1166 *
1167 *	If object is non-NULL, ref count must be bumped by caller
1168 *	prior to making call to account for the new entry.
1169 */
1170int
1171vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1172    vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1173{
1174	vm_map_entry_t new_entry, prev_entry, temp_entry;
1175	struct ucred *cred;
1176	vm_eflags_t protoeflags;
1177	vm_inherit_t inheritance;
1178
1179	VM_MAP_ASSERT_LOCKED(map);
1180	KASSERT((object != kmem_object && object != kernel_object) ||
1181	    (cow & MAP_COPY_ON_WRITE) == 0,
1182	    ("vm_map_insert: kmem or kernel object and COW"));
1183	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1184	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1185	KASSERT((prot & ~max) == 0,
1186	    ("prot %#x is not subset of max_prot %#x", prot, max));
1187
1188	/*
1189	 * Check that the start and end points are not bogus.
1190	 */
1191	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1192	    start >= end)
1193		return (KERN_INVALID_ADDRESS);
1194
1195	/*
1196	 * Find the entry prior to the proposed starting address; if it's part
1197	 * of an existing entry, this range is bogus.
1198	 */
1199	if (vm_map_lookup_entry(map, start, &temp_entry))
1200		return (KERN_NO_SPACE);
1201
1202	prev_entry = temp_entry;
1203
1204	/*
1205	 * Assert that the next entry doesn't overlap the end point.
1206	 */
1207	if (prev_entry->next->start < end)
1208		return (KERN_NO_SPACE);
1209
1210	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1211	    max != VM_PROT_NONE))
1212		return (KERN_INVALID_ARGUMENT);
1213
1214	protoeflags = 0;
1215	if (cow & MAP_COPY_ON_WRITE)
1216		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1217	if (cow & MAP_NOFAULT)
1218		protoeflags |= MAP_ENTRY_NOFAULT;
1219	if (cow & MAP_DISABLE_SYNCER)
1220		protoeflags |= MAP_ENTRY_NOSYNC;
1221	if (cow & MAP_DISABLE_COREDUMP)
1222		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1223	if (cow & MAP_STACK_GROWS_DOWN)
1224		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1225	if (cow & MAP_STACK_GROWS_UP)
1226		protoeflags |= MAP_ENTRY_GROWS_UP;
1227	if (cow & MAP_VN_WRITECOUNT)
1228		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1229	if ((cow & MAP_CREATE_GUARD) != 0)
1230		protoeflags |= MAP_ENTRY_GUARD;
1231	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1232		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1233	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1234		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1235	if (cow & MAP_INHERIT_SHARE)
1236		inheritance = VM_INHERIT_SHARE;
1237	else
1238		inheritance = VM_INHERIT_DEFAULT;
1239
1240	cred = NULL;
1241	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1242		goto charged;
1243	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1244	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1245		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1246			return (KERN_RESOURCE_SHORTAGE);
1247		KASSERT(object == NULL ||
1248		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1249		    object->cred == NULL,
1250		    ("overcommit: vm_map_insert o %p", object));
1251		cred = curthread->td_ucred;
1252	}
1253
1254charged:
1255	/* Expand the kernel pmap, if necessary. */
1256	if (map == kernel_map && end > kernel_vm_end)
1257		pmap_growkernel(end);
1258	if (object != NULL) {
1259		/*
1260		 * OBJ_ONEMAPPING must be cleared unless this mapping
1261		 * is trivially proven to be the only mapping for any
1262		 * of the object's pages.  (Object granularity
1263		 * reference counting is insufficient to recognize
1264		 * aliases with precision.)
1265		 */
1266		VM_OBJECT_WLOCK(object);
1267		if (object->ref_count > 1 || object->shadow_count != 0)
1268			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1269		VM_OBJECT_WUNLOCK(object);
1270	} else if (prev_entry != &map->header &&
1271	    prev_entry->eflags == protoeflags &&
1272	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1273	    prev_entry->end == start && prev_entry->wired_count == 0 &&
1274	    (prev_entry->cred == cred ||
1275	    (prev_entry->object.vm_object != NULL &&
1276	    prev_entry->object.vm_object->cred == cred)) &&
1277	    vm_object_coalesce(prev_entry->object.vm_object,
1278	    prev_entry->offset,
1279	    (vm_size_t)(prev_entry->end - prev_entry->start),
1280	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1281	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1282		/*
1283		 * We were able to extend the object.  Determine if we
1284		 * can extend the previous map entry to include the
1285		 * new range as well.
1286		 */
1287		if (prev_entry->inheritance == inheritance &&
1288		    prev_entry->protection == prot &&
1289		    prev_entry->max_protection == max) {
1290			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1291				map->size += end - prev_entry->end;
1292			prev_entry->end = end;
1293			vm_map_entry_resize_free(map, prev_entry);
1294			vm_map_simplify_entry(map, prev_entry);
1295			return (KERN_SUCCESS);
1296		}
1297
1298		/*
1299		 * If we can extend the object but cannot extend the
1300		 * map entry, we have to create a new map entry.  We
1301		 * must bump the ref count on the extended object to
1302		 * account for it.  object may be NULL.
1303		 */
1304		object = prev_entry->object.vm_object;
1305		offset = prev_entry->offset +
1306		    (prev_entry->end - prev_entry->start);
1307		vm_object_reference(object);
1308		if (cred != NULL && object != NULL && object->cred != NULL &&
1309		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1310			/* Object already accounts for this uid. */
1311			cred = NULL;
1312		}
1313	}
1314	if (cred != NULL)
1315		crhold(cred);
1316
1317	/*
1318	 * Create a new entry
1319	 */
1320	new_entry = vm_map_entry_create(map);
1321	new_entry->start = start;
1322	new_entry->end = end;
1323	new_entry->cred = NULL;
1324
1325	new_entry->eflags = protoeflags;
1326	new_entry->object.vm_object = object;
1327	new_entry->offset = offset;
1328
1329	new_entry->inheritance = inheritance;
1330	new_entry->protection = prot;
1331	new_entry->max_protection = max;
1332	new_entry->wired_count = 0;
1333	new_entry->wiring_thread = NULL;
1334	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1335	new_entry->next_read = start;
1336
1337	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1338	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1339	new_entry->cred = cred;
1340
1341	/*
1342	 * Insert the new entry into the list
1343	 */
1344	vm_map_entry_link(map, prev_entry, new_entry);
1345	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1346		map->size += new_entry->end - new_entry->start;
1347
1348	/*
1349	 * Try to coalesce the new entry with both the previous and next
1350	 * entries in the list.  Previously, we only attempted to coalesce
1351	 * with the previous entry when object is NULL.  Here, we handle the
1352	 * other cases, which are less common.
1353	 */
1354	vm_map_simplify_entry(map, new_entry);
1355
1356	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1357		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1358		    end - start, cow & MAP_PREFAULT_PARTIAL);
1359	}
1360
1361	return (KERN_SUCCESS);
1362}
1363
1364/*
1365 *	vm_map_findspace:
1366 *
1367 *	Find the first fit (lowest VM address) for "length" free bytes
1368 *	beginning at address >= start in the given map.
1369 *
1370 *	In a vm_map_entry, "adj_free" is the amount of free space
1371 *	adjacent (higher address) to this entry, and "max_free" is the
1372 *	maximum amount of contiguous free space in its subtree.  This
1373 *	allows finding a free region in one path down the tree, so
1374 *	O(log n) amortized with splay trees.
1375 *
1376 *	The map must be locked, and leaves it so.
1377 *
1378 *	Returns: 0 on success, and starting address in *addr,
1379 *		 1 if insufficient space.
1380 */
1381int
1382vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1383    vm_offset_t *addr)	/* OUT */
1384{
1385	vm_map_entry_t entry;
1386	vm_offset_t st;
1387
1388	/*
1389	 * Request must fit within min/max VM address and must avoid
1390	 * address wrap.
1391	 */
1392	start = MAX(start, vm_map_min(map));
1393	if (start + length > vm_map_max(map) || start + length < start)
1394		return (1);
1395
1396	/* Empty tree means wide open address space. */
1397	if (map->root == NULL) {
1398		*addr = start;
1399		return (0);
1400	}
1401
1402	/*
1403	 * After splay, if start comes before root node, then there
1404	 * must be a gap from start to the root.
1405	 */
1406	map->root = vm_map_entry_splay(start, map->root);
1407	if (start + length <= map->root->start) {
1408		*addr = start;
1409		return (0);
1410	}
1411
1412	/*
1413	 * Root is the last node that might begin its gap before
1414	 * start, and this is the last comparison where address
1415	 * wrap might be a problem.
1416	 */
1417	st = (start > map->root->end) ? start : map->root->end;
1418	if (length <= map->root->end + map->root->adj_free - st) {
1419		*addr = st;
1420		return (0);
1421	}
1422
1423	/* With max_free, can immediately tell if no solution. */
1424	entry = map->root->right;
1425	if (entry == NULL || length > entry->max_free)
1426		return (1);
1427
1428	/*
1429	 * Search the right subtree in the order: left subtree, root,
1430	 * right subtree (first fit).  The previous splay implies that
1431	 * all regions in the right subtree have addresses > start.
1432	 */
1433	while (entry != NULL) {
1434		if (entry->left != NULL && entry->left->max_free >= length)
1435			entry = entry->left;
1436		else if (entry->adj_free >= length) {
1437			*addr = entry->end;
1438			return (0);
1439		} else
1440			entry = entry->right;
1441	}
1442
1443	/* Can't get here, so panic if we do. */
1444	panic("vm_map_findspace: max_free corrupt");
1445}
1446
1447int
1448vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1449    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1450    vm_prot_t max, int cow)
1451{
1452	vm_offset_t end;
1453	int result;
1454
1455	end = start + length;
1456	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1457	    object == NULL,
1458	    ("vm_map_fixed: non-NULL backing object for stack"));
1459	vm_map_lock(map);
1460	VM_MAP_RANGE_CHECK(map, start, end);
1461	if ((cow & MAP_CHECK_EXCL) == 0)
1462		vm_map_delete(map, start, end);
1463	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1464		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1465		    prot, max, cow);
1466	} else {
1467		result = vm_map_insert(map, object, offset, start, end,
1468		    prot, max, cow);
1469	}
1470	vm_map_unlock(map);
1471	return (result);
1472}
1473
1474/*
1475 *	vm_map_find finds an unallocated region in the target address
1476 *	map with the given length.  The search is defined to be
1477 *	first-fit from the specified address; the region found is
1478 *	returned in the same parameter.
1479 *
1480 *	If object is non-NULL, ref count must be bumped by caller
1481 *	prior to making call to account for the new entry.
1482 */
1483int
1484vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1485	    vm_offset_t *addr,	/* IN/OUT */
1486	    vm_size_t length, vm_offset_t max_addr, int find_space,
1487	    vm_prot_t prot, vm_prot_t max, int cow)
1488{
1489	vm_offset_t alignment, initial_addr, start;
1490	int result;
1491
1492	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1493	    object == NULL,
1494	    ("vm_map_find: non-NULL backing object for stack"));
1495	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1496	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1497	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1498	    (object->flags & OBJ_COLORED) == 0))
1499		find_space = VMFS_ANY_SPACE;
1500	if (find_space >> 8 != 0) {
1501		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1502		alignment = (vm_offset_t)1 << (find_space >> 8);
1503	} else
1504		alignment = 0;
1505	initial_addr = *addr;
1506again:
1507	start = initial_addr;
1508	vm_map_lock(map);
1509	do {
1510		if (find_space != VMFS_NO_SPACE) {
1511			if (vm_map_findspace(map, start, length, addr) ||
1512			    (max_addr != 0 && *addr + length > max_addr)) {
1513				vm_map_unlock(map);
1514				if (find_space == VMFS_OPTIMAL_SPACE) {
1515					find_space = VMFS_ANY_SPACE;
1516					goto again;
1517				}
1518				return (KERN_NO_SPACE);
1519			}
1520			switch (find_space) {
1521			case VMFS_SUPER_SPACE:
1522			case VMFS_OPTIMAL_SPACE:
1523				pmap_align_superpage(object, offset, addr,
1524				    length);
1525				break;
1526			case VMFS_ANY_SPACE:
1527				break;
1528			default:
1529				if ((*addr & (alignment - 1)) != 0) {
1530					*addr &= ~(alignment - 1);
1531					*addr += alignment;
1532				}
1533				break;
1534			}
1535
1536			start = *addr;
1537		} else if ((cow & MAP_REMAP) != 0) {
1538			if (start < vm_map_min(map) ||
1539			    start + length > vm_map_max(map) ||
1540			    start + length <= length) {
1541				result = KERN_INVALID_ADDRESS;
1542				break;
1543			}
1544			vm_map_delete(map, start, start + length);
1545		}
1546		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1547			result = vm_map_stack_locked(map, start, length,
1548			    sgrowsiz, prot, max, cow);
1549		} else {
1550			result = vm_map_insert(map, object, offset, start,
1551			    start + length, prot, max, cow);
1552		}
1553	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1554	    find_space != VMFS_ANY_SPACE);
1555	vm_map_unlock(map);
1556	return (result);
1557}
1558
1559/*
1560 *	vm_map_find_min() is a variant of vm_map_find() that takes an
1561 *	additional parameter (min_addr) and treats the given address
1562 *	(*addr) differently.  Specifically, it treats *addr as a hint
1563 *	and not as the minimum address where the mapping is created.
1564 *
1565 *	This function works in two phases.  First, it tries to
1566 *	allocate above the hint.  If that fails and the hint is
1567 *	greater than min_addr, it performs a second pass, replacing
1568 *	the hint with min_addr as the minimum address for the
1569 *	allocation.
1570 */
1571int
1572vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1573    vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1574    vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1575    int cow)
1576{
1577	vm_offset_t hint;
1578	int rv;
1579
1580	hint = *addr;
1581	for (;;) {
1582		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1583		    find_space, prot, max, cow);
1584		if (rv == KERN_SUCCESS || min_addr >= hint)
1585			return (rv);
1586		*addr = hint = min_addr;
1587	}
1588}
1589
1590/*
1591 *	vm_map_simplify_entry:
1592 *
1593 *	Simplify the given map entry by merging with either neighbor.  This
1594 *	routine also has the ability to merge with both neighbors.
1595 *
1596 *	The map must be locked.
1597 *
1598 *	This routine guarantees that the passed entry remains valid (though
1599 *	possibly extended).  When merging, this routine may delete one or
1600 *	both neighbors.
1601 */
1602void
1603vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1604{
1605	vm_map_entry_t next, prev;
1606	vm_size_t prevsize, esize;
1607
1608	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1609	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1610		return;
1611
1612	prev = entry->prev;
1613	if (prev != &map->header) {
1614		prevsize = prev->end - prev->start;
1615		if ( (prev->end == entry->start) &&
1616		     (prev->object.vm_object == entry->object.vm_object) &&
1617		     (!prev->object.vm_object ||
1618			(prev->offset + prevsize == entry->offset)) &&
1619		     (prev->eflags == entry->eflags) &&
1620		     (prev->protection == entry->protection) &&
1621		     (prev->max_protection == entry->max_protection) &&
1622		     (prev->inheritance == entry->inheritance) &&
1623		     (prev->wired_count == entry->wired_count) &&
1624		     (prev->cred == entry->cred)) {
1625			vm_map_entry_unlink(map, prev);
1626			entry->start = prev->start;
1627			entry->offset = prev->offset;
1628			if (entry->prev != &map->header)
1629				vm_map_entry_resize_free(map, entry->prev);
1630
1631			/*
1632			 * If the backing object is a vnode object,
1633			 * vm_object_deallocate() calls vrele().
1634			 * However, vrele() does not lock the vnode
1635			 * because the vnode has additional
1636			 * references.  Thus, the map lock can be kept
1637			 * without causing a lock-order reversal with
1638			 * the vnode lock.
1639			 *
1640			 * Since we count the number of virtual page
1641			 * mappings in object->un_pager.vnp.writemappings,
1642			 * the writemappings value should not be adjusted
1643			 * when the entry is disposed of.
1644			 */
1645			if (prev->object.vm_object)
1646				vm_object_deallocate(prev->object.vm_object);
1647			if (prev->cred != NULL)
1648				crfree(prev->cred);
1649			vm_map_entry_dispose(map, prev);
1650		}
1651	}
1652
1653	next = entry->next;
1654	if (next != &map->header) {
1655		esize = entry->end - entry->start;
1656		if ((entry->end == next->start) &&
1657		    (next->object.vm_object == entry->object.vm_object) &&
1658		     (!entry->object.vm_object ||
1659			(entry->offset + esize == next->offset)) &&
1660		    (next->eflags == entry->eflags) &&
1661		    (next->protection == entry->protection) &&
1662		    (next->max_protection == entry->max_protection) &&
1663		    (next->inheritance == entry->inheritance) &&
1664		    (next->wired_count == entry->wired_count) &&
1665		    (next->cred == entry->cred)) {
1666			vm_map_entry_unlink(map, next);
1667			entry->end = next->end;
1668			vm_map_entry_resize_free(map, entry);
1669
1670			/*
1671			 * See comment above.
1672			 */
1673			if (next->object.vm_object)
1674				vm_object_deallocate(next->object.vm_object);
1675			if (next->cred != NULL)
1676				crfree(next->cred);
1677			vm_map_entry_dispose(map, next);
1678		}
1679	}
1680}
1681/*
1682 *	vm_map_clip_start:	[ internal use only ]
1683 *
1684 *	Asserts that the given entry begins at or after
1685 *	the specified address; if necessary,
1686 *	it splits the entry into two.
1687 */
1688#define vm_map_clip_start(map, entry, startaddr) \
1689{ \
1690	if (startaddr > entry->start) \
1691		_vm_map_clip_start(map, entry, startaddr); \
1692}
1693
1694/*
1695 *	This routine is called only when it is known that
1696 *	the entry must be split.
1697 */
1698static void
1699_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1700{
1701	vm_map_entry_t new_entry;
1702
1703	VM_MAP_ASSERT_LOCKED(map);
1704	KASSERT(entry->end > start && entry->start < start,
1705	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
1706
1707	/*
1708	 * Split off the front portion -- note that we must insert the new
1709	 * entry BEFORE this one, so that this entry has the specified
1710	 * starting address.
1711	 */
1712	vm_map_simplify_entry(map, entry);
1713
1714	/*
1715	 * If there is no object backing this entry, we might as well create
1716	 * one now.  If we defer it, an object can get created after the map
1717	 * is clipped, and individual objects will be created for the split-up
1718	 * map.  This is a bit of a hack, but is also about the best place to
1719	 * put this improvement.
1720	 */
1721	if (entry->object.vm_object == NULL && !map->system_map &&
1722	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1723		vm_object_t object;
1724		object = vm_object_allocate(OBJT_DEFAULT,
1725				atop(entry->end - entry->start));
1726		entry->object.vm_object = object;
1727		entry->offset = 0;
1728		if (entry->cred != NULL) {
1729			object->cred = entry->cred;
1730			object->charge = entry->end - entry->start;
1731			entry->cred = NULL;
1732		}
1733	} else if (entry->object.vm_object != NULL &&
1734		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1735		   entry->cred != NULL) {
1736		VM_OBJECT_WLOCK(entry->object.vm_object);
1737		KASSERT(entry->object.vm_object->cred == NULL,
1738		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1739		entry->object.vm_object->cred = entry->cred;
1740		entry->object.vm_object->charge = entry->end - entry->start;
1741		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1742		entry->cred = NULL;
1743	}
1744
1745	new_entry = vm_map_entry_create(map);
1746	*new_entry = *entry;
1747
1748	new_entry->end = start;
1749	entry->offset += (start - entry->start);
1750	entry->start = start;
1751	if (new_entry->cred != NULL)
1752		crhold(entry->cred);
1753
1754	vm_map_entry_link(map, entry->prev, new_entry);
1755
1756	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1757		vm_object_reference(new_entry->object.vm_object);
1758		/*
1759		 * The object->un_pager.vnp.writemappings for the
1760		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1761		 * kept as is here.  The virtual pages are
1762		 * re-distributed among the clipped entries, so the sum is
1763		 * left the same.
1764		 */
1765	}
1766}
1767
1768/*
1769 *	vm_map_clip_end:	[ internal use only ]
1770 *
1771 *	Asserts that the given entry ends at or before
1772 *	the specified address; if necessary,
1773 *	it splits the entry into two.
1774 */
1775#define vm_map_clip_end(map, entry, endaddr) \
1776{ \
1777	if ((endaddr) < (entry->end)) \
1778		_vm_map_clip_end((map), (entry), (endaddr)); \
1779}
1780
1781/*
1782 *	This routine is called only when it is known that
1783 *	the entry must be split.
1784 */
1785static void
1786_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1787{
1788	vm_map_entry_t new_entry;
1789
1790	VM_MAP_ASSERT_LOCKED(map);
1791	KASSERT(entry->start < end && entry->end > end,
1792	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
1793
1794	/*
1795	 * If there is no object backing this entry, we might as well create
1796	 * one now.  If we defer it, an object can get created after the map
1797	 * is clipped, and individual objects will be created for the split-up
1798	 * map.  This is a bit of a hack, but is also about the best place to
1799	 * put this improvement.
1800	 */
1801	if (entry->object.vm_object == NULL && !map->system_map &&
1802	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1803		vm_object_t object;
1804		object = vm_object_allocate(OBJT_DEFAULT,
1805				atop(entry->end - entry->start));
1806		entry->object.vm_object = object;
1807		entry->offset = 0;
1808		if (entry->cred != NULL) {
1809			object->cred = entry->cred;
1810			object->charge = entry->end - entry->start;
1811			entry->cred = NULL;
1812		}
1813	} else if (entry->object.vm_object != NULL &&
1814		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1815		   entry->cred != NULL) {
1816		VM_OBJECT_WLOCK(entry->object.vm_object);
1817		KASSERT(entry->object.vm_object->cred == NULL,
1818		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1819		entry->object.vm_object->cred = entry->cred;
1820		entry->object.vm_object->charge = entry->end - entry->start;
1821		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1822		entry->cred = NULL;
1823	}
1824
1825	/*
1826	 * Create a new entry and insert it AFTER the specified entry
1827	 */
1828	new_entry = vm_map_entry_create(map);
1829	*new_entry = *entry;
1830
1831	new_entry->start = entry->end = end;
1832	new_entry->offset += (end - entry->start);
1833	if (new_entry->cred != NULL)
1834		crhold(entry->cred);
1835
1836	vm_map_entry_link(map, entry, new_entry);
1837
1838	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1839		vm_object_reference(new_entry->object.vm_object);
1840	}
1841}
1842
1843/*
1844 *	vm_map_submap:		[ kernel use only ]
1845 *
1846 *	Mark the given range as handled by a subordinate map.
1847 *
1848 *	This range must have been created with vm_map_find,
1849 *	and no other operations may have been performed on this
1850 *	range prior to calling vm_map_submap.
1851 *
1852 *	Only a limited number of operations can be performed
1853 *	within this rage after calling vm_map_submap:
1854 *		vm_fault
1855 *	[Don't try vm_map_copy!]
1856 *
1857 *	To remove a submapping, one must first remove the
1858 *	range from the superior map, and then destroy the
1859 *	submap (if desired).  [Better yet, don't try it.]
1860 */
1861int
1862vm_map_submap(
1863	vm_map_t map,
1864	vm_offset_t start,
1865	vm_offset_t end,
1866	vm_map_t submap)
1867{
1868	vm_map_entry_t entry;
1869	int result = KERN_INVALID_ARGUMENT;
1870
1871	vm_map_lock(map);
1872
1873	VM_MAP_RANGE_CHECK(map, start, end);
1874
1875	if (vm_map_lookup_entry(map, start, &entry)) {
1876		vm_map_clip_start(map, entry, start);
1877	} else
1878		entry = entry->next;
1879
1880	vm_map_clip_end(map, entry, end);
1881
1882	if ((entry->start == start) && (entry->end == end) &&
1883	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1884	    (entry->object.vm_object == NULL)) {
1885		entry->object.sub_map = submap;
1886		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1887		result = KERN_SUCCESS;
1888	}
1889	vm_map_unlock(map);
1890
1891	return (result);
1892}
1893
1894/*
1895 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1896 */
1897#define	MAX_INIT_PT	96
1898
1899/*
1900 *	vm_map_pmap_enter:
1901 *
1902 *	Preload the specified map's pmap with mappings to the specified
1903 *	object's memory-resident pages.  No further physical pages are
1904 *	allocated, and no further virtual pages are retrieved from secondary
1905 *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1906 *	limited number of page mappings are created at the low-end of the
1907 *	specified address range.  (For this purpose, a superpage mapping
1908 *	counts as one page mapping.)  Otherwise, all resident pages within
1909 *	the specified address range are mapped.
1910 */
1911static void
1912vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1913    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1914{
1915	vm_offset_t start;
1916	vm_page_t p, p_start;
1917	vm_pindex_t mask, psize, threshold, tmpidx;
1918
1919	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1920		return;
1921	VM_OBJECT_RLOCK(object);
1922	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1923		VM_OBJECT_RUNLOCK(object);
1924		VM_OBJECT_WLOCK(object);
1925		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1926			pmap_object_init_pt(map->pmap, addr, object, pindex,
1927			    size);
1928			VM_OBJECT_WUNLOCK(object);
1929			return;
1930		}
1931		VM_OBJECT_LOCK_DOWNGRADE(object);
1932	}
1933
1934	psize = atop(size);
1935	if (psize + pindex > object->size) {
1936		if (object->size < pindex) {
1937			VM_OBJECT_RUNLOCK(object);
1938			return;
1939		}
1940		psize = object->size - pindex;
1941	}
1942
1943	start = 0;
1944	p_start = NULL;
1945	threshold = MAX_INIT_PT;
1946
1947	p = vm_page_find_least(object, pindex);
1948	/*
1949	 * Assert: the variable p is either (1) the page with the
1950	 * least pindex greater than or equal to the parameter pindex
1951	 * or (2) NULL.
1952	 */
1953	for (;
1954	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1955	     p = TAILQ_NEXT(p, listq)) {
1956		/*
1957		 * don't allow an madvise to blow away our really
1958		 * free pages allocating pv entries.
1959		 */
1960		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1961		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1962		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1963		    tmpidx >= threshold)) {
1964			psize = tmpidx;
1965			break;
1966		}
1967		if (p->valid == VM_PAGE_BITS_ALL) {
1968			if (p_start == NULL) {
1969				start = addr + ptoa(tmpidx);
1970				p_start = p;
1971			}
1972			/* Jump ahead if a superpage mapping is possible. */
1973			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1974			    (pagesizes[p->psind] - 1)) == 0) {
1975				mask = atop(pagesizes[p->psind]) - 1;
1976				if (tmpidx + mask < psize &&
1977				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
1978					p += mask;
1979					threshold += mask;
1980				}
1981			}
1982		} else if (p_start != NULL) {
1983			pmap_enter_object(map->pmap, start, addr +
1984			    ptoa(tmpidx), p_start, prot);
1985			p_start = NULL;
1986		}
1987	}
1988	if (p_start != NULL)
1989		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1990		    p_start, prot);
1991	VM_OBJECT_RUNLOCK(object);
1992}
1993
1994/*
1995 *	vm_map_protect:
1996 *
1997 *	Sets the protection of the specified address
1998 *	region in the target map.  If "set_max" is
1999 *	specified, the maximum protection is to be set;
2000 *	otherwise, only the current protection is affected.
2001 */
2002int
2003vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2004	       vm_prot_t new_prot, boolean_t set_max)
2005{
2006	vm_map_entry_t current, entry;
2007	vm_object_t obj;
2008	struct ucred *cred;
2009	vm_prot_t old_prot;
2010
2011	if (start == end)
2012		return (KERN_SUCCESS);
2013
2014	vm_map_lock(map);
2015
2016	/*
2017	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2018	 * need to fault pages into the map and will drop the map lock while
2019	 * doing so, and the VM object may end up in an inconsistent state if we
2020	 * update the protection on the map entry in between faults.
2021	 */
2022	vm_map_wait_busy(map);
2023
2024	VM_MAP_RANGE_CHECK(map, start, end);
2025
2026	if (vm_map_lookup_entry(map, start, &entry)) {
2027		vm_map_clip_start(map, entry, start);
2028	} else {
2029		entry = entry->next;
2030	}
2031
2032	/*
2033	 * Make a first pass to check for protection violations.
2034	 */
2035	for (current = entry; current->start < end; current = current->next) {
2036		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2037			continue;
2038		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2039			vm_map_unlock(map);
2040			return (KERN_INVALID_ARGUMENT);
2041		}
2042		if ((new_prot & current->max_protection) != new_prot) {
2043			vm_map_unlock(map);
2044			return (KERN_PROTECTION_FAILURE);
2045		}
2046	}
2047
2048	/*
2049	 * Do an accounting pass for private read-only mappings that
2050	 * now will do cow due to allowed write (e.g. debugger sets
2051	 * breakpoint on text segment)
2052	 */
2053	for (current = entry; current->start < end; current = current->next) {
2054
2055		vm_map_clip_end(map, current, end);
2056
2057		if (set_max ||
2058		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2059		    ENTRY_CHARGED(current) ||
2060		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2061			continue;
2062		}
2063
2064		cred = curthread->td_ucred;
2065		obj = current->object.vm_object;
2066
2067		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2068			if (!swap_reserve(current->end - current->start)) {
2069				vm_map_unlock(map);
2070				return (KERN_RESOURCE_SHORTAGE);
2071			}
2072			crhold(cred);
2073			current->cred = cred;
2074			continue;
2075		}
2076
2077		VM_OBJECT_WLOCK(obj);
2078		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2079			VM_OBJECT_WUNLOCK(obj);
2080			continue;
2081		}
2082
2083		/*
2084		 * Charge for the whole object allocation now, since
2085		 * we cannot distinguish between non-charged and
2086		 * charged clipped mapping of the same object later.
2087		 */
2088		KASSERT(obj->charge == 0,
2089		    ("vm_map_protect: object %p overcharged (entry %p)",
2090		    obj, current));
2091		if (!swap_reserve(ptoa(obj->size))) {
2092			VM_OBJECT_WUNLOCK(obj);
2093			vm_map_unlock(map);
2094			return (KERN_RESOURCE_SHORTAGE);
2095		}
2096
2097		crhold(cred);
2098		obj->cred = cred;
2099		obj->charge = ptoa(obj->size);
2100		VM_OBJECT_WUNLOCK(obj);
2101	}
2102
2103	/*
2104	 * Go back and fix up protections. [Note that clipping is not
2105	 * necessary the second time.]
2106	 */
2107	for (current = entry; current->start < end; current = current->next) {
2108		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2109			continue;
2110
2111		old_prot = current->protection;
2112
2113		if (set_max)
2114			current->protection =
2115			    (current->max_protection = new_prot) &
2116			    old_prot;
2117		else
2118			current->protection = new_prot;
2119
2120		/*
2121		 * For user wired map entries, the normal lazy evaluation of
2122		 * write access upgrades through soft page faults is
2123		 * undesirable.  Instead, immediately copy any pages that are
2124		 * copy-on-write and enable write access in the physical map.
2125		 */
2126		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2127		    (current->protection & VM_PROT_WRITE) != 0 &&
2128		    (old_prot & VM_PROT_WRITE) == 0)
2129			vm_fault_copy_entry(map, map, current, current, NULL);
2130
2131		/*
2132		 * When restricting access, update the physical map.  Worry
2133		 * about copy-on-write here.
2134		 */
2135		if ((old_prot & ~current->protection) != 0) {
2136#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2137							VM_PROT_ALL)
2138			pmap_protect(map->pmap, current->start,
2139			    current->end,
2140			    current->protection & MASK(current));
2141#undef	MASK
2142		}
2143		vm_map_simplify_entry(map, current);
2144	}
2145	vm_map_unlock(map);
2146	return (KERN_SUCCESS);
2147}
2148
2149/*
2150 *	vm_map_madvise:
2151 *
2152 *	This routine traverses a processes map handling the madvise
2153 *	system call.  Advisories are classified as either those effecting
2154 *	the vm_map_entry structure, or those effecting the underlying
2155 *	objects.
2156 */
2157int
2158vm_map_madvise(
2159	vm_map_t map,
2160	vm_offset_t start,
2161	vm_offset_t end,
2162	int behav)
2163{
2164	vm_map_entry_t current, entry;
2165	int modify_map = 0;
2166
2167	/*
2168	 * Some madvise calls directly modify the vm_map_entry, in which case
2169	 * we need to use an exclusive lock on the map and we need to perform
2170	 * various clipping operations.  Otherwise we only need a read-lock
2171	 * on the map.
2172	 */
2173	switch(behav) {
2174	case MADV_NORMAL:
2175	case MADV_SEQUENTIAL:
2176	case MADV_RANDOM:
2177	case MADV_NOSYNC:
2178	case MADV_AUTOSYNC:
2179	case MADV_NOCORE:
2180	case MADV_CORE:
2181		if (start == end)
2182			return (KERN_SUCCESS);
2183		modify_map = 1;
2184		vm_map_lock(map);
2185		break;
2186	case MADV_WILLNEED:
2187	case MADV_DONTNEED:
2188	case MADV_FREE:
2189		if (start == end)
2190			return (KERN_SUCCESS);
2191		vm_map_lock_read(map);
2192		break;
2193	default:
2194		return (KERN_INVALID_ARGUMENT);
2195	}
2196
2197	/*
2198	 * Locate starting entry and clip if necessary.
2199	 */
2200	VM_MAP_RANGE_CHECK(map, start, end);
2201
2202	if (vm_map_lookup_entry(map, start, &entry)) {
2203		if (modify_map)
2204			vm_map_clip_start(map, entry, start);
2205	} else {
2206		entry = entry->next;
2207	}
2208
2209	if (modify_map) {
2210		/*
2211		 * madvise behaviors that are implemented in the vm_map_entry.
2212		 *
2213		 * We clip the vm_map_entry so that behavioral changes are
2214		 * limited to the specified address range.
2215		 */
2216		for (current = entry; current->start < end;
2217		    current = current->next) {
2218			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2219				continue;
2220
2221			vm_map_clip_end(map, current, end);
2222
2223			switch (behav) {
2224			case MADV_NORMAL:
2225				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2226				break;
2227			case MADV_SEQUENTIAL:
2228				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2229				break;
2230			case MADV_RANDOM:
2231				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2232				break;
2233			case MADV_NOSYNC:
2234				current->eflags |= MAP_ENTRY_NOSYNC;
2235				break;
2236			case MADV_AUTOSYNC:
2237				current->eflags &= ~MAP_ENTRY_NOSYNC;
2238				break;
2239			case MADV_NOCORE:
2240				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2241				break;
2242			case MADV_CORE:
2243				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2244				break;
2245			default:
2246				break;
2247			}
2248			vm_map_simplify_entry(map, current);
2249		}
2250		vm_map_unlock(map);
2251	} else {
2252		vm_pindex_t pstart, pend;
2253
2254		/*
2255		 * madvise behaviors that are implemented in the underlying
2256		 * vm_object.
2257		 *
2258		 * Since we don't clip the vm_map_entry, we have to clip
2259		 * the vm_object pindex and count.
2260		 */
2261		for (current = entry; current->start < end;
2262		    current = current->next) {
2263			vm_offset_t useEnd, useStart;
2264
2265			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2266				continue;
2267
2268			pstart = OFF_TO_IDX(current->offset);
2269			pend = pstart + atop(current->end - current->start);
2270			useStart = current->start;
2271			useEnd = current->end;
2272
2273			if (current->start < start) {
2274				pstart += atop(start - current->start);
2275				useStart = start;
2276			}
2277			if (current->end > end) {
2278				pend -= atop(current->end - end);
2279				useEnd = end;
2280			}
2281
2282			if (pstart >= pend)
2283				continue;
2284
2285			/*
2286			 * Perform the pmap_advise() before clearing
2287			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2288			 * concurrent pmap operation, such as pmap_remove(),
2289			 * could clear a reference in the pmap and set
2290			 * PGA_REFERENCED on the page before the pmap_advise()
2291			 * had completed.  Consequently, the page would appear
2292			 * referenced based upon an old reference that
2293			 * occurred before this pmap_advise() ran.
2294			 */
2295			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2296				pmap_advise(map->pmap, useStart, useEnd,
2297				    behav);
2298
2299			vm_object_madvise(current->object.vm_object, pstart,
2300			    pend, behav);
2301
2302			/*
2303			 * Pre-populate paging structures in the
2304			 * WILLNEED case.  For wired entries, the
2305			 * paging structures are already populated.
2306			 */
2307			if (behav == MADV_WILLNEED &&
2308			    current->wired_count == 0) {
2309				vm_map_pmap_enter(map,
2310				    useStart,
2311				    current->protection,
2312				    current->object.vm_object,
2313				    pstart,
2314				    ptoa(pend - pstart),
2315				    MAP_PREFAULT_MADVISE
2316				);
2317			}
2318		}
2319		vm_map_unlock_read(map);
2320	}
2321	return (0);
2322}
2323
2324
2325/*
2326 *	vm_map_inherit:
2327 *
2328 *	Sets the inheritance of the specified address
2329 *	range in the target map.  Inheritance
2330 *	affects how the map will be shared with
2331 *	child maps at the time of vmspace_fork.
2332 */
2333int
2334vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2335	       vm_inherit_t new_inheritance)
2336{
2337	vm_map_entry_t entry;
2338	vm_map_entry_t temp_entry;
2339
2340	switch (new_inheritance) {
2341	case VM_INHERIT_NONE:
2342	case VM_INHERIT_COPY:
2343	case VM_INHERIT_SHARE:
2344	case VM_INHERIT_ZERO:
2345		break;
2346	default:
2347		return (KERN_INVALID_ARGUMENT);
2348	}
2349	if (start == end)
2350		return (KERN_SUCCESS);
2351	vm_map_lock(map);
2352	VM_MAP_RANGE_CHECK(map, start, end);
2353	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2354		entry = temp_entry;
2355		vm_map_clip_start(map, entry, start);
2356	} else
2357		entry = temp_entry->next;
2358	while (entry->start < end) {
2359		vm_map_clip_end(map, entry, end);
2360		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2361		    new_inheritance != VM_INHERIT_ZERO)
2362			entry->inheritance = new_inheritance;
2363		vm_map_simplify_entry(map, entry);
2364		entry = entry->next;
2365	}
2366	vm_map_unlock(map);
2367	return (KERN_SUCCESS);
2368}
2369
2370/*
2371 *	vm_map_unwire:
2372 *
2373 *	Implements both kernel and user unwiring.
2374 */
2375int
2376vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2377    int flags)
2378{
2379	vm_map_entry_t entry, first_entry, tmp_entry;
2380	vm_offset_t saved_start;
2381	unsigned int last_timestamp;
2382	int rv;
2383	boolean_t need_wakeup, result, user_unwire;
2384
2385	if (start == end)
2386		return (KERN_SUCCESS);
2387	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2388	vm_map_lock(map);
2389	VM_MAP_RANGE_CHECK(map, start, end);
2390	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2391		if (flags & VM_MAP_WIRE_HOLESOK)
2392			first_entry = first_entry->next;
2393		else {
2394			vm_map_unlock(map);
2395			return (KERN_INVALID_ADDRESS);
2396		}
2397	}
2398	last_timestamp = map->timestamp;
2399	entry = first_entry;
2400	while (entry->start < end) {
2401		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2402			/*
2403			 * We have not yet clipped the entry.
2404			 */
2405			saved_start = (start >= entry->start) ? start :
2406			    entry->start;
2407			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2408			if (vm_map_unlock_and_wait(map, 0)) {
2409				/*
2410				 * Allow interruption of user unwiring?
2411				 */
2412			}
2413			vm_map_lock(map);
2414			if (last_timestamp+1 != map->timestamp) {
2415				/*
2416				 * Look again for the entry because the map was
2417				 * modified while it was unlocked.
2418				 * Specifically, the entry may have been
2419				 * clipped, merged, or deleted.
2420				 */
2421				if (!vm_map_lookup_entry(map, saved_start,
2422				    &tmp_entry)) {
2423					if (flags & VM_MAP_WIRE_HOLESOK)
2424						tmp_entry = tmp_entry->next;
2425					else {
2426						if (saved_start == start) {
2427							/*
2428							 * First_entry has been deleted.
2429							 */
2430							vm_map_unlock(map);
2431							return (KERN_INVALID_ADDRESS);
2432						}
2433						end = saved_start;
2434						rv = KERN_INVALID_ADDRESS;
2435						goto done;
2436					}
2437				}
2438				if (entry == first_entry)
2439					first_entry = tmp_entry;
2440				else
2441					first_entry = NULL;
2442				entry = tmp_entry;
2443			}
2444			last_timestamp = map->timestamp;
2445			continue;
2446		}
2447		vm_map_clip_start(map, entry, start);
2448		vm_map_clip_end(map, entry, end);
2449		/*
2450		 * Mark the entry in case the map lock is released.  (See
2451		 * above.)
2452		 */
2453		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2454		    entry->wiring_thread == NULL,
2455		    ("owned map entry %p", entry));
2456		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2457		entry->wiring_thread = curthread;
2458		/*
2459		 * Check the map for holes in the specified region.
2460		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2461		 */
2462		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2463		    (entry->end < end && entry->next->start > entry->end)) {
2464			end = entry->end;
2465			rv = KERN_INVALID_ADDRESS;
2466			goto done;
2467		}
2468		/*
2469		 * If system unwiring, require that the entry is system wired.
2470		 */
2471		if (!user_unwire &&
2472		    vm_map_entry_system_wired_count(entry) == 0) {
2473			end = entry->end;
2474			rv = KERN_INVALID_ARGUMENT;
2475			goto done;
2476		}
2477		entry = entry->next;
2478	}
2479	rv = KERN_SUCCESS;
2480done:
2481	need_wakeup = FALSE;
2482	if (first_entry == NULL) {
2483		result = vm_map_lookup_entry(map, start, &first_entry);
2484		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2485			first_entry = first_entry->next;
2486		else
2487			KASSERT(result, ("vm_map_unwire: lookup failed"));
2488	}
2489	for (entry = first_entry; entry->start < end; entry = entry->next) {
2490		/*
2491		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2492		 * space in the unwired region could have been mapped
2493		 * while the map lock was dropped for draining
2494		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2495		 * could be simultaneously wiring this new mapping
2496		 * entry.  Detect these cases and skip any entries
2497		 * marked as in transition by us.
2498		 */
2499		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2500		    entry->wiring_thread != curthread) {
2501			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2502			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2503			continue;
2504		}
2505
2506		if (rv == KERN_SUCCESS && (!user_unwire ||
2507		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2508			if (user_unwire)
2509				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2510			if (entry->wired_count == 1)
2511				vm_map_entry_unwire(map, entry);
2512			else
2513				entry->wired_count--;
2514		}
2515		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2516		    ("vm_map_unwire: in-transition flag missing %p", entry));
2517		KASSERT(entry->wiring_thread == curthread,
2518		    ("vm_map_unwire: alien wire %p", entry));
2519		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2520		entry->wiring_thread = NULL;
2521		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2522			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2523			need_wakeup = TRUE;
2524		}
2525		vm_map_simplify_entry(map, entry);
2526	}
2527	vm_map_unlock(map);
2528	if (need_wakeup)
2529		vm_map_wakeup(map);
2530	return (rv);
2531}
2532
2533/*
2534 *	vm_map_wire_entry_failure:
2535 *
2536 *	Handle a wiring failure on the given entry.
2537 *
2538 *	The map should be locked.
2539 */
2540static void
2541vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2542    vm_offset_t failed_addr)
2543{
2544
2545	VM_MAP_ASSERT_LOCKED(map);
2546	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2547	    entry->wired_count == 1,
2548	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2549	KASSERT(failed_addr < entry->end,
2550	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2551
2552	/*
2553	 * If any pages at the start of this entry were successfully wired,
2554	 * then unwire them.
2555	 */
2556	if (failed_addr > entry->start) {
2557		pmap_unwire(map->pmap, entry->start, failed_addr);
2558		vm_object_unwire(entry->object.vm_object, entry->offset,
2559		    failed_addr - entry->start, PQ_ACTIVE);
2560	}
2561
2562	/*
2563	 * Assign an out-of-range value to represent the failure to wire this
2564	 * entry.
2565	 */
2566	entry->wired_count = -1;
2567}
2568
2569/*
2570 *	vm_map_wire:
2571 *
2572 *	Implements both kernel and user wiring.
2573 */
2574int
2575vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2576    int flags)
2577{
2578	vm_map_entry_t entry, first_entry, tmp_entry;
2579	vm_offset_t faddr, saved_end, saved_start;
2580	unsigned int last_timestamp;
2581	int rv;
2582	boolean_t need_wakeup, result, user_wire;
2583	vm_prot_t prot;
2584
2585	if (start == end)
2586		return (KERN_SUCCESS);
2587	prot = 0;
2588	if (flags & VM_MAP_WIRE_WRITE)
2589		prot |= VM_PROT_WRITE;
2590	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2591	vm_map_lock(map);
2592	VM_MAP_RANGE_CHECK(map, start, end);
2593	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2594		if (flags & VM_MAP_WIRE_HOLESOK)
2595			first_entry = first_entry->next;
2596		else {
2597			vm_map_unlock(map);
2598			return (KERN_INVALID_ADDRESS);
2599		}
2600	}
2601	last_timestamp = map->timestamp;
2602	entry = first_entry;
2603	while (entry->start < end) {
2604		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2605			/*
2606			 * We have not yet clipped the entry.
2607			 */
2608			saved_start = (start >= entry->start) ? start :
2609			    entry->start;
2610			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2611			if (vm_map_unlock_and_wait(map, 0)) {
2612				/*
2613				 * Allow interruption of user wiring?
2614				 */
2615			}
2616			vm_map_lock(map);
2617			if (last_timestamp + 1 != map->timestamp) {
2618				/*
2619				 * Look again for the entry because the map was
2620				 * modified while it was unlocked.
2621				 * Specifically, the entry may have been
2622				 * clipped, merged, or deleted.
2623				 */
2624				if (!vm_map_lookup_entry(map, saved_start,
2625				    &tmp_entry)) {
2626					if (flags & VM_MAP_WIRE_HOLESOK)
2627						tmp_entry = tmp_entry->next;
2628					else {
2629						if (saved_start == start) {
2630							/*
2631							 * first_entry has been deleted.
2632							 */
2633							vm_map_unlock(map);
2634							return (KERN_INVALID_ADDRESS);
2635						}
2636						end = saved_start;
2637						rv = KERN_INVALID_ADDRESS;
2638						goto done;
2639					}
2640				}
2641				if (entry == first_entry)
2642					first_entry = tmp_entry;
2643				else
2644					first_entry = NULL;
2645				entry = tmp_entry;
2646			}
2647			last_timestamp = map->timestamp;
2648			continue;
2649		}
2650		vm_map_clip_start(map, entry, start);
2651		vm_map_clip_end(map, entry, end);
2652		/*
2653		 * Mark the entry in case the map lock is released.  (See
2654		 * above.)
2655		 */
2656		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2657		    entry->wiring_thread == NULL,
2658		    ("owned map entry %p", entry));
2659		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2660		entry->wiring_thread = curthread;
2661		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2662		    || (entry->protection & prot) != prot) {
2663			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2664			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2665				end = entry->end;
2666				rv = KERN_INVALID_ADDRESS;
2667				goto done;
2668			}
2669			goto next_entry;
2670		}
2671		if (entry->wired_count == 0) {
2672			entry->wired_count++;
2673			saved_start = entry->start;
2674			saved_end = entry->end;
2675
2676			/*
2677			 * Release the map lock, relying on the in-transition
2678			 * mark.  Mark the map busy for fork.
2679			 */
2680			vm_map_busy(map);
2681			vm_map_unlock(map);
2682
2683			faddr = saved_start;
2684			do {
2685				/*
2686				 * Simulate a fault to get the page and enter
2687				 * it into the physical map.
2688				 */
2689				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2690				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2691					break;
2692			} while ((faddr += PAGE_SIZE) < saved_end);
2693			vm_map_lock(map);
2694			vm_map_unbusy(map);
2695			if (last_timestamp + 1 != map->timestamp) {
2696				/*
2697				 * Look again for the entry because the map was
2698				 * modified while it was unlocked.  The entry
2699				 * may have been clipped, but NOT merged or
2700				 * deleted.
2701				 */
2702				result = vm_map_lookup_entry(map, saved_start,
2703				    &tmp_entry);
2704				KASSERT(result, ("vm_map_wire: lookup failed"));
2705				if (entry == first_entry)
2706					first_entry = tmp_entry;
2707				else
2708					first_entry = NULL;
2709				entry = tmp_entry;
2710				while (entry->end < saved_end) {
2711					/*
2712					 * In case of failure, handle entries
2713					 * that were not fully wired here;
2714					 * fully wired entries are handled
2715					 * later.
2716					 */
2717					if (rv != KERN_SUCCESS &&
2718					    faddr < entry->end)
2719						vm_map_wire_entry_failure(map,
2720						    entry, faddr);
2721					entry = entry->next;
2722				}
2723			}
2724			last_timestamp = map->timestamp;
2725			if (rv != KERN_SUCCESS) {
2726				vm_map_wire_entry_failure(map, entry, faddr);
2727				end = entry->end;
2728				goto done;
2729			}
2730		} else if (!user_wire ||
2731			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2732			entry->wired_count++;
2733		}
2734		/*
2735		 * Check the map for holes in the specified region.
2736		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2737		 */
2738	next_entry:
2739		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2740		    entry->end < end && entry->next->start > entry->end) {
2741			end = entry->end;
2742			rv = KERN_INVALID_ADDRESS;
2743			goto done;
2744		}
2745		entry = entry->next;
2746	}
2747	rv = KERN_SUCCESS;
2748done:
2749	need_wakeup = FALSE;
2750	if (first_entry == NULL) {
2751		result = vm_map_lookup_entry(map, start, &first_entry);
2752		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2753			first_entry = first_entry->next;
2754		else
2755			KASSERT(result, ("vm_map_wire: lookup failed"));
2756	}
2757	for (entry = first_entry; entry->start < end; entry = entry->next) {
2758		/*
2759		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2760		 * space in the unwired region could have been mapped
2761		 * while the map lock was dropped for faulting in the
2762		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2763		 * Moreover, another thread could be simultaneously
2764		 * wiring this new mapping entry.  Detect these cases
2765		 * and skip any entries marked as in transition not by us.
2766		 */
2767		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2768		    entry->wiring_thread != curthread) {
2769			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2770			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2771			continue;
2772		}
2773
2774		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2775			goto next_entry_done;
2776
2777		if (rv == KERN_SUCCESS) {
2778			if (user_wire)
2779				entry->eflags |= MAP_ENTRY_USER_WIRED;
2780		} else if (entry->wired_count == -1) {
2781			/*
2782			 * Wiring failed on this entry.  Thus, unwiring is
2783			 * unnecessary.
2784			 */
2785			entry->wired_count = 0;
2786		} else if (!user_wire ||
2787		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2788			/*
2789			 * Undo the wiring.  Wiring succeeded on this entry
2790			 * but failed on a later entry.
2791			 */
2792			if (entry->wired_count == 1)
2793				vm_map_entry_unwire(map, entry);
2794			else
2795				entry->wired_count--;
2796		}
2797	next_entry_done:
2798		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2799		    ("vm_map_wire: in-transition flag missing %p", entry));
2800		KASSERT(entry->wiring_thread == curthread,
2801		    ("vm_map_wire: alien wire %p", entry));
2802		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2803		    MAP_ENTRY_WIRE_SKIPPED);
2804		entry->wiring_thread = NULL;
2805		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2806			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2807			need_wakeup = TRUE;
2808		}
2809		vm_map_simplify_entry(map, entry);
2810	}
2811	vm_map_unlock(map);
2812	if (need_wakeup)
2813		vm_map_wakeup(map);
2814	return (rv);
2815}
2816
2817/*
2818 * vm_map_sync
2819 *
2820 * Push any dirty cached pages in the address range to their pager.
2821 * If syncio is TRUE, dirty pages are written synchronously.
2822 * If invalidate is TRUE, any cached pages are freed as well.
2823 *
2824 * If the size of the region from start to end is zero, we are
2825 * supposed to flush all modified pages within the region containing
2826 * start.  Unfortunately, a region can be split or coalesced with
2827 * neighboring regions, making it difficult to determine what the
2828 * original region was.  Therefore, we approximate this requirement by
2829 * flushing the current region containing start.
2830 *
2831 * Returns an error if any part of the specified range is not mapped.
2832 */
2833int
2834vm_map_sync(
2835	vm_map_t map,
2836	vm_offset_t start,
2837	vm_offset_t end,
2838	boolean_t syncio,
2839	boolean_t invalidate)
2840{
2841	vm_map_entry_t current;
2842	vm_map_entry_t entry;
2843	vm_size_t size;
2844	vm_object_t object;
2845	vm_ooffset_t offset;
2846	unsigned int last_timestamp;
2847	boolean_t failed;
2848
2849	vm_map_lock_read(map);
2850	VM_MAP_RANGE_CHECK(map, start, end);
2851	if (!vm_map_lookup_entry(map, start, &entry)) {
2852		vm_map_unlock_read(map);
2853		return (KERN_INVALID_ADDRESS);
2854	} else if (start == end) {
2855		start = entry->start;
2856		end = entry->end;
2857	}
2858	/*
2859	 * Make a first pass to check for user-wired memory and holes.
2860	 */
2861	for (current = entry; current->start < end; current = current->next) {
2862		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2863			vm_map_unlock_read(map);
2864			return (KERN_INVALID_ARGUMENT);
2865		}
2866		if (end > current->end &&
2867		    current->end != current->next->start) {
2868			vm_map_unlock_read(map);
2869			return (KERN_INVALID_ADDRESS);
2870		}
2871	}
2872
2873	if (invalidate)
2874		pmap_remove(map->pmap, start, end);
2875	failed = FALSE;
2876
2877	/*
2878	 * Make a second pass, cleaning/uncaching pages from the indicated
2879	 * objects as we go.
2880	 */
2881	for (current = entry; current->start < end;) {
2882		offset = current->offset + (start - current->start);
2883		size = (end <= current->end ? end : current->end) - start;
2884		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2885			vm_map_t smap;
2886			vm_map_entry_t tentry;
2887			vm_size_t tsize;
2888
2889			smap = current->object.sub_map;
2890			vm_map_lock_read(smap);
2891			(void) vm_map_lookup_entry(smap, offset, &tentry);
2892			tsize = tentry->end - offset;
2893			if (tsize < size)
2894				size = tsize;
2895			object = tentry->object.vm_object;
2896			offset = tentry->offset + (offset - tentry->start);
2897			vm_map_unlock_read(smap);
2898		} else {
2899			object = current->object.vm_object;
2900		}
2901		vm_object_reference(object);
2902		last_timestamp = map->timestamp;
2903		vm_map_unlock_read(map);
2904		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2905			failed = TRUE;
2906		start += size;
2907		vm_object_deallocate(object);
2908		vm_map_lock_read(map);
2909		if (last_timestamp == map->timestamp ||
2910		    !vm_map_lookup_entry(map, start, &current))
2911			current = current->next;
2912	}
2913
2914	vm_map_unlock_read(map);
2915	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2916}
2917
2918/*
2919 *	vm_map_entry_unwire:	[ internal use only ]
2920 *
2921 *	Make the region specified by this entry pageable.
2922 *
2923 *	The map in question should be locked.
2924 *	[This is the reason for this routine's existence.]
2925 */
2926static void
2927vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2928{
2929
2930	VM_MAP_ASSERT_LOCKED(map);
2931	KASSERT(entry->wired_count > 0,
2932	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2933	pmap_unwire(map->pmap, entry->start, entry->end);
2934	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2935	    entry->start, PQ_ACTIVE);
2936	entry->wired_count = 0;
2937}
2938
2939static void
2940vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2941{
2942
2943	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2944		vm_object_deallocate(entry->object.vm_object);
2945	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2946}
2947
2948/*
2949 *	vm_map_entry_delete:	[ internal use only ]
2950 *
2951 *	Deallocate the given entry from the target map.
2952 */
2953static void
2954vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2955{
2956	vm_object_t object;
2957	vm_pindex_t offidxstart, offidxend, count, size1;
2958	vm_size_t size;
2959
2960	vm_map_entry_unlink(map, entry);
2961	object = entry->object.vm_object;
2962
2963	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2964		MPASS(entry->cred == NULL);
2965		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
2966		MPASS(object == NULL);
2967		vm_map_entry_deallocate(entry, map->system_map);
2968		return;
2969	}
2970
2971	size = entry->end - entry->start;
2972	map->size -= size;
2973
2974	if (entry->cred != NULL) {
2975		swap_release_by_cred(size, entry->cred);
2976		crfree(entry->cred);
2977	}
2978
2979	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2980	    (object != NULL)) {
2981		KASSERT(entry->cred == NULL || object->cred == NULL ||
2982		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2983		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2984		count = atop(size);
2985		offidxstart = OFF_TO_IDX(entry->offset);
2986		offidxend = offidxstart + count;
2987		VM_OBJECT_WLOCK(object);
2988		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2989		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2990		    object == kernel_object || object == kmem_object)) {
2991			vm_object_collapse(object);
2992
2993			/*
2994			 * The option OBJPR_NOTMAPPED can be passed here
2995			 * because vm_map_delete() already performed
2996			 * pmap_remove() on the only mapping to this range
2997			 * of pages.
2998			 */
2999			vm_object_page_remove(object, offidxstart, offidxend,
3000			    OBJPR_NOTMAPPED);
3001			if (object->type == OBJT_SWAP)
3002				swap_pager_freespace(object, offidxstart,
3003				    count);
3004			if (offidxend >= object->size &&
3005			    offidxstart < object->size) {
3006				size1 = object->size;
3007				object->size = offidxstart;
3008				if (object->cred != NULL) {
3009					size1 -= object->size;
3010					KASSERT(object->charge >= ptoa(size1),
3011					    ("object %p charge < 0", object));
3012					swap_release_by_cred(ptoa(size1),
3013					    object->cred);
3014					object->charge -= ptoa(size1);
3015				}
3016			}
3017		}
3018		VM_OBJECT_WUNLOCK(object);
3019	} else
3020		entry->object.vm_object = NULL;
3021	if (map->system_map)
3022		vm_map_entry_deallocate(entry, TRUE);
3023	else {
3024		entry->next = curthread->td_map_def_user;
3025		curthread->td_map_def_user = entry;
3026	}
3027}
3028
3029/*
3030 *	vm_map_delete:	[ internal use only ]
3031 *
3032 *	Deallocates the given address range from the target
3033 *	map.
3034 */
3035int
3036vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3037{
3038	vm_map_entry_t entry;
3039	vm_map_entry_t first_entry;
3040
3041	VM_MAP_ASSERT_LOCKED(map);
3042	if (start == end)
3043		return (KERN_SUCCESS);
3044
3045	/*
3046	 * Find the start of the region, and clip it
3047	 */
3048	if (!vm_map_lookup_entry(map, start, &first_entry))
3049		entry = first_entry->next;
3050	else {
3051		entry = first_entry;
3052		vm_map_clip_start(map, entry, start);
3053	}
3054
3055	/*
3056	 * Step through all entries in this region
3057	 */
3058	while (entry->start < end) {
3059		vm_map_entry_t next;
3060
3061		/*
3062		 * Wait for wiring or unwiring of an entry to complete.
3063		 * Also wait for any system wirings to disappear on
3064		 * user maps.
3065		 */
3066		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3067		    (vm_map_pmap(map) != kernel_pmap &&
3068		    vm_map_entry_system_wired_count(entry) != 0)) {
3069			unsigned int last_timestamp;
3070			vm_offset_t saved_start;
3071			vm_map_entry_t tmp_entry;
3072
3073			saved_start = entry->start;
3074			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3075			last_timestamp = map->timestamp;
3076			(void) vm_map_unlock_and_wait(map, 0);
3077			vm_map_lock(map);
3078			if (last_timestamp + 1 != map->timestamp) {
3079				/*
3080				 * Look again for the entry because the map was
3081				 * modified while it was unlocked.
3082				 * Specifically, the entry may have been
3083				 * clipped, merged, or deleted.
3084				 */
3085				if (!vm_map_lookup_entry(map, saved_start,
3086							 &tmp_entry))
3087					entry = tmp_entry->next;
3088				else {
3089					entry = tmp_entry;
3090					vm_map_clip_start(map, entry,
3091							  saved_start);
3092				}
3093			}
3094			continue;
3095		}
3096		vm_map_clip_end(map, entry, end);
3097
3098		next = entry->next;
3099
3100		/*
3101		 * Unwire before removing addresses from the pmap; otherwise,
3102		 * unwiring will put the entries back in the pmap.
3103		 */
3104		if (entry->wired_count != 0)
3105			vm_map_entry_unwire(map, entry);
3106
3107		/*
3108		 * Remove mappings for the pages, but only if the
3109		 * mappings could exist.  For instance, it does not
3110		 * make sense to call pmap_remove() for guard entries.
3111		 */
3112		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3113		    entry->object.vm_object != NULL)
3114			pmap_remove(map->pmap, entry->start, entry->end);
3115
3116		/*
3117		 * Delete the entry only after removing all pmap
3118		 * entries pointing to its pages.  (Otherwise, its
3119		 * page frames may be reallocated, and any modify bits
3120		 * will be set in the wrong object!)
3121		 */
3122		vm_map_entry_delete(map, entry);
3123		entry = next;
3124	}
3125	return (KERN_SUCCESS);
3126}
3127
3128/*
3129 *	vm_map_remove:
3130 *
3131 *	Remove the given address range from the target map.
3132 *	This is the exported form of vm_map_delete.
3133 */
3134int
3135vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3136{
3137	int result;
3138
3139	vm_map_lock(map);
3140	VM_MAP_RANGE_CHECK(map, start, end);
3141	result = vm_map_delete(map, start, end);
3142	vm_map_unlock(map);
3143	return (result);
3144}
3145
3146/*
3147 *	vm_map_check_protection:
3148 *
3149 *	Assert that the target map allows the specified privilege on the
3150 *	entire address region given.  The entire region must be allocated.
3151 *
3152 *	WARNING!  This code does not and should not check whether the
3153 *	contents of the region is accessible.  For example a smaller file
3154 *	might be mapped into a larger address space.
3155 *
3156 *	NOTE!  This code is also called by munmap().
3157 *
3158 *	The map must be locked.  A read lock is sufficient.
3159 */
3160boolean_t
3161vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3162			vm_prot_t protection)
3163{
3164	vm_map_entry_t entry;
3165	vm_map_entry_t tmp_entry;
3166
3167	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3168		return (FALSE);
3169	entry = tmp_entry;
3170
3171	while (start < end) {
3172		/*
3173		 * No holes allowed!
3174		 */
3175		if (start < entry->start)
3176			return (FALSE);
3177		/*
3178		 * Check protection associated with entry.
3179		 */
3180		if ((entry->protection & protection) != protection)
3181			return (FALSE);
3182		/* go to next entry */
3183		start = entry->end;
3184		entry = entry->next;
3185	}
3186	return (TRUE);
3187}
3188
3189/*
3190 *	vm_map_copy_entry:
3191 *
3192 *	Copies the contents of the source entry to the destination
3193 *	entry.  The entries *must* be aligned properly.
3194 */
3195static void
3196vm_map_copy_entry(
3197	vm_map_t src_map,
3198	vm_map_t dst_map,
3199	vm_map_entry_t src_entry,
3200	vm_map_entry_t dst_entry,
3201	vm_ooffset_t *fork_charge)
3202{
3203	vm_object_t src_object;
3204	vm_map_entry_t fake_entry;
3205	vm_offset_t size;
3206	struct ucred *cred;
3207	int charged;
3208
3209	VM_MAP_ASSERT_LOCKED(dst_map);
3210
3211	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3212		return;
3213
3214	if (src_entry->wired_count == 0 ||
3215	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3216		/*
3217		 * If the source entry is marked needs_copy, it is already
3218		 * write-protected.
3219		 */
3220		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3221		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3222			pmap_protect(src_map->pmap,
3223			    src_entry->start,
3224			    src_entry->end,
3225			    src_entry->protection & ~VM_PROT_WRITE);
3226		}
3227
3228		/*
3229		 * Make a copy of the object.
3230		 */
3231		size = src_entry->end - src_entry->start;
3232		if ((src_object = src_entry->object.vm_object) != NULL) {
3233			VM_OBJECT_WLOCK(src_object);
3234			charged = ENTRY_CHARGED(src_entry);
3235			if (src_object->handle == NULL &&
3236			    (src_object->type == OBJT_DEFAULT ||
3237			    src_object->type == OBJT_SWAP)) {
3238				vm_object_collapse(src_object);
3239				if ((src_object->flags & (OBJ_NOSPLIT |
3240				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3241					vm_object_split(src_entry);
3242					src_object =
3243					    src_entry->object.vm_object;
3244				}
3245			}
3246			vm_object_reference_locked(src_object);
3247			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3248			if (src_entry->cred != NULL &&
3249			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3250				KASSERT(src_object->cred == NULL,
3251				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3252				     src_object));
3253				src_object->cred = src_entry->cred;
3254				src_object->charge = size;
3255			}
3256			VM_OBJECT_WUNLOCK(src_object);
3257			dst_entry->object.vm_object = src_object;
3258			if (charged) {
3259				cred = curthread->td_ucred;
3260				crhold(cred);
3261				dst_entry->cred = cred;
3262				*fork_charge += size;
3263				if (!(src_entry->eflags &
3264				      MAP_ENTRY_NEEDS_COPY)) {
3265					crhold(cred);
3266					src_entry->cred = cred;
3267					*fork_charge += size;
3268				}
3269			}
3270			src_entry->eflags |= MAP_ENTRY_COW |
3271			    MAP_ENTRY_NEEDS_COPY;
3272			dst_entry->eflags |= MAP_ENTRY_COW |
3273			    MAP_ENTRY_NEEDS_COPY;
3274			dst_entry->offset = src_entry->offset;
3275			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3276				/*
3277				 * MAP_ENTRY_VN_WRITECNT cannot
3278				 * indicate write reference from
3279				 * src_entry, since the entry is
3280				 * marked as needs copy.  Allocate a
3281				 * fake entry that is used to
3282				 * decrement object->un_pager.vnp.writecount
3283				 * at the appropriate time.  Attach
3284				 * fake_entry to the deferred list.
3285				 */
3286				fake_entry = vm_map_entry_create(dst_map);
3287				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3288				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3289				vm_object_reference(src_object);
3290				fake_entry->object.vm_object = src_object;
3291				fake_entry->start = src_entry->start;
3292				fake_entry->end = src_entry->end;
3293				fake_entry->next = curthread->td_map_def_user;
3294				curthread->td_map_def_user = fake_entry;
3295			}
3296
3297			pmap_copy(dst_map->pmap, src_map->pmap,
3298			    dst_entry->start, dst_entry->end - dst_entry->start,
3299			    src_entry->start);
3300		} else {
3301			dst_entry->object.vm_object = NULL;
3302			dst_entry->offset = 0;
3303			if (src_entry->cred != NULL) {
3304				dst_entry->cred = curthread->td_ucred;
3305				crhold(dst_entry->cred);
3306				*fork_charge += size;
3307			}
3308		}
3309	} else {
3310		/*
3311		 * We don't want to make writeable wired pages copy-on-write.
3312		 * Immediately copy these pages into the new map by simulating
3313		 * page faults.  The new pages are pageable.
3314		 */
3315		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3316		    fork_charge);
3317	}
3318}
3319
3320/*
3321 * vmspace_map_entry_forked:
3322 * Update the newly-forked vmspace each time a map entry is inherited
3323 * or copied.  The values for vm_dsize and vm_tsize are approximate
3324 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3325 */
3326static void
3327vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3328    vm_map_entry_t entry)
3329{
3330	vm_size_t entrysize;
3331	vm_offset_t newend;
3332
3333	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3334		return;
3335	entrysize = entry->end - entry->start;
3336	vm2->vm_map.size += entrysize;
3337	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3338		vm2->vm_ssize += btoc(entrysize);
3339	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3340	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3341		newend = MIN(entry->end,
3342		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3343		vm2->vm_dsize += btoc(newend - entry->start);
3344	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3345	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3346		newend = MIN(entry->end,
3347		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3348		vm2->vm_tsize += btoc(newend - entry->start);
3349	}
3350}
3351
3352/*
3353 * vmspace_fork:
3354 * Create a new process vmspace structure and vm_map
3355 * based on those of an existing process.  The new map
3356 * is based on the old map, according to the inheritance
3357 * values on the regions in that map.
3358 *
3359 * XXX It might be worth coalescing the entries added to the new vmspace.
3360 *
3361 * The source map must not be locked.
3362 */
3363struct vmspace *
3364vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3365{
3366	struct vmspace *vm2;
3367	vm_map_t new_map, old_map;
3368	vm_map_entry_t new_entry, old_entry;
3369	vm_object_t object;
3370	int locked;
3371	vm_inherit_t inh;
3372
3373	old_map = &vm1->vm_map;
3374	/* Copy immutable fields of vm1 to vm2. */
3375	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3376	    pmap_pinit);
3377	if (vm2 == NULL)
3378		return (NULL);
3379	vm2->vm_taddr = vm1->vm_taddr;
3380	vm2->vm_daddr = vm1->vm_daddr;
3381	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3382	vm_map_lock(old_map);
3383	if (old_map->busy)
3384		vm_map_wait_busy(old_map);
3385	new_map = &vm2->vm_map;
3386	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3387	KASSERT(locked, ("vmspace_fork: lock failed"));
3388
3389	old_entry = old_map->header.next;
3390
3391	while (old_entry != &old_map->header) {
3392		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3393			panic("vm_map_fork: encountered a submap");
3394
3395		inh = old_entry->inheritance;
3396		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3397		    inh != VM_INHERIT_NONE)
3398			inh = VM_INHERIT_COPY;
3399
3400		switch (inh) {
3401		case VM_INHERIT_NONE:
3402			break;
3403
3404		case VM_INHERIT_SHARE:
3405			/*
3406			 * Clone the entry, creating the shared object if necessary.
3407			 */
3408			object = old_entry->object.vm_object;
3409			if (object == NULL) {
3410				object = vm_object_allocate(OBJT_DEFAULT,
3411					atop(old_entry->end - old_entry->start));
3412				old_entry->object.vm_object = object;
3413				old_entry->offset = 0;
3414				if (old_entry->cred != NULL) {
3415					object->cred = old_entry->cred;
3416					object->charge = old_entry->end -
3417					    old_entry->start;
3418					old_entry->cred = NULL;
3419				}
3420			}
3421
3422			/*
3423			 * Add the reference before calling vm_object_shadow
3424			 * to insure that a shadow object is created.
3425			 */
3426			vm_object_reference(object);
3427			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3428				vm_object_shadow(&old_entry->object.vm_object,
3429				    &old_entry->offset,
3430				    old_entry->end - old_entry->start);
3431				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3432				/* Transfer the second reference too. */
3433				vm_object_reference(
3434				    old_entry->object.vm_object);
3435
3436				/*
3437				 * As in vm_map_simplify_entry(), the
3438				 * vnode lock will not be acquired in
3439				 * this call to vm_object_deallocate().
3440				 */
3441				vm_object_deallocate(object);
3442				object = old_entry->object.vm_object;
3443			}
3444			VM_OBJECT_WLOCK(object);
3445			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3446			if (old_entry->cred != NULL) {
3447				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3448				object->cred = old_entry->cred;
3449				object->charge = old_entry->end - old_entry->start;
3450				old_entry->cred = NULL;
3451			}
3452
3453			/*
3454			 * Assert the correct state of the vnode
3455			 * v_writecount while the object is locked, to
3456			 * not relock it later for the assertion
3457			 * correctness.
3458			 */
3459			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3460			    object->type == OBJT_VNODE) {
3461				KASSERT(((struct vnode *)object->handle)->
3462				    v_writecount > 0,
3463				    ("vmspace_fork: v_writecount %p", object));
3464				KASSERT(object->un_pager.vnp.writemappings > 0,
3465				    ("vmspace_fork: vnp.writecount %p",
3466				    object));
3467			}
3468			VM_OBJECT_WUNLOCK(object);
3469
3470			/*
3471			 * Clone the entry, referencing the shared object.
3472			 */
3473			new_entry = vm_map_entry_create(new_map);
3474			*new_entry = *old_entry;
3475			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3476			    MAP_ENTRY_IN_TRANSITION);
3477			new_entry->wiring_thread = NULL;
3478			new_entry->wired_count = 0;
3479			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3480				vnode_pager_update_writecount(object,
3481				    new_entry->start, new_entry->end);
3482			}
3483
3484			/*
3485			 * Insert the entry into the new map -- we know we're
3486			 * inserting at the end of the new map.
3487			 */
3488			vm_map_entry_link(new_map, new_map->header.prev,
3489			    new_entry);
3490			vmspace_map_entry_forked(vm1, vm2, new_entry);
3491
3492			/*
3493			 * Update the physical map
3494			 */
3495			pmap_copy(new_map->pmap, old_map->pmap,
3496			    new_entry->start,
3497			    (old_entry->end - old_entry->start),
3498			    old_entry->start);
3499			break;
3500
3501		case VM_INHERIT_COPY:
3502			/*
3503			 * Clone the entry and link into the map.
3504			 */
3505			new_entry = vm_map_entry_create(new_map);
3506			*new_entry = *old_entry;
3507			/*
3508			 * Copied entry is COW over the old object.
3509			 */
3510			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3511			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3512			new_entry->wiring_thread = NULL;
3513			new_entry->wired_count = 0;
3514			new_entry->object.vm_object = NULL;
3515			new_entry->cred = NULL;
3516			vm_map_entry_link(new_map, new_map->header.prev,
3517			    new_entry);
3518			vmspace_map_entry_forked(vm1, vm2, new_entry);
3519			vm_map_copy_entry(old_map, new_map, old_entry,
3520			    new_entry, fork_charge);
3521			break;
3522
3523		case VM_INHERIT_ZERO:
3524			/*
3525			 * Create a new anonymous mapping entry modelled from
3526			 * the old one.
3527			 */
3528			new_entry = vm_map_entry_create(new_map);
3529			memset(new_entry, 0, sizeof(*new_entry));
3530
3531			new_entry->start = old_entry->start;
3532			new_entry->end = old_entry->end;
3533			new_entry->eflags = old_entry->eflags &
3534			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3535			    MAP_ENTRY_VN_WRITECNT);
3536			new_entry->protection = old_entry->protection;
3537			new_entry->max_protection = old_entry->max_protection;
3538			new_entry->inheritance = VM_INHERIT_ZERO;
3539
3540			vm_map_entry_link(new_map, new_map->header.prev,
3541			    new_entry);
3542			vmspace_map_entry_forked(vm1, vm2, new_entry);
3543
3544			new_entry->cred = curthread->td_ucred;
3545			crhold(new_entry->cred);
3546			*fork_charge += (new_entry->end - new_entry->start);
3547
3548			break;
3549		}
3550		old_entry = old_entry->next;
3551	}
3552	/*
3553	 * Use inlined vm_map_unlock() to postpone handling the deferred
3554	 * map entries, which cannot be done until both old_map and
3555	 * new_map locks are released.
3556	 */
3557	sx_xunlock(&old_map->lock);
3558	sx_xunlock(&new_map->lock);
3559	vm_map_process_deferred();
3560
3561	return (vm2);
3562}
3563
3564/*
3565 * Create a process's stack for exec_new_vmspace().  This function is never
3566 * asked to wire the newly created stack.
3567 */
3568int
3569vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3570    vm_prot_t prot, vm_prot_t max, int cow)
3571{
3572	vm_size_t growsize, init_ssize;
3573	rlim_t vmemlim;
3574	int rv;
3575
3576	MPASS((map->flags & MAP_WIREFUTURE) == 0);
3577	growsize = sgrowsiz;
3578	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3579	vm_map_lock(map);
3580	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3581	/* If we would blow our VMEM resource limit, no go */
3582	if (map->size + init_ssize > vmemlim) {
3583		rv = KERN_NO_SPACE;
3584		goto out;
3585	}
3586	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3587	    max, cow);
3588out:
3589	vm_map_unlock(map);
3590	return (rv);
3591}
3592
3593static int stack_guard_page = 1;
3594SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3595    &stack_guard_page, 0,
3596    "Specifies the number of guard pages for a stack that grows");
3597
3598static int
3599vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3600    vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3601{
3602	vm_map_entry_t new_entry, prev_entry;
3603	vm_offset_t bot, gap_bot, gap_top, top;
3604	vm_size_t init_ssize, sgp;
3605	int orient, rv;
3606
3607	/*
3608	 * The stack orientation is piggybacked with the cow argument.
3609	 * Extract it into orient and mask the cow argument so that we
3610	 * don't pass it around further.
3611	 */
3612	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3613	KASSERT(orient != 0, ("No stack grow direction"));
3614	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3615	    ("bi-dir stack"));
3616
3617	if (addrbos < vm_map_min(map) ||
3618	    addrbos + max_ssize > vm_map_max(map) ||
3619	    addrbos + max_ssize <= addrbos)
3620		return (KERN_INVALID_ADDRESS);
3621	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3622	if (sgp >= max_ssize)
3623		return (KERN_INVALID_ARGUMENT);
3624
3625	init_ssize = growsize;
3626	if (max_ssize < init_ssize + sgp)
3627		init_ssize = max_ssize - sgp;
3628
3629	/* If addr is already mapped, no go */
3630	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3631		return (KERN_NO_SPACE);
3632
3633	/*
3634	 * If we can't accommodate max_ssize in the current mapping, no go.
3635	 */
3636	if (prev_entry->next->start < addrbos + max_ssize)
3637		return (KERN_NO_SPACE);
3638
3639	/*
3640	 * We initially map a stack of only init_ssize.  We will grow as
3641	 * needed later.  Depending on the orientation of the stack (i.e.
3642	 * the grow direction) we either map at the top of the range, the
3643	 * bottom of the range or in the middle.
3644	 *
3645	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3646	 * and cow to be 0.  Possibly we should eliminate these as input
3647	 * parameters, and just pass these values here in the insert call.
3648	 */
3649	if (orient == MAP_STACK_GROWS_DOWN) {
3650		bot = addrbos + max_ssize - init_ssize;
3651		top = bot + init_ssize;
3652		gap_bot = addrbos;
3653		gap_top = bot;
3654	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
3655		bot = addrbos;
3656		top = bot + init_ssize;
3657		gap_bot = top;
3658		gap_top = addrbos + max_ssize;
3659	}
3660	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3661	if (rv != KERN_SUCCESS)
3662		return (rv);
3663	new_entry = prev_entry->next;
3664	KASSERT(new_entry->end == top || new_entry->start == bot,
3665	    ("Bad entry start/end for new stack entry"));
3666	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3667	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3668	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3669	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3670	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3671	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3672	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3673	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3674	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3675	if (rv != KERN_SUCCESS)
3676		(void)vm_map_delete(map, bot, top);
3677	return (rv);
3678}
3679
3680/*
3681 * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3682 * successfully grow the stack.
3683 */
3684static int
3685vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3686{
3687	vm_map_entry_t stack_entry;
3688	struct proc *p;
3689	struct vmspace *vm;
3690	struct ucred *cred;
3691	vm_offset_t gap_end, gap_start, grow_start;
3692	size_t grow_amount, guard, max_grow;
3693	rlim_t lmemlim, stacklim, vmemlim;
3694	int rv, rv1;
3695	bool gap_deleted, grow_down, is_procstack;
3696#ifdef notyet
3697	uint64_t limit;
3698#endif
3699#ifdef RACCT
3700	int error;
3701#endif
3702
3703	p = curproc;
3704	vm = p->p_vmspace;
3705
3706	/*
3707	 * Disallow stack growth when the access is performed by a
3708	 * debugger or AIO daemon.  The reason is that the wrong
3709	 * resource limits are applied.
3710	 */
3711	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3712		return (KERN_FAILURE);
3713
3714	MPASS(!map->system_map);
3715
3716	guard = stack_guard_page * PAGE_SIZE;
3717	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3718	stacklim = lim_cur(curthread, RLIMIT_STACK);
3719	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3720retry:
3721	/* If addr is not in a hole for a stack grow area, no need to grow. */
3722	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3723		return (KERN_FAILURE);
3724	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3725		return (KERN_SUCCESS);
3726	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3727		stack_entry = gap_entry->next;
3728		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3729		    stack_entry->start != gap_entry->end)
3730			return (KERN_FAILURE);
3731		grow_amount = round_page(stack_entry->start - addr);
3732		grow_down = true;
3733	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3734		stack_entry = gap_entry->prev;
3735		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3736		    stack_entry->end != gap_entry->start)
3737			return (KERN_FAILURE);
3738		grow_amount = round_page(addr + 1 - stack_entry->end);
3739		grow_down = false;
3740	} else {
3741		return (KERN_FAILURE);
3742	}
3743	max_grow = gap_entry->end - gap_entry->start;
3744	if (guard > max_grow)
3745		return (KERN_NO_SPACE);
3746	max_grow -= guard;
3747	if (grow_amount > max_grow)
3748		return (KERN_NO_SPACE);
3749
3750	/*
3751	 * If this is the main process stack, see if we're over the stack
3752	 * limit.
3753	 */
3754	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3755	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3756	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3757		return (KERN_NO_SPACE);
3758
3759#ifdef RACCT
3760	if (racct_enable) {
3761		PROC_LOCK(p);
3762		if (is_procstack && racct_set(p, RACCT_STACK,
3763		    ctob(vm->vm_ssize) + grow_amount)) {
3764			PROC_UNLOCK(p);
3765			return (KERN_NO_SPACE);
3766		}
3767		PROC_UNLOCK(p);
3768	}
3769#endif
3770
3771	grow_amount = roundup(grow_amount, sgrowsiz);
3772	if (grow_amount > max_grow)
3773		grow_amount = max_grow;
3774	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3775		grow_amount = trunc_page((vm_size_t)stacklim) -
3776		    ctob(vm->vm_ssize);
3777	}
3778
3779#ifdef notyet
3780	PROC_LOCK(p);
3781	limit = racct_get_available(p, RACCT_STACK);
3782	PROC_UNLOCK(p);
3783	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3784		grow_amount = limit - ctob(vm->vm_ssize);
3785#endif
3786
3787	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3788		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3789			rv = KERN_NO_SPACE;
3790			goto out;
3791		}
3792#ifdef RACCT
3793		if (racct_enable) {
3794			PROC_LOCK(p);
3795			if (racct_set(p, RACCT_MEMLOCK,
3796			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3797				PROC_UNLOCK(p);
3798				rv = KERN_NO_SPACE;
3799				goto out;
3800			}
3801			PROC_UNLOCK(p);
3802		}
3803#endif
3804	}
3805
3806	/* If we would blow our VMEM resource limit, no go */
3807	if (map->size + grow_amount > vmemlim) {
3808		rv = KERN_NO_SPACE;
3809		goto out;
3810	}
3811#ifdef RACCT
3812	if (racct_enable) {
3813		PROC_LOCK(p);
3814		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3815			PROC_UNLOCK(p);
3816			rv = KERN_NO_SPACE;
3817			goto out;
3818		}
3819		PROC_UNLOCK(p);
3820	}
3821#endif
3822
3823	if (vm_map_lock_upgrade(map)) {
3824		gap_entry = NULL;
3825		vm_map_lock_read(map);
3826		goto retry;
3827	}
3828
3829	if (grow_down) {
3830		grow_start = gap_entry->end - grow_amount;
3831		if (gap_entry->start + grow_amount == gap_entry->end) {
3832			gap_start = gap_entry->start;
3833			gap_end = gap_entry->end;
3834			vm_map_entry_delete(map, gap_entry);
3835			gap_deleted = true;
3836		} else {
3837			MPASS(gap_entry->start < gap_entry->end - grow_amount);
3838			gap_entry->end -= grow_amount;
3839			vm_map_entry_resize_free(map, gap_entry);
3840			gap_deleted = false;
3841		}
3842		rv = vm_map_insert(map, NULL, 0, grow_start,
3843		    grow_start + grow_amount,
3844		    stack_entry->protection, stack_entry->max_protection,
3845		    MAP_STACK_GROWS_DOWN);
3846		if (rv != KERN_SUCCESS) {
3847			if (gap_deleted) {
3848				rv1 = vm_map_insert(map, NULL, 0, gap_start,
3849				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
3850				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3851				MPASS(rv1 == KERN_SUCCESS);
3852			} else {
3853				gap_entry->end += grow_amount;
3854				vm_map_entry_resize_free(map, gap_entry);
3855			}
3856		}
3857	} else {
3858		grow_start = stack_entry->end;
3859		cred = stack_entry->cred;
3860		if (cred == NULL && stack_entry->object.vm_object != NULL)
3861			cred = stack_entry->object.vm_object->cred;
3862		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3863			rv = KERN_NO_SPACE;
3864		/* Grow the underlying object if applicable. */
3865		else if (stack_entry->object.vm_object == NULL ||
3866		    vm_object_coalesce(stack_entry->object.vm_object,
3867		    stack_entry->offset,
3868		    (vm_size_t)(stack_entry->end - stack_entry->start),
3869		    (vm_size_t)grow_amount, cred != NULL)) {
3870			if (gap_entry->start + grow_amount == gap_entry->end)
3871				vm_map_entry_delete(map, gap_entry);
3872			else
3873				gap_entry->start += grow_amount;
3874			stack_entry->end += grow_amount;
3875			map->size += grow_amount;
3876			vm_map_entry_resize_free(map, stack_entry);
3877			rv = KERN_SUCCESS;
3878		} else
3879			rv = KERN_FAILURE;
3880	}
3881	if (rv == KERN_SUCCESS && is_procstack)
3882		vm->vm_ssize += btoc(grow_amount);
3883
3884	/*
3885	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3886	 */
3887	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3888		vm_map_unlock(map);
3889		vm_map_wire(map, grow_start, grow_start + grow_amount,
3890		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3891		vm_map_lock_read(map);
3892	} else
3893		vm_map_lock_downgrade(map);
3894
3895out:
3896#ifdef RACCT
3897	if (racct_enable && rv != KERN_SUCCESS) {
3898		PROC_LOCK(p);
3899		error = racct_set(p, RACCT_VMEM, map->size);
3900		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3901		if (!old_mlock) {
3902			error = racct_set(p, RACCT_MEMLOCK,
3903			    ptoa(pmap_wired_count(map->pmap)));
3904			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3905		}
3906	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3907		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3908		PROC_UNLOCK(p);
3909	}
3910#endif
3911
3912	return (rv);
3913}
3914
3915/*
3916 * Unshare the specified VM space for exec.  If other processes are
3917 * mapped to it, then create a new one.  The new vmspace is null.
3918 */
3919int
3920vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3921{
3922	struct vmspace *oldvmspace = p->p_vmspace;
3923	struct vmspace *newvmspace;
3924
3925	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3926	    ("vmspace_exec recursed"));
3927	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
3928	if (newvmspace == NULL)
3929		return (ENOMEM);
3930	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3931	/*
3932	 * This code is written like this for prototype purposes.  The
3933	 * goal is to avoid running down the vmspace here, but let the
3934	 * other process's that are still using the vmspace to finally
3935	 * run it down.  Even though there is little or no chance of blocking
3936	 * here, it is a good idea to keep this form for future mods.
3937	 */
3938	PROC_VMSPACE_LOCK(p);
3939	p->p_vmspace = newvmspace;
3940	PROC_VMSPACE_UNLOCK(p);
3941	if (p == curthread->td_proc)
3942		pmap_activate(curthread);
3943	curthread->td_pflags |= TDP_EXECVMSPC;
3944	return (0);
3945}
3946
3947/*
3948 * Unshare the specified VM space for forcing COW.  This
3949 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3950 */
3951int
3952vmspace_unshare(struct proc *p)
3953{
3954	struct vmspace *oldvmspace = p->p_vmspace;
3955	struct vmspace *newvmspace;
3956	vm_ooffset_t fork_charge;
3957
3958	if (oldvmspace->vm_refcnt == 1)
3959		return (0);
3960	fork_charge = 0;
3961	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3962	if (newvmspace == NULL)
3963		return (ENOMEM);
3964	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3965		vmspace_free(newvmspace);
3966		return (ENOMEM);
3967	}
3968	PROC_VMSPACE_LOCK(p);
3969	p->p_vmspace = newvmspace;
3970	PROC_VMSPACE_UNLOCK(p);
3971	if (p == curthread->td_proc)
3972		pmap_activate(curthread);
3973	vmspace_free(oldvmspace);
3974	return (0);
3975}
3976
3977/*
3978 *	vm_map_lookup:
3979 *
3980 *	Finds the VM object, offset, and
3981 *	protection for a given virtual address in the
3982 *	specified map, assuming a page fault of the
3983 *	type specified.
3984 *
3985 *	Leaves the map in question locked for read; return
3986 *	values are guaranteed until a vm_map_lookup_done
3987 *	call is performed.  Note that the map argument
3988 *	is in/out; the returned map must be used in
3989 *	the call to vm_map_lookup_done.
3990 *
3991 *	A handle (out_entry) is returned for use in
3992 *	vm_map_lookup_done, to make that fast.
3993 *
3994 *	If a lookup is requested with "write protection"
3995 *	specified, the map may be changed to perform virtual
3996 *	copying operations, although the data referenced will
3997 *	remain the same.
3998 */
3999int
4000vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4001	      vm_offset_t vaddr,
4002	      vm_prot_t fault_typea,
4003	      vm_map_entry_t *out_entry,	/* OUT */
4004	      vm_object_t *object,		/* OUT */
4005	      vm_pindex_t *pindex,		/* OUT */
4006	      vm_prot_t *out_prot,		/* OUT */
4007	      boolean_t *wired)			/* OUT */
4008{
4009	vm_map_entry_t entry;
4010	vm_map_t map = *var_map;
4011	vm_prot_t prot;
4012	vm_prot_t fault_type = fault_typea;
4013	vm_object_t eobject;
4014	vm_size_t size;
4015	struct ucred *cred;
4016
4017RetryLookup:
4018
4019	vm_map_lock_read(map);
4020
4021RetryLookupLocked:
4022	/*
4023	 * Lookup the faulting address.
4024	 */
4025	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4026		vm_map_unlock_read(map);
4027		return (KERN_INVALID_ADDRESS);
4028	}
4029
4030	entry = *out_entry;
4031
4032	/*
4033	 * Handle submaps.
4034	 */
4035	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4036		vm_map_t old_map = map;
4037
4038		*var_map = map = entry->object.sub_map;
4039		vm_map_unlock_read(old_map);
4040		goto RetryLookup;
4041	}
4042
4043	/*
4044	 * Check whether this task is allowed to have this page.
4045	 */
4046	prot = entry->protection;
4047	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4048		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4049		if (prot == VM_PROT_NONE && map != kernel_map &&
4050		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4051		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4052		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4053		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4054			goto RetryLookupLocked;
4055	}
4056	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4057	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4058		vm_map_unlock_read(map);
4059		return (KERN_PROTECTION_FAILURE);
4060	}
4061	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4062	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4063	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4064	    ("entry %p flags %x", entry, entry->eflags));
4065	if ((fault_typea & VM_PROT_COPY) != 0 &&
4066	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4067	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4068		vm_map_unlock_read(map);
4069		return (KERN_PROTECTION_FAILURE);
4070	}
4071
4072	/*
4073	 * If this page is not pageable, we have to get it for all possible
4074	 * accesses.
4075	 */
4076	*wired = (entry->wired_count != 0);
4077	if (*wired)
4078		fault_type = entry->protection;
4079	size = entry->end - entry->start;
4080	/*
4081	 * If the entry was copy-on-write, we either ...
4082	 */
4083	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4084		/*
4085		 * If we want to write the page, we may as well handle that
4086		 * now since we've got the map locked.
4087		 *
4088		 * If we don't need to write the page, we just demote the
4089		 * permissions allowed.
4090		 */
4091		if ((fault_type & VM_PROT_WRITE) != 0 ||
4092		    (fault_typea & VM_PROT_COPY) != 0) {
4093			/*
4094			 * Make a new object, and place it in the object
4095			 * chain.  Note that no new references have appeared
4096			 * -- one just moved from the map to the new
4097			 * object.
4098			 */
4099			if (vm_map_lock_upgrade(map))
4100				goto RetryLookup;
4101
4102			if (entry->cred == NULL) {
4103				/*
4104				 * The debugger owner is charged for
4105				 * the memory.
4106				 */
4107				cred = curthread->td_ucred;
4108				crhold(cred);
4109				if (!swap_reserve_by_cred(size, cred)) {
4110					crfree(cred);
4111					vm_map_unlock(map);
4112					return (KERN_RESOURCE_SHORTAGE);
4113				}
4114				entry->cred = cred;
4115			}
4116			vm_object_shadow(&entry->object.vm_object,
4117			    &entry->offset, size);
4118			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4119			eobject = entry->object.vm_object;
4120			if (eobject->cred != NULL) {
4121				/*
4122				 * The object was not shadowed.
4123				 */
4124				swap_release_by_cred(size, entry->cred);
4125				crfree(entry->cred);
4126				entry->cred = NULL;
4127			} else if (entry->cred != NULL) {
4128				VM_OBJECT_WLOCK(eobject);
4129				eobject->cred = entry->cred;
4130				eobject->charge = size;
4131				VM_OBJECT_WUNLOCK(eobject);
4132				entry->cred = NULL;
4133			}
4134
4135			vm_map_lock_downgrade(map);
4136		} else {
4137			/*
4138			 * We're attempting to read a copy-on-write page --
4139			 * don't allow writes.
4140			 */
4141			prot &= ~VM_PROT_WRITE;
4142		}
4143	}
4144
4145	/*
4146	 * Create an object if necessary.
4147	 */
4148	if (entry->object.vm_object == NULL &&
4149	    !map->system_map) {
4150		if (vm_map_lock_upgrade(map))
4151			goto RetryLookup;
4152		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4153		    atop(size));
4154		entry->offset = 0;
4155		if (entry->cred != NULL) {
4156			VM_OBJECT_WLOCK(entry->object.vm_object);
4157			entry->object.vm_object->cred = entry->cred;
4158			entry->object.vm_object->charge = size;
4159			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4160			entry->cred = NULL;
4161		}
4162		vm_map_lock_downgrade(map);
4163	}
4164
4165	/*
4166	 * Return the object/offset from this entry.  If the entry was
4167	 * copy-on-write or empty, it has been fixed up.
4168	 */
4169	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4170	*object = entry->object.vm_object;
4171
4172	*out_prot = prot;
4173	return (KERN_SUCCESS);
4174}
4175
4176/*
4177 *	vm_map_lookup_locked:
4178 *
4179 *	Lookup the faulting address.  A version of vm_map_lookup that returns
4180 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4181 */
4182int
4183vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4184		     vm_offset_t vaddr,
4185		     vm_prot_t fault_typea,
4186		     vm_map_entry_t *out_entry,	/* OUT */
4187		     vm_object_t *object,	/* OUT */
4188		     vm_pindex_t *pindex,	/* OUT */
4189		     vm_prot_t *out_prot,	/* OUT */
4190		     boolean_t *wired)		/* OUT */
4191{
4192	vm_map_entry_t entry;
4193	vm_map_t map = *var_map;
4194	vm_prot_t prot;
4195	vm_prot_t fault_type = fault_typea;
4196
4197	/*
4198	 * Lookup the faulting address.
4199	 */
4200	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4201		return (KERN_INVALID_ADDRESS);
4202
4203	entry = *out_entry;
4204
4205	/*
4206	 * Fail if the entry refers to a submap.
4207	 */
4208	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4209		return (KERN_FAILURE);
4210
4211	/*
4212	 * Check whether this task is allowed to have this page.
4213	 */
4214	prot = entry->protection;
4215	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4216	if ((fault_type & prot) != fault_type)
4217		return (KERN_PROTECTION_FAILURE);
4218
4219	/*
4220	 * If this page is not pageable, we have to get it for all possible
4221	 * accesses.
4222	 */
4223	*wired = (entry->wired_count != 0);
4224	if (*wired)
4225		fault_type = entry->protection;
4226
4227	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4228		/*
4229		 * Fail if the entry was copy-on-write for a write fault.
4230		 */
4231		if (fault_type & VM_PROT_WRITE)
4232			return (KERN_FAILURE);
4233		/*
4234		 * We're attempting to read a copy-on-write page --
4235		 * don't allow writes.
4236		 */
4237		prot &= ~VM_PROT_WRITE;
4238	}
4239
4240	/*
4241	 * Fail if an object should be created.
4242	 */
4243	if (entry->object.vm_object == NULL && !map->system_map)
4244		return (KERN_FAILURE);
4245
4246	/*
4247	 * Return the object/offset from this entry.  If the entry was
4248	 * copy-on-write or empty, it has been fixed up.
4249	 */
4250	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4251	*object = entry->object.vm_object;
4252
4253	*out_prot = prot;
4254	return (KERN_SUCCESS);
4255}
4256
4257/*
4258 *	vm_map_lookup_done:
4259 *
4260 *	Releases locks acquired by a vm_map_lookup
4261 *	(according to the handle returned by that lookup).
4262 */
4263void
4264vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4265{
4266	/*
4267	 * Unlock the main-level map
4268	 */
4269	vm_map_unlock_read(map);
4270}
4271
4272vm_offset_t
4273vm_map_max_KBI(const struct vm_map *map)
4274{
4275
4276	return (vm_map_max(map));
4277}
4278
4279vm_offset_t
4280vm_map_min_KBI(const struct vm_map *map)
4281{
4282
4283	return (vm_map_min(map));
4284}
4285
4286pmap_t
4287vm_map_pmap_KBI(vm_map_t map)
4288{
4289
4290	return (map->pmap);
4291}
4292
4293#include "opt_ddb.h"
4294#ifdef DDB
4295#include <sys/kernel.h>
4296
4297#include <ddb/ddb.h>
4298
4299static void
4300vm_map_print(vm_map_t map)
4301{
4302	vm_map_entry_t entry;
4303
4304	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4305	    (void *)map,
4306	    (void *)map->pmap, map->nentries, map->timestamp);
4307
4308	db_indent += 2;
4309	for (entry = map->header.next; entry != &map->header;
4310	    entry = entry->next) {
4311		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4312		    (void *)entry, (void *)entry->start, (void *)entry->end,
4313		    entry->eflags);
4314		{
4315			static char *inheritance_name[4] =
4316			{"share", "copy", "none", "donate_copy"};
4317
4318			db_iprintf(" prot=%x/%x/%s",
4319			    entry->protection,
4320			    entry->max_protection,
4321			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4322			if (entry->wired_count != 0)
4323				db_printf(", wired");
4324		}
4325		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4326			db_printf(", share=%p, offset=0x%jx\n",
4327			    (void *)entry->object.sub_map,
4328			    (uintmax_t)entry->offset);
4329			if ((entry->prev == &map->header) ||
4330			    (entry->prev->object.sub_map !=
4331				entry->object.sub_map)) {
4332				db_indent += 2;
4333				vm_map_print((vm_map_t)entry->object.sub_map);
4334				db_indent -= 2;
4335			}
4336		} else {
4337			if (entry->cred != NULL)
4338				db_printf(", ruid %d", entry->cred->cr_ruid);
4339			db_printf(", object=%p, offset=0x%jx",
4340			    (void *)entry->object.vm_object,
4341			    (uintmax_t)entry->offset);
4342			if (entry->object.vm_object && entry->object.vm_object->cred)
4343				db_printf(", obj ruid %d charge %jx",
4344				    entry->object.vm_object->cred->cr_ruid,
4345				    (uintmax_t)entry->object.vm_object->charge);
4346			if (entry->eflags & MAP_ENTRY_COW)
4347				db_printf(", copy (%s)",
4348				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4349			db_printf("\n");
4350
4351			if ((entry->prev == &map->header) ||
4352			    (entry->prev->object.vm_object !=
4353				entry->object.vm_object)) {
4354				db_indent += 2;
4355				vm_object_print((db_expr_t)(intptr_t)
4356						entry->object.vm_object,
4357						0, 0, (char *)0);
4358				db_indent -= 2;
4359			}
4360		}
4361	}
4362	db_indent -= 2;
4363}
4364
4365DB_SHOW_COMMAND(map, map)
4366{
4367
4368	if (!have_addr) {
4369		db_printf("usage: show map <addr>\n");
4370		return;
4371	}
4372	vm_map_print((vm_map_t)addr);
4373}
4374
4375DB_SHOW_COMMAND(procvm, procvm)
4376{
4377	struct proc *p;
4378
4379	if (have_addr) {
4380		p = db_lookup_proc(addr);
4381	} else {
4382		p = curproc;
4383	}
4384
4385	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4386	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4387	    (void *)vmspace_pmap(p->p_vmspace));
4388
4389	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4390}
4391
4392#endif /* DDB */
4393