vm_kern.c revision 331722
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/11/sys/vm/vm_kern.c 331722 2018-03-29 02:50:57Z eadler $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/eventhandler.h>
72#include <sys/lock.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75#include <sys/rwlock.h>
76#include <sys/sysctl.h>
77#include <sys/vmem.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/vm_kern.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/vm_radix.h>
88#include <vm/vm_extern.h>
89#include <vm/uma.h>
90
91vm_map_t kernel_map;
92vm_map_t exec_map;
93vm_map_t pipe_map;
94
95const void *zero_region;
96CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
97
98/* NB: Used by kernel debuggers. */
99const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
100
101u_int exec_map_entry_size;
102u_int exec_map_entries;
103
104SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
105    SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
106
107SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
108#if defined(__arm__) || defined(__sparc64__)
109    &vm_max_kernel_address, 0,
110#else
111    SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
112#endif
113    "Max kernel address");
114
115/*
116 *	kva_alloc:
117 *
118 *	Allocate a virtual address range with no underlying object and
119 *	no initial mapping to physical memory.  Any mapping from this
120 *	range to physical memory must be explicitly created prior to
121 *	its use, typically with pmap_qenter().  Any attempt to create
122 *	a mapping on demand through vm_fault() will result in a panic.
123 */
124vm_offset_t
125kva_alloc(vm_size_t size)
126{
127	vm_offset_t addr;
128
129	size = round_page(size);
130	if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
131		return (0);
132
133	return (addr);
134}
135
136/*
137 *	kva_free:
138 *
139 *	Release a region of kernel virtual memory allocated
140 *	with kva_alloc, and return the physical pages
141 *	associated with that region.
142 *
143 *	This routine may not block on kernel maps.
144 */
145void
146kva_free(vm_offset_t addr, vm_size_t size)
147{
148
149	size = round_page(size);
150	vmem_free(kernel_arena, addr, size);
151}
152
153/*
154 *	Allocates a region from the kernel address map and physical pages
155 *	within the specified address range to the kernel object.  Creates a
156 *	wired mapping from this region to these pages, and returns the
157 *	region's starting virtual address.  The allocated pages are not
158 *	necessarily physically contiguous.  If M_ZERO is specified through the
159 *	given flags, then the pages are zeroed before they are mapped.
160 */
161vm_offset_t
162kmem_alloc_attr(vmem_t *vmem, vm_size_t size, int flags, vm_paddr_t low,
163    vm_paddr_t high, vm_memattr_t memattr)
164{
165	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
166	vm_offset_t addr, i, offset;
167	vm_page_t m;
168	int pflags, tries;
169
170	size = round_page(size);
171	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
172		return (0);
173	offset = addr - VM_MIN_KERNEL_ADDRESS;
174	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
175	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
176	pflags |= VM_ALLOC_NOWAIT;
177	VM_OBJECT_WLOCK(object);
178	for (i = 0; i < size; i += PAGE_SIZE) {
179		tries = 0;
180retry:
181		m = vm_page_alloc_contig(object, atop(offset + i),
182		    pflags, 1, low, high, PAGE_SIZE, 0, memattr);
183		if (m == NULL) {
184			VM_OBJECT_WUNLOCK(object);
185			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
186				if (!vm_page_reclaim_contig(pflags, 1,
187				    low, high, PAGE_SIZE, 0) &&
188				    (flags & M_WAITOK) != 0)
189					VM_WAIT;
190				VM_OBJECT_WLOCK(object);
191				tries++;
192				goto retry;
193			}
194			kmem_unback(object, addr, i);
195			vmem_free(vmem, addr, size);
196			return (0);
197		}
198		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
199			pmap_zero_page(m);
200		m->valid = VM_PAGE_BITS_ALL;
201		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
202		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
203	}
204	VM_OBJECT_WUNLOCK(object);
205	return (addr);
206}
207
208/*
209 *	Allocates a region from the kernel address map and physically
210 *	contiguous pages within the specified address range to the kernel
211 *	object.  Creates a wired mapping from this region to these pages, and
212 *	returns the region's starting virtual address.  If M_ZERO is specified
213 *	through the given flags, then the pages are zeroed before they are
214 *	mapped.
215 */
216vm_offset_t
217kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
218    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
219    vm_memattr_t memattr)
220{
221	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
222	vm_offset_t addr, offset, tmp;
223	vm_page_t end_m, m;
224	u_long npages;
225	int pflags, tries;
226
227	size = round_page(size);
228	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
229		return (0);
230	offset = addr - VM_MIN_KERNEL_ADDRESS;
231	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
232	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
233	pflags |= VM_ALLOC_NOWAIT;
234	npages = atop(size);
235	VM_OBJECT_WLOCK(object);
236	tries = 0;
237retry:
238	m = vm_page_alloc_contig(object, atop(offset), pflags,
239	    npages, low, high, alignment, boundary, memattr);
240	if (m == NULL) {
241		VM_OBJECT_WUNLOCK(object);
242		if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
243			if (!vm_page_reclaim_contig(pflags, npages, low, high,
244			    alignment, boundary) && (flags & M_WAITOK) != 0)
245				VM_WAIT;
246			VM_OBJECT_WLOCK(object);
247			tries++;
248			goto retry;
249		}
250		vmem_free(vmem, addr, size);
251		return (0);
252	}
253	end_m = m + npages;
254	tmp = addr;
255	for (; m < end_m; m++) {
256		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
257			pmap_zero_page(m);
258		m->valid = VM_PAGE_BITS_ALL;
259		pmap_enter(kernel_pmap, tmp, m, VM_PROT_ALL,
260		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
261		tmp += PAGE_SIZE;
262	}
263	VM_OBJECT_WUNLOCK(object);
264	return (addr);
265}
266
267/*
268 *	kmem_suballoc:
269 *
270 *	Allocates a map to manage a subrange
271 *	of the kernel virtual address space.
272 *
273 *	Arguments are as follows:
274 *
275 *	parent		Map to take range from
276 *	min, max	Returned endpoints of map
277 *	size		Size of range to find
278 *	superpage_align	Request that min is superpage aligned
279 */
280vm_map_t
281kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
282    vm_size_t size, boolean_t superpage_align)
283{
284	int ret;
285	vm_map_t result;
286
287	size = round_page(size);
288
289	*min = vm_map_min(parent);
290	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
291	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
292	    MAP_ACC_NO_CHARGE);
293	if (ret != KERN_SUCCESS)
294		panic("kmem_suballoc: bad status return of %d", ret);
295	*max = *min + size;
296	result = vm_map_create(vm_map_pmap(parent), *min, *max);
297	if (result == NULL)
298		panic("kmem_suballoc: cannot create submap");
299	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
300		panic("kmem_suballoc: unable to change range to submap");
301	return (result);
302}
303
304/*
305 *	kmem_malloc:
306 *
307 *	Allocate wired-down pages in the kernel's address space.
308 */
309vm_offset_t
310kmem_malloc(struct vmem *vmem, vm_size_t size, int flags)
311{
312	vm_offset_t addr;
313	int rv;
314
315	size = round_page(size);
316	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
317		return (0);
318
319	rv = kmem_back((vmem == kmem_arena) ? kmem_object : kernel_object,
320	    addr, size, flags);
321	if (rv != KERN_SUCCESS) {
322		vmem_free(vmem, addr, size);
323		return (0);
324	}
325	return (addr);
326}
327
328/*
329 *	kmem_back:
330 *
331 *	Allocate physical pages for the specified virtual address range.
332 */
333int
334kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
335{
336	vm_offset_t offset, i;
337	vm_page_t m, mpred;
338	int pflags;
339
340	KASSERT(object == kmem_object || object == kernel_object,
341	    ("kmem_back: only supports kernel objects."));
342
343	offset = addr - VM_MIN_KERNEL_ADDRESS;
344	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
345	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
346	if (flags & M_WAITOK)
347		pflags |= VM_ALLOC_WAITFAIL;
348
349	i = 0;
350	VM_OBJECT_WLOCK(object);
351retry:
352	mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
353	for (; i < size; i += PAGE_SIZE, mpred = m) {
354		m = vm_page_alloc_after(object, atop(offset + i), pflags,
355		    mpred);
356
357		/*
358		 * Ran out of space, free everything up and return. Don't need
359		 * to lock page queues here as we know that the pages we got
360		 * aren't on any queues.
361		 */
362		if (m == NULL) {
363			if ((flags & M_NOWAIT) == 0)
364				goto retry;
365			VM_OBJECT_WUNLOCK(object);
366			kmem_unback(object, addr, i);
367			return (KERN_NO_SPACE);
368		}
369		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
370			pmap_zero_page(m);
371		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
372		    ("kmem_malloc: page %p is managed", m));
373		m->valid = VM_PAGE_BITS_ALL;
374		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
375		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
376	}
377	VM_OBJECT_WUNLOCK(object);
378
379	return (KERN_SUCCESS);
380}
381
382/*
383 *	kmem_unback:
384 *
385 *	Unmap and free the physical pages underlying the specified virtual
386 *	address range.
387 *
388 *	A physical page must exist within the specified object at each index
389 *	that is being unmapped.
390 */
391void
392kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
393{
394	vm_page_t m, next;
395	vm_offset_t end, offset;
396
397	KASSERT(object == kmem_object || object == kernel_object,
398	    ("kmem_unback: only supports kernel objects."));
399
400	pmap_remove(kernel_pmap, addr, addr + size);
401	offset = addr - VM_MIN_KERNEL_ADDRESS;
402	end = offset + size;
403	VM_OBJECT_WLOCK(object);
404	for (m = vm_page_lookup(object, atop(offset)); offset < end;
405	    offset += PAGE_SIZE, m = next) {
406		next = vm_page_next(m);
407		vm_page_unwire(m, PQ_NONE);
408		vm_page_free(m);
409	}
410	VM_OBJECT_WUNLOCK(object);
411}
412
413/*
414 *	kmem_free:
415 *
416 *	Free memory allocated with kmem_malloc.  The size must match the
417 *	original allocation.
418 */
419void
420kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
421{
422
423	size = round_page(size);
424	kmem_unback((vmem == kmem_arena) ? kmem_object : kernel_object,
425	    addr, size);
426	vmem_free(vmem, addr, size);
427}
428
429/*
430 *	kmap_alloc_wait:
431 *
432 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
433 *	has no room, the caller sleeps waiting for more memory in the submap.
434 *
435 *	This routine may block.
436 */
437vm_offset_t
438kmap_alloc_wait(vm_map_t map, vm_size_t size)
439{
440	vm_offset_t addr;
441
442	size = round_page(size);
443	if (!swap_reserve(size))
444		return (0);
445
446	for (;;) {
447		/*
448		 * To make this work for more than one map, use the map's lock
449		 * to lock out sleepers/wakers.
450		 */
451		vm_map_lock(map);
452		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
453			break;
454		/* no space now; see if we can ever get space */
455		if (vm_map_max(map) - vm_map_min(map) < size) {
456			vm_map_unlock(map);
457			swap_release(size);
458			return (0);
459		}
460		map->needs_wakeup = TRUE;
461		vm_map_unlock_and_wait(map, 0);
462	}
463	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
464	    VM_PROT_ALL, MAP_ACC_CHARGED);
465	vm_map_unlock(map);
466	return (addr);
467}
468
469/*
470 *	kmap_free_wakeup:
471 *
472 *	Returns memory to a submap of the kernel, and wakes up any processes
473 *	waiting for memory in that map.
474 */
475void
476kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
477{
478
479	vm_map_lock(map);
480	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
481	if (map->needs_wakeup) {
482		map->needs_wakeup = FALSE;
483		vm_map_wakeup(map);
484	}
485	vm_map_unlock(map);
486}
487
488void
489kmem_init_zero_region(void)
490{
491	vm_offset_t addr, i;
492	vm_page_t m;
493
494	/*
495	 * Map a single physical page of zeros to a larger virtual range.
496	 * This requires less looping in places that want large amounts of
497	 * zeros, while not using much more physical resources.
498	 */
499	addr = kva_alloc(ZERO_REGION_SIZE);
500	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
501	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
502	if ((m->flags & PG_ZERO) == 0)
503		pmap_zero_page(m);
504	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
505		pmap_qenter(addr + i, &m, 1);
506	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
507
508	zero_region = (const void *)addr;
509}
510
511/*
512 * 	kmem_init:
513 *
514 *	Create the kernel map; insert a mapping covering kernel text,
515 *	data, bss, and all space allocated thus far (`boostrap' data).  The
516 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
517 *	`start' as allocated, and the range between `start' and `end' as free.
518 */
519void
520kmem_init(vm_offset_t start, vm_offset_t end)
521{
522	vm_map_t m;
523
524	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
525	m->system_map = 1;
526	vm_map_lock(m);
527	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
528	kernel_map = m;
529	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
530#ifdef __amd64__
531	    KERNBASE,
532#else
533	    VM_MIN_KERNEL_ADDRESS,
534#endif
535	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
536	/* ... and ending with the completion of the above `insert' */
537	vm_map_unlock(m);
538}
539
540#ifdef DIAGNOSTIC
541/*
542 * Allow userspace to directly trigger the VM drain routine for testing
543 * purposes.
544 */
545static int
546debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
547{
548	int error, i;
549
550	i = 0;
551	error = sysctl_handle_int(oidp, &i, 0, req);
552	if (error)
553		return (error);
554	if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
555		return (EINVAL);
556	if (i != 0)
557		EVENTHANDLER_INVOKE(vm_lowmem, i);
558	return (0);
559}
560
561SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
562    debug_vm_lowmem, "I", "set to trigger vm_lowmem event with given flags");
563#endif
564