vm_kern.c revision 12726
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.18 1995/12/07 12:48:13 davidg Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76#include <sys/syslog.h>
77#include <sys/queue.h>
78#include <sys/vmmeter.h>
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_prot.h>
83#include <vm/lock.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
91
92vm_map_t buffer_map;
93vm_map_t kernel_map;
94vm_map_t kmem_map;
95vm_map_t mb_map;
96int mb_map_full;
97vm_map_t io_map;
98vm_map_t clean_map;
99vm_map_t phys_map;
100vm_map_t exec_map;
101vm_map_t u_map;
102
103/*
104 *	kmem_alloc_pageable:
105 *
106 *	Allocate pageable memory to the kernel's address map.
107 *	"map" must be kernel_map or a submap of kernel_map.
108 */
109
110vm_offset_t
111kmem_alloc_pageable(map, size)
112	vm_map_t map;
113	register vm_size_t size;
114{
115	vm_offset_t addr;
116	register int result;
117
118	size = round_page(size);
119	addr = vm_map_min(map);
120	result = vm_map_find(map, NULL, (vm_offset_t) 0,
121	    &addr, size, TRUE);
122	if (result != KERN_SUCCESS) {
123		return (0);
124	}
125	return (addr);
126}
127
128/*
129 *	Allocate wired-down memory in the kernel's address map
130 *	or a submap.
131 */
132vm_offset_t
133kmem_alloc(map, size)
134	register vm_map_t map;
135	register vm_size_t size;
136{
137	vm_offset_t addr;
138	register vm_offset_t offset;
139	vm_offset_t i;
140
141	size = round_page(size);
142
143	/*
144	 * Use the kernel object for wired-down kernel pages. Assume that no
145	 * region of the kernel object is referenced more than once.
146	 */
147
148	/*
149	 * Locate sufficient space in the map.  This will give us the final
150	 * virtual address for the new memory, and thus will tell us the
151	 * offset within the kernel map.
152	 */
153	vm_map_lock(map);
154	if (vm_map_findspace(map, 0, size, &addr)) {
155		vm_map_unlock(map);
156		return (0);
157	}
158	offset = addr - VM_MIN_KERNEL_ADDRESS;
159	vm_object_reference(kernel_object);
160	vm_map_insert(map, kernel_object, offset, addr, addr + size);
161	vm_map_unlock(map);
162
163	/*
164	 * Guarantee that there are pages already in this object before
165	 * calling vm_map_pageable.  This is to prevent the following
166	 * scenario:
167	 *
168	 * 1) Threads have swapped out, so that there is a pager for the
169	 * kernel_object. 2) The kmsg zone is empty, and so we are
170	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
171	 * there is no page, but there is a pager, so we call
172	 * pager_data_request.  But the kmsg zone is empty, so we must
173	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
174	 * we get the data back from the pager, it will be (very stale)
175	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
176	 *
177	 * We're intentionally not activating the pages we allocate to prevent a
178	 * race with page-out.  vm_map_pageable will wire the pages.
179	 */
180
181	for (i = 0; i < size; i += PAGE_SIZE) {
182		vm_page_t mem;
183
184		while ((mem = vm_page_alloc(kernel_object, offset + i, (VM_ALLOC_NORMAL|VM_ALLOC_ZERO))) == NULL) {
185			VM_WAIT;
186		}
187		if ((mem->flags & PG_ZERO) == 0)
188			vm_page_zero_fill(mem);
189		mem->flags &= ~(PG_BUSY|PG_ZERO);
190		mem->valid = VM_PAGE_BITS_ALL;
191	}
192
193	/*
194	 * And finally, mark the data as non-pageable.
195	 */
196
197	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
198
199	/*
200	 * Try to coalesce the map
201	 */
202	vm_map_simplify(map, addr);
203
204	return (addr);
205}
206
207/*
208 *	kmem_free:
209 *
210 *	Release a region of kernel virtual memory allocated
211 *	with kmem_alloc, and return the physical pages
212 *	associated with that region.
213 */
214void
215kmem_free(map, addr, size)
216	vm_map_t map;
217	register vm_offset_t addr;
218	vm_size_t size;
219{
220	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
221}
222
223/*
224 *	kmem_suballoc:
225 *
226 *	Allocates a map to manage a subrange
227 *	of the kernel virtual address space.
228 *
229 *	Arguments are as follows:
230 *
231 *	parent		Map to take range from
232 *	size		Size of range to find
233 *	min, max	Returned endpoints of map
234 *	pageable	Can the region be paged
235 */
236vm_map_t
237kmem_suballoc(parent, min, max, size, pageable)
238	register vm_map_t parent;
239	vm_offset_t *min, *max;
240	register vm_size_t size;
241	boolean_t pageable;
242{
243	register int ret;
244	vm_map_t result;
245
246	size = round_page(size);
247
248	*min = (vm_offset_t) vm_map_min(parent);
249	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
250	    min, size, TRUE);
251	if (ret != KERN_SUCCESS) {
252		printf("kmem_suballoc: bad status return of %d.\n", ret);
253		panic("kmem_suballoc");
254	}
255	*max = *min + size;
256	pmap_reference(vm_map_pmap(parent));
257	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
258	if (result == NULL)
259		panic("kmem_suballoc: cannot create submap");
260	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
261		panic("kmem_suballoc: unable to change range to submap");
262	return (result);
263}
264
265/*
266 * Allocate wired-down memory in the kernel's address map for the higher
267 * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
268 * kmem_alloc() because we may need to allocate memory at interrupt
269 * level where we cannot block (canwait == FALSE).
270 *
271 * This routine has its own private kernel submap (kmem_map) and object
272 * (kmem_object).  This, combined with the fact that only malloc uses
273 * this routine, ensures that we will never block in map or object waits.
274 *
275 * Note that this still only works in a uni-processor environment and
276 * when called at splhigh().
277 *
278 * We don't worry about expanding the map (adding entries) since entries
279 * for wired maps are statically allocated.
280 */
281vm_offset_t
282kmem_malloc(map, size, waitflag)
283	register vm_map_t map;
284	register vm_size_t size;
285	boolean_t waitflag;
286{
287	register vm_offset_t offset, i;
288	vm_map_entry_t entry;
289	vm_offset_t addr;
290	vm_page_t m;
291
292	if (map != kmem_map && map != mb_map)
293		panic("kmem_malloc: map != {kmem,mb}_map");
294
295	size = round_page(size);
296	addr = vm_map_min(map);
297
298	/*
299	 * Locate sufficient space in the map.  This will give us the final
300	 * virtual address for the new memory, and thus will tell us the
301	 * offset within the kernel map.
302	 */
303	vm_map_lock(map);
304	if (vm_map_findspace(map, 0, size, &addr)) {
305		vm_map_unlock(map);
306		if (map == mb_map) {
307			mb_map_full = TRUE;
308			log(LOG_ERR, "mb_map full\n");
309			return (0);
310		}
311		if (waitflag == M_WAITOK)
312			panic("kmem_malloc: kmem_map too small");
313		return (0);
314	}
315	offset = addr - vm_map_min(kmem_map);
316	vm_object_reference(kmem_object);
317	vm_map_insert(map, kmem_object, offset, addr, addr + size);
318
319	/*
320	 * If we can wait, just mark the range as wired (will fault pages as
321	 * necessary).
322	 */
323	if (waitflag == M_WAITOK) {
324		vm_map_unlock(map);
325		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
326		    FALSE);
327		vm_map_simplify(map, addr);
328		return (addr);
329	}
330	/*
331	 * If we cannot wait then we must allocate all memory up front,
332	 * pulling it off the active queue to prevent pageout.
333	 */
334	for (i = 0; i < size; i += PAGE_SIZE) {
335		m = vm_page_alloc(kmem_object, offset + i,
336			(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
337
338		/*
339		 * Ran out of space, free everything up and return. Don't need
340		 * to lock page queues here as we know that the pages we got
341		 * aren't on any queues.
342		 */
343		if (m == NULL) {
344			while (i != 0) {
345				i -= PAGE_SIZE;
346				m = vm_page_lookup(kmem_object, offset + i);
347				vm_page_free(m);
348			}
349			vm_map_delete(map, addr, addr + size);
350			vm_map_unlock(map);
351			return (0);
352		}
353		m->flags &= ~(PG_BUSY|PG_ZERO);
354		m->valid = VM_PAGE_BITS_ALL;
355	}
356
357	/*
358	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
359	 * be able to extend the previous entry so there will be a new entry
360	 * exactly corresponding to this address range and it will have
361	 * wired_count == 0.
362	 */
363	if (!vm_map_lookup_entry(map, addr, &entry) ||
364	    entry->start != addr || entry->end != addr + size ||
365	    entry->wired_count)
366		panic("kmem_malloc: entry not found or misaligned");
367	entry->wired_count++;
368
369	/*
370	 * Loop thru pages, entering them in the pmap. (We cannot add them to
371	 * the wired count without wrapping the vm_page_queue_lock in
372	 * splimp...)
373	 */
374	for (i = 0; i < size; i += PAGE_SIZE) {
375		m = vm_page_lookup(kmem_object, offset + i);
376		pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
377	}
378	vm_map_unlock(map);
379
380	vm_map_simplify(map, addr);
381	return (addr);
382}
383
384/*
385 *	kmem_alloc_wait
386 *
387 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
388 *	has no room, the caller sleeps waiting for more memory in the submap.
389 *
390 */
391vm_offset_t
392kmem_alloc_wait(map, size)
393	vm_map_t map;
394	vm_size_t size;
395{
396	vm_offset_t addr;
397
398	size = round_page(size);
399
400	for (;;) {
401		/*
402		 * To make this work for more than one map, use the map's lock
403		 * to lock out sleepers/wakers.
404		 */
405		vm_map_lock(map);
406		if (vm_map_findspace(map, 0, size, &addr) == 0)
407			break;
408		/* no space now; see if we can ever get space */
409		if (vm_map_max(map) - vm_map_min(map) < size) {
410			vm_map_unlock(map);
411			return (0);
412		}
413		vm_map_unlock(map);
414		tsleep(map, PVM, "kmaw", 0);
415	}
416	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size);
417	vm_map_unlock(map);
418	return (addr);
419}
420
421/*
422 *	kmem_free_wakeup
423 *
424 *	Returns memory to a submap of the kernel, and wakes up any processes
425 *	waiting for memory in that map.
426 */
427void
428kmem_free_wakeup(map, addr, size)
429	vm_map_t map;
430	vm_offset_t addr;
431	vm_size_t size;
432{
433	vm_map_lock(map);
434	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
435	wakeup(map);
436	vm_map_unlock(map);
437}
438
439/*
440 * Create the kernel map; insert a mapping covering kernel text, data, bss,
441 * and all space allocated thus far (`boostrap' data).  The new map will thus
442 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
443 * the range between `start' and `end' as free.
444 */
445void
446kmem_init(start, end)
447	vm_offset_t start, end;
448{
449	register vm_map_t m;
450
451	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
452	vm_map_lock(m);
453	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
454	kernel_map = m;
455	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
456	    VM_MIN_KERNEL_ADDRESS, start);
457	/* ... and ending with the completion of the above `insert' */
458	vm_map_unlock(m);
459}
460