vm_kern.c revision 5455
1108983Simp/*
2108983Simp * Copyright (c) 1991, 1993
3108983Simp *	The Regents of the University of California.  All rights reserved.
4108983Simp *
5108983Simp * This code is derived from software contributed to Berkeley by
6108983Simp * The Mach Operating System project at Carnegie-Mellon University.
7108983Simp *
8108983Simp * Redistribution and use in source and binary forms, with or without
9108983Simp * modification, are permitted provided that the following conditions
10108983Simp * are met:
11108983Simp * 1. Redistributions of source code must retain the above copyright
12108983Simp *    notice, this list of conditions and the following disclaimer.
13108983Simp * 2. Redistributions in binary form must reproduce the above copyright
14108983Simp *    notice, this list of conditions and the following disclaimer in the
15108983Simp *    documentation and/or other materials provided with the distribution.
16108983Simp * 3. All advertising materials mentioning features or use of this software
17108983Simp *    must display the following acknowledgement:
18108983Simp *	This product includes software developed by the University of
19108983Simp *	California, Berkeley and its contributors.
20148471Simp * 4. Neither the name of the University nor the names of its contributors
21108983Simp *    may be used to endorse or promote products derived from this software
22139027Sbrueffer *    without specific prior written permission.
23146969Smarius *
24139027Sbrueffer * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25108983Simp * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26108983Simp * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27108983Simp * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28108983Simp * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29108983Simp * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30108983Simp * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31159126Sthompsa * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32159126Sthompsa * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33108983Simp * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34159126Sthompsa * SUCH DAMAGE.
35159126Sthompsa *
36159126Sthompsa *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37159126Sthompsa *
38108983Simp *
39108983Simp * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40159126Sthompsa * All rights reserved.
41159126Sthompsa *
42159126Sthompsa * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43159126Sthompsa *
44108983Simp * Permission to use, copy, modify and distribute this software and
45108983Simp * its documentation is hereby granted, provided that both the copyright
46147088Sbrooks * notice and this permission notice appear in all copies of the
47147088Sbrooks * software, derivative works or modified versions, and any portions
48147088Sbrooks * thereof, and that both notices appear in supporting documentation.
49147088Sbrooks *
50147088Sbrooks * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51147088Sbrooks * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52147088Sbrooks * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53147088Sbrooks *
54147088Sbrooks * Carnegie Mellon requests users of this software to return to
55148642Ssam *
56147088Sbrooks *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57147088Sbrooks *  School of Computer Science
58147088Sbrooks *  Carnegie Mellon University
59148642Ssam *  Pittsburgh PA 15213-3890
60148642Ssam *
61148642Ssam * any improvements or extensions that they make and grant Carnegie the
62148642Ssam * rights to redistribute these changes.
63148642Ssam *
64148642Ssam * $Id: vm_kern.c,v 1.7 1994/08/18 22:36:02 wollman Exp $
65148642Ssam */
66148642Ssam
67148642Ssam/*
68148642Ssam *	Kernel memory management.
69148642Ssam */
70148642Ssam
71148642Ssam#include <sys/param.h>
72148642Ssam#include <sys/systm.h>
73148642Ssam#include <sys/kernel.h>
74148642Ssam#include <sys/proc.h>
75148642Ssam
76148642Ssam#include <vm/vm.h>
77148642Ssam#include <vm/vm_page.h>
78148642Ssam#include <vm/vm_pageout.h>
79108983Simp#include <vm/vm_kern.h>
80108983Simp
81108983Simpvm_map_t buffer_map;
82139281Sbrueffervm_map_t kernel_map;
83108983Simpvm_map_t kmem_map;
84108983Simpvm_map_t mb_map;
85108983Simpvm_map_t io_map;
86108983Simpvm_map_t clean_map;
87108983Simpvm_map_t pager_map;
88108983Simpvm_map_t phys_map;
89108983Simpvm_map_t exec_map;
90108983Simpvm_map_t u_map;
91152326Semax
92152326Semax/*
93152326Semax *	kmem_alloc_pageable:
94152326Semax *
95152326Semax *	Allocate pageable memory to the kernel's address map.
96152326Semax *	map must be "kernel_map" below.
97152326Semax */
98152326Semax
99152326Semaxvm_offset_t
100152326Semaxkmem_alloc_pageable(map, size)
101139281Sbrueffer	vm_map_t map;
102134584Sbrooks	register vm_size_t size;
103134584Sbrooks{
104156782Semax	vm_offset_t addr;
105134584Sbrooks	register int result;
106134584Sbrooks
107134584Sbrooks#if	0
108156331Semax	if (map != kernel_map)
109134584Sbrooks		panic("kmem_alloc_pageable: not called with kernel_map");
110134584Sbrooks#endif
111138175Siedowse
112138175Siedowse	size = round_page(size);
113138175Siedowse
114138175Siedowse	addr = vm_map_min(map);
115138175Siedowse	result = vm_map_find(map, NULL, (vm_offset_t) 0,
116138175Siedowse	    &addr, size, TRUE);
117138175Siedowse	if (result != KERN_SUCCESS) {
118153300Siedowse		return (0);
119153300Siedowse	}
120153300Siedowse	return (addr);
121153300Siedowse}
122153300Siedowse
123153300Siedowse/*
124153300Siedowse *	Allocate wired-down memory in the kernel's address map
125153300Siedowse *	or a submap.
126153300Siedowse */
127153300Siedowsevm_offset_t
128153300Siedowsekmem_alloc(map, size)
129153300Siedowse	register vm_map_t map;
130153300Siedowse	register vm_size_t size;
131153300Siedowse{
132153300Siedowse	vm_offset_t addr;
133153300Siedowse	register vm_offset_t offset;
134153300Siedowse	vm_offset_t i;
135153300Siedowse
136153300Siedowse	size = round_page(size);
137153300Siedowse
138153300Siedowse	/*
139153300Siedowse	 * Use the kernel object for wired-down kernel pages. Assume that no
140153300Siedowse	 * region of the kernel object is referenced more than once.
141153300Siedowse	 */
142153300Siedowse
143153300Siedowse	/*
144153300Siedowse	 * Locate sufficient space in the map.  This will give us the final
145153300Siedowse	 * virtual address for the new memory, and thus will tell us the
146153300Siedowse	 * offset within the kernel map.
147108983Simp	 */
148148471Simp	vm_map_lock(map);
149148471Simp	if (vm_map_findspace(map, 0, size, &addr)) {
150108983Simp		vm_map_unlock(map);
151108983Simp		return (0);
152108983Simp	}
153131646Simp	offset = addr - VM_MIN_KERNEL_ADDRESS;
154108983Simp	vm_object_reference(kernel_object);
155108983Simp	vm_map_insert(map, kernel_object, offset, addr, addr + size);
156108983Simp	vm_map_unlock(map);
157114799Simp
158139281Sbrueffer	/*
159119254Simp	 * Guarantee that there are pages already in this object before
160114852Simp	 * calling vm_map_pageable.  This is to prevent the following
161119254Simp	 * scenario:
162108983Simp	 *
163166701Sjoerg	 * 1) Threads have swapped out, so that there is a pager for the
164166701Sjoerg	 * kernel_object. 2) The kmsg zone is empty, and so we are
165166701Sjoerg	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
166166701Sjoerg	 * there is no page, but there is a pager, so we call
167166701Sjoerg	 * pager_data_request.  But the kmsg zone is empty, so we must
168166701Sjoerg	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
169166701Sjoerg	 * we get the data back from the pager, it will be (very stale)
170166701Sjoerg	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
171166701Sjoerg	 *
172166701Sjoerg	 * We're intentionally not activating the pages we allocate to prevent a
173166701Sjoerg	 * race with page-out.  vm_map_pageable will wire the pages.
174166701Sjoerg	 */
175166701Sjoerg
176166701Sjoerg	vm_object_lock(kernel_object);
177166701Sjoerg	for (i = 0; i < size; i += PAGE_SIZE) {
178166701Sjoerg		vm_page_t mem;
179166701Sjoerg
180166701Sjoerg		while ((mem = vm_page_alloc(kernel_object, offset + i, 0)) == NULL) {
181166701Sjoerg			vm_object_unlock(kernel_object);
182166701Sjoerg			VM_WAIT;
183166701Sjoerg			vm_object_lock(kernel_object);
184166701Sjoerg		}
185166701Sjoerg		vm_page_zero_fill(mem);
186166701Sjoerg		mem->flags &= ~PG_BUSY;
187166701Sjoerg		mem->valid |= VM_PAGE_BITS_ALL;
188166701Sjoerg	}
189166701Sjoerg	vm_object_unlock(kernel_object);
190166701Sjoerg
191166701Sjoerg	/*
192166701Sjoerg	 * And finally, mark the data as non-pageable.
193139281Sbrueffer	 */
194123626Snjl
195123626Snjl	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
196123626Snjl
197125366Snjl	/*
198123626Snjl	 * Try to coalesce the map
199123626Snjl	 */
200125366Snjl	vm_map_simplify(map, addr);
201125366Snjl
202125366Snjl	return (addr);
203125366Snjl}
204125366Snjl
205125366Snjl/*
206125366Snjl *	kmem_free:
207125366Snjl *
208125366Snjl *	Release a region of kernel virtual memory allocated
209125366Snjl *	with kmem_alloc, and return the physical pages
210108983Simp *	associated with that region.
211108983Simp */
212108983Simpvoid
213108983Simpkmem_free(map, addr, size)
214108983Simp	vm_map_t map;
215108983Simp	register vm_offset_t addr;
216108983Simp	vm_size_t size;
217108983Simp{
218108983Simp	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
219108983Simp}
220108983Simp
221108983Simp/*
222108983Simp *	kmem_suballoc:
223108983Simp *
224108983Simp *	Allocates a map to manage a subrange
225108983Simp *	of the kernel virtual address space.
226108983Simp *
227108983Simp *	Arguments are as follows:
228108983Simp *
229108983Simp *	parent		Map to take range from
230108983Simp *	size		Size of range to find
231108983Simp *	min, max	Returned endpoints of map
232108983Simp *	pageable	Can the region be paged
233121493Snjl */
234121493Snjlvm_map_t
235121493Snjlkmem_suballoc(parent, min, max, size, pageable)
236121493Snjl	register vm_map_t parent;
237121493Snjl	vm_offset_t *min, *max;
238121493Snjl	register vm_size_t size;
239121493Snjl	boolean_t pageable;
240121493Snjl{
241121493Snjl	register int ret;
242121493Snjl	vm_map_t result;
243121493Snjl
244121493Snjl	size = round_page(size);
245121493Snjl
246121493Snjl	*min = (vm_offset_t) vm_map_min(parent);
247121493Snjl	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
248121493Snjl	    min, size, TRUE);
249121493Snjl	if (ret != KERN_SUCCESS) {
250121493Snjl		printf("kmem_suballoc: bad status return of %d.\n", ret);
251121493Snjl		panic("kmem_suballoc");
252121493Snjl	}
253121493Snjl	*max = *min + size;
254121493Snjl	pmap_reference(vm_map_pmap(parent));
255121493Snjl	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
256121493Snjl	if (result == NULL)
257121493Snjl		panic("kmem_suballoc: cannot create submap");
258121493Snjl	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
259108983Simp		panic("kmem_suballoc: unable to change range to submap");
260	return (result);
261}
262
263/*
264 * Allocate wired-down memory in the kernel's address map for the higher
265 * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
266 * kmem_alloc() because we may need to allocate memory at interrupt
267 * level where we cannot block (canwait == FALSE).
268 *
269 * This routine has its own private kernel submap (kmem_map) and object
270 * (kmem_object).  This, combined with the fact that only malloc uses
271 * this routine, ensures that we will never block in map or object waits.
272 *
273 * Note that this still only works in a uni-processor environment and
274 * when called at splhigh().
275 *
276 * We don't worry about expanding the map (adding entries) since entries
277 * for wired maps are statically allocated.
278 */
279vm_offset_t
280kmem_malloc(map, size, canwait)
281	register vm_map_t map;
282	register vm_size_t size;
283	boolean_t canwait;
284{
285	register vm_offset_t offset, i;
286	vm_map_entry_t entry;
287	vm_offset_t addr;
288	vm_page_t m;
289
290	if (map != kmem_map && map != mb_map)
291		panic("kern_malloc_alloc: map != {kmem,mb}_map");
292
293	size = round_page(size);
294	addr = vm_map_min(map);
295
296	/*
297	 * Locate sufficient space in the map.  This will give us the final
298	 * virtual address for the new memory, and thus will tell us the
299	 * offset within the kernel map.
300	 */
301	vm_map_lock(map);
302	if (vm_map_findspace(map, 0, size, &addr)) {
303		vm_map_unlock(map);
304#if 0
305		if (canwait)	/* XXX  should wait */
306			panic("kmem_malloc: %s too small",
307			    map == kmem_map ? "kmem_map" : "mb_map");
308#endif
309		if (canwait)
310			panic("kmem_malloc: map too small");
311		return (0);
312	}
313	offset = addr - vm_map_min(kmem_map);
314	vm_object_reference(kmem_object);
315	vm_map_insert(map, kmem_object, offset, addr, addr + size);
316
317	/*
318	 * If we can wait, just mark the range as wired (will fault pages as
319	 * necessary).
320	 */
321	if (canwait) {
322		vm_map_unlock(map);
323		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
324		    FALSE);
325		vm_map_simplify(map, addr);
326		return (addr);
327	}
328	/*
329	 * If we cannot wait then we must allocate all memory up front,
330	 * pulling it off the active queue to prevent pageout.
331	 */
332	vm_object_lock(kmem_object);
333	for (i = 0; i < size; i += PAGE_SIZE) {
334		m = vm_page_alloc(kmem_object, offset + i, 1);
335
336		/*
337		 * Ran out of space, free everything up and return. Don't need
338		 * to lock page queues here as we know that the pages we got
339		 * aren't on any queues.
340		 */
341		if (m == NULL) {
342			while (i != 0) {
343				i -= PAGE_SIZE;
344				m = vm_page_lookup(kmem_object, offset + i);
345				vm_page_free(m);
346			}
347			vm_object_unlock(kmem_object);
348			vm_map_delete(map, addr, addr + size);
349			vm_map_unlock(map);
350			return (0);
351		}
352#if 0
353		vm_page_zero_fill(m);
354#endif
355		m->flags &= ~PG_BUSY;
356		m->valid |= VM_PAGE_BITS_ALL;
357	}
358	vm_object_unlock(kmem_object);
359
360	/*
361	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
362	 * be able to extend the previous entry so there will be a new entry
363	 * exactly corresponding to this address range and it will have
364	 * wired_count == 0.
365	 */
366	if (!vm_map_lookup_entry(map, addr, &entry) ||
367	    entry->start != addr || entry->end != addr + size ||
368	    entry->wired_count)
369		panic("kmem_malloc: entry not found or misaligned");
370	entry->wired_count++;
371
372	/*
373	 * Loop thru pages, entering them in the pmap. (We cannot add them to
374	 * the wired count without wrapping the vm_page_queue_lock in
375	 * splimp...)
376	 */
377	for (i = 0; i < size; i += PAGE_SIZE) {
378		vm_object_lock(kmem_object);
379		m = vm_page_lookup(kmem_object, offset + i);
380		vm_object_unlock(kmem_object);
381		pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
382	}
383	vm_map_unlock(map);
384
385	vm_map_simplify(map, addr);
386	return (addr);
387}
388
389/*
390 *	kmem_alloc_wait
391 *
392 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
393 *	has no room, the caller sleeps waiting for more memory in the submap.
394 *
395 */
396vm_offset_t
397kmem_alloc_wait(map, size)
398	vm_map_t map;
399	vm_size_t size;
400{
401	vm_offset_t addr;
402
403	size = round_page(size);
404
405	for (;;) {
406		/*
407		 * To make this work for more than one map, use the map's lock
408		 * to lock out sleepers/wakers.
409		 */
410		vm_map_lock(map);
411		if (vm_map_findspace(map, 0, size, &addr) == 0)
412			break;
413		/* no space now; see if we can ever get space */
414		if (vm_map_max(map) - vm_map_min(map) < size) {
415			vm_map_unlock(map);
416			return (0);
417		}
418		assert_wait((int) map, TRUE);
419		vm_map_unlock(map);
420		thread_block("kmaw");
421	}
422	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size);
423	vm_map_unlock(map);
424	return (addr);
425}
426
427/*
428 *	kmem_free_wakeup
429 *
430 *	Returns memory to a submap of the kernel, and wakes up any threads
431 *	waiting for memory in that map.
432 */
433void
434kmem_free_wakeup(map, addr, size)
435	vm_map_t map;
436	vm_offset_t addr;
437	vm_size_t size;
438{
439	vm_map_lock(map);
440	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
441	thread_wakeup((int) map);
442	vm_map_unlock(map);
443}
444
445/*
446 * Create the kernel map; insert a mapping covering kernel text, data, bss,
447 * and all space allocated thus far (`boostrap' data).  The new map will thus
448 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
449 * the range between `start' and `end' as free.
450 */
451void
452kmem_init(start, end)
453	vm_offset_t start, end;
454{
455	register vm_map_t m;
456
457	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
458	vm_map_lock(m);
459	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
460	kernel_map = m;
461	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
462	    VM_MIN_KERNEL_ADDRESS, start);
463	/* ... and ending with the completion of the above `insert' */
464	vm_map_unlock(m);
465}
466