vm_kern.c revision 224746
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 224746 2011-08-09 21:01:36Z kib $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/eventhandler.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76#include <sys/sysctl.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86#include <vm/uma.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t pipe_map;
92vm_map_t buffer_map=0;
93
94const void *zero_region;
95CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
96
97/*
98 *	kmem_alloc_nofault:
99 *
100 *	Allocate a virtual address range with no underlying object and
101 *	no initial mapping to physical memory.  Any mapping from this
102 *	range to physical memory must be explicitly created prior to
103 *	its use, typically with pmap_qenter().  Any attempt to create
104 *	a mapping on demand through vm_fault() will result in a panic.
105 */
106vm_offset_t
107kmem_alloc_nofault(map, size)
108	vm_map_t map;
109	vm_size_t size;
110{
111	vm_offset_t addr;
112	int result;
113
114	size = round_page(size);
115	addr = vm_map_min(map);
116	result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE,
117	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
118	if (result != KERN_SUCCESS) {
119		return (0);
120	}
121	return (addr);
122}
123
124/*
125 *	kmem_alloc_nofault_space:
126 *
127 *	Allocate a virtual address range with no underlying object and
128 *	no initial mapping to physical memory within the specified
129 *	address space.  Any mapping from this range to physical memory
130 *	must be explicitly created prior to its use, typically with
131 *	pmap_qenter().  Any attempt to create a mapping on demand
132 *	through vm_fault() will result in a panic.
133 */
134vm_offset_t
135kmem_alloc_nofault_space(map, size, find_space)
136	vm_map_t map;
137	vm_size_t size;
138	int find_space;
139{
140	vm_offset_t addr;
141	int result;
142
143	size = round_page(size);
144	addr = vm_map_min(map);
145	result = vm_map_find(map, NULL, 0, &addr, size, find_space,
146	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
147	if (result != KERN_SUCCESS) {
148		return (0);
149	}
150	return (addr);
151}
152
153/*
154 *	Allocate wired-down memory in the kernel's address map
155 *	or a submap.
156 */
157vm_offset_t
158kmem_alloc(map, size)
159	vm_map_t map;
160	vm_size_t size;
161{
162	vm_offset_t addr;
163	vm_offset_t offset;
164	vm_offset_t i;
165
166	size = round_page(size);
167
168	/*
169	 * Use the kernel object for wired-down kernel pages. Assume that no
170	 * region of the kernel object is referenced more than once.
171	 */
172
173	/*
174	 * Locate sufficient space in the map.  This will give us the final
175	 * virtual address for the new memory, and thus will tell us the
176	 * offset within the kernel map.
177	 */
178	vm_map_lock(map);
179	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
180		vm_map_unlock(map);
181		return (0);
182	}
183	offset = addr - VM_MIN_KERNEL_ADDRESS;
184	vm_object_reference(kernel_object);
185	vm_map_insert(map, kernel_object, offset, addr, addr + size,
186		VM_PROT_ALL, VM_PROT_ALL, 0);
187	vm_map_unlock(map);
188
189	/*
190	 * Guarantee that there are pages already in this object before
191	 * calling vm_map_wire.  This is to prevent the following
192	 * scenario:
193	 *
194	 * 1) Threads have swapped out, so that there is a pager for the
195	 * kernel_object. 2) The kmsg zone is empty, and so we are
196	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
197	 * there is no page, but there is a pager, so we call
198	 * pager_data_request.  But the kmsg zone is empty, so we must
199	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
200	 * we get the data back from the pager, it will be (very stale)
201	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
202	 *
203	 * We're intentionally not activating the pages we allocate to prevent a
204	 * race with page-out.  vm_map_wire will wire the pages.
205	 */
206	VM_OBJECT_LOCK(kernel_object);
207	for (i = 0; i < size; i += PAGE_SIZE) {
208		vm_page_t mem;
209
210		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
211		    VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
212		mem->valid = VM_PAGE_BITS_ALL;
213		KASSERT((mem->oflags & VPO_UNMANAGED) != 0,
214		    ("kmem_alloc: page %p is managed", mem));
215	}
216	VM_OBJECT_UNLOCK(kernel_object);
217
218	/*
219	 * And finally, mark the data as non-pageable.
220	 */
221	(void) vm_map_wire(map, addr, addr + size,
222	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
223
224	return (addr);
225}
226
227/*
228 *	kmem_free:
229 *
230 *	Release a region of kernel virtual memory allocated
231 *	with kmem_alloc, and return the physical pages
232 *	associated with that region.
233 *
234 *	This routine may not block on kernel maps.
235 */
236void
237kmem_free(map, addr, size)
238	vm_map_t map;
239	vm_offset_t addr;
240	vm_size_t size;
241{
242
243	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
244}
245
246/*
247 *	kmem_suballoc:
248 *
249 *	Allocates a map to manage a subrange
250 *	of the kernel virtual address space.
251 *
252 *	Arguments are as follows:
253 *
254 *	parent		Map to take range from
255 *	min, max	Returned endpoints of map
256 *	size		Size of range to find
257 *	superpage_align	Request that min is superpage aligned
258 */
259vm_map_t
260kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
261    vm_size_t size, boolean_t superpage_align)
262{
263	int ret;
264	vm_map_t result;
265
266	size = round_page(size);
267
268	*min = vm_map_min(parent);
269	ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ?
270	    VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
271	    MAP_ACC_NO_CHARGE);
272	if (ret != KERN_SUCCESS)
273		panic("kmem_suballoc: bad status return of %d", ret);
274	*max = *min + size;
275	result = vm_map_create(vm_map_pmap(parent), *min, *max);
276	if (result == NULL)
277		panic("kmem_suballoc: cannot create submap");
278	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
279		panic("kmem_suballoc: unable to change range to submap");
280	return (result);
281}
282
283/*
284 *	kmem_malloc:
285 *
286 * 	Allocate wired-down memory in the kernel's address map for the higher
287 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
288 * 	kmem_alloc() because we may need to allocate memory at interrupt
289 * 	level where we cannot block (canwait == FALSE).
290 *
291 * 	This routine has its own private kernel submap (kmem_map) and object
292 * 	(kmem_object).  This, combined with the fact that only malloc uses
293 * 	this routine, ensures that we will never block in map or object waits.
294 *
295 * 	We don't worry about expanding the map (adding entries) since entries
296 * 	for wired maps are statically allocated.
297 *
298 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
299 *	which we never free.
300 */
301vm_offset_t
302kmem_malloc(map, size, flags)
303	vm_map_t map;
304	vm_size_t size;
305	int flags;
306{
307	vm_offset_t addr;
308	int i, rv;
309
310	size = round_page(size);
311	addr = vm_map_min(map);
312
313	/*
314	 * Locate sufficient space in the map.  This will give us the final
315	 * virtual address for the new memory, and thus will tell us the
316	 * offset within the kernel map.
317	 */
318	vm_map_lock(map);
319	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
320		vm_map_unlock(map);
321                if ((flags & M_NOWAIT) == 0) {
322			for (i = 0; i < 8; i++) {
323				EVENTHANDLER_INVOKE(vm_lowmem, 0);
324				uma_reclaim();
325				vm_map_lock(map);
326				if (vm_map_findspace(map, vm_map_min(map),
327				    size, &addr) == 0) {
328					break;
329				}
330				vm_map_unlock(map);
331				tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
332			}
333			if (i == 8) {
334				panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
335				    (long)size, (long)map->size);
336			}
337		} else {
338			return (0);
339		}
340	}
341
342	rv = kmem_back(map, addr, size, flags);
343	vm_map_unlock(map);
344	return (rv == KERN_SUCCESS ? addr : 0);
345}
346
347/*
348 *	kmem_back:
349 *
350 *	Allocate physical pages for the specified virtual address range.
351 */
352int
353kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags)
354{
355	vm_offset_t offset, i;
356	vm_map_entry_t entry;
357	vm_page_t m;
358	int pflags;
359	boolean_t found;
360
361	KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map));
362	offset = addr - VM_MIN_KERNEL_ADDRESS;
363	vm_object_reference(kmem_object);
364	vm_map_insert(map, kmem_object, offset, addr, addr + size,
365	    VM_PROT_ALL, VM_PROT_ALL, 0);
366
367	/*
368	 * Assert: vm_map_insert() will never be able to extend the
369	 * previous entry so vm_map_lookup_entry() will find a new
370	 * entry exactly corresponding to this address range and it
371	 * will have wired_count == 0.
372	 */
373	found = vm_map_lookup_entry(map, addr, &entry);
374	KASSERT(found && entry->start == addr && entry->end == addr + size &&
375	    entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION)
376	    == 0, ("kmem_back: entry not found or misaligned"));
377
378	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
379		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
380	else
381		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
382
383	if (flags & M_ZERO)
384		pflags |= VM_ALLOC_ZERO;
385
386	VM_OBJECT_LOCK(kmem_object);
387	for (i = 0; i < size; i += PAGE_SIZE) {
388retry:
389		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
390
391		/*
392		 * Ran out of space, free everything up and return. Don't need
393		 * to lock page queues here as we know that the pages we got
394		 * aren't on any queues.
395		 */
396		if (m == NULL) {
397			if ((flags & M_NOWAIT) == 0) {
398				VM_OBJECT_UNLOCK(kmem_object);
399				entry->eflags |= MAP_ENTRY_IN_TRANSITION;
400				vm_map_unlock(map);
401				VM_WAIT;
402				vm_map_lock(map);
403				KASSERT(
404(entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) ==
405				    MAP_ENTRY_IN_TRANSITION,
406				    ("kmem_back: volatile entry"));
407				entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
408				VM_OBJECT_LOCK(kmem_object);
409				goto retry;
410			}
411			/*
412			 * Free the pages before removing the map entry.
413			 * They are already marked busy.  Calling
414			 * vm_map_delete before the pages has been freed or
415			 * unbusied will cause a deadlock.
416			 */
417			while (i != 0) {
418				i -= PAGE_SIZE;
419				m = vm_page_lookup(kmem_object,
420						   OFF_TO_IDX(offset + i));
421				vm_page_unwire(m, 0);
422				vm_page_free(m);
423			}
424			VM_OBJECT_UNLOCK(kmem_object);
425			vm_map_delete(map, addr, addr + size);
426			return (KERN_NO_SPACE);
427		}
428		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
429			pmap_zero_page(m);
430		m->valid = VM_PAGE_BITS_ALL;
431		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
432		    ("kmem_malloc: page %p is managed", m));
433	}
434	VM_OBJECT_UNLOCK(kmem_object);
435
436	/*
437	 * Mark map entry as non-pageable.  Repeat the assert.
438	 */
439	KASSERT(entry->start == addr && entry->end == addr + size &&
440	    entry->wired_count == 0,
441	    ("kmem_back: entry not found or misaligned after allocation"));
442	entry->wired_count = 1;
443
444	/*
445	 * At this point, the kmem_object must be unlocked because
446	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
447	 * locks the kmem_object.
448	 */
449	vm_map_simplify_entry(map, entry);
450
451	/*
452	 * Loop thru pages, entering them in the pmap.
453	 */
454	VM_OBJECT_LOCK(kmem_object);
455	for (i = 0; i < size; i += PAGE_SIZE) {
456		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
457		/*
458		 * Because this is kernel_pmap, this call will not block.
459		 */
460		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
461		    TRUE);
462		vm_page_wakeup(m);
463	}
464	VM_OBJECT_UNLOCK(kmem_object);
465
466	return (KERN_SUCCESS);
467}
468
469/*
470 *	kmem_alloc_wait:
471 *
472 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
473 *	has no room, the caller sleeps waiting for more memory in the submap.
474 *
475 *	This routine may block.
476 */
477vm_offset_t
478kmem_alloc_wait(map, size)
479	vm_map_t map;
480	vm_size_t size;
481{
482	vm_offset_t addr;
483
484	size = round_page(size);
485	if (!swap_reserve(size))
486		return (0);
487
488	for (;;) {
489		/*
490		 * To make this work for more than one map, use the map's lock
491		 * to lock out sleepers/wakers.
492		 */
493		vm_map_lock(map);
494		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
495			break;
496		/* no space now; see if we can ever get space */
497		if (vm_map_max(map) - vm_map_min(map) < size) {
498			vm_map_unlock(map);
499			swap_release(size);
500			return (0);
501		}
502		map->needs_wakeup = TRUE;
503		vm_map_unlock_and_wait(map, 0);
504	}
505	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
506	    VM_PROT_ALL, MAP_ACC_CHARGED);
507	vm_map_unlock(map);
508	return (addr);
509}
510
511/*
512 *	kmem_free_wakeup:
513 *
514 *	Returns memory to a submap of the kernel, and wakes up any processes
515 *	waiting for memory in that map.
516 */
517void
518kmem_free_wakeup(map, addr, size)
519	vm_map_t map;
520	vm_offset_t addr;
521	vm_size_t size;
522{
523
524	vm_map_lock(map);
525	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
526	if (map->needs_wakeup) {
527		map->needs_wakeup = FALSE;
528		vm_map_wakeup(map);
529	}
530	vm_map_unlock(map);
531}
532
533static void
534kmem_init_zero_region(void)
535{
536	vm_offset_t addr, i;
537	vm_page_t m;
538	int error;
539
540	/*
541	 * Map a single physical page of zeros to a larger virtual range.
542	 * This requires less looping in places that want large amounts of
543	 * zeros, while not using much more physical resources.
544	 */
545	addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE);
546	m = vm_page_alloc(NULL, OFF_TO_IDX(addr - VM_MIN_KERNEL_ADDRESS),
547	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
548	if ((m->flags & PG_ZERO) == 0)
549		pmap_zero_page(m);
550	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
551		pmap_qenter(addr + i, &m, 1);
552	error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE,
553	    VM_PROT_READ, TRUE);
554	KASSERT(error == 0, ("error=%d", error));
555
556	zero_region = (const void *)addr;
557}
558
559/*
560 * 	kmem_init:
561 *
562 *	Create the kernel map; insert a mapping covering kernel text,
563 *	data, bss, and all space allocated thus far (`boostrap' data).  The
564 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
565 *	`start' as allocated, and the range between `start' and `end' as free.
566 */
567void
568kmem_init(start, end)
569	vm_offset_t start, end;
570{
571	vm_map_t m;
572
573	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
574	m->system_map = 1;
575	vm_map_lock(m);
576	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
577	kernel_map = m;
578	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
579#ifdef __amd64__
580	    KERNBASE,
581#else
582	    VM_MIN_KERNEL_ADDRESS,
583#endif
584	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
585	/* ... and ending with the completion of the above `insert' */
586	vm_map_unlock(m);
587
588	kmem_init_zero_region();
589}
590
591#ifdef DIAGNOSTIC
592/*
593 * Allow userspace to directly trigger the VM drain routine for testing
594 * purposes.
595 */
596static int
597debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
598{
599	int error, i;
600
601	i = 0;
602	error = sysctl_handle_int(oidp, &i, 0, req);
603	if (error)
604		return (error);
605	if (i)
606		EVENTHANDLER_INVOKE(vm_lowmem, 0);
607	return (0);
608}
609
610SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
611    debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
612#endif
613