vm_kern.c revision 178933
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 178933 2008-05-10 21:46:20Z alc $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/eventhandler.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76
77#include <vm/vm.h>
78#include <vm/vm_param.h>
79#include <vm/pmap.h>
80#include <vm/vm_map.h>
81#include <vm/vm_object.h>
82#include <vm/vm_page.h>
83#include <vm/vm_pageout.h>
84#include <vm/vm_extern.h>
85#include <vm/uma.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t pipe_map;
91vm_map_t buffer_map=0;
92
93/*
94 *	kmem_alloc_nofault:
95 *
96 *	Allocate a virtual address range with no underlying object and
97 *	no initial mapping to physical memory.  Any mapping from this
98 *	range to physical memory must be explicitly created prior to
99 *	its use, typically with pmap_qenter().  Any attempt to create
100 *	a mapping on demand through vm_fault() will result in a panic.
101 */
102vm_offset_t
103kmem_alloc_nofault(map, size)
104	vm_map_t map;
105	vm_size_t size;
106{
107	vm_offset_t addr;
108	int result;
109
110	size = round_page(size);
111	addr = vm_map_min(map);
112	result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE,
113	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
114	if (result != KERN_SUCCESS) {
115		return (0);
116	}
117	return (addr);
118}
119
120/*
121 *	Allocate wired-down memory in the kernel's address map
122 *	or a submap.
123 */
124vm_offset_t
125kmem_alloc(map, size)
126	vm_map_t map;
127	vm_size_t size;
128{
129	vm_offset_t addr;
130	vm_offset_t offset;
131	vm_offset_t i;
132
133	size = round_page(size);
134
135	/*
136	 * Use the kernel object for wired-down kernel pages. Assume that no
137	 * region of the kernel object is referenced more than once.
138	 */
139
140	/*
141	 * Locate sufficient space in the map.  This will give us the final
142	 * virtual address for the new memory, and thus will tell us the
143	 * offset within the kernel map.
144	 */
145	vm_map_lock(map);
146	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
147		vm_map_unlock(map);
148		return (0);
149	}
150	offset = addr - VM_MIN_KERNEL_ADDRESS;
151	vm_object_reference(kernel_object);
152	vm_map_insert(map, kernel_object, offset, addr, addr + size,
153		VM_PROT_ALL, VM_PROT_ALL, 0);
154	vm_map_unlock(map);
155
156	/*
157	 * Guarantee that there are pages already in this object before
158	 * calling vm_map_wire.  This is to prevent the following
159	 * scenario:
160	 *
161	 * 1) Threads have swapped out, so that there is a pager for the
162	 * kernel_object. 2) The kmsg zone is empty, and so we are
163	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
164	 * there is no page, but there is a pager, so we call
165	 * pager_data_request.  But the kmsg zone is empty, so we must
166	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
167	 * we get the data back from the pager, it will be (very stale)
168	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
169	 *
170	 * We're intentionally not activating the pages we allocate to prevent a
171	 * race with page-out.  vm_map_wire will wire the pages.
172	 */
173	VM_OBJECT_LOCK(kernel_object);
174	for (i = 0; i < size; i += PAGE_SIZE) {
175		vm_page_t mem;
176
177		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
178		    VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
179		mem->valid = VM_PAGE_BITS_ALL;
180		KASSERT((mem->flags & PG_UNMANAGED) != 0,
181		    ("kmem_alloc: page %p is managed", mem));
182	}
183	VM_OBJECT_UNLOCK(kernel_object);
184
185	/*
186	 * And finally, mark the data as non-pageable.
187	 */
188	(void) vm_map_wire(map, addr, addr + size,
189	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
190
191	return (addr);
192}
193
194/*
195 *	kmem_free:
196 *
197 *	Release a region of kernel virtual memory allocated
198 *	with kmem_alloc, and return the physical pages
199 *	associated with that region.
200 *
201 *	This routine may not block on kernel maps.
202 */
203void
204kmem_free(map, addr, size)
205	vm_map_t map;
206	vm_offset_t addr;
207	vm_size_t size;
208{
209
210	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
211}
212
213/*
214 *	kmem_suballoc:
215 *
216 *	Allocates a map to manage a subrange
217 *	of the kernel virtual address space.
218 *
219 *	Arguments are as follows:
220 *
221 *	parent		Map to take range from
222 *	min, max	Returned endpoints of map
223 *	size		Size of range to find
224 *	superpage_align	Request that min is superpage aligned
225 */
226vm_map_t
227kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
228    vm_size_t size, boolean_t superpage_align)
229{
230	int ret;
231	vm_map_t result;
232
233	size = round_page(size);
234
235	*min = vm_map_min(parent);
236	ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ?
237	    VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0);
238	if (ret != KERN_SUCCESS)
239		panic("kmem_suballoc: bad status return of %d", ret);
240	*max = *min + size;
241	result = vm_map_create(vm_map_pmap(parent), *min, *max);
242	if (result == NULL)
243		panic("kmem_suballoc: cannot create submap");
244	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
245		panic("kmem_suballoc: unable to change range to submap");
246	return (result);
247}
248
249/*
250 *	kmem_malloc:
251 *
252 * 	Allocate wired-down memory in the kernel's address map for the higher
253 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
254 * 	kmem_alloc() because we may need to allocate memory at interrupt
255 * 	level where we cannot block (canwait == FALSE).
256 *
257 * 	This routine has its own private kernel submap (kmem_map) and object
258 * 	(kmem_object).  This, combined with the fact that only malloc uses
259 * 	this routine, ensures that we will never block in map or object waits.
260 *
261 * 	We don't worry about expanding the map (adding entries) since entries
262 * 	for wired maps are statically allocated.
263 *
264 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
265 *	I have not verified that it actually does not block.
266 *
267 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
268 *	which we never free.
269 */
270vm_offset_t
271kmem_malloc(map, size, flags)
272	vm_map_t map;
273	vm_size_t size;
274	int flags;
275{
276	vm_offset_t offset, i;
277	vm_map_entry_t entry;
278	vm_offset_t addr;
279	vm_page_t m;
280	int pflags;
281
282	size = round_page(size);
283	addr = vm_map_min(map);
284
285	/*
286	 * Locate sufficient space in the map.  This will give us the final
287	 * virtual address for the new memory, and thus will tell us the
288	 * offset within the kernel map.
289	 */
290	vm_map_lock(map);
291	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
292		vm_map_unlock(map);
293                if ((flags & M_NOWAIT) == 0) {
294			for (i = 0; i < 8; i++) {
295				EVENTHANDLER_INVOKE(vm_lowmem, 0);
296				uma_reclaim();
297				vm_map_lock(map);
298				if (vm_map_findspace(map, vm_map_min(map),
299				    size, &addr) == 0) {
300					break;
301				}
302				vm_map_unlock(map);
303				tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
304			}
305			if (i == 8) {
306				panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
307				    (long)size, (long)map->size);
308			}
309		} else {
310			return (0);
311		}
312	}
313	offset = addr - VM_MIN_KERNEL_ADDRESS;
314	vm_object_reference(kmem_object);
315	vm_map_insert(map, kmem_object, offset, addr, addr + size,
316		VM_PROT_ALL, VM_PROT_ALL, 0);
317
318	/*
319	 * Note: if M_NOWAIT specified alone, allocate from
320	 * interrupt-safe queues only (just the free list).  If
321	 * M_USE_RESERVE is also specified, we can also
322	 * allocate from the cache.  Neither of the latter two
323	 * flags may be specified from an interrupt since interrupts
324	 * are not allowed to mess with the cache queue.
325	 */
326
327	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
328		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
329	else
330		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
331
332	if (flags & M_ZERO)
333		pflags |= VM_ALLOC_ZERO;
334
335	VM_OBJECT_LOCK(kmem_object);
336	for (i = 0; i < size; i += PAGE_SIZE) {
337retry:
338		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
339
340		/*
341		 * Ran out of space, free everything up and return. Don't need
342		 * to lock page queues here as we know that the pages we got
343		 * aren't on any queues.
344		 */
345		if (m == NULL) {
346			if ((flags & M_NOWAIT) == 0) {
347				VM_OBJECT_UNLOCK(kmem_object);
348				vm_map_unlock(map);
349				VM_WAIT;
350				vm_map_lock(map);
351				VM_OBJECT_LOCK(kmem_object);
352				goto retry;
353			}
354			/*
355			 * Free the pages before removing the map entry.
356			 * They are already marked busy.  Calling
357			 * vm_map_delete before the pages has been freed or
358			 * unbusied will cause a deadlock.
359			 */
360			while (i != 0) {
361				i -= PAGE_SIZE;
362				m = vm_page_lookup(kmem_object,
363						   OFF_TO_IDX(offset + i));
364				vm_page_lock_queues();
365				vm_page_unwire(m, 0);
366				vm_page_free(m);
367				vm_page_unlock_queues();
368			}
369			VM_OBJECT_UNLOCK(kmem_object);
370			vm_map_delete(map, addr, addr + size);
371			vm_map_unlock(map);
372			return (0);
373		}
374		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
375			pmap_zero_page(m);
376		m->valid = VM_PAGE_BITS_ALL;
377		KASSERT((m->flags & PG_UNMANAGED) != 0,
378		    ("kmem_malloc: page %p is managed", m));
379	}
380	VM_OBJECT_UNLOCK(kmem_object);
381
382	/*
383	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
384	 * be able to extend the previous entry so there will be a new entry
385	 * exactly corresponding to this address range and it will have
386	 * wired_count == 0.
387	 */
388	if (!vm_map_lookup_entry(map, addr, &entry) ||
389	    entry->start != addr || entry->end != addr + size ||
390	    entry->wired_count != 0)
391		panic("kmem_malloc: entry not found or misaligned");
392	entry->wired_count = 1;
393
394	/*
395	 * At this point, the kmem_object must be unlocked because
396	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
397	 * locks the kmem_object.
398	 */
399	vm_map_simplify_entry(map, entry);
400
401	/*
402	 * Loop thru pages, entering them in the pmap.
403	 */
404	VM_OBJECT_LOCK(kmem_object);
405	for (i = 0; i < size; i += PAGE_SIZE) {
406		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
407		/*
408		 * Because this is kernel_pmap, this call will not block.
409		 */
410		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
411		    TRUE);
412		vm_page_wakeup(m);
413	}
414	VM_OBJECT_UNLOCK(kmem_object);
415	vm_map_unlock(map);
416
417	return (addr);
418}
419
420/*
421 *	kmem_alloc_wait:
422 *
423 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
424 *	has no room, the caller sleeps waiting for more memory in the submap.
425 *
426 *	This routine may block.
427 */
428vm_offset_t
429kmem_alloc_wait(map, size)
430	vm_map_t map;
431	vm_size_t size;
432{
433	vm_offset_t addr;
434
435	size = round_page(size);
436
437	for (;;) {
438		/*
439		 * To make this work for more than one map, use the map's lock
440		 * to lock out sleepers/wakers.
441		 */
442		vm_map_lock(map);
443		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
444			break;
445		/* no space now; see if we can ever get space */
446		if (vm_map_max(map) - vm_map_min(map) < size) {
447			vm_map_unlock(map);
448			return (0);
449		}
450		map->needs_wakeup = TRUE;
451		vm_map_unlock_and_wait(map, 0);
452	}
453	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
454	vm_map_unlock(map);
455	return (addr);
456}
457
458/*
459 *	kmem_free_wakeup:
460 *
461 *	Returns memory to a submap of the kernel, and wakes up any processes
462 *	waiting for memory in that map.
463 */
464void
465kmem_free_wakeup(map, addr, size)
466	vm_map_t map;
467	vm_offset_t addr;
468	vm_size_t size;
469{
470
471	vm_map_lock(map);
472	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
473	if (map->needs_wakeup) {
474		map->needs_wakeup = FALSE;
475		vm_map_wakeup(map);
476	}
477	vm_map_unlock(map);
478}
479
480/*
481 * 	kmem_init:
482 *
483 *	Create the kernel map; insert a mapping covering kernel text,
484 *	data, bss, and all space allocated thus far (`boostrap' data).  The
485 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
486 *	`start' as allocated, and the range between `start' and `end' as free.
487 */
488void
489kmem_init(start, end)
490	vm_offset_t start, end;
491{
492	vm_map_t m;
493
494	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
495	m->system_map = 1;
496	vm_map_lock(m);
497	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
498	kernel_map = m;
499	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
500	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL,
501	    MAP_NOFAULT);
502	/* ... and ending with the completion of the above `insert' */
503	vm_map_unlock(m);
504}
505