vm_kern.c revision 15367
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.22 1996/01/31 12:05:52 davidg Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76#include <sys/syslog.h>
77#include <sys/queue.h>
78#include <sys/vmmeter.h>
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_prot.h>
83#include <vm/lock.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
91
92vm_map_t buffer_map;
93vm_map_t kernel_map;
94vm_map_t kmem_map;
95vm_map_t mb_map;
96int mb_map_full;
97vm_map_t io_map;
98vm_map_t clean_map;
99vm_map_t phys_map;
100vm_map_t exec_map;
101vm_map_t u_map;
102
103/*
104 *	kmem_alloc_pageable:
105 *
106 *	Allocate pageable memory to the kernel's address map.
107 *	"map" must be kernel_map or a submap of kernel_map.
108 */
109
110vm_offset_t
111kmem_alloc_pageable(map, size)
112	vm_map_t map;
113	register vm_size_t size;
114{
115	vm_offset_t addr;
116	register int result;
117
118	size = round_page(size);
119	addr = vm_map_min(map);
120	result = vm_map_find(map, NULL, (vm_offset_t) 0,
121	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
122	if (result != KERN_SUCCESS) {
123		return (0);
124	}
125	return (addr);
126}
127
128/*
129 *	Allocate wired-down memory in the kernel's address map
130 *	or a submap.
131 */
132vm_offset_t
133kmem_alloc(map, size)
134	register vm_map_t map;
135	register vm_size_t size;
136{
137	vm_offset_t addr;
138	register vm_offset_t offset;
139	vm_offset_t i;
140
141	size = round_page(size);
142
143	/*
144	 * Use the kernel object for wired-down kernel pages. Assume that no
145	 * region of the kernel object is referenced more than once.
146	 */
147
148	/*
149	 * Locate sufficient space in the map.  This will give us the final
150	 * virtual address for the new memory, and thus will tell us the
151	 * offset within the kernel map.
152	 */
153	vm_map_lock(map);
154	if (vm_map_findspace(map, 0, size, &addr)) {
155		vm_map_unlock(map);
156		return (0);
157	}
158	offset = addr - VM_MIN_KERNEL_ADDRESS;
159	vm_object_reference(kernel_object);
160	vm_map_insert(map, kernel_object, offset, addr, addr + size,
161		VM_PROT_ALL, VM_PROT_ALL, 0);
162	vm_map_unlock(map);
163
164	/*
165	 * Guarantee that there are pages already in this object before
166	 * calling vm_map_pageable.  This is to prevent the following
167	 * scenario:
168	 *
169	 * 1) Threads have swapped out, so that there is a pager for the
170	 * kernel_object. 2) The kmsg zone is empty, and so we are
171	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
172	 * there is no page, but there is a pager, so we call
173	 * pager_data_request.  But the kmsg zone is empty, so we must
174	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
175	 * we get the data back from the pager, it will be (very stale)
176	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
177	 *
178	 * We're intentionally not activating the pages we allocate to prevent a
179	 * race with page-out.  vm_map_pageable will wire the pages.
180	 */
181
182	for (i = 0; i < size; i += PAGE_SIZE) {
183		vm_page_t mem;
184
185		while ((mem = vm_page_alloc(kernel_object,
186			OFF_TO_IDX(offset + i), VM_ALLOC_ZERO)) == NULL) {
187			VM_WAIT;
188		}
189		if ((mem->flags & PG_ZERO) == 0)
190			vm_page_zero_fill(mem);
191		mem->flags &= ~(PG_BUSY|PG_ZERO);
192		mem->valid = VM_PAGE_BITS_ALL;
193	}
194
195	/*
196	 * And finally, mark the data as non-pageable.
197	 */
198
199	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
200
201	/*
202	 * Try to coalesce the map
203	 */
204	vm_map_simplify(map, addr);
205
206	return (addr);
207}
208
209/*
210 *	kmem_free:
211 *
212 *	Release a region of kernel virtual memory allocated
213 *	with kmem_alloc, and return the physical pages
214 *	associated with that region.
215 */
216void
217kmem_free(map, addr, size)
218	vm_map_t map;
219	register vm_offset_t addr;
220	vm_size_t size;
221{
222	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
223}
224
225/*
226 *	kmem_suballoc:
227 *
228 *	Allocates a map to manage a subrange
229 *	of the kernel virtual address space.
230 *
231 *	Arguments are as follows:
232 *
233 *	parent		Map to take range from
234 *	size		Size of range to find
235 *	min, max	Returned endpoints of map
236 *	pageable	Can the region be paged
237 */
238vm_map_t
239kmem_suballoc(parent, min, max, size, pageable)
240	register vm_map_t parent;
241	vm_offset_t *min, *max;
242	register vm_size_t size;
243	boolean_t pageable;
244{
245	register int ret;
246	vm_map_t result;
247
248	size = round_page(size);
249
250	*min = (vm_offset_t) vm_map_min(parent);
251	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
252	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
253	if (ret != KERN_SUCCESS) {
254		printf("kmem_suballoc: bad status return of %d.\n", ret);
255		panic("kmem_suballoc");
256	}
257	*max = *min + size;
258	pmap_reference(vm_map_pmap(parent));
259	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
260	if (result == NULL)
261		panic("kmem_suballoc: cannot create submap");
262	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
263		panic("kmem_suballoc: unable to change range to submap");
264	return (result);
265}
266
267/*
268 * Allocate wired-down memory in the kernel's address map for the higher
269 * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
270 * kmem_alloc() because we may need to allocate memory at interrupt
271 * level where we cannot block (canwait == FALSE).
272 *
273 * This routine has its own private kernel submap (kmem_map) and object
274 * (kmem_object).  This, combined with the fact that only malloc uses
275 * this routine, ensures that we will never block in map or object waits.
276 *
277 * Note that this still only works in a uni-processor environment and
278 * when called at splhigh().
279 *
280 * We don't worry about expanding the map (adding entries) since entries
281 * for wired maps are statically allocated.
282 */
283vm_offset_t
284kmem_malloc(map, size, waitflag)
285	register vm_map_t map;
286	register vm_size_t size;
287	boolean_t waitflag;
288{
289	register vm_offset_t offset, i;
290	vm_map_entry_t entry;
291	vm_offset_t addr;
292	vm_page_t m;
293
294	if (map != kmem_map && map != mb_map)
295		panic("kmem_malloc: map != {kmem,mb}_map");
296
297	size = round_page(size);
298	addr = vm_map_min(map);
299
300	/*
301	 * Locate sufficient space in the map.  This will give us the final
302	 * virtual address for the new memory, and thus will tell us the
303	 * offset within the kernel map.
304	 */
305	vm_map_lock(map);
306	if (vm_map_findspace(map, 0, size, &addr)) {
307		vm_map_unlock(map);
308		if (map == mb_map) {
309			mb_map_full = TRUE;
310			log(LOG_ERR, "Out of mbuf clusters - increase maxusers!\n");
311			return (0);
312		}
313		if (waitflag == M_WAITOK)
314			panic("kmem_malloc: kmem_map too small");
315		return (0);
316	}
317	offset = addr - VM_MIN_KERNEL_ADDRESS;
318	vm_object_reference(kmem_object);
319	vm_map_insert(map, kmem_object, offset, addr, addr + size,
320		VM_PROT_ALL, VM_PROT_ALL, 0);
321
322	/*
323	 * If we can wait, just mark the range as wired (will fault pages as
324	 * necessary).
325	 */
326	if (waitflag == M_WAITOK) {
327		vm_map_unlock(map);
328		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
329		    FALSE);
330		vm_map_simplify(map, addr);
331		return (addr);
332	}
333	/*
334	 * If we cannot wait then we must allocate all memory up front,
335	 * pulling it off the active queue to prevent pageout.
336	 */
337	for (i = 0; i < size; i += PAGE_SIZE) {
338		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
339			(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
340
341		/*
342		 * Ran out of space, free everything up and return. Don't need
343		 * to lock page queues here as we know that the pages we got
344		 * aren't on any queues.
345		 */
346		if (m == NULL) {
347			while (i != 0) {
348				i -= PAGE_SIZE;
349				m = vm_page_lookup(kmem_object,
350					OFF_TO_IDX(offset + i));
351				vm_page_free(m);
352			}
353			vm_map_delete(map, addr, addr + size);
354			vm_map_unlock(map);
355			return (0);
356		}
357		m->flags &= ~(PG_BUSY|PG_ZERO);
358		m->valid = VM_PAGE_BITS_ALL;
359	}
360
361	/*
362	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
363	 * be able to extend the previous entry so there will be a new entry
364	 * exactly corresponding to this address range and it will have
365	 * wired_count == 0.
366	 */
367	if (!vm_map_lookup_entry(map, addr, &entry) ||
368	    entry->start != addr || entry->end != addr + size ||
369	    entry->wired_count)
370		panic("kmem_malloc: entry not found or misaligned");
371	entry->wired_count++;
372
373	/*
374	 * Loop thru pages, entering them in the pmap. (We cannot add them to
375	 * the wired count without wrapping the vm_page_queue_lock in
376	 * splimp...)
377	 */
378	for (i = 0; i < size; i += PAGE_SIZE) {
379		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
380		vm_page_wire(m);
381		pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
382	}
383	vm_map_unlock(map);
384
385	vm_map_simplify(map, addr);
386	return (addr);
387}
388
389/*
390 *	kmem_alloc_wait
391 *
392 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
393 *	has no room, the caller sleeps waiting for more memory in the submap.
394 *
395 */
396vm_offset_t
397kmem_alloc_wait(map, size)
398	vm_map_t map;
399	vm_size_t size;
400{
401	vm_offset_t addr;
402
403	size = round_page(size);
404
405	for (;;) {
406		/*
407		 * To make this work for more than one map, use the map's lock
408		 * to lock out sleepers/wakers.
409		 */
410		vm_map_lock(map);
411		if (vm_map_findspace(map, 0, size, &addr) == 0)
412			break;
413		/* no space now; see if we can ever get space */
414		if (vm_map_max(map) - vm_map_min(map) < size) {
415			vm_map_unlock(map);
416			return (0);
417		}
418		vm_map_unlock(map);
419		tsleep(map, PVM, "kmaw", 0);
420	}
421	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
422	vm_map_unlock(map);
423	return (addr);
424}
425
426/*
427 *	kmem_free_wakeup
428 *
429 *	Returns memory to a submap of the kernel, and wakes up any processes
430 *	waiting for memory in that map.
431 */
432void
433kmem_free_wakeup(map, addr, size)
434	vm_map_t map;
435	vm_offset_t addr;
436	vm_size_t size;
437{
438	vm_map_lock(map);
439	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
440	wakeup(map);
441	vm_map_unlock(map);
442}
443
444/*
445 * Create the kernel map; insert a mapping covering kernel text, data, bss,
446 * and all space allocated thus far (`boostrap' data).  The new map will thus
447 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
448 * the range between `start' and `end' as free.
449 */
450void
451kmem_init(start, end)
452	vm_offset_t start, end;
453{
454	register vm_map_t m;
455
456	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
457	vm_map_lock(m);
458	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
459	kernel_map = m;
460	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
461	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
462	/* ... and ending with the completion of the above `insert' */
463	vm_map_unlock(m);
464}
465