vm_fault.c revision 331722
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD: stable/11/sys/vm/vm_fault.c 331722 2018-03-29 02:50:57Z eadler $");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/mman.h>
85#include <sys/proc.h>
86#include <sys/racct.h>
87#include <sys/resourcevar.h>
88#include <sys/rwlock.h>
89#include <sys/sysctl.h>
90#include <sys/vmmeter.h>
91#include <sys/vnode.h>
92#ifdef KTRACE
93#include <sys/ktrace.h>
94#endif
95
96#include <vm/vm.h>
97#include <vm/vm_param.h>
98#include <vm/pmap.h>
99#include <vm/vm_map.h>
100#include <vm/vm_object.h>
101#include <vm/vm_page.h>
102#include <vm/vm_pageout.h>
103#include <vm/vm_kern.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_extern.h>
106#include <vm/vm_reserv.h>
107
108#define PFBAK 4
109#define PFFOR 4
110
111#define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
112#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113
114#define	VM_FAULT_DONTNEED_MIN	1048576
115
116struct faultstate {
117	vm_page_t m;
118	vm_object_t object;
119	vm_pindex_t pindex;
120	vm_page_t first_m;
121	vm_object_t	first_object;
122	vm_pindex_t first_pindex;
123	vm_map_t map;
124	vm_map_entry_t entry;
125	int map_generation;
126	bool lookup_still_valid;
127	struct vnode *vp;
128};
129
130static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
131	    int ahead);
132static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
133	    int backward, int forward);
134
135static inline void
136release_page(struct faultstate *fs)
137{
138
139	vm_page_xunbusy(fs->m);
140	vm_page_lock(fs->m);
141	vm_page_deactivate(fs->m);
142	vm_page_unlock(fs->m);
143	fs->m = NULL;
144}
145
146static inline void
147unlock_map(struct faultstate *fs)
148{
149
150	if (fs->lookup_still_valid) {
151		vm_map_lookup_done(fs->map, fs->entry);
152		fs->lookup_still_valid = false;
153	}
154}
155
156static void
157unlock_vp(struct faultstate *fs)
158{
159
160	if (fs->vp != NULL) {
161		vput(fs->vp);
162		fs->vp = NULL;
163	}
164}
165
166static void
167unlock_and_deallocate(struct faultstate *fs)
168{
169
170	vm_object_pip_wakeup(fs->object);
171	VM_OBJECT_WUNLOCK(fs->object);
172	if (fs->object != fs->first_object) {
173		VM_OBJECT_WLOCK(fs->first_object);
174		vm_page_lock(fs->first_m);
175		vm_page_free(fs->first_m);
176		vm_page_unlock(fs->first_m);
177		vm_object_pip_wakeup(fs->first_object);
178		VM_OBJECT_WUNLOCK(fs->first_object);
179		fs->first_m = NULL;
180	}
181	vm_object_deallocate(fs->first_object);
182	unlock_map(fs);
183	unlock_vp(fs);
184}
185
186static void
187vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
188    vm_prot_t fault_type, int fault_flags, bool set_wd)
189{
190	bool need_dirty;
191
192	if (((prot & VM_PROT_WRITE) == 0 &&
193	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
194	    (m->oflags & VPO_UNMANAGED) != 0)
195		return;
196
197	VM_OBJECT_ASSERT_LOCKED(m->object);
198
199	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
200	    (fault_flags & VM_FAULT_WIRE) == 0) ||
201	    (fault_flags & VM_FAULT_DIRTY) != 0;
202
203	if (set_wd)
204		vm_object_set_writeable_dirty(m->object);
205	else
206		/*
207		 * If two callers of vm_fault_dirty() with set_wd ==
208		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
209		 * flag set, other with flag clear, race, it is
210		 * possible for the no-NOSYNC thread to see m->dirty
211		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
212		 * around manipulation of VPO_NOSYNC and
213		 * vm_page_dirty() call, to avoid the race and keep
214		 * m->oflags consistent.
215		 */
216		vm_page_lock(m);
217
218	/*
219	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
220	 * if the page is already dirty to prevent data written with
221	 * the expectation of being synced from not being synced.
222	 * Likewise if this entry does not request NOSYNC then make
223	 * sure the page isn't marked NOSYNC.  Applications sharing
224	 * data should use the same flags to avoid ping ponging.
225	 */
226	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
227		if (m->dirty == 0) {
228			m->oflags |= VPO_NOSYNC;
229		}
230	} else {
231		m->oflags &= ~VPO_NOSYNC;
232	}
233
234	/*
235	 * If the fault is a write, we know that this page is being
236	 * written NOW so dirty it explicitly to save on
237	 * pmap_is_modified() calls later.
238	 *
239	 * Also, since the page is now dirty, we can possibly tell
240	 * the pager to release any swap backing the page.  Calling
241	 * the pager requires a write lock on the object.
242	 */
243	if (need_dirty)
244		vm_page_dirty(m);
245	if (!set_wd)
246		vm_page_unlock(m);
247	else if (need_dirty)
248		vm_pager_page_unswapped(m);
249}
250
251static void
252vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
253{
254
255	if (m_hold != NULL) {
256		*m_hold = m;
257		vm_page_lock(m);
258		vm_page_hold(m);
259		vm_page_unlock(m);
260	}
261}
262
263/*
264 * Unlocks fs.first_object and fs.map on success.
265 */
266static int
267vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
268    int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
269{
270	vm_page_t m, m_map;
271#if defined(__amd64__) && VM_NRESERVLEVEL > 0
272	vm_page_t m_super;
273	int flags;
274#endif
275	int psind, rv;
276
277	MPASS(fs->vp == NULL);
278	m = vm_page_lookup(fs->first_object, fs->first_pindex);
279	/* A busy page can be mapped for read|execute access. */
280	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
281	    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
282		return (KERN_FAILURE);
283	m_map = m;
284	psind = 0;
285#if defined(__amd64__) && VM_NRESERVLEVEL > 0
286	if ((m->flags & PG_FICTITIOUS) == 0 &&
287	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
288	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
289	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
290	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
291	    (pagesizes[m_super->psind] - 1)) &&
292	    pmap_ps_enabled(fs->map->pmap)) {
293		flags = PS_ALL_VALID;
294		if ((prot & VM_PROT_WRITE) != 0) {
295			/*
296			 * Create a superpage mapping allowing write access
297			 * only if none of the constituent pages are busy and
298			 * all of them are already dirty (except possibly for
299			 * the page that was faulted on).
300			 */
301			flags |= PS_NONE_BUSY;
302			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
303				flags |= PS_ALL_DIRTY;
304		}
305		if (vm_page_ps_test(m_super, flags, m)) {
306			m_map = m_super;
307			psind = m_super->psind;
308			vaddr = rounddown2(vaddr, pagesizes[psind]);
309			/* Preset the modified bit for dirty superpages. */
310			if ((flags & PS_ALL_DIRTY) != 0)
311				fault_type |= VM_PROT_WRITE;
312		}
313	}
314#endif
315	rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
316	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
317	if (rv != KERN_SUCCESS)
318		return (rv);
319	vm_fault_fill_hold(m_hold, m);
320	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
321	VM_OBJECT_RUNLOCK(fs->first_object);
322	if (psind == 0 && !wired)
323		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR);
324	vm_map_lookup_done(fs->map, fs->entry);
325	curthread->td_ru.ru_minflt++;
326	return (KERN_SUCCESS);
327}
328
329static void
330vm_fault_restore_map_lock(struct faultstate *fs)
331{
332
333	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
334	MPASS(fs->first_object->paging_in_progress > 0);
335
336	if (!vm_map_trylock_read(fs->map)) {
337		VM_OBJECT_WUNLOCK(fs->first_object);
338		vm_map_lock_read(fs->map);
339		VM_OBJECT_WLOCK(fs->first_object);
340	}
341	fs->lookup_still_valid = true;
342}
343
344static void
345vm_fault_populate_check_page(vm_page_t m)
346{
347
348	/*
349	 * Check each page to ensure that the pager is obeying the
350	 * interface: the page must be installed in the object, fully
351	 * valid, and exclusively busied.
352	 */
353	MPASS(m != NULL);
354	MPASS(m->valid == VM_PAGE_BITS_ALL);
355	MPASS(vm_page_xbusied(m));
356}
357
358static void
359vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
360    vm_pindex_t last)
361{
362	vm_page_t m;
363	vm_pindex_t pidx;
364
365	VM_OBJECT_ASSERT_WLOCKED(object);
366	MPASS(first <= last);
367	for (pidx = first, m = vm_page_lookup(object, pidx);
368	    pidx <= last; pidx++, m = vm_page_next(m)) {
369		vm_fault_populate_check_page(m);
370		vm_page_lock(m);
371		vm_page_deactivate(m);
372		vm_page_unlock(m);
373		vm_page_xunbusy(m);
374	}
375}
376
377static int
378vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
379    int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
380{
381	vm_page_t m;
382	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
383	int rv;
384
385	MPASS(fs->object == fs->first_object);
386	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
387	MPASS(fs->first_object->paging_in_progress > 0);
388	MPASS(fs->first_object->backing_object == NULL);
389	MPASS(fs->lookup_still_valid);
390
391	pager_first = OFF_TO_IDX(fs->entry->offset);
392	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
393	unlock_map(fs);
394	unlock_vp(fs);
395
396	/*
397	 * Call the pager (driver) populate() method.
398	 *
399	 * There is no guarantee that the method will be called again
400	 * if the current fault is for read, and a future fault is
401	 * for write.  Report the entry's maximum allowed protection
402	 * to the driver.
403	 */
404	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
405	    fault_type, fs->entry->max_protection, &pager_first, &pager_last);
406
407	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
408	if (rv == VM_PAGER_BAD) {
409		/*
410		 * VM_PAGER_BAD is the backdoor for a pager to request
411		 * normal fault handling.
412		 */
413		vm_fault_restore_map_lock(fs);
414		if (fs->map->timestamp != fs->map_generation)
415			return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
416		return (KERN_NOT_RECEIVER);
417	}
418	if (rv != VM_PAGER_OK)
419		return (KERN_FAILURE); /* AKA SIGSEGV */
420
421	/* Ensure that the driver is obeying the interface. */
422	MPASS(pager_first <= pager_last);
423	MPASS(fs->first_pindex <= pager_last);
424	MPASS(fs->first_pindex >= pager_first);
425	MPASS(pager_last < fs->first_object->size);
426
427	vm_fault_restore_map_lock(fs);
428	if (fs->map->timestamp != fs->map_generation) {
429		vm_fault_populate_cleanup(fs->first_object, pager_first,
430		    pager_last);
431		return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
432	}
433
434	/*
435	 * The map is unchanged after our last unlock.  Process the fault.
436	 *
437	 * The range [pager_first, pager_last] that is given to the
438	 * pager is only a hint.  The pager may populate any range
439	 * within the object that includes the requested page index.
440	 * In case the pager expanded the range, clip it to fit into
441	 * the map entry.
442	 */
443	map_first = OFF_TO_IDX(fs->entry->offset);
444	if (map_first > pager_first) {
445		vm_fault_populate_cleanup(fs->first_object, pager_first,
446		    map_first - 1);
447		pager_first = map_first;
448	}
449	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
450	if (map_last < pager_last) {
451		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
452		    pager_last);
453		pager_last = map_last;
454	}
455	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
456	    pidx <= pager_last; pidx++, m = vm_page_next(m)) {
457		vm_fault_populate_check_page(m);
458		vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags,
459		    true);
460		VM_OBJECT_WUNLOCK(fs->first_object);
461		pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) -
462		    fs->entry->offset, m, prot, fault_type | (wired ?
463		    PMAP_ENTER_WIRED : 0), 0);
464		VM_OBJECT_WLOCK(fs->first_object);
465		if (pidx == fs->first_pindex)
466			vm_fault_fill_hold(m_hold, m);
467		vm_page_lock(m);
468		if ((fault_flags & VM_FAULT_WIRE) != 0) {
469			KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
470			vm_page_wire(m);
471		} else {
472			vm_page_activate(m);
473		}
474		vm_page_unlock(m);
475		vm_page_xunbusy(m);
476	}
477	curthread->td_ru.ru_majflt++;
478	return (KERN_SUCCESS);
479}
480
481/*
482 *	vm_fault:
483 *
484 *	Handle a page fault occurring at the given address,
485 *	requiring the given permissions, in the map specified.
486 *	If successful, the page is inserted into the
487 *	associated physical map.
488 *
489 *	NOTE: the given address should be truncated to the
490 *	proper page address.
491 *
492 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
493 *	a standard error specifying why the fault is fatal is returned.
494 *
495 *	The map in question must be referenced, and remains so.
496 *	Caller may hold no locks.
497 */
498int
499vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
500    int fault_flags)
501{
502	struct thread *td;
503	int result;
504
505	td = curthread;
506	if ((td->td_pflags & TDP_NOFAULTING) != 0)
507		return (KERN_PROTECTION_FAILURE);
508#ifdef KTRACE
509	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
510		ktrfault(vaddr, fault_type);
511#endif
512	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
513	    NULL);
514#ifdef KTRACE
515	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
516		ktrfaultend(result);
517#endif
518	return (result);
519}
520
521int
522vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
523    int fault_flags, vm_page_t *m_hold)
524{
525	struct faultstate fs;
526	struct vnode *vp;
527	vm_object_t next_object, retry_object;
528	vm_offset_t e_end, e_start;
529	vm_pindex_t retry_pindex;
530	vm_prot_t prot, retry_prot;
531	int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
532	int locked, nera, result, rv;
533	u_char behavior;
534	boolean_t wired;	/* Passed by reference. */
535	bool dead, hardfault, is_first_object_locked;
536
537	PCPU_INC(cnt.v_vm_faults);
538	fs.vp = NULL;
539	faultcount = 0;
540	nera = -1;
541	hardfault = false;
542
543RetryFault:;
544
545	/*
546	 * Find the backing store object and offset into it to begin the
547	 * search.
548	 */
549	fs.map = map;
550	result = vm_map_lookup(&fs.map, vaddr, fault_type |
551	    VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
552	    &fs.first_pindex, &prot, &wired);
553	if (result != KERN_SUCCESS) {
554		unlock_vp(&fs);
555		return (result);
556	}
557
558	fs.map_generation = fs.map->timestamp;
559
560	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
561		panic("vm_fault: fault on nofault entry, addr: %lx",
562		    (u_long)vaddr);
563	}
564
565	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
566	    fs.entry->wiring_thread != curthread) {
567		vm_map_unlock_read(fs.map);
568		vm_map_lock(fs.map);
569		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
570		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
571			unlock_vp(&fs);
572			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
573			vm_map_unlock_and_wait(fs.map, 0);
574		} else
575			vm_map_unlock(fs.map);
576		goto RetryFault;
577	}
578
579	MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
580
581	if (wired)
582		fault_type = prot | (fault_type & VM_PROT_COPY);
583	else
584		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
585		    ("!wired && VM_FAULT_WIRE"));
586
587	/*
588	 * Try to avoid lock contention on the top-level object through
589	 * special-case handling of some types of page faults, specifically,
590	 * those that are both (1) mapping an existing page from the top-
591	 * level object and (2) not having to mark that object as containing
592	 * dirty pages.  Under these conditions, a read lock on the top-level
593	 * object suffices, allowing multiple page faults of a similar type to
594	 * run in parallel on the same top-level object.
595	 */
596	if (fs.vp == NULL /* avoid locked vnode leak */ &&
597	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
598	    /* avoid calling vm_object_set_writeable_dirty() */
599	    ((prot & VM_PROT_WRITE) == 0 ||
600	    (fs.first_object->type != OBJT_VNODE &&
601	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
602	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
603		VM_OBJECT_RLOCK(fs.first_object);
604		if ((prot & VM_PROT_WRITE) == 0 ||
605		    (fs.first_object->type != OBJT_VNODE &&
606		    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
607		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
608			rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
609			    fault_flags, wired, m_hold);
610			if (rv == KERN_SUCCESS)
611				return (rv);
612		}
613		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
614			VM_OBJECT_RUNLOCK(fs.first_object);
615			VM_OBJECT_WLOCK(fs.first_object);
616		}
617	} else {
618		VM_OBJECT_WLOCK(fs.first_object);
619	}
620
621	/*
622	 * Make a reference to this object to prevent its disposal while we
623	 * are messing with it.  Once we have the reference, the map is free
624	 * to be diddled.  Since objects reference their shadows (and copies),
625	 * they will stay around as well.
626	 *
627	 * Bump the paging-in-progress count to prevent size changes (e.g.
628	 * truncation operations) during I/O.
629	 */
630	vm_object_reference_locked(fs.first_object);
631	vm_object_pip_add(fs.first_object, 1);
632
633	fs.lookup_still_valid = true;
634
635	fs.first_m = NULL;
636
637	/*
638	 * Search for the page at object/offset.
639	 */
640	fs.object = fs.first_object;
641	fs.pindex = fs.first_pindex;
642	while (TRUE) {
643		/*
644		 * If the object is marked for imminent termination,
645		 * we retry here, since the collapse pass has raced
646		 * with us.  Otherwise, if we see terminally dead
647		 * object, return fail.
648		 */
649		if ((fs.object->flags & OBJ_DEAD) != 0) {
650			dead = fs.object->type == OBJT_DEAD;
651			unlock_and_deallocate(&fs);
652			if (dead)
653				return (KERN_PROTECTION_FAILURE);
654			pause("vmf_de", 1);
655			goto RetryFault;
656		}
657
658		/*
659		 * See if page is resident
660		 */
661		fs.m = vm_page_lookup(fs.object, fs.pindex);
662		if (fs.m != NULL) {
663			/*
664			 * Wait/Retry if the page is busy.  We have to do this
665			 * if the page is either exclusive or shared busy
666			 * because the vm_pager may be using read busy for
667			 * pageouts (and even pageins if it is the vnode
668			 * pager), and we could end up trying to pagein and
669			 * pageout the same page simultaneously.
670			 *
671			 * We can theoretically allow the busy case on a read
672			 * fault if the page is marked valid, but since such
673			 * pages are typically already pmap'd, putting that
674			 * special case in might be more effort then it is
675			 * worth.  We cannot under any circumstances mess
676			 * around with a shared busied page except, perhaps,
677			 * to pmap it.
678			 */
679			if (vm_page_busied(fs.m)) {
680				/*
681				 * Reference the page before unlocking and
682				 * sleeping so that the page daemon is less
683				 * likely to reclaim it.
684				 */
685				vm_page_aflag_set(fs.m, PGA_REFERENCED);
686				if (fs.object != fs.first_object) {
687					if (!VM_OBJECT_TRYWLOCK(
688					    fs.first_object)) {
689						VM_OBJECT_WUNLOCK(fs.object);
690						VM_OBJECT_WLOCK(fs.first_object);
691						VM_OBJECT_WLOCK(fs.object);
692					}
693					vm_page_lock(fs.first_m);
694					vm_page_free(fs.first_m);
695					vm_page_unlock(fs.first_m);
696					vm_object_pip_wakeup(fs.first_object);
697					VM_OBJECT_WUNLOCK(fs.first_object);
698					fs.first_m = NULL;
699				}
700				unlock_map(&fs);
701				if (fs.m == vm_page_lookup(fs.object,
702				    fs.pindex)) {
703					vm_page_sleep_if_busy(fs.m, "vmpfw");
704				}
705				vm_object_pip_wakeup(fs.object);
706				VM_OBJECT_WUNLOCK(fs.object);
707				PCPU_INC(cnt.v_intrans);
708				vm_object_deallocate(fs.first_object);
709				goto RetryFault;
710			}
711			vm_page_lock(fs.m);
712			vm_page_remque(fs.m);
713			vm_page_unlock(fs.m);
714
715			/*
716			 * Mark page busy for other processes, and the
717			 * pagedaemon.  If it still isn't completely valid
718			 * (readable), jump to readrest, else break-out ( we
719			 * found the page ).
720			 */
721			vm_page_xbusy(fs.m);
722			if (fs.m->valid != VM_PAGE_BITS_ALL)
723				goto readrest;
724			break;
725		}
726		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
727
728		/*
729		 * Page is not resident.  If the pager might contain the page
730		 * or this is the beginning of the search, allocate a new
731		 * page.  (Default objects are zero-fill, so there is no real
732		 * pager for them.)
733		 */
734		if (fs.object->type != OBJT_DEFAULT ||
735		    fs.object == fs.first_object) {
736			if (fs.pindex >= fs.object->size) {
737				unlock_and_deallocate(&fs);
738				return (KERN_PROTECTION_FAILURE);
739			}
740
741			if (fs.object == fs.first_object &&
742			    (fs.first_object->flags & OBJ_POPULATE) != 0 &&
743			    fs.first_object->shadow_count == 0) {
744				rv = vm_fault_populate(&fs, vaddr, prot,
745				    fault_type, fault_flags, wired, m_hold);
746				switch (rv) {
747				case KERN_SUCCESS:
748				case KERN_FAILURE:
749					unlock_and_deallocate(&fs);
750					return (rv);
751				case KERN_RESOURCE_SHORTAGE:
752					unlock_and_deallocate(&fs);
753					goto RetryFault;
754				case KERN_NOT_RECEIVER:
755					/*
756					 * Pager's populate() method
757					 * returned VM_PAGER_BAD.
758					 */
759					break;
760				default:
761					panic("inconsistent return codes");
762				}
763			}
764
765			/*
766			 * Allocate a new page for this object/offset pair.
767			 *
768			 * Unlocked read of the p_flag is harmless. At
769			 * worst, the P_KILLED might be not observed
770			 * there, and allocation can fail, causing
771			 * restart and new reading of the p_flag.
772			 */
773			if (!vm_page_count_severe() || P_KILLED(curproc)) {
774#if VM_NRESERVLEVEL > 0
775				vm_object_color(fs.object, atop(vaddr) -
776				    fs.pindex);
777#endif
778				alloc_req = P_KILLED(curproc) ?
779				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
780				if (fs.object->type != OBJT_VNODE &&
781				    fs.object->backing_object == NULL)
782					alloc_req |= VM_ALLOC_ZERO;
783				fs.m = vm_page_alloc(fs.object, fs.pindex,
784				    alloc_req);
785			}
786			if (fs.m == NULL) {
787				unlock_and_deallocate(&fs);
788				VM_WAITPFAULT;
789				goto RetryFault;
790			}
791		}
792
793readrest:
794		/*
795		 * At this point, we have either allocated a new page or found
796		 * an existing page that is only partially valid.
797		 *
798		 * We hold a reference on the current object and the page is
799		 * exclusive busied.
800		 */
801
802		/*
803		 * If the pager for the current object might have the page,
804		 * then determine the number of additional pages to read and
805		 * potentially reprioritize previously read pages for earlier
806		 * reclamation.  These operations should only be performed
807		 * once per page fault.  Even if the current pager doesn't
808		 * have the page, the number of additional pages to read will
809		 * apply to subsequent objects in the shadow chain.
810		 */
811		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
812		    !P_KILLED(curproc)) {
813			KASSERT(fs.lookup_still_valid, ("map unlocked"));
814			era = fs.entry->read_ahead;
815			behavior = vm_map_entry_behavior(fs.entry);
816			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
817				nera = 0;
818			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
819				nera = VM_FAULT_READ_AHEAD_MAX;
820				if (vaddr == fs.entry->next_read)
821					vm_fault_dontneed(&fs, vaddr, nera);
822			} else if (vaddr == fs.entry->next_read) {
823				/*
824				 * This is a sequential fault.  Arithmetically
825				 * increase the requested number of pages in
826				 * the read-ahead window.  The requested
827				 * number of pages is "# of sequential faults
828				 * x (read ahead min + 1) + read ahead min"
829				 */
830				nera = VM_FAULT_READ_AHEAD_MIN;
831				if (era > 0) {
832					nera += era + 1;
833					if (nera > VM_FAULT_READ_AHEAD_MAX)
834						nera = VM_FAULT_READ_AHEAD_MAX;
835				}
836				if (era == VM_FAULT_READ_AHEAD_MAX)
837					vm_fault_dontneed(&fs, vaddr, nera);
838			} else {
839				/*
840				 * This is a non-sequential fault.
841				 */
842				nera = 0;
843			}
844			if (era != nera) {
845				/*
846				 * A read lock on the map suffices to update
847				 * the read ahead count safely.
848				 */
849				fs.entry->read_ahead = nera;
850			}
851
852			/*
853			 * Prepare for unlocking the map.  Save the map
854			 * entry's start and end addresses, which are used to
855			 * optimize the size of the pager operation below.
856			 * Even if the map entry's addresses change after
857			 * unlocking the map, using the saved addresses is
858			 * safe.
859			 */
860			e_start = fs.entry->start;
861			e_end = fs.entry->end;
862		}
863
864		/*
865		 * Call the pager to retrieve the page if there is a chance
866		 * that the pager has it, and potentially retrieve additional
867		 * pages at the same time.
868		 */
869		if (fs.object->type != OBJT_DEFAULT) {
870			/*
871			 * Release the map lock before locking the vnode or
872			 * sleeping in the pager.  (If the current object has
873			 * a shadow, then an earlier iteration of this loop
874			 * may have already unlocked the map.)
875			 */
876			unlock_map(&fs);
877
878			if (fs.object->type == OBJT_VNODE &&
879			    (vp = fs.object->handle) != fs.vp) {
880				/*
881				 * Perform an unlock in case the desired vnode
882				 * changed while the map was unlocked during a
883				 * retry.
884				 */
885				unlock_vp(&fs);
886
887				locked = VOP_ISLOCKED(vp);
888				if (locked != LK_EXCLUSIVE)
889					locked = LK_SHARED;
890
891				/*
892				 * We must not sleep acquiring the vnode lock
893				 * while we have the page exclusive busied or
894				 * the object's paging-in-progress count
895				 * incremented.  Otherwise, we could deadlock.
896				 */
897				error = vget(vp, locked | LK_CANRECURSE |
898				    LK_NOWAIT, curthread);
899				if (error != 0) {
900					vhold(vp);
901					release_page(&fs);
902					unlock_and_deallocate(&fs);
903					error = vget(vp, locked | LK_RETRY |
904					    LK_CANRECURSE, curthread);
905					vdrop(vp);
906					fs.vp = vp;
907					KASSERT(error == 0,
908					    ("vm_fault: vget failed"));
909					goto RetryFault;
910				}
911				fs.vp = vp;
912			}
913			KASSERT(fs.vp == NULL || !fs.map->system_map,
914			    ("vm_fault: vnode-backed object mapped by system map"));
915
916			/*
917			 * Page in the requested page and hint the pager,
918			 * that it may bring up surrounding pages.
919			 */
920			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
921			    P_KILLED(curproc)) {
922				behind = 0;
923				ahead = 0;
924			} else {
925				/* Is this a sequential fault? */
926				if (nera > 0) {
927					behind = 0;
928					ahead = nera;
929				} else {
930					/*
931					 * Request a cluster of pages that is
932					 * aligned to a VM_FAULT_READ_DEFAULT
933					 * page offset boundary within the
934					 * object.  Alignment to a page offset
935					 * boundary is more likely to coincide
936					 * with the underlying file system
937					 * block than alignment to a virtual
938					 * address boundary.
939					 */
940					cluster_offset = fs.pindex %
941					    VM_FAULT_READ_DEFAULT;
942					behind = ulmin(cluster_offset,
943					    atop(vaddr - e_start));
944					ahead = VM_FAULT_READ_DEFAULT - 1 -
945					    cluster_offset;
946				}
947				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
948			}
949			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
950			    &behind, &ahead);
951			if (rv == VM_PAGER_OK) {
952				faultcount = behind + 1 + ahead;
953				hardfault = true;
954				break; /* break to PAGE HAS BEEN FOUND */
955			}
956			if (rv == VM_PAGER_ERROR)
957				printf("vm_fault: pager read error, pid %d (%s)\n",
958				    curproc->p_pid, curproc->p_comm);
959
960			/*
961			 * If an I/O error occurred or the requested page was
962			 * outside the range of the pager, clean up and return
963			 * an error.
964			 */
965			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
966				vm_page_lock(fs.m);
967				if (fs.m->wire_count == 0)
968					vm_page_free(fs.m);
969				else
970					vm_page_xunbusy_maybelocked(fs.m);
971				vm_page_unlock(fs.m);
972				fs.m = NULL;
973				unlock_and_deallocate(&fs);
974				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
975				    KERN_PROTECTION_FAILURE);
976			}
977
978			/*
979			 * The requested page does not exist at this object/
980			 * offset.  Remove the invalid page from the object,
981			 * waking up anyone waiting for it, and continue on to
982			 * the next object.  However, if this is the top-level
983			 * object, we must leave the busy page in place to
984			 * prevent another process from rushing past us, and
985			 * inserting the page in that object at the same time
986			 * that we are.
987			 */
988			if (fs.object != fs.first_object) {
989				vm_page_lock(fs.m);
990				if (fs.m->wire_count == 0)
991					vm_page_free(fs.m);
992				else
993					vm_page_xunbusy_maybelocked(fs.m);
994				vm_page_unlock(fs.m);
995				fs.m = NULL;
996			}
997		}
998
999		/*
1000		 * We get here if the object has default pager (or unwiring)
1001		 * or the pager doesn't have the page.
1002		 */
1003		if (fs.object == fs.first_object)
1004			fs.first_m = fs.m;
1005
1006		/*
1007		 * Move on to the next object.  Lock the next object before
1008		 * unlocking the current one.
1009		 */
1010		next_object = fs.object->backing_object;
1011		if (next_object == NULL) {
1012			/*
1013			 * If there's no object left, fill the page in the top
1014			 * object with zeros.
1015			 */
1016			if (fs.object != fs.first_object) {
1017				vm_object_pip_wakeup(fs.object);
1018				VM_OBJECT_WUNLOCK(fs.object);
1019
1020				fs.object = fs.first_object;
1021				fs.pindex = fs.first_pindex;
1022				fs.m = fs.first_m;
1023				VM_OBJECT_WLOCK(fs.object);
1024			}
1025			fs.first_m = NULL;
1026
1027			/*
1028			 * Zero the page if necessary and mark it valid.
1029			 */
1030			if ((fs.m->flags & PG_ZERO) == 0) {
1031				pmap_zero_page(fs.m);
1032			} else {
1033				PCPU_INC(cnt.v_ozfod);
1034			}
1035			PCPU_INC(cnt.v_zfod);
1036			fs.m->valid = VM_PAGE_BITS_ALL;
1037			/* Don't try to prefault neighboring pages. */
1038			faultcount = 1;
1039			break;	/* break to PAGE HAS BEEN FOUND */
1040		} else {
1041			KASSERT(fs.object != next_object,
1042			    ("object loop %p", next_object));
1043			VM_OBJECT_WLOCK(next_object);
1044			vm_object_pip_add(next_object, 1);
1045			if (fs.object != fs.first_object)
1046				vm_object_pip_wakeup(fs.object);
1047			fs.pindex +=
1048			    OFF_TO_IDX(fs.object->backing_object_offset);
1049			VM_OBJECT_WUNLOCK(fs.object);
1050			fs.object = next_object;
1051		}
1052	}
1053
1054	vm_page_assert_xbusied(fs.m);
1055
1056	/*
1057	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1058	 * is held.]
1059	 */
1060
1061	/*
1062	 * If the page is being written, but isn't already owned by the
1063	 * top-level object, we have to copy it into a new page owned by the
1064	 * top-level object.
1065	 */
1066	if (fs.object != fs.first_object) {
1067		/*
1068		 * We only really need to copy if we want to write it.
1069		 */
1070		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1071			/*
1072			 * This allows pages to be virtually copied from a
1073			 * backing_object into the first_object, where the
1074			 * backing object has no other refs to it, and cannot
1075			 * gain any more refs.  Instead of a bcopy, we just
1076			 * move the page from the backing object to the
1077			 * first object.  Note that we must mark the page
1078			 * dirty in the first object so that it will go out
1079			 * to swap when needed.
1080			 */
1081			is_first_object_locked = false;
1082			if (
1083				/*
1084				 * Only one shadow object
1085				 */
1086				(fs.object->shadow_count == 1) &&
1087				/*
1088				 * No COW refs, except us
1089				 */
1090				(fs.object->ref_count == 1) &&
1091				/*
1092				 * No one else can look this object up
1093				 */
1094				(fs.object->handle == NULL) &&
1095				/*
1096				 * No other ways to look the object up
1097				 */
1098				((fs.object->type == OBJT_DEFAULT) ||
1099				 (fs.object->type == OBJT_SWAP)) &&
1100			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1101				/*
1102				 * We don't chase down the shadow chain
1103				 */
1104			    fs.object == fs.first_object->backing_object) {
1105				vm_page_lock(fs.m);
1106				vm_page_remove(fs.m);
1107				vm_page_unlock(fs.m);
1108				vm_page_lock(fs.first_m);
1109				vm_page_replace_checked(fs.m, fs.first_object,
1110				    fs.first_pindex, fs.first_m);
1111				vm_page_free(fs.first_m);
1112				vm_page_unlock(fs.first_m);
1113				vm_page_dirty(fs.m);
1114#if VM_NRESERVLEVEL > 0
1115				/*
1116				 * Rename the reservation.
1117				 */
1118				vm_reserv_rename(fs.m, fs.first_object,
1119				    fs.object, OFF_TO_IDX(
1120				    fs.first_object->backing_object_offset));
1121#endif
1122				/*
1123				 * Removing the page from the backing object
1124				 * unbusied it.
1125				 */
1126				vm_page_xbusy(fs.m);
1127				fs.first_m = fs.m;
1128				fs.m = NULL;
1129				PCPU_INC(cnt.v_cow_optim);
1130			} else {
1131				/*
1132				 * Oh, well, lets copy it.
1133				 */
1134				pmap_copy_page(fs.m, fs.first_m);
1135				fs.first_m->valid = VM_PAGE_BITS_ALL;
1136				if ((fault_flags & VM_FAULT_WIRE) == 0) {
1137					prot &= ~VM_PROT_WRITE;
1138					fault_type &= ~VM_PROT_WRITE;
1139				}
1140				if (wired && (fault_flags &
1141				    VM_FAULT_WIRE) == 0) {
1142					vm_page_lock(fs.first_m);
1143					vm_page_wire(fs.first_m);
1144					vm_page_unlock(fs.first_m);
1145
1146					vm_page_lock(fs.m);
1147					vm_page_unwire(fs.m, PQ_INACTIVE);
1148					vm_page_unlock(fs.m);
1149				}
1150				/*
1151				 * We no longer need the old page or object.
1152				 */
1153				release_page(&fs);
1154			}
1155			/*
1156			 * fs.object != fs.first_object due to above
1157			 * conditional
1158			 */
1159			vm_object_pip_wakeup(fs.object);
1160			VM_OBJECT_WUNLOCK(fs.object);
1161			/*
1162			 * Only use the new page below...
1163			 */
1164			fs.object = fs.first_object;
1165			fs.pindex = fs.first_pindex;
1166			fs.m = fs.first_m;
1167			if (!is_first_object_locked)
1168				VM_OBJECT_WLOCK(fs.object);
1169			PCPU_INC(cnt.v_cow_faults);
1170			curthread->td_cow++;
1171		} else {
1172			prot &= ~VM_PROT_WRITE;
1173		}
1174	}
1175
1176	/*
1177	 * We must verify that the maps have not changed since our last
1178	 * lookup.
1179	 */
1180	if (!fs.lookup_still_valid) {
1181		if (!vm_map_trylock_read(fs.map)) {
1182			release_page(&fs);
1183			unlock_and_deallocate(&fs);
1184			goto RetryFault;
1185		}
1186		fs.lookup_still_valid = true;
1187		if (fs.map->timestamp != fs.map_generation) {
1188			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1189			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1190
1191			/*
1192			 * If we don't need the page any longer, put it on the inactive
1193			 * list (the easiest thing to do here).  If no one needs it,
1194			 * pageout will grab it eventually.
1195			 */
1196			if (result != KERN_SUCCESS) {
1197				release_page(&fs);
1198				unlock_and_deallocate(&fs);
1199
1200				/*
1201				 * If retry of map lookup would have blocked then
1202				 * retry fault from start.
1203				 */
1204				if (result == KERN_FAILURE)
1205					goto RetryFault;
1206				return (result);
1207			}
1208			if ((retry_object != fs.first_object) ||
1209			    (retry_pindex != fs.first_pindex)) {
1210				release_page(&fs);
1211				unlock_and_deallocate(&fs);
1212				goto RetryFault;
1213			}
1214
1215			/*
1216			 * Check whether the protection has changed or the object has
1217			 * been copied while we left the map unlocked. Changing from
1218			 * read to write permission is OK - we leave the page
1219			 * write-protected, and catch the write fault. Changing from
1220			 * write to read permission means that we can't mark the page
1221			 * write-enabled after all.
1222			 */
1223			prot &= retry_prot;
1224			fault_type &= retry_prot;
1225			if (prot == 0) {
1226				release_page(&fs);
1227				unlock_and_deallocate(&fs);
1228				goto RetryFault;
1229			}
1230		}
1231	}
1232
1233	/*
1234	 * If the page was filled by a pager, save the virtual address that
1235	 * should be faulted on next under a sequential access pattern to the
1236	 * map entry.  A read lock on the map suffices to update this address
1237	 * safely.
1238	 */
1239	if (hardfault)
1240		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1241
1242	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1243	vm_page_assert_xbusied(fs.m);
1244
1245	/*
1246	 * Page must be completely valid or it is not fit to
1247	 * map into user space.  vm_pager_get_pages() ensures this.
1248	 */
1249	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1250	    ("vm_fault: page %p partially invalid", fs.m));
1251	VM_OBJECT_WUNLOCK(fs.object);
1252
1253	/*
1254	 * Put this page into the physical map.  We had to do the unlock above
1255	 * because pmap_enter() may sleep.  We don't put the page
1256	 * back on the active queue until later so that the pageout daemon
1257	 * won't find it (yet).
1258	 */
1259	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1260	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1261	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1262	    wired == 0)
1263		vm_fault_prefault(&fs, vaddr,
1264		    faultcount > 0 ? behind : PFBAK,
1265		    faultcount > 0 ? ahead : PFFOR);
1266	VM_OBJECT_WLOCK(fs.object);
1267	vm_page_lock(fs.m);
1268
1269	/*
1270	 * If the page is not wired down, then put it where the pageout daemon
1271	 * can find it.
1272	 */
1273	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1274		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1275		vm_page_wire(fs.m);
1276	} else
1277		vm_page_activate(fs.m);
1278	if (m_hold != NULL) {
1279		*m_hold = fs.m;
1280		vm_page_hold(fs.m);
1281	}
1282	vm_page_unlock(fs.m);
1283	vm_page_xunbusy(fs.m);
1284
1285	/*
1286	 * Unlock everything, and return
1287	 */
1288	unlock_and_deallocate(&fs);
1289	if (hardfault) {
1290		PCPU_INC(cnt.v_io_faults);
1291		curthread->td_ru.ru_majflt++;
1292#ifdef RACCT
1293		if (racct_enable && fs.object->type == OBJT_VNODE) {
1294			PROC_LOCK(curproc);
1295			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1296				racct_add_force(curproc, RACCT_WRITEBPS,
1297				    PAGE_SIZE + behind * PAGE_SIZE);
1298				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1299			} else {
1300				racct_add_force(curproc, RACCT_READBPS,
1301				    PAGE_SIZE + ahead * PAGE_SIZE);
1302				racct_add_force(curproc, RACCT_READIOPS, 1);
1303			}
1304			PROC_UNLOCK(curproc);
1305		}
1306#endif
1307	} else
1308		curthread->td_ru.ru_minflt++;
1309
1310	return (KERN_SUCCESS);
1311}
1312
1313/*
1314 * Speed up the reclamation of pages that precede the faulting pindex within
1315 * the first object of the shadow chain.  Essentially, perform the equivalent
1316 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1317 * the faulting pindex by the cluster size when the pages read by vm_fault()
1318 * cross a cluster-size boundary.  The cluster size is the greater of the
1319 * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1320 *
1321 * When "fs->first_object" is a shadow object, the pages in the backing object
1322 * that precede the faulting pindex are deactivated by vm_fault().  So, this
1323 * function must only be concerned with pages in the first object.
1324 */
1325static void
1326vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1327{
1328	vm_map_entry_t entry;
1329	vm_object_t first_object, object;
1330	vm_offset_t end, start;
1331	vm_page_t m, m_next;
1332	vm_pindex_t pend, pstart;
1333	vm_size_t size;
1334
1335	object = fs->object;
1336	VM_OBJECT_ASSERT_WLOCKED(object);
1337	first_object = fs->first_object;
1338	if (first_object != object) {
1339		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1340			VM_OBJECT_WUNLOCK(object);
1341			VM_OBJECT_WLOCK(first_object);
1342			VM_OBJECT_WLOCK(object);
1343		}
1344	}
1345	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1346	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1347		size = VM_FAULT_DONTNEED_MIN;
1348		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1349			size = pagesizes[1];
1350		end = rounddown2(vaddr, size);
1351		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1352		    (entry = fs->entry)->start < end) {
1353			if (end - entry->start < size)
1354				start = entry->start;
1355			else
1356				start = end - size;
1357			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1358			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1359			    entry->start);
1360			m_next = vm_page_find_least(first_object, pstart);
1361			pend = OFF_TO_IDX(entry->offset) + atop(end -
1362			    entry->start);
1363			while ((m = m_next) != NULL && m->pindex < pend) {
1364				m_next = TAILQ_NEXT(m, listq);
1365				if (m->valid != VM_PAGE_BITS_ALL ||
1366				    vm_page_busied(m))
1367					continue;
1368
1369				/*
1370				 * Don't clear PGA_REFERENCED, since it would
1371				 * likely represent a reference by a different
1372				 * process.
1373				 *
1374				 * Typically, at this point, prefetched pages
1375				 * are still in the inactive queue.  Only
1376				 * pages that triggered page faults are in the
1377				 * active queue.
1378				 */
1379				vm_page_lock(m);
1380				vm_page_deactivate(m);
1381				vm_page_unlock(m);
1382			}
1383		}
1384	}
1385	if (first_object != object)
1386		VM_OBJECT_WUNLOCK(first_object);
1387}
1388
1389/*
1390 * vm_fault_prefault provides a quick way of clustering
1391 * pagefaults into a processes address space.  It is a "cousin"
1392 * of vm_map_pmap_enter, except it runs at page fault time instead
1393 * of mmap time.
1394 */
1395static void
1396vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1397    int backward, int forward)
1398{
1399	pmap_t pmap;
1400	vm_map_entry_t entry;
1401	vm_object_t backing_object, lobject;
1402	vm_offset_t addr, starta;
1403	vm_pindex_t pindex;
1404	vm_page_t m;
1405	int i;
1406
1407	pmap = fs->map->pmap;
1408	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1409		return;
1410
1411	entry = fs->entry;
1412
1413	if (addra < backward * PAGE_SIZE) {
1414		starta = entry->start;
1415	} else {
1416		starta = addra - backward * PAGE_SIZE;
1417		if (starta < entry->start)
1418			starta = entry->start;
1419	}
1420
1421	/*
1422	 * Generate the sequence of virtual addresses that are candidates for
1423	 * prefaulting in an outward spiral from the faulting virtual address,
1424	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1425	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1426	 * If the candidate address doesn't have a backing physical page, then
1427	 * the loop immediately terminates.
1428	 */
1429	for (i = 0; i < 2 * imax(backward, forward); i++) {
1430		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1431		    PAGE_SIZE);
1432		if (addr > addra + forward * PAGE_SIZE)
1433			addr = 0;
1434
1435		if (addr < starta || addr >= entry->end)
1436			continue;
1437
1438		if (!pmap_is_prefaultable(pmap, addr))
1439			continue;
1440
1441		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1442		lobject = entry->object.vm_object;
1443		VM_OBJECT_RLOCK(lobject);
1444		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1445		    lobject->type == OBJT_DEFAULT &&
1446		    (backing_object = lobject->backing_object) != NULL) {
1447			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1448			    0, ("vm_fault_prefault: unaligned object offset"));
1449			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1450			VM_OBJECT_RLOCK(backing_object);
1451			VM_OBJECT_RUNLOCK(lobject);
1452			lobject = backing_object;
1453		}
1454		if (m == NULL) {
1455			VM_OBJECT_RUNLOCK(lobject);
1456			break;
1457		}
1458		if (m->valid == VM_PAGE_BITS_ALL &&
1459		    (m->flags & PG_FICTITIOUS) == 0)
1460			pmap_enter_quick(pmap, addr, m, entry->protection);
1461		VM_OBJECT_RUNLOCK(lobject);
1462	}
1463}
1464
1465/*
1466 * Hold each of the physical pages that are mapped by the specified range of
1467 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1468 * and allow the specified types of access, "prot".  If all of the implied
1469 * pages are successfully held, then the number of held pages is returned
1470 * together with pointers to those pages in the array "ma".  However, if any
1471 * of the pages cannot be held, -1 is returned.
1472 */
1473int
1474vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1475    vm_prot_t prot, vm_page_t *ma, int max_count)
1476{
1477	vm_offset_t end, va;
1478	vm_page_t *mp;
1479	int count;
1480	boolean_t pmap_failed;
1481
1482	if (len == 0)
1483		return (0);
1484	end = round_page(addr + len);
1485	addr = trunc_page(addr);
1486
1487	/*
1488	 * Check for illegal addresses.
1489	 */
1490	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1491		return (-1);
1492
1493	if (atop(end - addr) > max_count)
1494		panic("vm_fault_quick_hold_pages: count > max_count");
1495	count = atop(end - addr);
1496
1497	/*
1498	 * Most likely, the physical pages are resident in the pmap, so it is
1499	 * faster to try pmap_extract_and_hold() first.
1500	 */
1501	pmap_failed = FALSE;
1502	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1503		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1504		if (*mp == NULL)
1505			pmap_failed = TRUE;
1506		else if ((prot & VM_PROT_WRITE) != 0 &&
1507		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1508			/*
1509			 * Explicitly dirty the physical page.  Otherwise, the
1510			 * caller's changes may go unnoticed because they are
1511			 * performed through an unmanaged mapping or by a DMA
1512			 * operation.
1513			 *
1514			 * The object lock is not held here.
1515			 * See vm_page_clear_dirty_mask().
1516			 */
1517			vm_page_dirty(*mp);
1518		}
1519	}
1520	if (pmap_failed) {
1521		/*
1522		 * One or more pages could not be held by the pmap.  Either no
1523		 * page was mapped at the specified virtual address or that
1524		 * mapping had insufficient permissions.  Attempt to fault in
1525		 * and hold these pages.
1526		 */
1527		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1528			if (*mp == NULL && vm_fault_hold(map, va, prot,
1529			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1530				goto error;
1531	}
1532	return (count);
1533error:
1534	for (mp = ma; mp < ma + count; mp++)
1535		if (*mp != NULL) {
1536			vm_page_lock(*mp);
1537			vm_page_unhold(*mp);
1538			vm_page_unlock(*mp);
1539		}
1540	return (-1);
1541}
1542
1543/*
1544 *	Routine:
1545 *		vm_fault_copy_entry
1546 *	Function:
1547 *		Create new shadow object backing dst_entry with private copy of
1548 *		all underlying pages. When src_entry is equal to dst_entry,
1549 *		function implements COW for wired-down map entry. Otherwise,
1550 *		it forks wired entry into dst_map.
1551 *
1552 *	In/out conditions:
1553 *		The source and destination maps must be locked for write.
1554 *		The source map entry must be wired down (or be a sharing map
1555 *		entry corresponding to a main map entry that is wired down).
1556 */
1557void
1558vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1559    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1560    vm_ooffset_t *fork_charge)
1561{
1562	vm_object_t backing_object, dst_object, object, src_object;
1563	vm_pindex_t dst_pindex, pindex, src_pindex;
1564	vm_prot_t access, prot;
1565	vm_offset_t vaddr;
1566	vm_page_t dst_m;
1567	vm_page_t src_m;
1568	boolean_t upgrade;
1569
1570#ifdef	lint
1571	src_map++;
1572#endif	/* lint */
1573
1574	upgrade = src_entry == dst_entry;
1575	access = prot = dst_entry->protection;
1576
1577	src_object = src_entry->object.vm_object;
1578	src_pindex = OFF_TO_IDX(src_entry->offset);
1579
1580	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1581		dst_object = src_object;
1582		vm_object_reference(dst_object);
1583	} else {
1584		/*
1585		 * Create the top-level object for the destination entry. (Doesn't
1586		 * actually shadow anything - we copy the pages directly.)
1587		 */
1588		dst_object = vm_object_allocate(OBJT_DEFAULT,
1589		    atop(dst_entry->end - dst_entry->start));
1590#if VM_NRESERVLEVEL > 0
1591		dst_object->flags |= OBJ_COLORED;
1592		dst_object->pg_color = atop(dst_entry->start);
1593#endif
1594	}
1595
1596	VM_OBJECT_WLOCK(dst_object);
1597	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1598	    ("vm_fault_copy_entry: vm_object not NULL"));
1599	if (src_object != dst_object) {
1600		dst_entry->object.vm_object = dst_object;
1601		dst_entry->offset = 0;
1602		dst_object->charge = dst_entry->end - dst_entry->start;
1603	}
1604	if (fork_charge != NULL) {
1605		KASSERT(dst_entry->cred == NULL,
1606		    ("vm_fault_copy_entry: leaked swp charge"));
1607		dst_object->cred = curthread->td_ucred;
1608		crhold(dst_object->cred);
1609		*fork_charge += dst_object->charge;
1610	} else if (dst_object->cred == NULL) {
1611		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1612		    dst_entry));
1613		dst_object->cred = dst_entry->cred;
1614		dst_entry->cred = NULL;
1615	}
1616
1617	/*
1618	 * If not an upgrade, then enter the mappings in the pmap as
1619	 * read and/or execute accesses.  Otherwise, enter them as
1620	 * write accesses.
1621	 *
1622	 * A writeable large page mapping is only created if all of
1623	 * the constituent small page mappings are modified. Marking
1624	 * PTEs as modified on inception allows promotion to happen
1625	 * without taking potentially large number of soft faults.
1626	 */
1627	if (!upgrade)
1628		access &= ~VM_PROT_WRITE;
1629
1630	/*
1631	 * Loop through all of the virtual pages within the entry's
1632	 * range, copying each page from the source object to the
1633	 * destination object.  Since the source is wired, those pages
1634	 * must exist.  In contrast, the destination is pageable.
1635	 * Since the destination object does share any backing storage
1636	 * with the source object, all of its pages must be dirtied,
1637	 * regardless of whether they can be written.
1638	 */
1639	for (vaddr = dst_entry->start, dst_pindex = 0;
1640	    vaddr < dst_entry->end;
1641	    vaddr += PAGE_SIZE, dst_pindex++) {
1642again:
1643		/*
1644		 * Find the page in the source object, and copy it in.
1645		 * Because the source is wired down, the page will be
1646		 * in memory.
1647		 */
1648		if (src_object != dst_object)
1649			VM_OBJECT_RLOCK(src_object);
1650		object = src_object;
1651		pindex = src_pindex + dst_pindex;
1652		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1653		    (backing_object = object->backing_object) != NULL) {
1654			/*
1655			 * Unless the source mapping is read-only or
1656			 * it is presently being upgraded from
1657			 * read-only, the first object in the shadow
1658			 * chain should provide all of the pages.  In
1659			 * other words, this loop body should never be
1660			 * executed when the source mapping is already
1661			 * read/write.
1662			 */
1663			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1664			    upgrade,
1665			    ("vm_fault_copy_entry: main object missing page"));
1666
1667			VM_OBJECT_RLOCK(backing_object);
1668			pindex += OFF_TO_IDX(object->backing_object_offset);
1669			if (object != dst_object)
1670				VM_OBJECT_RUNLOCK(object);
1671			object = backing_object;
1672		}
1673		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1674
1675		if (object != dst_object) {
1676			/*
1677			 * Allocate a page in the destination object.
1678			 */
1679			dst_m = vm_page_alloc(dst_object, (src_object ==
1680			    dst_object ? src_pindex : 0) + dst_pindex,
1681			    VM_ALLOC_NORMAL);
1682			if (dst_m == NULL) {
1683				VM_OBJECT_WUNLOCK(dst_object);
1684				VM_OBJECT_RUNLOCK(object);
1685				VM_WAIT;
1686				VM_OBJECT_WLOCK(dst_object);
1687				goto again;
1688			}
1689			pmap_copy_page(src_m, dst_m);
1690			VM_OBJECT_RUNLOCK(object);
1691			dst_m->valid = VM_PAGE_BITS_ALL;
1692			dst_m->dirty = VM_PAGE_BITS_ALL;
1693		} else {
1694			dst_m = src_m;
1695			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1696				goto again;
1697			vm_page_xbusy(dst_m);
1698			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1699			    ("invalid dst page %p", dst_m));
1700		}
1701		VM_OBJECT_WUNLOCK(dst_object);
1702
1703		/*
1704		 * Enter it in the pmap. If a wired, copy-on-write
1705		 * mapping is being replaced by a write-enabled
1706		 * mapping, then wire that new mapping.
1707		 */
1708		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1709		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1710
1711		/*
1712		 * Mark it no longer busy, and put it on the active list.
1713		 */
1714		VM_OBJECT_WLOCK(dst_object);
1715
1716		if (upgrade) {
1717			if (src_m != dst_m) {
1718				vm_page_lock(src_m);
1719				vm_page_unwire(src_m, PQ_INACTIVE);
1720				vm_page_unlock(src_m);
1721				vm_page_lock(dst_m);
1722				vm_page_wire(dst_m);
1723				vm_page_unlock(dst_m);
1724			} else {
1725				KASSERT(dst_m->wire_count > 0,
1726				    ("dst_m %p is not wired", dst_m));
1727			}
1728		} else {
1729			vm_page_lock(dst_m);
1730			vm_page_activate(dst_m);
1731			vm_page_unlock(dst_m);
1732		}
1733		vm_page_xunbusy(dst_m);
1734	}
1735	VM_OBJECT_WUNLOCK(dst_object);
1736	if (upgrade) {
1737		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1738		vm_object_deallocate(src_object);
1739	}
1740}
1741
1742/*
1743 * Block entry into the machine-independent layer's page fault handler by
1744 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1745 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1746 * spurious page faults.
1747 */
1748int
1749vm_fault_disable_pagefaults(void)
1750{
1751
1752	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1753}
1754
1755void
1756vm_fault_enable_pagefaults(int save)
1757{
1758
1759	curthread_pflags_restore(save);
1760}
1761