uma_core.c revision 357046
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * efficient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/11/sys/vm/uma_core.c 357046 2020-01-23 14:14:38Z markj $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/eventhandler.h>
68#include <sys/kernel.h>
69#include <sys/types.h>
70#include <sys/queue.h>
71#include <sys/malloc.h>
72#include <sys/ktr.h>
73#include <sys/lock.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/random.h>
78#include <sys/rwlock.h>
79#include <sys/sbuf.h>
80#include <sys/sched.h>
81#include <sys/smp.h>
82#include <sys/taskqueue.h>
83#include <sys/vmmeter.h>
84
85#include <vm/vm.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_param.h>
90#include <vm/vm_map.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94#include <vm/uma_int.h>
95#include <vm/uma_dbg.h>
96
97#include <ddb/ddb.h>
98
99#ifdef DEBUG_MEMGUARD
100#include <vm/memguard.h>
101#endif
102
103/*
104 * This is the zone and keg from which all zones are spawned.  The idea is that
105 * even the zone & keg heads are allocated from the allocator, so we use the
106 * bss section to bootstrap us.
107 */
108static struct uma_keg masterkeg;
109static struct uma_zone masterzone_k;
110static struct uma_zone masterzone_z;
111static uma_zone_t kegs = &masterzone_k;
112static uma_zone_t zones = &masterzone_z;
113
114/* This is the zone from which all of uma_slab_t's are allocated. */
115static uma_zone_t slabzone;
116
117/*
118 * The initial hash tables come out of this zone so they can be allocated
119 * prior to malloc coming up.
120 */
121static uma_zone_t hashzone;
122
123/* The boot-time adjusted value for cache line alignment. */
124int uma_align_cache = 64 - 1;
125
126static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
127
128/*
129 * Are we allowed to allocate buckets?
130 */
131static int bucketdisable = 1;
132
133/* Linked list of all kegs in the system */
134static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
135
136/* Linked list of all cache-only zones in the system */
137static LIST_HEAD(,uma_zone) uma_cachezones =
138    LIST_HEAD_INITIALIZER(uma_cachezones);
139
140/* This RW lock protects the keg list */
141static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
142
143/* Linked list of boot time pages */
144static LIST_HEAD(,uma_slab) uma_boot_pages =
145    LIST_HEAD_INITIALIZER(uma_boot_pages);
146
147/* This mutex protects the boot time pages list */
148static struct mtx_padalign uma_boot_pages_mtx;
149
150static struct sx uma_drain_lock;
151
152/* Is the VM done starting up? */
153static int booted = 0;
154#define	UMA_STARTUP	1
155#define	UMA_STARTUP2	2
156#define	UMA_SHUTDOWN	3
157
158/*
159 * This is the handle used to schedule events that need to happen
160 * outside of the allocation fast path.
161 */
162static struct callout uma_callout;
163#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
164
165/*
166 * This structure is passed as the zone ctor arg so that I don't have to create
167 * a special allocation function just for zones.
168 */
169struct uma_zctor_args {
170	const char *name;
171	size_t size;
172	uma_ctor ctor;
173	uma_dtor dtor;
174	uma_init uminit;
175	uma_fini fini;
176	uma_import import;
177	uma_release release;
178	void *arg;
179	uma_keg_t keg;
180	int align;
181	uint32_t flags;
182};
183
184struct uma_kctor_args {
185	uma_zone_t zone;
186	size_t size;
187	uma_init uminit;
188	uma_fini fini;
189	int align;
190	uint32_t flags;
191};
192
193struct uma_bucket_zone {
194	uma_zone_t	ubz_zone;
195	char		*ubz_name;
196	int		ubz_entries;	/* Number of items it can hold. */
197	int		ubz_maxsize;	/* Maximum allocation size per-item. */
198};
199
200/*
201 * Compute the actual number of bucket entries to pack them in power
202 * of two sizes for more efficient space utilization.
203 */
204#define	BUCKET_SIZE(n)						\
205    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
206
207#define	BUCKET_MAX	BUCKET_SIZE(256)
208
209struct uma_bucket_zone bucket_zones[] = {
210	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
211	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
212	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
213	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
214	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
215	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
216	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
217	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
218	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
219	{ NULL, NULL, 0}
220};
221
222/*
223 * Flags and enumerations to be passed to internal functions.
224 */
225enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
226
227/* Prototypes.. */
228
229static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
230static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
231static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
232static void page_free(void *, vm_size_t, uint8_t);
233static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
234static void cache_drain(uma_zone_t);
235static void bucket_drain(uma_zone_t, uma_bucket_t);
236static void bucket_cache_drain(uma_zone_t zone);
237static int keg_ctor(void *, int, void *, int);
238static void keg_dtor(void *, int, void *);
239static int zone_ctor(void *, int, void *, int);
240static void zone_dtor(void *, int, void *);
241static int zero_init(void *, int, int);
242static void keg_small_init(uma_keg_t keg);
243static void keg_large_init(uma_keg_t keg);
244static void zone_foreach(void (*zfunc)(uma_zone_t));
245static void zone_timeout(uma_zone_t zone);
246static int hash_alloc(struct uma_hash *, u_int);
247static int hash_expand(struct uma_hash *, struct uma_hash *);
248static void hash_free(struct uma_hash *hash);
249static void uma_timeout(void *);
250static void uma_startup3(void);
251static void uma_shutdown(void);
252static void *zone_alloc_item(uma_zone_t, void *, int);
253static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
254static void bucket_enable(void);
255static void bucket_init(void);
256static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
257static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
258static void bucket_zone_drain(void);
259static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
260static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
261static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
262static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
263static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
264static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
265    uma_fini fini, int align, uint32_t flags);
266static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
267static void zone_release(uma_zone_t zone, void **bucket, int cnt);
268static void uma_zero_item(void *item, uma_zone_t zone);
269
270void uma_print_zone(uma_zone_t);
271void uma_print_stats(void);
272static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
273static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
274
275#ifdef INVARIANTS
276static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
277static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
278#endif
279
280SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
281
282SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
283    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
284
285SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
286    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
287
288static int zone_warnings = 1;
289SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
290    "Warn when UMA zones becomes full");
291
292/*
293 * This routine checks to see whether or not it's safe to enable buckets.
294 */
295static void
296bucket_enable(void)
297{
298	bucketdisable = vm_page_count_min();
299}
300
301/*
302 * Initialize bucket_zones, the array of zones of buckets of various sizes.
303 *
304 * For each zone, calculate the memory required for each bucket, consisting
305 * of the header and an array of pointers.
306 */
307static void
308bucket_init(void)
309{
310	struct uma_bucket_zone *ubz;
311	int size;
312
313	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
314		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
315		size += sizeof(void *) * ubz->ubz_entries;
316		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
317		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
318		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
319	}
320}
321
322/*
323 * Given a desired number of entries for a bucket, return the zone from which
324 * to allocate the bucket.
325 */
326static struct uma_bucket_zone *
327bucket_zone_lookup(int entries)
328{
329	struct uma_bucket_zone *ubz;
330
331	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
332		if (ubz->ubz_entries >= entries)
333			return (ubz);
334	ubz--;
335	return (ubz);
336}
337
338static int
339bucket_select(int size)
340{
341	struct uma_bucket_zone *ubz;
342
343	ubz = &bucket_zones[0];
344	if (size > ubz->ubz_maxsize)
345		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
346
347	for (; ubz->ubz_entries != 0; ubz++)
348		if (ubz->ubz_maxsize < size)
349			break;
350	ubz--;
351	return (ubz->ubz_entries);
352}
353
354static uma_bucket_t
355bucket_alloc(uma_zone_t zone, void *udata, int flags)
356{
357	struct uma_bucket_zone *ubz;
358	uma_bucket_t bucket;
359
360	/*
361	 * This is to stop us from allocating per cpu buckets while we're
362	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
363	 * boot pages.  This also prevents us from allocating buckets in
364	 * low memory situations.
365	 */
366	if (bucketdisable)
367		return (NULL);
368	/*
369	 * To limit bucket recursion we store the original zone flags
370	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
371	 * NOVM flag to persist even through deep recursions.  We also
372	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
373	 * a bucket for a bucket zone so we do not allow infinite bucket
374	 * recursion.  This cookie will even persist to frees of unused
375	 * buckets via the allocation path or bucket allocations in the
376	 * free path.
377	 */
378	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
379		udata = (void *)(uintptr_t)zone->uz_flags;
380	else {
381		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
382			return (NULL);
383		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
384	}
385	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
386		flags |= M_NOVM;
387	ubz = bucket_zone_lookup(zone->uz_count);
388	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
389		ubz++;
390	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
391	if (bucket) {
392#ifdef INVARIANTS
393		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
394#endif
395		bucket->ub_cnt = 0;
396		bucket->ub_entries = ubz->ubz_entries;
397	}
398
399	return (bucket);
400}
401
402static void
403bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
404{
405	struct uma_bucket_zone *ubz;
406
407	KASSERT(bucket->ub_cnt == 0,
408	    ("bucket_free: Freeing a non free bucket."));
409	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
410		udata = (void *)(uintptr_t)zone->uz_flags;
411	ubz = bucket_zone_lookup(bucket->ub_entries);
412	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
413}
414
415static void
416bucket_zone_drain(void)
417{
418	struct uma_bucket_zone *ubz;
419
420	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
421		zone_drain(ubz->ubz_zone);
422}
423
424static void
425zone_log_warning(uma_zone_t zone)
426{
427	static const struct timeval warninterval = { 300, 0 };
428
429	if (!zone_warnings || zone->uz_warning == NULL)
430		return;
431
432	if (ratecheck(&zone->uz_ratecheck, &warninterval))
433		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
434}
435
436static inline void
437zone_maxaction(uma_zone_t zone)
438{
439
440	if (zone->uz_maxaction.ta_func != NULL)
441		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
442}
443
444static void
445zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
446{
447	uma_klink_t klink;
448
449	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
450		kegfn(klink->kl_keg);
451}
452
453/*
454 * Routine called by timeout which is used to fire off some time interval
455 * based calculations.  (stats, hash size, etc.)
456 *
457 * Arguments:
458 *	arg   Unused
459 *
460 * Returns:
461 *	Nothing
462 */
463static void
464uma_timeout(void *unused)
465{
466	bucket_enable();
467	zone_foreach(zone_timeout);
468
469	/* Reschedule this event */
470	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
471}
472
473/*
474 * Routine to perform timeout driven calculations.  This expands the
475 * hashes and does per cpu statistics aggregation.
476 *
477 *  Returns nothing.
478 */
479static void
480keg_timeout(uma_keg_t keg)
481{
482	u_int slabs;
483
484	KEG_LOCK(keg);
485	/*
486	 * Expand the keg hash table.
487	 *
488	 * This is done if the number of slabs is larger than the hash size.
489	 * What I'm trying to do here is completely reduce collisions.  This
490	 * may be a little aggressive.  Should I allow for two collisions max?
491	 */
492	if (keg->uk_flags & UMA_ZONE_HASH &&
493	    (slabs = keg->uk_pages / keg->uk_ppera) >
494	     keg->uk_hash.uh_hashsize) {
495		struct uma_hash newhash;
496		struct uma_hash oldhash;
497		int ret;
498
499		/*
500		 * This is so involved because allocating and freeing
501		 * while the keg lock is held will lead to deadlock.
502		 * I have to do everything in stages and check for
503		 * races.
504		 */
505		KEG_UNLOCK(keg);
506		ret = hash_alloc(&newhash, 1 << fls(slabs));
507		KEG_LOCK(keg);
508		if (ret) {
509			if (hash_expand(&keg->uk_hash, &newhash)) {
510				oldhash = keg->uk_hash;
511				keg->uk_hash = newhash;
512			} else
513				oldhash = newhash;
514
515			KEG_UNLOCK(keg);
516			hash_free(&oldhash);
517			return;
518		}
519	}
520	KEG_UNLOCK(keg);
521}
522
523static void
524zone_timeout(uma_zone_t zone)
525{
526
527	zone_foreach_keg(zone, &keg_timeout);
528}
529
530/*
531 * Allocate and zero fill the next sized hash table from the appropriate
532 * backing store.
533 *
534 * Arguments:
535 *	hash  A new hash structure with the old hash size in uh_hashsize
536 *
537 * Returns:
538 *	1 on success and 0 on failure.
539 */
540static int
541hash_alloc(struct uma_hash *hash, u_int size)
542{
543	size_t alloc;
544
545	KASSERT(powerof2(size), ("hash size must be power of 2"));
546	if (size > UMA_HASH_SIZE_INIT)  {
547		hash->uh_hashsize = size;
548		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
549		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
550		    M_UMAHASH, M_NOWAIT);
551	} else {
552		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
553		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
554		    M_WAITOK);
555		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
556	}
557	if (hash->uh_slab_hash) {
558		bzero(hash->uh_slab_hash, alloc);
559		hash->uh_hashmask = hash->uh_hashsize - 1;
560		return (1);
561	}
562
563	return (0);
564}
565
566/*
567 * Expands the hash table for HASH zones.  This is done from zone_timeout
568 * to reduce collisions.  This must not be done in the regular allocation
569 * path, otherwise, we can recurse on the vm while allocating pages.
570 *
571 * Arguments:
572 *	oldhash  The hash you want to expand
573 *	newhash  The hash structure for the new table
574 *
575 * Returns:
576 *	Nothing
577 *
578 * Discussion:
579 */
580static int
581hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
582{
583	uma_slab_t slab;
584	u_int hval;
585	u_int idx;
586
587	if (!newhash->uh_slab_hash)
588		return (0);
589
590	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
591		return (0);
592
593	/*
594	 * I need to investigate hash algorithms for resizing without a
595	 * full rehash.
596	 */
597
598	for (idx = 0; idx < oldhash->uh_hashsize; idx++)
599		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
600			slab = SLIST_FIRST(&oldhash->uh_slab_hash[idx]);
601			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[idx], us_hlink);
602			hval = UMA_HASH(newhash, slab->us_data);
603			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
604			    slab, us_hlink);
605		}
606
607	return (1);
608}
609
610/*
611 * Free the hash bucket to the appropriate backing store.
612 *
613 * Arguments:
614 *	slab_hash  The hash bucket we're freeing
615 *	hashsize   The number of entries in that hash bucket
616 *
617 * Returns:
618 *	Nothing
619 */
620static void
621hash_free(struct uma_hash *hash)
622{
623	if (hash->uh_slab_hash == NULL)
624		return;
625	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
626		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
627	else
628		free(hash->uh_slab_hash, M_UMAHASH);
629}
630
631/*
632 * Frees all outstanding items in a bucket
633 *
634 * Arguments:
635 *	zone   The zone to free to, must be unlocked.
636 *	bucket The free/alloc bucket with items, cpu queue must be locked.
637 *
638 * Returns:
639 *	Nothing
640 */
641
642static void
643bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
644{
645	int i;
646
647	if (bucket == NULL)
648		return;
649
650	if (zone->uz_fini)
651		for (i = 0; i < bucket->ub_cnt; i++)
652			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
653	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
654	bucket->ub_cnt = 0;
655}
656
657/*
658 * Drains the per cpu caches for a zone.
659 *
660 * NOTE: This may only be called while the zone is being turn down, and not
661 * during normal operation.  This is necessary in order that we do not have
662 * to migrate CPUs to drain the per-CPU caches.
663 *
664 * Arguments:
665 *	zone     The zone to drain, must be unlocked.
666 *
667 * Returns:
668 *	Nothing
669 */
670static void
671cache_drain(uma_zone_t zone)
672{
673	uma_cache_t cache;
674	int cpu;
675
676	/*
677	 * XXX: It is safe to not lock the per-CPU caches, because we're
678	 * tearing down the zone anyway.  I.e., there will be no further use
679	 * of the caches at this point.
680	 *
681	 * XXX: It would good to be able to assert that the zone is being
682	 * torn down to prevent improper use of cache_drain().
683	 *
684	 * XXX: We lock the zone before passing into bucket_cache_drain() as
685	 * it is used elsewhere.  Should the tear-down path be made special
686	 * there in some form?
687	 */
688	CPU_FOREACH(cpu) {
689		cache = &zone->uz_cpu[cpu];
690		bucket_drain(zone, cache->uc_allocbucket);
691		bucket_drain(zone, cache->uc_freebucket);
692		if (cache->uc_allocbucket != NULL)
693			bucket_free(zone, cache->uc_allocbucket, NULL);
694		if (cache->uc_freebucket != NULL)
695			bucket_free(zone, cache->uc_freebucket, NULL);
696		cache->uc_allocbucket = cache->uc_freebucket = NULL;
697	}
698	ZONE_LOCK(zone);
699	bucket_cache_drain(zone);
700	ZONE_UNLOCK(zone);
701}
702
703static void
704cache_shrink(uma_zone_t zone)
705{
706
707	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
708		return;
709
710	ZONE_LOCK(zone);
711	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
712	ZONE_UNLOCK(zone);
713}
714
715static void
716cache_drain_safe_cpu(uma_zone_t zone)
717{
718	uma_cache_t cache;
719	uma_bucket_t b1, b2;
720
721	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
722		return;
723
724	b1 = b2 = NULL;
725	ZONE_LOCK(zone);
726	critical_enter();
727	cache = &zone->uz_cpu[curcpu];
728	if (cache->uc_allocbucket) {
729		if (cache->uc_allocbucket->ub_cnt != 0)
730			LIST_INSERT_HEAD(&zone->uz_buckets,
731			    cache->uc_allocbucket, ub_link);
732		else
733			b1 = cache->uc_allocbucket;
734		cache->uc_allocbucket = NULL;
735	}
736	if (cache->uc_freebucket) {
737		if (cache->uc_freebucket->ub_cnt != 0)
738			LIST_INSERT_HEAD(&zone->uz_buckets,
739			    cache->uc_freebucket, ub_link);
740		else
741			b2 = cache->uc_freebucket;
742		cache->uc_freebucket = NULL;
743	}
744	critical_exit();
745	ZONE_UNLOCK(zone);
746	if (b1)
747		bucket_free(zone, b1, NULL);
748	if (b2)
749		bucket_free(zone, b2, NULL);
750}
751
752/*
753 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
754 * This is an expensive call because it needs to bind to all CPUs
755 * one by one and enter a critical section on each of them in order
756 * to safely access their cache buckets.
757 * Zone lock must not be held on call this function.
758 */
759static void
760cache_drain_safe(uma_zone_t zone)
761{
762	int cpu;
763
764	/*
765	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
766	 */
767	if (zone)
768		cache_shrink(zone);
769	else
770		zone_foreach(cache_shrink);
771
772	CPU_FOREACH(cpu) {
773		thread_lock(curthread);
774		sched_bind(curthread, cpu);
775		thread_unlock(curthread);
776
777		if (zone)
778			cache_drain_safe_cpu(zone);
779		else
780			zone_foreach(cache_drain_safe_cpu);
781	}
782	thread_lock(curthread);
783	sched_unbind(curthread);
784	thread_unlock(curthread);
785}
786
787/*
788 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
789 */
790static void
791bucket_cache_drain(uma_zone_t zone)
792{
793	uma_bucket_t bucket;
794
795	/*
796	 * Drain the bucket queues and free the buckets, we just keep two per
797	 * cpu (alloc/free).
798	 */
799	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
800		LIST_REMOVE(bucket, ub_link);
801		ZONE_UNLOCK(zone);
802		bucket_drain(zone, bucket);
803		bucket_free(zone, bucket, NULL);
804		ZONE_LOCK(zone);
805	}
806
807	/*
808	 * Shrink further bucket sizes.  Price of single zone lock collision
809	 * is probably lower then price of global cache drain.
810	 */
811	if (zone->uz_count > zone->uz_count_min)
812		zone->uz_count--;
813}
814
815static void
816keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
817{
818	uint8_t *mem;
819	int i;
820	uint8_t flags;
821
822	mem = slab->us_data;
823	flags = slab->us_flags;
824	i = start;
825	if (keg->uk_fini != NULL) {
826		for (i--; i > -1; i--)
827			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
828			    keg->uk_size);
829	}
830	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
831		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
832#ifdef UMA_DEBUG
833	printf("%s: Returning %d bytes.\n", keg->uk_name,
834	    PAGE_SIZE * keg->uk_ppera);
835#endif
836	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
837}
838
839/*
840 * Frees pages from a keg back to the system.  This is done on demand from
841 * the pageout daemon.
842 *
843 * Returns nothing.
844 */
845static void
846keg_drain(uma_keg_t keg)
847{
848	struct slabhead freeslabs = { 0 };
849	uma_slab_t slab, tmp;
850
851	/*
852	 * We don't want to take pages from statically allocated kegs at this
853	 * time
854	 */
855	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
856		return;
857
858#ifdef UMA_DEBUG
859	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
860#endif
861	KEG_LOCK(keg);
862	if (keg->uk_free == 0)
863		goto finished;
864
865	LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) {
866		/* We have nowhere to free these to. */
867		if (slab->us_flags & UMA_SLAB_BOOT)
868			continue;
869
870		LIST_REMOVE(slab, us_link);
871		keg->uk_pages -= keg->uk_ppera;
872		keg->uk_free -= keg->uk_ipers;
873
874		if (keg->uk_flags & UMA_ZONE_HASH)
875			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
876
877		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
878	}
879finished:
880	KEG_UNLOCK(keg);
881
882	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
883		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
884		keg_free_slab(keg, slab, keg->uk_ipers);
885	}
886}
887
888static void
889zone_drain_wait(uma_zone_t zone, int waitok)
890{
891
892	/*
893	 * Set draining to interlock with zone_dtor() so we can release our
894	 * locks as we go.  Only dtor() should do a WAITOK call since it
895	 * is the only call that knows the structure will still be available
896	 * when it wakes up.
897	 */
898	ZONE_LOCK(zone);
899	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
900		if (waitok == M_NOWAIT)
901			goto out;
902		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
903	}
904	zone->uz_flags |= UMA_ZFLAG_DRAINING;
905	bucket_cache_drain(zone);
906	ZONE_UNLOCK(zone);
907	/*
908	 * The DRAINING flag protects us from being freed while
909	 * we're running.  Normally the uma_rwlock would protect us but we
910	 * must be able to release and acquire the right lock for each keg.
911	 */
912	zone_foreach_keg(zone, &keg_drain);
913	ZONE_LOCK(zone);
914	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
915	wakeup(zone);
916out:
917	ZONE_UNLOCK(zone);
918}
919
920void
921zone_drain(uma_zone_t zone)
922{
923
924	zone_drain_wait(zone, M_NOWAIT);
925}
926
927/*
928 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
929 *
930 * Arguments:
931 *	wait  Shall we wait?
932 *
933 * Returns:
934 *	The slab that was allocated or NULL if there is no memory and the
935 *	caller specified M_NOWAIT.
936 */
937static uma_slab_t
938keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
939{
940	uma_alloc allocf;
941	uma_slab_t slab;
942	uint8_t *mem;
943	uint8_t flags;
944	int i;
945
946	mtx_assert(&keg->uk_lock, MA_OWNED);
947	slab = NULL;
948	mem = NULL;
949
950#ifdef UMA_DEBUG
951	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
952#endif
953	allocf = keg->uk_allocf;
954	KEG_UNLOCK(keg);
955
956	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
957		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
958		if (slab == NULL)
959			goto out;
960	}
961
962	/*
963	 * This reproduces the old vm_zone behavior of zero filling pages the
964	 * first time they are added to a zone.
965	 *
966	 * Malloced items are zeroed in uma_zalloc.
967	 */
968
969	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
970		wait |= M_ZERO;
971	else
972		wait &= ~M_ZERO;
973
974	if (keg->uk_flags & UMA_ZONE_NODUMP)
975		wait |= M_NODUMP;
976
977	/* zone is passed for legacy reasons. */
978	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
979	if (mem == NULL) {
980		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
981			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
982		slab = NULL;
983		goto out;
984	}
985
986	/* Point the slab into the allocated memory */
987	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
988		slab = (uma_slab_t )(mem + keg->uk_pgoff);
989
990	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
991		for (i = 0; i < keg->uk_ppera; i++)
992			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
993
994	slab->us_keg = keg;
995	slab->us_data = mem;
996	slab->us_freecount = keg->uk_ipers;
997	slab->us_flags = flags;
998	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
999#ifdef INVARIANTS
1000	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1001#endif
1002
1003	if (keg->uk_init != NULL) {
1004		for (i = 0; i < keg->uk_ipers; i++)
1005			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1006			    keg->uk_size, wait) != 0)
1007				break;
1008		if (i != keg->uk_ipers) {
1009			keg_free_slab(keg, slab, i);
1010			slab = NULL;
1011			goto out;
1012		}
1013	}
1014out:
1015	KEG_LOCK(keg);
1016
1017	if (slab != NULL) {
1018		if (keg->uk_flags & UMA_ZONE_HASH)
1019			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1020
1021		keg->uk_pages += keg->uk_ppera;
1022		keg->uk_free += keg->uk_ipers;
1023	}
1024
1025	return (slab);
1026}
1027
1028/*
1029 * This function is intended to be used early on in place of page_alloc() so
1030 * that we may use the boot time page cache to satisfy allocations before
1031 * the VM is ready.
1032 */
1033static void *
1034startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1035{
1036	uma_keg_t keg;
1037	uma_slab_t tmps;
1038	int pages, check_pages;
1039
1040	keg = zone_first_keg(zone);
1041	pages = howmany(bytes, PAGE_SIZE);
1042	check_pages = pages - 1;
1043	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1044
1045	/*
1046	 * Check our small startup cache to see if it has pages remaining.
1047	 */
1048	mtx_lock(&uma_boot_pages_mtx);
1049
1050	/* First check if we have enough room. */
1051	tmps = LIST_FIRST(&uma_boot_pages);
1052	while (tmps != NULL && check_pages-- > 0)
1053		tmps = LIST_NEXT(tmps, us_link);
1054	if (tmps != NULL) {
1055		/*
1056		 * It's ok to lose tmps references.  The last one will
1057		 * have tmps->us_data pointing to the start address of
1058		 * "pages" contiguous pages of memory.
1059		 */
1060		while (pages-- > 0) {
1061			tmps = LIST_FIRST(&uma_boot_pages);
1062			LIST_REMOVE(tmps, us_link);
1063		}
1064		mtx_unlock(&uma_boot_pages_mtx);
1065		*pflag = tmps->us_flags;
1066		return (tmps->us_data);
1067	}
1068	mtx_unlock(&uma_boot_pages_mtx);
1069	if (booted < UMA_STARTUP2)
1070		panic("UMA: Increase vm.boot_pages");
1071	/*
1072	 * Now that we've booted reset these users to their real allocator.
1073	 */
1074#ifdef UMA_MD_SMALL_ALLOC
1075	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1076#else
1077	keg->uk_allocf = page_alloc;
1078#endif
1079	return keg->uk_allocf(zone, bytes, pflag, wait);
1080}
1081
1082/*
1083 * Allocates a number of pages from the system
1084 *
1085 * Arguments:
1086 *	bytes  The number of bytes requested
1087 *	wait  Shall we wait?
1088 *
1089 * Returns:
1090 *	A pointer to the alloced memory or possibly
1091 *	NULL if M_NOWAIT is set.
1092 */
1093static void *
1094page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1095{
1096	void *p;	/* Returned page */
1097
1098	*pflag = UMA_SLAB_KMEM;
1099	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1100
1101	return (p);
1102}
1103
1104/*
1105 * Allocates a number of pages from within an object
1106 *
1107 * Arguments:
1108 *	bytes  The number of bytes requested
1109 *	wait   Shall we wait?
1110 *
1111 * Returns:
1112 *	A pointer to the alloced memory or possibly
1113 *	NULL if M_NOWAIT is set.
1114 */
1115static void *
1116noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
1117{
1118	TAILQ_HEAD(, vm_page) alloctail;
1119	u_long npages;
1120	vm_offset_t retkva, zkva;
1121	vm_page_t p, p_next;
1122	uma_keg_t keg;
1123
1124	TAILQ_INIT(&alloctail);
1125	keg = zone_first_keg(zone);
1126
1127	npages = howmany(bytes, PAGE_SIZE);
1128	while (npages > 0) {
1129		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1130		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1131		    ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1132		    VM_ALLOC_NOWAIT));
1133		if (p != NULL) {
1134			/*
1135			 * Since the page does not belong to an object, its
1136			 * listq is unused.
1137			 */
1138			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1139			npages--;
1140			continue;
1141		}
1142		/*
1143		 * Page allocation failed, free intermediate pages and
1144		 * exit.
1145		 */
1146		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1147			vm_page_unwire(p, PQ_NONE);
1148			vm_page_free(p);
1149		}
1150		return (NULL);
1151	}
1152	*flags = UMA_SLAB_PRIV;
1153	zkva = keg->uk_kva +
1154	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1155	retkva = zkva;
1156	TAILQ_FOREACH(p, &alloctail, listq) {
1157		pmap_qenter(zkva, &p, 1);
1158		zkva += PAGE_SIZE;
1159	}
1160
1161	return ((void *)retkva);
1162}
1163
1164/*
1165 * Frees a number of pages to the system
1166 *
1167 * Arguments:
1168 *	mem   A pointer to the memory to be freed
1169 *	size  The size of the memory being freed
1170 *	flags The original p->us_flags field
1171 *
1172 * Returns:
1173 *	Nothing
1174 */
1175static void
1176page_free(void *mem, vm_size_t size, uint8_t flags)
1177{
1178	struct vmem *vmem;
1179
1180	if (flags & UMA_SLAB_KMEM)
1181		vmem = kmem_arena;
1182	else if (flags & UMA_SLAB_KERNEL)
1183		vmem = kernel_arena;
1184	else
1185		panic("UMA: page_free used with invalid flags %d", flags);
1186
1187	kmem_free(vmem, (vm_offset_t)mem, size);
1188}
1189
1190/*
1191 * Zero fill initializer
1192 *
1193 * Arguments/Returns follow uma_init specifications
1194 */
1195static int
1196zero_init(void *mem, int size, int flags)
1197{
1198	bzero(mem, size);
1199	return (0);
1200}
1201
1202/*
1203 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1204 *
1205 * Arguments
1206 *	keg  The zone we should initialize
1207 *
1208 * Returns
1209 *	Nothing
1210 */
1211static void
1212keg_small_init(uma_keg_t keg)
1213{
1214	u_int rsize;
1215	u_int memused;
1216	u_int wastedspace;
1217	u_int shsize;
1218	u_int slabsize;
1219
1220	if (keg->uk_flags & UMA_ZONE_PCPU) {
1221		u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU;
1222
1223		slabsize = sizeof(struct pcpu);
1224		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1225		    PAGE_SIZE);
1226	} else {
1227		slabsize = UMA_SLAB_SIZE;
1228		keg->uk_ppera = 1;
1229	}
1230
1231	/*
1232	 * Calculate the size of each allocation (rsize) according to
1233	 * alignment.  If the requested size is smaller than we have
1234	 * allocation bits for we round it up.
1235	 */
1236	rsize = keg->uk_size;
1237	if (rsize < slabsize / SLAB_SETSIZE)
1238		rsize = slabsize / SLAB_SETSIZE;
1239	if (rsize & keg->uk_align)
1240		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1241	keg->uk_rsize = rsize;
1242
1243	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1244	    keg->uk_rsize < sizeof(struct pcpu),
1245	    ("%s: size %u too large", __func__, keg->uk_rsize));
1246
1247	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1248		shsize = 0;
1249	else
1250		shsize = sizeof(struct uma_slab);
1251
1252	if (rsize <= slabsize - shsize)
1253		keg->uk_ipers = (slabsize - shsize) / rsize;
1254	else {
1255		/* Handle special case when we have 1 item per slab, so
1256		 * alignment requirement can be relaxed. */
1257		KASSERT(keg->uk_size <= slabsize - shsize,
1258		    ("%s: size %u greater than slab", __func__, keg->uk_size));
1259		keg->uk_ipers = 1;
1260	}
1261	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1262	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1263
1264	memused = keg->uk_ipers * rsize + shsize;
1265	wastedspace = slabsize - memused;
1266
1267	/*
1268	 * We can't do OFFPAGE if we're internal or if we've been
1269	 * asked to not go to the VM for buckets.  If we do this we
1270	 * may end up going to the VM  for slabs which we do not
1271	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1272	 * of UMA_ZONE_VM, which clearly forbids it.
1273	 */
1274	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1275	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1276		return;
1277
1278	/*
1279	 * See if using an OFFPAGE slab will limit our waste.  Only do
1280	 * this if it permits more items per-slab.
1281	 *
1282	 * XXX We could try growing slabsize to limit max waste as well.
1283	 * Historically this was not done because the VM could not
1284	 * efficiently handle contiguous allocations.
1285	 */
1286	if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
1287	    (keg->uk_ipers < (slabsize / keg->uk_rsize))) {
1288		keg->uk_ipers = slabsize / keg->uk_rsize;
1289		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1290		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1291#ifdef UMA_DEBUG
1292		printf("UMA decided we need offpage slab headers for "
1293		    "keg: %s, calculated wastedspace = %d, "
1294		    "maximum wasted space allowed = %d, "
1295		    "calculated ipers = %d, "
1296		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1297		    slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1298		    slabsize - keg->uk_ipers * keg->uk_rsize);
1299#endif
1300		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1301	}
1302
1303	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1304	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1305		keg->uk_flags |= UMA_ZONE_HASH;
1306}
1307
1308/*
1309 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1310 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1311 * more complicated.
1312 *
1313 * Arguments
1314 *	keg  The keg we should initialize
1315 *
1316 * Returns
1317 *	Nothing
1318 */
1319static void
1320keg_large_init(uma_keg_t keg)
1321{
1322	u_int shsize;
1323
1324	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1325	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1326	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1327	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1328	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1329
1330	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1331	keg->uk_ipers = 1;
1332	keg->uk_rsize = keg->uk_size;
1333
1334	/* Check whether we have enough space to not do OFFPAGE. */
1335	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1336		shsize = sizeof(struct uma_slab);
1337		if (shsize & UMA_ALIGN_PTR)
1338			shsize = (shsize & ~UMA_ALIGN_PTR) +
1339			    (UMA_ALIGN_PTR + 1);
1340
1341		if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) {
1342			/*
1343			 * We can't do OFFPAGE if we're internal, in which case
1344			 * we need an extra page per allocation to contain the
1345			 * slab header.
1346			 */
1347			if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0)
1348				keg->uk_flags |= UMA_ZONE_OFFPAGE;
1349			else
1350				keg->uk_ppera++;
1351		}
1352	}
1353
1354	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1355	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1356		keg->uk_flags |= UMA_ZONE_HASH;
1357}
1358
1359static void
1360keg_cachespread_init(uma_keg_t keg)
1361{
1362	int alignsize;
1363	int trailer;
1364	int pages;
1365	int rsize;
1366
1367	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1368	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1369
1370	alignsize = keg->uk_align + 1;
1371	rsize = keg->uk_size;
1372	/*
1373	 * We want one item to start on every align boundary in a page.  To
1374	 * do this we will span pages.  We will also extend the item by the
1375	 * size of align if it is an even multiple of align.  Otherwise, it
1376	 * would fall on the same boundary every time.
1377	 */
1378	if (rsize & keg->uk_align)
1379		rsize = (rsize & ~keg->uk_align) + alignsize;
1380	if ((rsize & alignsize) == 0)
1381		rsize += alignsize;
1382	trailer = rsize - keg->uk_size;
1383	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1384	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1385	keg->uk_rsize = rsize;
1386	keg->uk_ppera = pages;
1387	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1388	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1389	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1390	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1391	    keg->uk_ipers));
1392}
1393
1394/*
1395 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1396 * the keg onto the global keg list.
1397 *
1398 * Arguments/Returns follow uma_ctor specifications
1399 *	udata  Actually uma_kctor_args
1400 */
1401static int
1402keg_ctor(void *mem, int size, void *udata, int flags)
1403{
1404	struct uma_kctor_args *arg = udata;
1405	uma_keg_t keg = mem;
1406	uma_zone_t zone;
1407
1408	bzero(keg, size);
1409	keg->uk_size = arg->size;
1410	keg->uk_init = arg->uminit;
1411	keg->uk_fini = arg->fini;
1412	keg->uk_align = arg->align;
1413	keg->uk_free = 0;
1414	keg->uk_reserve = 0;
1415	keg->uk_pages = 0;
1416	keg->uk_flags = arg->flags;
1417	keg->uk_allocf = page_alloc;
1418	keg->uk_freef = page_free;
1419	keg->uk_slabzone = NULL;
1420
1421	/*
1422	 * The master zone is passed to us at keg-creation time.
1423	 */
1424	zone = arg->zone;
1425	keg->uk_name = zone->uz_name;
1426
1427	if (arg->flags & UMA_ZONE_VM)
1428		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1429
1430	if (arg->flags & UMA_ZONE_ZINIT)
1431		keg->uk_init = zero_init;
1432
1433	if (arg->flags & UMA_ZONE_MALLOC)
1434		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1435
1436	if (arg->flags & UMA_ZONE_PCPU)
1437#ifdef SMP
1438		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1439#else
1440		keg->uk_flags &= ~UMA_ZONE_PCPU;
1441#endif
1442
1443	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1444		keg_cachespread_init(keg);
1445	} else {
1446		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1447			keg_large_init(keg);
1448		else
1449			keg_small_init(keg);
1450	}
1451
1452	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1453		keg->uk_slabzone = slabzone;
1454
1455	/*
1456	 * If we haven't booted yet we need allocations to go through the
1457	 * startup cache until the vm is ready.
1458	 */
1459	if (keg->uk_ppera == 1) {
1460#ifdef UMA_MD_SMALL_ALLOC
1461		keg->uk_allocf = uma_small_alloc;
1462		keg->uk_freef = uma_small_free;
1463
1464		if (booted < UMA_STARTUP)
1465			keg->uk_allocf = startup_alloc;
1466#else
1467		if (booted < UMA_STARTUP2)
1468			keg->uk_allocf = startup_alloc;
1469#endif
1470	} else if (booted < UMA_STARTUP2 &&
1471	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1472		keg->uk_allocf = startup_alloc;
1473
1474	/*
1475	 * Initialize keg's lock
1476	 */
1477	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1478
1479	/*
1480	 * If we're putting the slab header in the actual page we need to
1481	 * figure out where in each page it goes.  This calculates a right
1482	 * justified offset into the memory on an ALIGN_PTR boundary.
1483	 */
1484	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1485		u_int totsize;
1486
1487		/* Size of the slab struct and free list */
1488		totsize = sizeof(struct uma_slab);
1489
1490		if (totsize & UMA_ALIGN_PTR)
1491			totsize = (totsize & ~UMA_ALIGN_PTR) +
1492			    (UMA_ALIGN_PTR + 1);
1493		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1494
1495		/*
1496		 * The only way the following is possible is if with our
1497		 * UMA_ALIGN_PTR adjustments we are now bigger than
1498		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1499		 * mathematically possible for all cases, so we make
1500		 * sure here anyway.
1501		 */
1502		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1503		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1504			printf("zone %s ipers %d rsize %d size %d\n",
1505			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1506			    keg->uk_size);
1507			panic("UMA slab won't fit.");
1508		}
1509	}
1510
1511	if (keg->uk_flags & UMA_ZONE_HASH)
1512		hash_alloc(&keg->uk_hash, 0);
1513
1514#ifdef UMA_DEBUG
1515	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1516	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1517	    keg->uk_ipers, keg->uk_ppera,
1518	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
1519	    keg->uk_free);
1520#endif
1521
1522	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1523
1524	rw_wlock(&uma_rwlock);
1525	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1526	rw_wunlock(&uma_rwlock);
1527	return (0);
1528}
1529
1530/*
1531 * Zone header ctor.  This initializes all fields, locks, etc.
1532 *
1533 * Arguments/Returns follow uma_ctor specifications
1534 *	udata  Actually uma_zctor_args
1535 */
1536static int
1537zone_ctor(void *mem, int size, void *udata, int flags)
1538{
1539	struct uma_zctor_args *arg = udata;
1540	uma_zone_t zone = mem;
1541	uma_zone_t z;
1542	uma_keg_t keg;
1543
1544	bzero(zone, size);
1545	zone->uz_name = arg->name;
1546	zone->uz_ctor = arg->ctor;
1547	zone->uz_dtor = arg->dtor;
1548	zone->uz_slab = zone_fetch_slab;
1549	zone->uz_init = NULL;
1550	zone->uz_fini = NULL;
1551	zone->uz_allocs = 0;
1552	zone->uz_frees = 0;
1553	zone->uz_fails = 0;
1554	zone->uz_sleeps = 0;
1555	zone->uz_count = 0;
1556	zone->uz_count_min = 0;
1557	zone->uz_flags = 0;
1558	zone->uz_warning = NULL;
1559	timevalclear(&zone->uz_ratecheck);
1560	keg = arg->keg;
1561
1562	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1563
1564	/*
1565	 * This is a pure cache zone, no kegs.
1566	 */
1567	if (arg->import) {
1568		if (arg->flags & UMA_ZONE_VM)
1569			arg->flags |= UMA_ZFLAG_CACHEONLY;
1570		zone->uz_flags = arg->flags;
1571		zone->uz_size = arg->size;
1572		zone->uz_import = arg->import;
1573		zone->uz_release = arg->release;
1574		zone->uz_arg = arg->arg;
1575		zone->uz_lockptr = &zone->uz_lock;
1576		rw_wlock(&uma_rwlock);
1577		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1578		rw_wunlock(&uma_rwlock);
1579		goto out;
1580	}
1581
1582	/*
1583	 * Use the regular zone/keg/slab allocator.
1584	 */
1585	zone->uz_import = (uma_import)zone_import;
1586	zone->uz_release = (uma_release)zone_release;
1587	zone->uz_arg = zone;
1588
1589	if (arg->flags & UMA_ZONE_SECONDARY) {
1590		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1591		zone->uz_init = arg->uminit;
1592		zone->uz_fini = arg->fini;
1593		zone->uz_lockptr = &keg->uk_lock;
1594		zone->uz_flags |= UMA_ZONE_SECONDARY;
1595		rw_wlock(&uma_rwlock);
1596		ZONE_LOCK(zone);
1597		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1598			if (LIST_NEXT(z, uz_link) == NULL) {
1599				LIST_INSERT_AFTER(z, zone, uz_link);
1600				break;
1601			}
1602		}
1603		ZONE_UNLOCK(zone);
1604		rw_wunlock(&uma_rwlock);
1605	} else if (keg == NULL) {
1606		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1607		    arg->align, arg->flags)) == NULL)
1608			return (ENOMEM);
1609	} else {
1610		struct uma_kctor_args karg;
1611		int error;
1612
1613		/* We should only be here from uma_startup() */
1614		karg.size = arg->size;
1615		karg.uminit = arg->uminit;
1616		karg.fini = arg->fini;
1617		karg.align = arg->align;
1618		karg.flags = arg->flags;
1619		karg.zone = zone;
1620		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1621		    flags);
1622		if (error)
1623			return (error);
1624	}
1625
1626	/*
1627	 * Link in the first keg.
1628	 */
1629	zone->uz_klink.kl_keg = keg;
1630	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1631	zone->uz_lockptr = &keg->uk_lock;
1632	zone->uz_size = keg->uk_size;
1633	zone->uz_flags |= (keg->uk_flags &
1634	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1635
1636	/*
1637	 * Some internal zones don't have room allocated for the per cpu
1638	 * caches.  If we're internal, bail out here.
1639	 */
1640	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1641		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1642		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1643		return (0);
1644	}
1645
1646out:
1647	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
1648	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
1649	    ("Invalid zone flag combination"));
1650	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
1651		zone->uz_count = BUCKET_MAX;
1652	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
1653		zone->uz_count = 0;
1654	else
1655		zone->uz_count = bucket_select(zone->uz_size);
1656	zone->uz_count_min = zone->uz_count;
1657
1658	return (0);
1659}
1660
1661/*
1662 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1663 * table and removes the keg from the global list.
1664 *
1665 * Arguments/Returns follow uma_dtor specifications
1666 *	udata  unused
1667 */
1668static void
1669keg_dtor(void *arg, int size, void *udata)
1670{
1671	uma_keg_t keg;
1672
1673	keg = (uma_keg_t)arg;
1674	KEG_LOCK(keg);
1675	if (keg->uk_free != 0) {
1676		printf("Freed UMA keg (%s) was not empty (%d items). "
1677		    " Lost %d pages of memory.\n",
1678		    keg->uk_name ? keg->uk_name : "",
1679		    keg->uk_free, keg->uk_pages);
1680	}
1681	KEG_UNLOCK(keg);
1682
1683	hash_free(&keg->uk_hash);
1684
1685	KEG_LOCK_FINI(keg);
1686}
1687
1688/*
1689 * Zone header dtor.
1690 *
1691 * Arguments/Returns follow uma_dtor specifications
1692 *	udata  unused
1693 */
1694static void
1695zone_dtor(void *arg, int size, void *udata)
1696{
1697	uma_klink_t klink;
1698	uma_zone_t zone;
1699	uma_keg_t keg;
1700
1701	zone = (uma_zone_t)arg;
1702	keg = zone_first_keg(zone);
1703
1704	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1705		cache_drain(zone);
1706
1707	rw_wlock(&uma_rwlock);
1708	LIST_REMOVE(zone, uz_link);
1709	rw_wunlock(&uma_rwlock);
1710	/*
1711	 * XXX there are some races here where
1712	 * the zone can be drained but zone lock
1713	 * released and then refilled before we
1714	 * remove it... we dont care for now
1715	 */
1716	zone_drain_wait(zone, M_WAITOK);
1717	/*
1718	 * Unlink all of our kegs.
1719	 */
1720	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1721		klink->kl_keg = NULL;
1722		LIST_REMOVE(klink, kl_link);
1723		if (klink == &zone->uz_klink)
1724			continue;
1725		free(klink, M_TEMP);
1726	}
1727	/*
1728	 * We only destroy kegs from non secondary zones.
1729	 */
1730	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1731		rw_wlock(&uma_rwlock);
1732		LIST_REMOVE(keg, uk_link);
1733		rw_wunlock(&uma_rwlock);
1734		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1735	}
1736	ZONE_LOCK_FINI(zone);
1737}
1738
1739/*
1740 * Traverses every zone in the system and calls a callback
1741 *
1742 * Arguments:
1743 *	zfunc  A pointer to a function which accepts a zone
1744 *		as an argument.
1745 *
1746 * Returns:
1747 *	Nothing
1748 */
1749static void
1750zone_foreach(void (*zfunc)(uma_zone_t))
1751{
1752	uma_keg_t keg;
1753	uma_zone_t zone;
1754
1755	rw_rlock(&uma_rwlock);
1756	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1757		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1758			zfunc(zone);
1759	}
1760	rw_runlock(&uma_rwlock);
1761}
1762
1763/* Public functions */
1764/* See uma.h */
1765void
1766uma_startup(void *bootmem, int boot_pages)
1767{
1768	struct uma_zctor_args args;
1769	uma_slab_t slab;
1770	int i;
1771
1772#ifdef UMA_DEBUG
1773	printf("Creating uma keg headers zone and keg.\n");
1774#endif
1775	rw_init(&uma_rwlock, "UMA lock");
1776
1777	/* "manually" create the initial zone */
1778	memset(&args, 0, sizeof(args));
1779	args.name = "UMA Kegs";
1780	args.size = sizeof(struct uma_keg);
1781	args.ctor = keg_ctor;
1782	args.dtor = keg_dtor;
1783	args.uminit = zero_init;
1784	args.fini = NULL;
1785	args.keg = &masterkeg;
1786	args.align = 32 - 1;
1787	args.flags = UMA_ZFLAG_INTERNAL;
1788	/* The initial zone has no Per cpu queues so it's smaller */
1789	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1790
1791#ifdef UMA_DEBUG
1792	printf("Filling boot free list.\n");
1793#endif
1794	for (i = 0; i < boot_pages; i++) {
1795		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1796		slab->us_data = (uint8_t *)slab;
1797		slab->us_flags = UMA_SLAB_BOOT;
1798		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1799	}
1800	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1801
1802#ifdef UMA_DEBUG
1803	printf("Creating uma zone headers zone and keg.\n");
1804#endif
1805	args.name = "UMA Zones";
1806	args.size = sizeof(struct uma_zone) +
1807	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1808	args.ctor = zone_ctor;
1809	args.dtor = zone_dtor;
1810	args.uminit = zero_init;
1811	args.fini = NULL;
1812	args.keg = NULL;
1813	args.align = 32 - 1;
1814	args.flags = UMA_ZFLAG_INTERNAL;
1815	/* The initial zone has no Per cpu queues so it's smaller */
1816	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1817
1818#ifdef UMA_DEBUG
1819	printf("Creating slab and hash zones.\n");
1820#endif
1821
1822	/* Now make a zone for slab headers */
1823	slabzone = uma_zcreate("UMA Slabs",
1824				sizeof(struct uma_slab),
1825				NULL, NULL, NULL, NULL,
1826				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1827
1828	hashzone = uma_zcreate("UMA Hash",
1829	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1830	    NULL, NULL, NULL, NULL,
1831	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1832
1833	bucket_init();
1834
1835	booted = UMA_STARTUP;
1836
1837#ifdef UMA_DEBUG
1838	printf("UMA startup complete.\n");
1839#endif
1840}
1841
1842/* see uma.h */
1843void
1844uma_startup2(void)
1845{
1846	booted = UMA_STARTUP2;
1847	bucket_enable();
1848	sx_init(&uma_drain_lock, "umadrain");
1849#ifdef UMA_DEBUG
1850	printf("UMA startup2 complete.\n");
1851#endif
1852}
1853
1854
1855static void
1856uma_startup3(void)
1857{
1858#ifdef UMA_DEBUG
1859	printf("Starting callout.\n");
1860#endif
1861	callout_init(&uma_callout, 1);
1862	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1863#ifdef UMA_DEBUG
1864	printf("UMA startup3 complete.\n");
1865#endif
1866
1867	EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
1868	    EVENTHANDLER_PRI_FIRST);
1869}
1870
1871static void
1872uma_shutdown(void)
1873{
1874
1875	booted = UMA_SHUTDOWN;
1876}
1877
1878static uma_keg_t
1879uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1880		int align, uint32_t flags)
1881{
1882	struct uma_kctor_args args;
1883
1884	args.size = size;
1885	args.uminit = uminit;
1886	args.fini = fini;
1887	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1888	args.flags = flags;
1889	args.zone = zone;
1890	return (zone_alloc_item(kegs, &args, M_WAITOK));
1891}
1892
1893/* See uma.h */
1894void
1895uma_set_align(int align)
1896{
1897
1898	if (align != UMA_ALIGN_CACHE)
1899		uma_align_cache = align;
1900}
1901
1902/* See uma.h */
1903uma_zone_t
1904uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1905		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1906
1907{
1908	struct uma_zctor_args args;
1909	uma_zone_t res;
1910	bool locked;
1911
1912	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
1913	    align, name));
1914
1915	/* This stuff is essential for the zone ctor */
1916	memset(&args, 0, sizeof(args));
1917	args.name = name;
1918	args.size = size;
1919	args.ctor = ctor;
1920	args.dtor = dtor;
1921	args.uminit = uminit;
1922	args.fini = fini;
1923#ifdef  INVARIANTS
1924	/*
1925	 * If a zone is being created with an empty constructor and
1926	 * destructor, pass UMA constructor/destructor which checks for
1927	 * memory use after free.
1928	 */
1929	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) &&
1930	    ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) {
1931		args.ctor = trash_ctor;
1932		args.dtor = trash_dtor;
1933		args.uminit = trash_init;
1934		args.fini = trash_fini;
1935	}
1936#endif
1937	args.align = align;
1938	args.flags = flags;
1939	args.keg = NULL;
1940
1941	if (booted < UMA_STARTUP2) {
1942		locked = false;
1943	} else {
1944		sx_slock(&uma_drain_lock);
1945		locked = true;
1946	}
1947	res = zone_alloc_item(zones, &args, M_WAITOK);
1948	if (locked)
1949		sx_sunlock(&uma_drain_lock);
1950	return (res);
1951}
1952
1953/* See uma.h */
1954uma_zone_t
1955uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1956		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1957{
1958	struct uma_zctor_args args;
1959	uma_keg_t keg;
1960	uma_zone_t res;
1961	bool locked;
1962
1963	keg = zone_first_keg(master);
1964	memset(&args, 0, sizeof(args));
1965	args.name = name;
1966	args.size = keg->uk_size;
1967	args.ctor = ctor;
1968	args.dtor = dtor;
1969	args.uminit = zinit;
1970	args.fini = zfini;
1971	args.align = keg->uk_align;
1972	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1973	args.keg = keg;
1974
1975	if (booted < UMA_STARTUP2) {
1976		locked = false;
1977	} else {
1978		sx_slock(&uma_drain_lock);
1979		locked = true;
1980	}
1981	/* XXX Attaches only one keg of potentially many. */
1982	res = zone_alloc_item(zones, &args, M_WAITOK);
1983	if (locked)
1984		sx_sunlock(&uma_drain_lock);
1985	return (res);
1986}
1987
1988/* See uma.h */
1989uma_zone_t
1990uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1991		    uma_init zinit, uma_fini zfini, uma_import zimport,
1992		    uma_release zrelease, void *arg, int flags)
1993{
1994	struct uma_zctor_args args;
1995
1996	memset(&args, 0, sizeof(args));
1997	args.name = name;
1998	args.size = size;
1999	args.ctor = ctor;
2000	args.dtor = dtor;
2001	args.uminit = zinit;
2002	args.fini = zfini;
2003	args.import = zimport;
2004	args.release = zrelease;
2005	args.arg = arg;
2006	args.align = 0;
2007	args.flags = flags;
2008
2009	return (zone_alloc_item(zones, &args, M_WAITOK));
2010}
2011
2012static void
2013zone_lock_pair(uma_zone_t a, uma_zone_t b)
2014{
2015	if (a < b) {
2016		ZONE_LOCK(a);
2017		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2018	} else {
2019		ZONE_LOCK(b);
2020		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2021	}
2022}
2023
2024static void
2025zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2026{
2027
2028	ZONE_UNLOCK(a);
2029	ZONE_UNLOCK(b);
2030}
2031
2032int
2033uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2034{
2035	uma_klink_t klink;
2036	uma_klink_t kl;
2037	int error;
2038
2039	error = 0;
2040	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2041
2042	zone_lock_pair(zone, master);
2043	/*
2044	 * zone must use vtoslab() to resolve objects and must already be
2045	 * a secondary.
2046	 */
2047	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2048	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2049		error = EINVAL;
2050		goto out;
2051	}
2052	/*
2053	 * The new master must also use vtoslab().
2054	 */
2055	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2056		error = EINVAL;
2057		goto out;
2058	}
2059
2060	/*
2061	 * The underlying object must be the same size.  rsize
2062	 * may be different.
2063	 */
2064	if (master->uz_size != zone->uz_size) {
2065		error = E2BIG;
2066		goto out;
2067	}
2068	/*
2069	 * Put it at the end of the list.
2070	 */
2071	klink->kl_keg = zone_first_keg(master);
2072	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2073		if (LIST_NEXT(kl, kl_link) == NULL) {
2074			LIST_INSERT_AFTER(kl, klink, kl_link);
2075			break;
2076		}
2077	}
2078	klink = NULL;
2079	zone->uz_flags |= UMA_ZFLAG_MULTI;
2080	zone->uz_slab = zone_fetch_slab_multi;
2081
2082out:
2083	zone_unlock_pair(zone, master);
2084	if (klink != NULL)
2085		free(klink, M_TEMP);
2086
2087	return (error);
2088}
2089
2090
2091/* See uma.h */
2092void
2093uma_zdestroy(uma_zone_t zone)
2094{
2095
2096	/*
2097	 * Large slabs are expensive to reclaim, so don't bother doing
2098	 * unnecessary work if we're shutting down.
2099	 */
2100	if (booted == UMA_SHUTDOWN &&
2101	    zone->uz_fini == NULL &&
2102	    zone->uz_release == (uma_release)zone_release)
2103		return;
2104	sx_slock(&uma_drain_lock);
2105	zone_free_item(zones, zone, NULL, SKIP_NONE);
2106	sx_sunlock(&uma_drain_lock);
2107}
2108
2109void
2110uma_zwait(uma_zone_t zone)
2111{
2112	void *item;
2113
2114	item = uma_zalloc_arg(zone, NULL, M_WAITOK);
2115	uma_zfree(zone, item);
2116}
2117
2118/* See uma.h */
2119void *
2120uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2121{
2122	void *item;
2123	uma_cache_t cache;
2124	uma_bucket_t bucket;
2125	int lockfail;
2126	int cpu;
2127
2128	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2129	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2130
2131	/* This is the fast path allocation */
2132#ifdef UMA_DEBUG_ALLOC_1
2133	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2134#endif
2135	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2136	    zone->uz_name, flags);
2137
2138	if (flags & M_WAITOK) {
2139		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2140		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2141	}
2142	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2143	    ("uma_zalloc_arg: called with spinlock or critical section held"));
2144
2145#ifdef DEBUG_MEMGUARD
2146	if (memguard_cmp_zone(zone)) {
2147		item = memguard_alloc(zone->uz_size, flags);
2148		if (item != NULL) {
2149			if (zone->uz_init != NULL &&
2150			    zone->uz_init(item, zone->uz_size, flags) != 0)
2151				return (NULL);
2152			if (zone->uz_ctor != NULL &&
2153			    zone->uz_ctor(item, zone->uz_size, udata,
2154			    flags) != 0) {
2155			    	zone->uz_fini(item, zone->uz_size);
2156				return (NULL);
2157			}
2158			return (item);
2159		}
2160		/* This is unfortunate but should not be fatal. */
2161	}
2162#endif
2163	/*
2164	 * If possible, allocate from the per-CPU cache.  There are two
2165	 * requirements for safe access to the per-CPU cache: (1) the thread
2166	 * accessing the cache must not be preempted or yield during access,
2167	 * and (2) the thread must not migrate CPUs without switching which
2168	 * cache it accesses.  We rely on a critical section to prevent
2169	 * preemption and migration.  We release the critical section in
2170	 * order to acquire the zone mutex if we are unable to allocate from
2171	 * the current cache; when we re-acquire the critical section, we
2172	 * must detect and handle migration if it has occurred.
2173	 */
2174	critical_enter();
2175	cpu = curcpu;
2176	cache = &zone->uz_cpu[cpu];
2177
2178zalloc_start:
2179	bucket = cache->uc_allocbucket;
2180	if (bucket != NULL && bucket->ub_cnt > 0) {
2181		bucket->ub_cnt--;
2182		item = bucket->ub_bucket[bucket->ub_cnt];
2183#ifdef INVARIANTS
2184		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2185#endif
2186		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2187		cache->uc_allocs++;
2188		critical_exit();
2189		if (zone->uz_ctor != NULL &&
2190		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2191			atomic_add_long(&zone->uz_fails, 1);
2192			zone_free_item(zone, item, udata, SKIP_DTOR);
2193			return (NULL);
2194		}
2195#ifdef INVARIANTS
2196		uma_dbg_alloc(zone, NULL, item);
2197#endif
2198		if (flags & M_ZERO)
2199			uma_zero_item(item, zone);
2200		return (item);
2201	}
2202
2203	/*
2204	 * We have run out of items in our alloc bucket.
2205	 * See if we can switch with our free bucket.
2206	 */
2207	bucket = cache->uc_freebucket;
2208	if (bucket != NULL && bucket->ub_cnt > 0) {
2209#ifdef UMA_DEBUG_ALLOC
2210		printf("uma_zalloc: Swapping empty with alloc.\n");
2211#endif
2212		cache->uc_freebucket = cache->uc_allocbucket;
2213		cache->uc_allocbucket = bucket;
2214		goto zalloc_start;
2215	}
2216
2217	/*
2218	 * Discard any empty allocation bucket while we hold no locks.
2219	 */
2220	bucket = cache->uc_allocbucket;
2221	cache->uc_allocbucket = NULL;
2222	critical_exit();
2223	if (bucket != NULL)
2224		bucket_free(zone, bucket, udata);
2225
2226	/* Short-circuit for zones without buckets and low memory. */
2227	if (zone->uz_count == 0 || bucketdisable)
2228		goto zalloc_item;
2229
2230	/*
2231	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2232	 * we must go back to the zone.  This requires the zone lock, so we
2233	 * must drop the critical section, then re-acquire it when we go back
2234	 * to the cache.  Since the critical section is released, we may be
2235	 * preempted or migrate.  As such, make sure not to maintain any
2236	 * thread-local state specific to the cache from prior to releasing
2237	 * the critical section.
2238	 */
2239	lockfail = 0;
2240	if (ZONE_TRYLOCK(zone) == 0) {
2241		/* Record contention to size the buckets. */
2242		ZONE_LOCK(zone);
2243		lockfail = 1;
2244	}
2245	critical_enter();
2246	cpu = curcpu;
2247	cache = &zone->uz_cpu[cpu];
2248
2249	/*
2250	 * Since we have locked the zone we may as well send back our stats.
2251	 */
2252	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2253	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2254	cache->uc_allocs = 0;
2255	cache->uc_frees = 0;
2256
2257	/* See if we lost the race to fill the cache. */
2258	if (cache->uc_allocbucket != NULL) {
2259		ZONE_UNLOCK(zone);
2260		goto zalloc_start;
2261	}
2262
2263	/*
2264	 * Check the zone's cache of buckets.
2265	 */
2266	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2267		KASSERT(bucket->ub_cnt != 0,
2268		    ("uma_zalloc_arg: Returning an empty bucket."));
2269
2270		LIST_REMOVE(bucket, ub_link);
2271		cache->uc_allocbucket = bucket;
2272		ZONE_UNLOCK(zone);
2273		goto zalloc_start;
2274	}
2275	/* We are no longer associated with this CPU. */
2276	critical_exit();
2277
2278	/*
2279	 * We bump the uz count when the cache size is insufficient to
2280	 * handle the working set.
2281	 */
2282	if (lockfail && zone->uz_count < BUCKET_MAX)
2283		zone->uz_count++;
2284	ZONE_UNLOCK(zone);
2285
2286	/*
2287	 * Now lets just fill a bucket and put it on the free list.  If that
2288	 * works we'll restart the allocation from the beginning and it
2289	 * will use the just filled bucket.
2290	 */
2291	bucket = zone_alloc_bucket(zone, udata, flags);
2292	if (bucket != NULL) {
2293		ZONE_LOCK(zone);
2294		critical_enter();
2295		cpu = curcpu;
2296		cache = &zone->uz_cpu[cpu];
2297		/*
2298		 * See if we lost the race or were migrated.  Cache the
2299		 * initialized bucket to make this less likely or claim
2300		 * the memory directly.
2301		 */
2302		if (cache->uc_allocbucket == NULL)
2303			cache->uc_allocbucket = bucket;
2304		else
2305			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2306		ZONE_UNLOCK(zone);
2307		goto zalloc_start;
2308	}
2309
2310	/*
2311	 * We may not be able to get a bucket so return an actual item.
2312	 */
2313#ifdef UMA_DEBUG
2314	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2315#endif
2316
2317zalloc_item:
2318	item = zone_alloc_item(zone, udata, flags);
2319
2320	return (item);
2321}
2322
2323static uma_slab_t
2324keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2325{
2326	uma_slab_t slab;
2327	int reserve;
2328
2329	mtx_assert(&keg->uk_lock, MA_OWNED);
2330	slab = NULL;
2331	reserve = 0;
2332	if ((flags & M_USE_RESERVE) == 0)
2333		reserve = keg->uk_reserve;
2334
2335	for (;;) {
2336		/*
2337		 * Find a slab with some space.  Prefer slabs that are partially
2338		 * used over those that are totally full.  This helps to reduce
2339		 * fragmentation.
2340		 */
2341		if (keg->uk_free > reserve) {
2342			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2343				slab = LIST_FIRST(&keg->uk_part_slab);
2344			} else {
2345				slab = LIST_FIRST(&keg->uk_free_slab);
2346				LIST_REMOVE(slab, us_link);
2347				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2348				    us_link);
2349			}
2350			MPASS(slab->us_keg == keg);
2351			return (slab);
2352		}
2353
2354		/*
2355		 * M_NOVM means don't ask at all!
2356		 */
2357		if (flags & M_NOVM)
2358			break;
2359
2360		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2361			keg->uk_flags |= UMA_ZFLAG_FULL;
2362			/*
2363			 * If this is not a multi-zone, set the FULL bit.
2364			 * Otherwise slab_multi() takes care of it.
2365			 */
2366			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2367				zone->uz_flags |= UMA_ZFLAG_FULL;
2368				zone_log_warning(zone);
2369				zone_maxaction(zone);
2370			}
2371			if (flags & M_NOWAIT)
2372				break;
2373			zone->uz_sleeps++;
2374			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2375			continue;
2376		}
2377		slab = keg_alloc_slab(keg, zone, flags);
2378		/*
2379		 * If we got a slab here it's safe to mark it partially used
2380		 * and return.  We assume that the caller is going to remove
2381		 * at least one item.
2382		 */
2383		if (slab) {
2384			MPASS(slab->us_keg == keg);
2385			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2386			return (slab);
2387		}
2388		/*
2389		 * We might not have been able to get a slab but another cpu
2390		 * could have while we were unlocked.  Check again before we
2391		 * fail.
2392		 */
2393		flags |= M_NOVM;
2394	}
2395	return (slab);
2396}
2397
2398static uma_slab_t
2399zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2400{
2401	uma_slab_t slab;
2402
2403	if (keg == NULL) {
2404		keg = zone_first_keg(zone);
2405		KEG_LOCK(keg);
2406	}
2407
2408	for (;;) {
2409		slab = keg_fetch_slab(keg, zone, flags);
2410		if (slab)
2411			return (slab);
2412		if (flags & (M_NOWAIT | M_NOVM))
2413			break;
2414	}
2415	KEG_UNLOCK(keg);
2416	return (NULL);
2417}
2418
2419/*
2420 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2421 * with the keg locked.  On NULL no lock is held.
2422 *
2423 * The last pointer is used to seed the search.  It is not required.
2424 */
2425static uma_slab_t
2426zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2427{
2428	uma_klink_t klink;
2429	uma_slab_t slab;
2430	uma_keg_t keg;
2431	int flags;
2432	int empty;
2433	int full;
2434
2435	/*
2436	 * Don't wait on the first pass.  This will skip limit tests
2437	 * as well.  We don't want to block if we can find a provider
2438	 * without blocking.
2439	 */
2440	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2441	/*
2442	 * Use the last slab allocated as a hint for where to start
2443	 * the search.
2444	 */
2445	if (last != NULL) {
2446		slab = keg_fetch_slab(last, zone, flags);
2447		if (slab)
2448			return (slab);
2449		KEG_UNLOCK(last);
2450	}
2451	/*
2452	 * Loop until we have a slab incase of transient failures
2453	 * while M_WAITOK is specified.  I'm not sure this is 100%
2454	 * required but we've done it for so long now.
2455	 */
2456	for (;;) {
2457		empty = 0;
2458		full = 0;
2459		/*
2460		 * Search the available kegs for slabs.  Be careful to hold the
2461		 * correct lock while calling into the keg layer.
2462		 */
2463		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2464			keg = klink->kl_keg;
2465			KEG_LOCK(keg);
2466			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2467				slab = keg_fetch_slab(keg, zone, flags);
2468				if (slab)
2469					return (slab);
2470			}
2471			if (keg->uk_flags & UMA_ZFLAG_FULL)
2472				full++;
2473			else
2474				empty++;
2475			KEG_UNLOCK(keg);
2476		}
2477		if (rflags & (M_NOWAIT | M_NOVM))
2478			break;
2479		flags = rflags;
2480		/*
2481		 * All kegs are full.  XXX We can't atomically check all kegs
2482		 * and sleep so just sleep for a short period and retry.
2483		 */
2484		if (full && !empty) {
2485			ZONE_LOCK(zone);
2486			zone->uz_flags |= UMA_ZFLAG_FULL;
2487			zone->uz_sleeps++;
2488			zone_log_warning(zone);
2489			zone_maxaction(zone);
2490			msleep(zone, zone->uz_lockptr, PVM,
2491			    "zonelimit", hz/100);
2492			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2493			ZONE_UNLOCK(zone);
2494			continue;
2495		}
2496	}
2497	return (NULL);
2498}
2499
2500static void *
2501slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2502{
2503	void *item;
2504	uint8_t freei;
2505
2506	MPASS(keg == slab->us_keg);
2507	mtx_assert(&keg->uk_lock, MA_OWNED);
2508
2509	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2510	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2511	item = slab->us_data + (keg->uk_rsize * freei);
2512	slab->us_freecount--;
2513	keg->uk_free--;
2514
2515	/* Move this slab to the full list */
2516	if (slab->us_freecount == 0) {
2517		LIST_REMOVE(slab, us_link);
2518		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2519	}
2520
2521	return (item);
2522}
2523
2524static int
2525zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2526{
2527	uma_slab_t slab;
2528	uma_keg_t keg;
2529	int i;
2530
2531	slab = NULL;
2532	keg = NULL;
2533	/* Try to keep the buckets totally full */
2534	for (i = 0; i < max; ) {
2535		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2536			break;
2537		keg = slab->us_keg;
2538		while (slab->us_freecount && i < max) {
2539			bucket[i++] = slab_alloc_item(keg, slab);
2540			if (keg->uk_free <= keg->uk_reserve)
2541				break;
2542		}
2543		/* Don't grab more than one slab at a time. */
2544		flags &= ~M_WAITOK;
2545		flags |= M_NOWAIT;
2546	}
2547	if (slab != NULL)
2548		KEG_UNLOCK(keg);
2549
2550	return i;
2551}
2552
2553static uma_bucket_t
2554zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2555{
2556	uma_bucket_t bucket;
2557	int max;
2558
2559	/* Don't wait for buckets, preserve caller's NOVM setting. */
2560	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2561	if (bucket == NULL)
2562		return (NULL);
2563
2564	max = MIN(bucket->ub_entries, zone->uz_count);
2565	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2566	    max, flags);
2567
2568	/*
2569	 * Initialize the memory if necessary.
2570	 */
2571	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2572		int i;
2573
2574		for (i = 0; i < bucket->ub_cnt; i++)
2575			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2576			    flags) != 0)
2577				break;
2578		/*
2579		 * If we couldn't initialize the whole bucket, put the
2580		 * rest back onto the freelist.
2581		 */
2582		if (i != bucket->ub_cnt) {
2583			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2584			    bucket->ub_cnt - i);
2585#ifdef INVARIANTS
2586			bzero(&bucket->ub_bucket[i],
2587			    sizeof(void *) * (bucket->ub_cnt - i));
2588#endif
2589			bucket->ub_cnt = i;
2590		}
2591	}
2592
2593	if (bucket->ub_cnt == 0) {
2594		bucket_free(zone, bucket, udata);
2595		atomic_add_long(&zone->uz_fails, 1);
2596		return (NULL);
2597	}
2598
2599	return (bucket);
2600}
2601
2602/*
2603 * Allocates a single item from a zone.
2604 *
2605 * Arguments
2606 *	zone   The zone to alloc for.
2607 *	udata  The data to be passed to the constructor.
2608 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2609 *
2610 * Returns
2611 *	NULL if there is no memory and M_NOWAIT is set
2612 *	An item if successful
2613 */
2614
2615static void *
2616zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2617{
2618	void *item;
2619
2620	item = NULL;
2621
2622#ifdef UMA_DEBUG_ALLOC
2623	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2624#endif
2625	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2626		goto fail;
2627	atomic_add_long(&zone->uz_allocs, 1);
2628
2629	/*
2630	 * We have to call both the zone's init (not the keg's init)
2631	 * and the zone's ctor.  This is because the item is going from
2632	 * a keg slab directly to the user, and the user is expecting it
2633	 * to be both zone-init'd as well as zone-ctor'd.
2634	 */
2635	if (zone->uz_init != NULL) {
2636		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2637			zone_free_item(zone, item, udata, SKIP_FINI);
2638			goto fail;
2639		}
2640	}
2641	if (zone->uz_ctor != NULL) {
2642		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2643			zone_free_item(zone, item, udata, SKIP_DTOR);
2644			goto fail;
2645		}
2646	}
2647#ifdef INVARIANTS
2648	uma_dbg_alloc(zone, NULL, item);
2649#endif
2650	if (flags & M_ZERO)
2651		uma_zero_item(item, zone);
2652
2653	return (item);
2654
2655fail:
2656	atomic_add_long(&zone->uz_fails, 1);
2657	return (NULL);
2658}
2659
2660/* See uma.h */
2661void
2662uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2663{
2664	uma_cache_t cache;
2665	uma_bucket_t bucket;
2666	int lockfail;
2667	int cpu;
2668
2669	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2670	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2671
2672#ifdef UMA_DEBUG_ALLOC_1
2673	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2674#endif
2675	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2676	    zone->uz_name);
2677
2678	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2679	    ("uma_zfree_arg: called with spinlock or critical section held"));
2680
2681        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2682        if (item == NULL)
2683                return;
2684#ifdef DEBUG_MEMGUARD
2685	if (is_memguard_addr(item)) {
2686		if (zone->uz_dtor != NULL)
2687			zone->uz_dtor(item, zone->uz_size, udata);
2688		if (zone->uz_fini != NULL)
2689			zone->uz_fini(item, zone->uz_size);
2690		memguard_free(item);
2691		return;
2692	}
2693#endif
2694#ifdef INVARIANTS
2695	if (zone->uz_flags & UMA_ZONE_MALLOC)
2696		uma_dbg_free(zone, udata, item);
2697	else
2698		uma_dbg_free(zone, NULL, item);
2699#endif
2700	if (zone->uz_dtor != NULL)
2701		zone->uz_dtor(item, zone->uz_size, udata);
2702
2703	/*
2704	 * The race here is acceptable.  If we miss it we'll just have to wait
2705	 * a little longer for the limits to be reset.
2706	 */
2707	if (zone->uz_flags & UMA_ZFLAG_FULL)
2708		goto zfree_item;
2709
2710	/*
2711	 * If possible, free to the per-CPU cache.  There are two
2712	 * requirements for safe access to the per-CPU cache: (1) the thread
2713	 * accessing the cache must not be preempted or yield during access,
2714	 * and (2) the thread must not migrate CPUs without switching which
2715	 * cache it accesses.  We rely on a critical section to prevent
2716	 * preemption and migration.  We release the critical section in
2717	 * order to acquire the zone mutex if we are unable to free to the
2718	 * current cache; when we re-acquire the critical section, we must
2719	 * detect and handle migration if it has occurred.
2720	 */
2721zfree_restart:
2722	critical_enter();
2723	cpu = curcpu;
2724	cache = &zone->uz_cpu[cpu];
2725
2726zfree_start:
2727	/*
2728	 * Try to free into the allocbucket first to give LIFO ordering
2729	 * for cache-hot datastructures.  Spill over into the freebucket
2730	 * if necessary.  Alloc will swap them if one runs dry.
2731	 */
2732	bucket = cache->uc_allocbucket;
2733	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2734		bucket = cache->uc_freebucket;
2735	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2736		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2737		    ("uma_zfree: Freeing to non free bucket index."));
2738		bucket->ub_bucket[bucket->ub_cnt] = item;
2739		bucket->ub_cnt++;
2740		cache->uc_frees++;
2741		critical_exit();
2742		return;
2743	}
2744
2745	/*
2746	 * We must go back the zone, which requires acquiring the zone lock,
2747	 * which in turn means we must release and re-acquire the critical
2748	 * section.  Since the critical section is released, we may be
2749	 * preempted or migrate.  As such, make sure not to maintain any
2750	 * thread-local state specific to the cache from prior to releasing
2751	 * the critical section.
2752	 */
2753	critical_exit();
2754	if (zone->uz_count == 0 || bucketdisable)
2755		goto zfree_item;
2756
2757	lockfail = 0;
2758	if (ZONE_TRYLOCK(zone) == 0) {
2759		/* Record contention to size the buckets. */
2760		ZONE_LOCK(zone);
2761		lockfail = 1;
2762	}
2763	critical_enter();
2764	cpu = curcpu;
2765	cache = &zone->uz_cpu[cpu];
2766
2767	/*
2768	 * Since we have locked the zone we may as well send back our stats.
2769	 */
2770	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2771	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2772	cache->uc_allocs = 0;
2773	cache->uc_frees = 0;
2774
2775	bucket = cache->uc_freebucket;
2776	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2777		ZONE_UNLOCK(zone);
2778		goto zfree_start;
2779	}
2780	cache->uc_freebucket = NULL;
2781	/* We are no longer associated with this CPU. */
2782	critical_exit();
2783
2784	/* Can we throw this on the zone full list? */
2785	if (bucket != NULL) {
2786#ifdef UMA_DEBUG_ALLOC
2787		printf("uma_zfree: Putting old bucket on the free list.\n");
2788#endif
2789		/* ub_cnt is pointing to the last free item */
2790		KASSERT(bucket->ub_cnt != 0,
2791		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2792		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2793	}
2794
2795	/*
2796	 * We bump the uz count when the cache size is insufficient to
2797	 * handle the working set.
2798	 */
2799	if (lockfail && zone->uz_count < BUCKET_MAX)
2800		zone->uz_count++;
2801	ZONE_UNLOCK(zone);
2802
2803#ifdef UMA_DEBUG_ALLOC
2804	printf("uma_zfree: Allocating new free bucket.\n");
2805#endif
2806	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2807	if (bucket) {
2808		critical_enter();
2809		cpu = curcpu;
2810		cache = &zone->uz_cpu[cpu];
2811		if (cache->uc_freebucket == NULL) {
2812			cache->uc_freebucket = bucket;
2813			goto zfree_start;
2814		}
2815		/*
2816		 * We lost the race, start over.  We have to drop our
2817		 * critical section to free the bucket.
2818		 */
2819		critical_exit();
2820		bucket_free(zone, bucket, udata);
2821		goto zfree_restart;
2822	}
2823
2824	/*
2825	 * If nothing else caught this, we'll just do an internal free.
2826	 */
2827zfree_item:
2828	zone_free_item(zone, item, udata, SKIP_DTOR);
2829
2830	return;
2831}
2832
2833static void
2834slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2835{
2836	uint8_t freei;
2837
2838	mtx_assert(&keg->uk_lock, MA_OWNED);
2839	MPASS(keg == slab->us_keg);
2840
2841	/* Do we need to remove from any lists? */
2842	if (slab->us_freecount+1 == keg->uk_ipers) {
2843		LIST_REMOVE(slab, us_link);
2844		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2845	} else if (slab->us_freecount == 0) {
2846		LIST_REMOVE(slab, us_link);
2847		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2848	}
2849
2850	/* Slab management. */
2851	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2852	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2853	slab->us_freecount++;
2854
2855	/* Keg statistics. */
2856	keg->uk_free++;
2857}
2858
2859static void
2860zone_release(uma_zone_t zone, void **bucket, int cnt)
2861{
2862	void *item;
2863	uma_slab_t slab;
2864	uma_keg_t keg;
2865	uint8_t *mem;
2866	int clearfull;
2867	int i;
2868
2869	clearfull = 0;
2870	keg = zone_first_keg(zone);
2871	KEG_LOCK(keg);
2872	for (i = 0; i < cnt; i++) {
2873		item = bucket[i];
2874		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2875			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2876			if (zone->uz_flags & UMA_ZONE_HASH) {
2877				slab = hash_sfind(&keg->uk_hash, mem);
2878			} else {
2879				mem += keg->uk_pgoff;
2880				slab = (uma_slab_t)mem;
2881			}
2882		} else {
2883			slab = vtoslab((vm_offset_t)item);
2884			if (slab->us_keg != keg) {
2885				KEG_UNLOCK(keg);
2886				keg = slab->us_keg;
2887				KEG_LOCK(keg);
2888			}
2889		}
2890		slab_free_item(keg, slab, item);
2891		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2892			if (keg->uk_pages < keg->uk_maxpages) {
2893				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2894				clearfull = 1;
2895			}
2896
2897			/*
2898			 * We can handle one more allocation. Since we're
2899			 * clearing ZFLAG_FULL, wake up all procs blocked
2900			 * on pages. This should be uncommon, so keeping this
2901			 * simple for now (rather than adding count of blocked
2902			 * threads etc).
2903			 */
2904			wakeup(keg);
2905		}
2906	}
2907	KEG_UNLOCK(keg);
2908	if (clearfull) {
2909		ZONE_LOCK(zone);
2910		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2911		wakeup(zone);
2912		ZONE_UNLOCK(zone);
2913	}
2914
2915}
2916
2917/*
2918 * Frees a single item to any zone.
2919 *
2920 * Arguments:
2921 *	zone   The zone to free to
2922 *	item   The item we're freeing
2923 *	udata  User supplied data for the dtor
2924 *	skip   Skip dtors and finis
2925 */
2926static void
2927zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2928{
2929
2930#ifdef INVARIANTS
2931	if (skip == SKIP_NONE) {
2932		if (zone->uz_flags & UMA_ZONE_MALLOC)
2933			uma_dbg_free(zone, udata, item);
2934		else
2935			uma_dbg_free(zone, NULL, item);
2936	}
2937#endif
2938	if (skip < SKIP_DTOR && zone->uz_dtor)
2939		zone->uz_dtor(item, zone->uz_size, udata);
2940
2941	if (skip < SKIP_FINI && zone->uz_fini)
2942		zone->uz_fini(item, zone->uz_size);
2943
2944	atomic_add_long(&zone->uz_frees, 1);
2945	zone->uz_release(zone->uz_arg, &item, 1);
2946}
2947
2948/* See uma.h */
2949int
2950uma_zone_set_max(uma_zone_t zone, int nitems)
2951{
2952	uma_keg_t keg;
2953
2954	keg = zone_first_keg(zone);
2955	if (keg == NULL)
2956		return (0);
2957	KEG_LOCK(keg);
2958	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2959	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2960		keg->uk_maxpages += keg->uk_ppera;
2961	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2962	KEG_UNLOCK(keg);
2963
2964	return (nitems);
2965}
2966
2967/* See uma.h */
2968int
2969uma_zone_get_max(uma_zone_t zone)
2970{
2971	int nitems;
2972	uma_keg_t keg;
2973
2974	keg = zone_first_keg(zone);
2975	if (keg == NULL)
2976		return (0);
2977	KEG_LOCK(keg);
2978	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2979	KEG_UNLOCK(keg);
2980
2981	return (nitems);
2982}
2983
2984/* See uma.h */
2985void
2986uma_zone_set_warning(uma_zone_t zone, const char *warning)
2987{
2988
2989	ZONE_LOCK(zone);
2990	zone->uz_warning = warning;
2991	ZONE_UNLOCK(zone);
2992}
2993
2994/* See uma.h */
2995void
2996uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
2997{
2998
2999	ZONE_LOCK(zone);
3000	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
3001	ZONE_UNLOCK(zone);
3002}
3003
3004/* See uma.h */
3005int
3006uma_zone_get_cur(uma_zone_t zone)
3007{
3008	int64_t nitems;
3009	u_int i;
3010
3011	ZONE_LOCK(zone);
3012	nitems = zone->uz_allocs - zone->uz_frees;
3013	CPU_FOREACH(i) {
3014		/*
3015		 * See the comment in sysctl_vm_zone_stats() regarding the
3016		 * safety of accessing the per-cpu caches. With the zone lock
3017		 * held, it is safe, but can potentially result in stale data.
3018		 */
3019		nitems += zone->uz_cpu[i].uc_allocs -
3020		    zone->uz_cpu[i].uc_frees;
3021	}
3022	ZONE_UNLOCK(zone);
3023
3024	return (nitems < 0 ? 0 : nitems);
3025}
3026
3027/* See uma.h */
3028void
3029uma_zone_set_init(uma_zone_t zone, uma_init uminit)
3030{
3031	uma_keg_t keg;
3032
3033	keg = zone_first_keg(zone);
3034	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3035	KEG_LOCK(keg);
3036	KASSERT(keg->uk_pages == 0,
3037	    ("uma_zone_set_init on non-empty keg"));
3038	keg->uk_init = uminit;
3039	KEG_UNLOCK(keg);
3040}
3041
3042/* See uma.h */
3043void
3044uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3045{
3046	uma_keg_t keg;
3047
3048	keg = zone_first_keg(zone);
3049	KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
3050	KEG_LOCK(keg);
3051	KASSERT(keg->uk_pages == 0,
3052	    ("uma_zone_set_fini on non-empty keg"));
3053	keg->uk_fini = fini;
3054	KEG_UNLOCK(keg);
3055}
3056
3057/* See uma.h */
3058void
3059uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3060{
3061
3062	ZONE_LOCK(zone);
3063	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3064	    ("uma_zone_set_zinit on non-empty keg"));
3065	zone->uz_init = zinit;
3066	ZONE_UNLOCK(zone);
3067}
3068
3069/* See uma.h */
3070void
3071uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3072{
3073
3074	ZONE_LOCK(zone);
3075	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3076	    ("uma_zone_set_zfini on non-empty keg"));
3077	zone->uz_fini = zfini;
3078	ZONE_UNLOCK(zone);
3079}
3080
3081/* See uma.h */
3082/* XXX uk_freef is not actually used with the zone locked */
3083void
3084uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3085{
3086	uma_keg_t keg;
3087
3088	keg = zone_first_keg(zone);
3089	KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
3090	KEG_LOCK(keg);
3091	keg->uk_freef = freef;
3092	KEG_UNLOCK(keg);
3093}
3094
3095/* See uma.h */
3096/* XXX uk_allocf is not actually used with the zone locked */
3097void
3098uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3099{
3100	uma_keg_t keg;
3101
3102	keg = zone_first_keg(zone);
3103	KEG_LOCK(keg);
3104	keg->uk_allocf = allocf;
3105	KEG_UNLOCK(keg);
3106}
3107
3108/* See uma.h */
3109void
3110uma_zone_reserve(uma_zone_t zone, int items)
3111{
3112	uma_keg_t keg;
3113
3114	keg = zone_first_keg(zone);
3115	if (keg == NULL)
3116		return;
3117	KEG_LOCK(keg);
3118	keg->uk_reserve = items;
3119	KEG_UNLOCK(keg);
3120
3121	return;
3122}
3123
3124/* See uma.h */
3125int
3126uma_zone_reserve_kva(uma_zone_t zone, int count)
3127{
3128	uma_keg_t keg;
3129	vm_offset_t kva;
3130	u_int pages;
3131
3132	keg = zone_first_keg(zone);
3133	if (keg == NULL)
3134		return (0);
3135	pages = count / keg->uk_ipers;
3136
3137	if (pages * keg->uk_ipers < count)
3138		pages++;
3139	pages *= keg->uk_ppera;
3140
3141#ifdef UMA_MD_SMALL_ALLOC
3142	if (keg->uk_ppera > 1) {
3143#else
3144	if (1) {
3145#endif
3146		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
3147		if (kva == 0)
3148			return (0);
3149	} else
3150		kva = 0;
3151	KEG_LOCK(keg);
3152	keg->uk_kva = kva;
3153	keg->uk_offset = 0;
3154	keg->uk_maxpages = pages;
3155#ifdef UMA_MD_SMALL_ALLOC
3156	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3157#else
3158	keg->uk_allocf = noobj_alloc;
3159#endif
3160	keg->uk_flags |= UMA_ZONE_NOFREE;
3161	KEG_UNLOCK(keg);
3162
3163	return (1);
3164}
3165
3166/* See uma.h */
3167void
3168uma_prealloc(uma_zone_t zone, int items)
3169{
3170	int slabs;
3171	uma_slab_t slab;
3172	uma_keg_t keg;
3173
3174	keg = zone_first_keg(zone);
3175	if (keg == NULL)
3176		return;
3177	KEG_LOCK(keg);
3178	slabs = items / keg->uk_ipers;
3179	if (slabs * keg->uk_ipers < items)
3180		slabs++;
3181	while (slabs > 0) {
3182		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3183		if (slab == NULL)
3184			break;
3185		MPASS(slab->us_keg == keg);
3186		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3187		slabs--;
3188	}
3189	KEG_UNLOCK(keg);
3190}
3191
3192/* See uma.h */
3193static void
3194uma_reclaim_locked(bool kmem_danger)
3195{
3196
3197#ifdef UMA_DEBUG
3198	printf("UMA: vm asked us to release pages!\n");
3199#endif
3200	sx_assert(&uma_drain_lock, SA_XLOCKED);
3201	bucket_enable();
3202	zone_foreach(zone_drain);
3203	if (vm_page_count_min() || kmem_danger) {
3204		cache_drain_safe(NULL);
3205		zone_foreach(zone_drain);
3206	}
3207	/*
3208	 * Some slabs may have been freed but this zone will be visited early
3209	 * we visit again so that we can free pages that are empty once other
3210	 * zones are drained.  We have to do the same for buckets.
3211	 */
3212	zone_drain(slabzone);
3213	bucket_zone_drain();
3214}
3215
3216void
3217uma_reclaim(void)
3218{
3219
3220	sx_xlock(&uma_drain_lock);
3221	uma_reclaim_locked(false);
3222	sx_xunlock(&uma_drain_lock);
3223}
3224
3225static int uma_reclaim_needed;
3226
3227void
3228uma_reclaim_wakeup(void)
3229{
3230
3231	uma_reclaim_needed = 1;
3232	wakeup(&uma_reclaim_needed);
3233}
3234
3235void
3236uma_reclaim_worker(void *arg __unused)
3237{
3238
3239	sx_xlock(&uma_drain_lock);
3240	for (;;) {
3241		sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM,
3242		    "umarcl", 0);
3243		if (uma_reclaim_needed) {
3244			uma_reclaim_needed = 0;
3245			sx_xunlock(&uma_drain_lock);
3246			EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
3247			sx_xlock(&uma_drain_lock);
3248			uma_reclaim_locked(true);
3249		}
3250	}
3251}
3252
3253/* See uma.h */
3254int
3255uma_zone_exhausted(uma_zone_t zone)
3256{
3257	int full;
3258
3259	ZONE_LOCK(zone);
3260	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3261	ZONE_UNLOCK(zone);
3262	return (full);
3263}
3264
3265int
3266uma_zone_exhausted_nolock(uma_zone_t zone)
3267{
3268	return (zone->uz_flags & UMA_ZFLAG_FULL);
3269}
3270
3271void *
3272uma_large_malloc(vm_size_t size, int wait)
3273{
3274	void *mem;
3275	uma_slab_t slab;
3276	uint8_t flags;
3277
3278	slab = zone_alloc_item(slabzone, NULL, wait);
3279	if (slab == NULL)
3280		return (NULL);
3281	mem = page_alloc(NULL, size, &flags, wait);
3282	if (mem) {
3283		vsetslab((vm_offset_t)mem, slab);
3284		slab->us_data = mem;
3285		slab->us_flags = flags | UMA_SLAB_MALLOC;
3286		slab->us_size = size;
3287	} else {
3288		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3289	}
3290
3291	return (mem);
3292}
3293
3294void
3295uma_large_free(uma_slab_t slab)
3296{
3297
3298	page_free(slab->us_data, slab->us_size, slab->us_flags);
3299	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3300}
3301
3302static void
3303uma_zero_item(void *item, uma_zone_t zone)
3304{
3305	int i;
3306
3307	if (zone->uz_flags & UMA_ZONE_PCPU) {
3308		CPU_FOREACH(i)
3309			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3310	} else
3311		bzero(item, zone->uz_size);
3312}
3313
3314void
3315uma_print_stats(void)
3316{
3317	zone_foreach(uma_print_zone);
3318}
3319
3320static void
3321slab_print(uma_slab_t slab)
3322{
3323	printf("slab: keg %p, data %p, freecount %d\n",
3324		slab->us_keg, slab->us_data, slab->us_freecount);
3325}
3326
3327static void
3328cache_print(uma_cache_t cache)
3329{
3330	printf("alloc: %p(%d), free: %p(%d)\n",
3331		cache->uc_allocbucket,
3332		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3333		cache->uc_freebucket,
3334		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3335}
3336
3337static void
3338uma_print_keg(uma_keg_t keg)
3339{
3340	uma_slab_t slab;
3341
3342	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3343	    "out %d free %d limit %d\n",
3344	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3345	    keg->uk_ipers, keg->uk_ppera,
3346	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
3347	    keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3348	printf("Part slabs:\n");
3349	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3350		slab_print(slab);
3351	printf("Free slabs:\n");
3352	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3353		slab_print(slab);
3354	printf("Full slabs:\n");
3355	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3356		slab_print(slab);
3357}
3358
3359void
3360uma_print_zone(uma_zone_t zone)
3361{
3362	uma_cache_t cache;
3363	uma_klink_t kl;
3364	int i;
3365
3366	printf("zone: %s(%p) size %d flags %#x\n",
3367	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3368	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3369		uma_print_keg(kl->kl_keg);
3370	CPU_FOREACH(i) {
3371		cache = &zone->uz_cpu[i];
3372		printf("CPU %d Cache:\n", i);
3373		cache_print(cache);
3374	}
3375}
3376
3377#ifdef DDB
3378/*
3379 * Generate statistics across both the zone and its per-cpu cache's.  Return
3380 * desired statistics if the pointer is non-NULL for that statistic.
3381 *
3382 * Note: does not update the zone statistics, as it can't safely clear the
3383 * per-CPU cache statistic.
3384 *
3385 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3386 * safe from off-CPU; we should modify the caches to track this information
3387 * directly so that we don't have to.
3388 */
3389static void
3390uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3391    uint64_t *freesp, uint64_t *sleepsp)
3392{
3393	uma_cache_t cache;
3394	uint64_t allocs, frees, sleeps;
3395	int cachefree, cpu;
3396
3397	allocs = frees = sleeps = 0;
3398	cachefree = 0;
3399	CPU_FOREACH(cpu) {
3400		cache = &z->uz_cpu[cpu];
3401		if (cache->uc_allocbucket != NULL)
3402			cachefree += cache->uc_allocbucket->ub_cnt;
3403		if (cache->uc_freebucket != NULL)
3404			cachefree += cache->uc_freebucket->ub_cnt;
3405		allocs += cache->uc_allocs;
3406		frees += cache->uc_frees;
3407	}
3408	allocs += z->uz_allocs;
3409	frees += z->uz_frees;
3410	sleeps += z->uz_sleeps;
3411	if (cachefreep != NULL)
3412		*cachefreep = cachefree;
3413	if (allocsp != NULL)
3414		*allocsp = allocs;
3415	if (freesp != NULL)
3416		*freesp = frees;
3417	if (sleepsp != NULL)
3418		*sleepsp = sleeps;
3419}
3420#endif /* DDB */
3421
3422static int
3423sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3424{
3425	uma_keg_t kz;
3426	uma_zone_t z;
3427	int count;
3428
3429	count = 0;
3430	rw_rlock(&uma_rwlock);
3431	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3432		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3433			count++;
3434	}
3435	rw_runlock(&uma_rwlock);
3436	return (sysctl_handle_int(oidp, &count, 0, req));
3437}
3438
3439static int
3440sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3441{
3442	struct uma_stream_header ush;
3443	struct uma_type_header uth;
3444	struct uma_percpu_stat *ups;
3445	uma_bucket_t bucket;
3446	struct sbuf sbuf;
3447	uma_cache_t cache;
3448	uma_klink_t kl;
3449	uma_keg_t kz;
3450	uma_zone_t z;
3451	uma_keg_t k;
3452	int count, error, i;
3453
3454	error = sysctl_wire_old_buffer(req, 0);
3455	if (error != 0)
3456		return (error);
3457	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3458	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
3459	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
3460
3461	count = 0;
3462	rw_rlock(&uma_rwlock);
3463	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3464		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3465			count++;
3466	}
3467
3468	/*
3469	 * Insert stream header.
3470	 */
3471	bzero(&ush, sizeof(ush));
3472	ush.ush_version = UMA_STREAM_VERSION;
3473	ush.ush_maxcpus = (mp_maxid + 1);
3474	ush.ush_count = count;
3475	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3476
3477	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3478		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3479			bzero(&uth, sizeof(uth));
3480			ZONE_LOCK(z);
3481			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3482			uth.uth_align = kz->uk_align;
3483			uth.uth_size = kz->uk_size;
3484			uth.uth_rsize = kz->uk_rsize;
3485			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3486				k = kl->kl_keg;
3487				uth.uth_maxpages += k->uk_maxpages;
3488				uth.uth_pages += k->uk_pages;
3489				uth.uth_keg_free += k->uk_free;
3490				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3491				    * k->uk_ipers;
3492			}
3493
3494			/*
3495			 * A zone is secondary is it is not the first entry
3496			 * on the keg's zone list.
3497			 */
3498			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3499			    (LIST_FIRST(&kz->uk_zones) != z))
3500				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3501
3502			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3503				uth.uth_zone_free += bucket->ub_cnt;
3504			uth.uth_allocs = z->uz_allocs;
3505			uth.uth_frees = z->uz_frees;
3506			uth.uth_fails = z->uz_fails;
3507			uth.uth_sleeps = z->uz_sleeps;
3508			/*
3509			 * While it is not normally safe to access the cache
3510			 * bucket pointers while not on the CPU that owns the
3511			 * cache, we only allow the pointers to be exchanged
3512			 * without the zone lock held, not invalidated, so
3513			 * accept the possible race associated with bucket
3514			 * exchange during monitoring.
3515			 */
3516			for (i = 0; i < mp_maxid + 1; i++) {
3517				bzero(&ups[i], sizeof(*ups));
3518				if (kz->uk_flags & UMA_ZFLAG_INTERNAL ||
3519				    CPU_ABSENT(i))
3520					continue;
3521				cache = &z->uz_cpu[i];
3522				if (cache->uc_allocbucket != NULL)
3523					ups[i].ups_cache_free +=
3524					    cache->uc_allocbucket->ub_cnt;
3525				if (cache->uc_freebucket != NULL)
3526					ups[i].ups_cache_free +=
3527					    cache->uc_freebucket->ub_cnt;
3528				ups[i].ups_allocs = cache->uc_allocs;
3529				ups[i].ups_frees = cache->uc_frees;
3530			}
3531			ZONE_UNLOCK(z);
3532			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3533			for (i = 0; i < mp_maxid + 1; i++)
3534				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
3535		}
3536	}
3537	rw_runlock(&uma_rwlock);
3538	error = sbuf_finish(&sbuf);
3539	sbuf_delete(&sbuf);
3540	free(ups, M_TEMP);
3541	return (error);
3542}
3543
3544int
3545sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3546{
3547	uma_zone_t zone = *(uma_zone_t *)arg1;
3548	int error, max;
3549
3550	max = uma_zone_get_max(zone);
3551	error = sysctl_handle_int(oidp, &max, 0, req);
3552	if (error || !req->newptr)
3553		return (error);
3554
3555	uma_zone_set_max(zone, max);
3556
3557	return (0);
3558}
3559
3560int
3561sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3562{
3563	uma_zone_t zone = *(uma_zone_t *)arg1;
3564	int cur;
3565
3566	cur = uma_zone_get_cur(zone);
3567	return (sysctl_handle_int(oidp, &cur, 0, req));
3568}
3569
3570#ifdef INVARIANTS
3571static uma_slab_t
3572uma_dbg_getslab(uma_zone_t zone, void *item)
3573{
3574	uma_slab_t slab;
3575	uma_keg_t keg;
3576	uint8_t *mem;
3577
3578	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
3579	if (zone->uz_flags & UMA_ZONE_VTOSLAB) {
3580		slab = vtoslab((vm_offset_t)mem);
3581	} else {
3582		/*
3583		 * It is safe to return the slab here even though the
3584		 * zone is unlocked because the item's allocation state
3585		 * essentially holds a reference.
3586		 */
3587		ZONE_LOCK(zone);
3588		keg = LIST_FIRST(&zone->uz_kegs)->kl_keg;
3589		if (keg->uk_flags & UMA_ZONE_HASH)
3590			slab = hash_sfind(&keg->uk_hash, mem);
3591		else
3592			slab = (uma_slab_t)(mem + keg->uk_pgoff);
3593		ZONE_UNLOCK(zone);
3594	}
3595
3596	return (slab);
3597}
3598
3599/*
3600 * Set up the slab's freei data such that uma_dbg_free can function.
3601 *
3602 */
3603static void
3604uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
3605{
3606	uma_keg_t keg;
3607	int freei;
3608
3609	if (zone_first_keg(zone) == NULL)
3610		return;
3611	if (slab == NULL) {
3612		slab = uma_dbg_getslab(zone, item);
3613		if (slab == NULL)
3614			panic("uma: item %p did not belong to zone %s\n",
3615			    item, zone->uz_name);
3616	}
3617	keg = slab->us_keg;
3618	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3619
3620	if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3621		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
3622		    item, zone, zone->uz_name, slab, freei);
3623	BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3624
3625	return;
3626}
3627
3628/*
3629 * Verifies freed addresses.  Checks for alignment, valid slab membership
3630 * and duplicate frees.
3631 *
3632 */
3633static void
3634uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
3635{
3636	uma_keg_t keg;
3637	int freei;
3638
3639	if (zone_first_keg(zone) == NULL)
3640		return;
3641	if (slab == NULL) {
3642		slab = uma_dbg_getslab(zone, item);
3643		if (slab == NULL)
3644			panic("uma: Freed item %p did not belong to zone %s\n",
3645			    item, zone->uz_name);
3646	}
3647	keg = slab->us_keg;
3648	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3649
3650	if (freei >= keg->uk_ipers)
3651		panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
3652		    item, zone, zone->uz_name, slab, freei);
3653
3654	if (((freei * keg->uk_rsize) + slab->us_data) != item)
3655		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
3656		    item, zone, zone->uz_name, slab, freei);
3657
3658	if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3659		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
3660		    item, zone, zone->uz_name, slab, freei);
3661
3662	BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3663}
3664#endif /* INVARIANTS */
3665
3666#ifdef DDB
3667DB_SHOW_COMMAND(uma, db_show_uma)
3668{
3669	uint64_t allocs, frees, sleeps;
3670	uma_bucket_t bucket;
3671	uma_keg_t kz;
3672	uma_zone_t z;
3673	int cachefree;
3674
3675	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3676	    "Free", "Requests", "Sleeps", "Bucket");
3677	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3678		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3679			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3680				allocs = z->uz_allocs;
3681				frees = z->uz_frees;
3682				sleeps = z->uz_sleeps;
3683				cachefree = 0;
3684			} else
3685				uma_zone_sumstat(z, &cachefree, &allocs,
3686				    &frees, &sleeps);
3687			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3688			    (LIST_FIRST(&kz->uk_zones) != z)))
3689				cachefree += kz->uk_free;
3690			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3691				cachefree += bucket->ub_cnt;
3692			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3693			    z->uz_name, (uintmax_t)kz->uk_size,
3694			    (intmax_t)(allocs - frees), cachefree,
3695			    (uintmax_t)allocs, sleeps, z->uz_count);
3696			if (db_pager_quit)
3697				return;
3698		}
3699	}
3700}
3701
3702DB_SHOW_COMMAND(umacache, db_show_umacache)
3703{
3704	uint64_t allocs, frees;
3705	uma_bucket_t bucket;
3706	uma_zone_t z;
3707	int cachefree;
3708
3709	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3710	    "Requests", "Bucket");
3711	LIST_FOREACH(z, &uma_cachezones, uz_link) {
3712		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3713		LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3714			cachefree += bucket->ub_cnt;
3715		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3716		    z->uz_name, (uintmax_t)z->uz_size,
3717		    (intmax_t)(allocs - frees), cachefree,
3718		    (uintmax_t)allocs, z->uz_count);
3719		if (db_pager_quit)
3720			return;
3721	}
3722}
3723#endif	/* DDB */
3724