uma_core.c revision 349222
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * efficient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/11/sys/vm/uma_core.c 349222 2019-06-20 01:19:08Z mav $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/eventhandler.h>
68#include <sys/kernel.h>
69#include <sys/types.h>
70#include <sys/queue.h>
71#include <sys/malloc.h>
72#include <sys/ktr.h>
73#include <sys/lock.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/random.h>
78#include <sys/rwlock.h>
79#include <sys/sbuf.h>
80#include <sys/sched.h>
81#include <sys/smp.h>
82#include <sys/taskqueue.h>
83#include <sys/vmmeter.h>
84
85#include <vm/vm.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_param.h>
90#include <vm/vm_map.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94#include <vm/uma_int.h>
95#include <vm/uma_dbg.h>
96
97#include <ddb/ddb.h>
98
99#ifdef DEBUG_MEMGUARD
100#include <vm/memguard.h>
101#endif
102
103/*
104 * This is the zone and keg from which all zones are spawned.  The idea is that
105 * even the zone & keg heads are allocated from the allocator, so we use the
106 * bss section to bootstrap us.
107 */
108static struct uma_keg masterkeg;
109static struct uma_zone masterzone_k;
110static struct uma_zone masterzone_z;
111static uma_zone_t kegs = &masterzone_k;
112static uma_zone_t zones = &masterzone_z;
113
114/* This is the zone from which all of uma_slab_t's are allocated. */
115static uma_zone_t slabzone;
116
117/*
118 * The initial hash tables come out of this zone so they can be allocated
119 * prior to malloc coming up.
120 */
121static uma_zone_t hashzone;
122
123/* The boot-time adjusted value for cache line alignment. */
124int uma_align_cache = 64 - 1;
125
126static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
127
128/*
129 * Are we allowed to allocate buckets?
130 */
131static int bucketdisable = 1;
132
133/* Linked list of all kegs in the system */
134static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
135
136/* Linked list of all cache-only zones in the system */
137static LIST_HEAD(,uma_zone) uma_cachezones =
138    LIST_HEAD_INITIALIZER(uma_cachezones);
139
140/* This RW lock protects the keg list */
141static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
142
143/* Linked list of boot time pages */
144static LIST_HEAD(,uma_slab) uma_boot_pages =
145    LIST_HEAD_INITIALIZER(uma_boot_pages);
146
147/* This mutex protects the boot time pages list */
148static struct mtx_padalign uma_boot_pages_mtx;
149
150static struct sx uma_drain_lock;
151
152/* Is the VM done starting up? */
153static int booted = 0;
154#define	UMA_STARTUP	1
155#define	UMA_STARTUP2	2
156
157/*
158 * This is the handle used to schedule events that need to happen
159 * outside of the allocation fast path.
160 */
161static struct callout uma_callout;
162#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
163
164/*
165 * This structure is passed as the zone ctor arg so that I don't have to create
166 * a special allocation function just for zones.
167 */
168struct uma_zctor_args {
169	const char *name;
170	size_t size;
171	uma_ctor ctor;
172	uma_dtor dtor;
173	uma_init uminit;
174	uma_fini fini;
175	uma_import import;
176	uma_release release;
177	void *arg;
178	uma_keg_t keg;
179	int align;
180	uint32_t flags;
181};
182
183struct uma_kctor_args {
184	uma_zone_t zone;
185	size_t size;
186	uma_init uminit;
187	uma_fini fini;
188	int align;
189	uint32_t flags;
190};
191
192struct uma_bucket_zone {
193	uma_zone_t	ubz_zone;
194	char		*ubz_name;
195	int		ubz_entries;	/* Number of items it can hold. */
196	int		ubz_maxsize;	/* Maximum allocation size per-item. */
197};
198
199/*
200 * Compute the actual number of bucket entries to pack them in power
201 * of two sizes for more efficient space utilization.
202 */
203#define	BUCKET_SIZE(n)						\
204    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
205
206#define	BUCKET_MAX	BUCKET_SIZE(256)
207
208struct uma_bucket_zone bucket_zones[] = {
209	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
210	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
211	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
212	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
213	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
214	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
215	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
216	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
217	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
218	{ NULL, NULL, 0}
219};
220
221/*
222 * Flags and enumerations to be passed to internal functions.
223 */
224enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
225
226/* Prototypes.. */
227
228static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
229static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
230static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
231static void page_free(void *, vm_size_t, uint8_t);
232static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
233static void cache_drain(uma_zone_t);
234static void bucket_drain(uma_zone_t, uma_bucket_t);
235static void bucket_cache_drain(uma_zone_t zone);
236static int keg_ctor(void *, int, void *, int);
237static void keg_dtor(void *, int, void *);
238static int zone_ctor(void *, int, void *, int);
239static void zone_dtor(void *, int, void *);
240static int zero_init(void *, int, int);
241static void keg_small_init(uma_keg_t keg);
242static void keg_large_init(uma_keg_t keg);
243static void zone_foreach(void (*zfunc)(uma_zone_t));
244static void zone_timeout(uma_zone_t zone);
245static int hash_alloc(struct uma_hash *, u_int);
246static int hash_expand(struct uma_hash *, struct uma_hash *);
247static void hash_free(struct uma_hash *hash);
248static void uma_timeout(void *);
249static void uma_startup3(void);
250static void *zone_alloc_item(uma_zone_t, void *, int);
251static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
252static void bucket_enable(void);
253static void bucket_init(void);
254static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
255static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
256static void bucket_zone_drain(void);
257static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
258static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
259static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
260static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
261static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
262static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
263    uma_fini fini, int align, uint32_t flags);
264static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
265static void zone_release(uma_zone_t zone, void **bucket, int cnt);
266static void uma_zero_item(void *item, uma_zone_t zone);
267
268void uma_print_zone(uma_zone_t);
269void uma_print_stats(void);
270static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
271static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
272
273#ifdef INVARIANTS
274static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
275static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
276#endif
277
278SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
279
280SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
281    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
282
283SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
284    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
285
286static int zone_warnings = 1;
287SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
288    "Warn when UMA zones becomes full");
289
290/*
291 * This routine checks to see whether or not it's safe to enable buckets.
292 */
293static void
294bucket_enable(void)
295{
296	bucketdisable = vm_page_count_min();
297}
298
299/*
300 * Initialize bucket_zones, the array of zones of buckets of various sizes.
301 *
302 * For each zone, calculate the memory required for each bucket, consisting
303 * of the header and an array of pointers.
304 */
305static void
306bucket_init(void)
307{
308	struct uma_bucket_zone *ubz;
309	int size;
310
311	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
312		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
313		size += sizeof(void *) * ubz->ubz_entries;
314		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
315		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
316		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
317	}
318}
319
320/*
321 * Given a desired number of entries for a bucket, return the zone from which
322 * to allocate the bucket.
323 */
324static struct uma_bucket_zone *
325bucket_zone_lookup(int entries)
326{
327	struct uma_bucket_zone *ubz;
328
329	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
330		if (ubz->ubz_entries >= entries)
331			return (ubz);
332	ubz--;
333	return (ubz);
334}
335
336static int
337bucket_select(int size)
338{
339	struct uma_bucket_zone *ubz;
340
341	ubz = &bucket_zones[0];
342	if (size > ubz->ubz_maxsize)
343		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
344
345	for (; ubz->ubz_entries != 0; ubz++)
346		if (ubz->ubz_maxsize < size)
347			break;
348	ubz--;
349	return (ubz->ubz_entries);
350}
351
352static uma_bucket_t
353bucket_alloc(uma_zone_t zone, void *udata, int flags)
354{
355	struct uma_bucket_zone *ubz;
356	uma_bucket_t bucket;
357
358	/*
359	 * This is to stop us from allocating per cpu buckets while we're
360	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
361	 * boot pages.  This also prevents us from allocating buckets in
362	 * low memory situations.
363	 */
364	if (bucketdisable)
365		return (NULL);
366	/*
367	 * To limit bucket recursion we store the original zone flags
368	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
369	 * NOVM flag to persist even through deep recursions.  We also
370	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
371	 * a bucket for a bucket zone so we do not allow infinite bucket
372	 * recursion.  This cookie will even persist to frees of unused
373	 * buckets via the allocation path or bucket allocations in the
374	 * free path.
375	 */
376	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
377		udata = (void *)(uintptr_t)zone->uz_flags;
378	else {
379		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
380			return (NULL);
381		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
382	}
383	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
384		flags |= M_NOVM;
385	ubz = bucket_zone_lookup(zone->uz_count);
386	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
387		ubz++;
388	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
389	if (bucket) {
390#ifdef INVARIANTS
391		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
392#endif
393		bucket->ub_cnt = 0;
394		bucket->ub_entries = ubz->ubz_entries;
395	}
396
397	return (bucket);
398}
399
400static void
401bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
402{
403	struct uma_bucket_zone *ubz;
404
405	KASSERT(bucket->ub_cnt == 0,
406	    ("bucket_free: Freeing a non free bucket."));
407	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
408		udata = (void *)(uintptr_t)zone->uz_flags;
409	ubz = bucket_zone_lookup(bucket->ub_entries);
410	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
411}
412
413static void
414bucket_zone_drain(void)
415{
416	struct uma_bucket_zone *ubz;
417
418	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
419		zone_drain(ubz->ubz_zone);
420}
421
422static void
423zone_log_warning(uma_zone_t zone)
424{
425	static const struct timeval warninterval = { 300, 0 };
426
427	if (!zone_warnings || zone->uz_warning == NULL)
428		return;
429
430	if (ratecheck(&zone->uz_ratecheck, &warninterval))
431		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
432}
433
434static inline void
435zone_maxaction(uma_zone_t zone)
436{
437
438	if (zone->uz_maxaction.ta_func != NULL)
439		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
440}
441
442static void
443zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
444{
445	uma_klink_t klink;
446
447	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
448		kegfn(klink->kl_keg);
449}
450
451/*
452 * Routine called by timeout which is used to fire off some time interval
453 * based calculations.  (stats, hash size, etc.)
454 *
455 * Arguments:
456 *	arg   Unused
457 *
458 * Returns:
459 *	Nothing
460 */
461static void
462uma_timeout(void *unused)
463{
464	bucket_enable();
465	zone_foreach(zone_timeout);
466
467	/* Reschedule this event */
468	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
469}
470
471/*
472 * Routine to perform timeout driven calculations.  This expands the
473 * hashes and does per cpu statistics aggregation.
474 *
475 *  Returns nothing.
476 */
477static void
478keg_timeout(uma_keg_t keg)
479{
480	u_int slabs;
481
482	KEG_LOCK(keg);
483	/*
484	 * Expand the keg hash table.
485	 *
486	 * This is done if the number of slabs is larger than the hash size.
487	 * What I'm trying to do here is completely reduce collisions.  This
488	 * may be a little aggressive.  Should I allow for two collisions max?
489	 */
490	if (keg->uk_flags & UMA_ZONE_HASH &&
491	    (slabs = keg->uk_pages / keg->uk_ppera) >
492	     keg->uk_hash.uh_hashsize) {
493		struct uma_hash newhash;
494		struct uma_hash oldhash;
495		int ret;
496
497		/*
498		 * This is so involved because allocating and freeing
499		 * while the keg lock is held will lead to deadlock.
500		 * I have to do everything in stages and check for
501		 * races.
502		 */
503		KEG_UNLOCK(keg);
504		ret = hash_alloc(&newhash, 1 << fls(slabs));
505		KEG_LOCK(keg);
506		if (ret) {
507			if (hash_expand(&keg->uk_hash, &newhash)) {
508				oldhash = keg->uk_hash;
509				keg->uk_hash = newhash;
510			} else
511				oldhash = newhash;
512
513			KEG_UNLOCK(keg);
514			hash_free(&oldhash);
515			return;
516		}
517	}
518	KEG_UNLOCK(keg);
519}
520
521static void
522zone_timeout(uma_zone_t zone)
523{
524
525	zone_foreach_keg(zone, &keg_timeout);
526}
527
528/*
529 * Allocate and zero fill the next sized hash table from the appropriate
530 * backing store.
531 *
532 * Arguments:
533 *	hash  A new hash structure with the old hash size in uh_hashsize
534 *
535 * Returns:
536 *	1 on success and 0 on failure.
537 */
538static int
539hash_alloc(struct uma_hash *hash, u_int size)
540{
541	size_t alloc;
542
543	KASSERT(powerof2(size), ("hash size must be power of 2"));
544	if (size > UMA_HASH_SIZE_INIT)  {
545		hash->uh_hashsize = size;
546		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
547		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
548		    M_UMAHASH, M_NOWAIT);
549	} else {
550		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
551		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
552		    M_WAITOK);
553		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
554	}
555	if (hash->uh_slab_hash) {
556		bzero(hash->uh_slab_hash, alloc);
557		hash->uh_hashmask = hash->uh_hashsize - 1;
558		return (1);
559	}
560
561	return (0);
562}
563
564/*
565 * Expands the hash table for HASH zones.  This is done from zone_timeout
566 * to reduce collisions.  This must not be done in the regular allocation
567 * path, otherwise, we can recurse on the vm while allocating pages.
568 *
569 * Arguments:
570 *	oldhash  The hash you want to expand
571 *	newhash  The hash structure for the new table
572 *
573 * Returns:
574 *	Nothing
575 *
576 * Discussion:
577 */
578static int
579hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
580{
581	uma_slab_t slab;
582	u_int hval;
583	u_int idx;
584
585	if (!newhash->uh_slab_hash)
586		return (0);
587
588	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
589		return (0);
590
591	/*
592	 * I need to investigate hash algorithms for resizing without a
593	 * full rehash.
594	 */
595
596	for (idx = 0; idx < oldhash->uh_hashsize; idx++)
597		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
598			slab = SLIST_FIRST(&oldhash->uh_slab_hash[idx]);
599			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[idx], us_hlink);
600			hval = UMA_HASH(newhash, slab->us_data);
601			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
602			    slab, us_hlink);
603		}
604
605	return (1);
606}
607
608/*
609 * Free the hash bucket to the appropriate backing store.
610 *
611 * Arguments:
612 *	slab_hash  The hash bucket we're freeing
613 *	hashsize   The number of entries in that hash bucket
614 *
615 * Returns:
616 *	Nothing
617 */
618static void
619hash_free(struct uma_hash *hash)
620{
621	if (hash->uh_slab_hash == NULL)
622		return;
623	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
624		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
625	else
626		free(hash->uh_slab_hash, M_UMAHASH);
627}
628
629/*
630 * Frees all outstanding items in a bucket
631 *
632 * Arguments:
633 *	zone   The zone to free to, must be unlocked.
634 *	bucket The free/alloc bucket with items, cpu queue must be locked.
635 *
636 * Returns:
637 *	Nothing
638 */
639
640static void
641bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
642{
643	int i;
644
645	if (bucket == NULL)
646		return;
647
648	if (zone->uz_fini)
649		for (i = 0; i < bucket->ub_cnt; i++)
650			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
651	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
652	bucket->ub_cnt = 0;
653}
654
655/*
656 * Drains the per cpu caches for a zone.
657 *
658 * NOTE: This may only be called while the zone is being turn down, and not
659 * during normal operation.  This is necessary in order that we do not have
660 * to migrate CPUs to drain the per-CPU caches.
661 *
662 * Arguments:
663 *	zone     The zone to drain, must be unlocked.
664 *
665 * Returns:
666 *	Nothing
667 */
668static void
669cache_drain(uma_zone_t zone)
670{
671	uma_cache_t cache;
672	int cpu;
673
674	/*
675	 * XXX: It is safe to not lock the per-CPU caches, because we're
676	 * tearing down the zone anyway.  I.e., there will be no further use
677	 * of the caches at this point.
678	 *
679	 * XXX: It would good to be able to assert that the zone is being
680	 * torn down to prevent improper use of cache_drain().
681	 *
682	 * XXX: We lock the zone before passing into bucket_cache_drain() as
683	 * it is used elsewhere.  Should the tear-down path be made special
684	 * there in some form?
685	 */
686	CPU_FOREACH(cpu) {
687		cache = &zone->uz_cpu[cpu];
688		bucket_drain(zone, cache->uc_allocbucket);
689		bucket_drain(zone, cache->uc_freebucket);
690		if (cache->uc_allocbucket != NULL)
691			bucket_free(zone, cache->uc_allocbucket, NULL);
692		if (cache->uc_freebucket != NULL)
693			bucket_free(zone, cache->uc_freebucket, NULL);
694		cache->uc_allocbucket = cache->uc_freebucket = NULL;
695	}
696	ZONE_LOCK(zone);
697	bucket_cache_drain(zone);
698	ZONE_UNLOCK(zone);
699}
700
701static void
702cache_shrink(uma_zone_t zone)
703{
704
705	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
706		return;
707
708	ZONE_LOCK(zone);
709	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
710	ZONE_UNLOCK(zone);
711}
712
713static void
714cache_drain_safe_cpu(uma_zone_t zone)
715{
716	uma_cache_t cache;
717	uma_bucket_t b1, b2;
718
719	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
720		return;
721
722	b1 = b2 = NULL;
723	ZONE_LOCK(zone);
724	critical_enter();
725	cache = &zone->uz_cpu[curcpu];
726	if (cache->uc_allocbucket) {
727		if (cache->uc_allocbucket->ub_cnt != 0)
728			LIST_INSERT_HEAD(&zone->uz_buckets,
729			    cache->uc_allocbucket, ub_link);
730		else
731			b1 = cache->uc_allocbucket;
732		cache->uc_allocbucket = NULL;
733	}
734	if (cache->uc_freebucket) {
735		if (cache->uc_freebucket->ub_cnt != 0)
736			LIST_INSERT_HEAD(&zone->uz_buckets,
737			    cache->uc_freebucket, ub_link);
738		else
739			b2 = cache->uc_freebucket;
740		cache->uc_freebucket = NULL;
741	}
742	critical_exit();
743	ZONE_UNLOCK(zone);
744	if (b1)
745		bucket_free(zone, b1, NULL);
746	if (b2)
747		bucket_free(zone, b2, NULL);
748}
749
750/*
751 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
752 * This is an expensive call because it needs to bind to all CPUs
753 * one by one and enter a critical section on each of them in order
754 * to safely access their cache buckets.
755 * Zone lock must not be held on call this function.
756 */
757static void
758cache_drain_safe(uma_zone_t zone)
759{
760	int cpu;
761
762	/*
763	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
764	 */
765	if (zone)
766		cache_shrink(zone);
767	else
768		zone_foreach(cache_shrink);
769
770	CPU_FOREACH(cpu) {
771		thread_lock(curthread);
772		sched_bind(curthread, cpu);
773		thread_unlock(curthread);
774
775		if (zone)
776			cache_drain_safe_cpu(zone);
777		else
778			zone_foreach(cache_drain_safe_cpu);
779	}
780	thread_lock(curthread);
781	sched_unbind(curthread);
782	thread_unlock(curthread);
783}
784
785/*
786 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
787 */
788static void
789bucket_cache_drain(uma_zone_t zone)
790{
791	uma_bucket_t bucket;
792
793	/*
794	 * Drain the bucket queues and free the buckets, we just keep two per
795	 * cpu (alloc/free).
796	 */
797	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
798		LIST_REMOVE(bucket, ub_link);
799		ZONE_UNLOCK(zone);
800		bucket_drain(zone, bucket);
801		bucket_free(zone, bucket, NULL);
802		ZONE_LOCK(zone);
803	}
804
805	/*
806	 * Shrink further bucket sizes.  Price of single zone lock collision
807	 * is probably lower then price of global cache drain.
808	 */
809	if (zone->uz_count > zone->uz_count_min)
810		zone->uz_count--;
811}
812
813static void
814keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
815{
816	uint8_t *mem;
817	int i;
818	uint8_t flags;
819
820	mem = slab->us_data;
821	flags = slab->us_flags;
822	i = start;
823	if (keg->uk_fini != NULL) {
824		for (i--; i > -1; i--)
825			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
826			    keg->uk_size);
827	}
828	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
829		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
830#ifdef UMA_DEBUG
831	printf("%s: Returning %d bytes.\n", keg->uk_name,
832	    PAGE_SIZE * keg->uk_ppera);
833#endif
834	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
835}
836
837/*
838 * Frees pages from a keg back to the system.  This is done on demand from
839 * the pageout daemon.
840 *
841 * Returns nothing.
842 */
843static void
844keg_drain(uma_keg_t keg)
845{
846	struct slabhead freeslabs = { 0 };
847	uma_slab_t slab, tmp;
848
849	/*
850	 * We don't want to take pages from statically allocated kegs at this
851	 * time
852	 */
853	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
854		return;
855
856#ifdef UMA_DEBUG
857	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
858#endif
859	KEG_LOCK(keg);
860	if (keg->uk_free == 0)
861		goto finished;
862
863	LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) {
864		/* We have nowhere to free these to. */
865		if (slab->us_flags & UMA_SLAB_BOOT)
866			continue;
867
868		LIST_REMOVE(slab, us_link);
869		keg->uk_pages -= keg->uk_ppera;
870		keg->uk_free -= keg->uk_ipers;
871
872		if (keg->uk_flags & UMA_ZONE_HASH)
873			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
874
875		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
876	}
877finished:
878	KEG_UNLOCK(keg);
879
880	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
881		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
882		keg_free_slab(keg, slab, keg->uk_ipers);
883	}
884}
885
886static void
887zone_drain_wait(uma_zone_t zone, int waitok)
888{
889
890	/*
891	 * Set draining to interlock with zone_dtor() so we can release our
892	 * locks as we go.  Only dtor() should do a WAITOK call since it
893	 * is the only call that knows the structure will still be available
894	 * when it wakes up.
895	 */
896	ZONE_LOCK(zone);
897	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
898		if (waitok == M_NOWAIT)
899			goto out;
900		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
901	}
902	zone->uz_flags |= UMA_ZFLAG_DRAINING;
903	bucket_cache_drain(zone);
904	ZONE_UNLOCK(zone);
905	/*
906	 * The DRAINING flag protects us from being freed while
907	 * we're running.  Normally the uma_rwlock would protect us but we
908	 * must be able to release and acquire the right lock for each keg.
909	 */
910	zone_foreach_keg(zone, &keg_drain);
911	ZONE_LOCK(zone);
912	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
913	wakeup(zone);
914out:
915	ZONE_UNLOCK(zone);
916}
917
918void
919zone_drain(uma_zone_t zone)
920{
921
922	zone_drain_wait(zone, M_NOWAIT);
923}
924
925/*
926 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
927 *
928 * Arguments:
929 *	wait  Shall we wait?
930 *
931 * Returns:
932 *	The slab that was allocated or NULL if there is no memory and the
933 *	caller specified M_NOWAIT.
934 */
935static uma_slab_t
936keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
937{
938	uma_alloc allocf;
939	uma_slab_t slab;
940	uint8_t *mem;
941	uint8_t flags;
942	int i;
943
944	mtx_assert(&keg->uk_lock, MA_OWNED);
945	slab = NULL;
946	mem = NULL;
947
948#ifdef UMA_DEBUG
949	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
950#endif
951	allocf = keg->uk_allocf;
952	KEG_UNLOCK(keg);
953
954	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
955		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
956		if (slab == NULL)
957			goto out;
958	}
959
960	/*
961	 * This reproduces the old vm_zone behavior of zero filling pages the
962	 * first time they are added to a zone.
963	 *
964	 * Malloced items are zeroed in uma_zalloc.
965	 */
966
967	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
968		wait |= M_ZERO;
969	else
970		wait &= ~M_ZERO;
971
972	if (keg->uk_flags & UMA_ZONE_NODUMP)
973		wait |= M_NODUMP;
974
975	/* zone is passed for legacy reasons. */
976	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
977	if (mem == NULL) {
978		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
979			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
980		slab = NULL;
981		goto out;
982	}
983
984	/* Point the slab into the allocated memory */
985	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
986		slab = (uma_slab_t )(mem + keg->uk_pgoff);
987
988	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
989		for (i = 0; i < keg->uk_ppera; i++)
990			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
991
992	slab->us_keg = keg;
993	slab->us_data = mem;
994	slab->us_freecount = keg->uk_ipers;
995	slab->us_flags = flags;
996	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
997#ifdef INVARIANTS
998	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
999#endif
1000
1001	if (keg->uk_init != NULL) {
1002		for (i = 0; i < keg->uk_ipers; i++)
1003			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1004			    keg->uk_size, wait) != 0)
1005				break;
1006		if (i != keg->uk_ipers) {
1007			keg_free_slab(keg, slab, i);
1008			slab = NULL;
1009			goto out;
1010		}
1011	}
1012out:
1013	KEG_LOCK(keg);
1014
1015	if (slab != NULL) {
1016		if (keg->uk_flags & UMA_ZONE_HASH)
1017			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1018
1019		keg->uk_pages += keg->uk_ppera;
1020		keg->uk_free += keg->uk_ipers;
1021	}
1022
1023	return (slab);
1024}
1025
1026/*
1027 * This function is intended to be used early on in place of page_alloc() so
1028 * that we may use the boot time page cache to satisfy allocations before
1029 * the VM is ready.
1030 */
1031static void *
1032startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1033{
1034	uma_keg_t keg;
1035	uma_slab_t tmps;
1036	int pages, check_pages;
1037
1038	keg = zone_first_keg(zone);
1039	pages = howmany(bytes, PAGE_SIZE);
1040	check_pages = pages - 1;
1041	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1042
1043	/*
1044	 * Check our small startup cache to see if it has pages remaining.
1045	 */
1046	mtx_lock(&uma_boot_pages_mtx);
1047
1048	/* First check if we have enough room. */
1049	tmps = LIST_FIRST(&uma_boot_pages);
1050	while (tmps != NULL && check_pages-- > 0)
1051		tmps = LIST_NEXT(tmps, us_link);
1052	if (tmps != NULL) {
1053		/*
1054		 * It's ok to lose tmps references.  The last one will
1055		 * have tmps->us_data pointing to the start address of
1056		 * "pages" contiguous pages of memory.
1057		 */
1058		while (pages-- > 0) {
1059			tmps = LIST_FIRST(&uma_boot_pages);
1060			LIST_REMOVE(tmps, us_link);
1061		}
1062		mtx_unlock(&uma_boot_pages_mtx);
1063		*pflag = tmps->us_flags;
1064		return (tmps->us_data);
1065	}
1066	mtx_unlock(&uma_boot_pages_mtx);
1067	if (booted < UMA_STARTUP2)
1068		panic("UMA: Increase vm.boot_pages");
1069	/*
1070	 * Now that we've booted reset these users to their real allocator.
1071	 */
1072#ifdef UMA_MD_SMALL_ALLOC
1073	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1074#else
1075	keg->uk_allocf = page_alloc;
1076#endif
1077	return keg->uk_allocf(zone, bytes, pflag, wait);
1078}
1079
1080/*
1081 * Allocates a number of pages from the system
1082 *
1083 * Arguments:
1084 *	bytes  The number of bytes requested
1085 *	wait  Shall we wait?
1086 *
1087 * Returns:
1088 *	A pointer to the alloced memory or possibly
1089 *	NULL if M_NOWAIT is set.
1090 */
1091static void *
1092page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1093{
1094	void *p;	/* Returned page */
1095
1096	*pflag = UMA_SLAB_KMEM;
1097	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1098
1099	return (p);
1100}
1101
1102/*
1103 * Allocates a number of pages from within an object
1104 *
1105 * Arguments:
1106 *	bytes  The number of bytes requested
1107 *	wait   Shall we wait?
1108 *
1109 * Returns:
1110 *	A pointer to the alloced memory or possibly
1111 *	NULL if M_NOWAIT is set.
1112 */
1113static void *
1114noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
1115{
1116	TAILQ_HEAD(, vm_page) alloctail;
1117	u_long npages;
1118	vm_offset_t retkva, zkva;
1119	vm_page_t p, p_next;
1120	uma_keg_t keg;
1121
1122	TAILQ_INIT(&alloctail);
1123	keg = zone_first_keg(zone);
1124
1125	npages = howmany(bytes, PAGE_SIZE);
1126	while (npages > 0) {
1127		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1128		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1129		    ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1130		    VM_ALLOC_NOWAIT));
1131		if (p != NULL) {
1132			/*
1133			 * Since the page does not belong to an object, its
1134			 * listq is unused.
1135			 */
1136			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1137			npages--;
1138			continue;
1139		}
1140		/*
1141		 * Page allocation failed, free intermediate pages and
1142		 * exit.
1143		 */
1144		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1145			vm_page_unwire(p, PQ_NONE);
1146			vm_page_free(p);
1147		}
1148		return (NULL);
1149	}
1150	*flags = UMA_SLAB_PRIV;
1151	zkva = keg->uk_kva +
1152	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1153	retkva = zkva;
1154	TAILQ_FOREACH(p, &alloctail, listq) {
1155		pmap_qenter(zkva, &p, 1);
1156		zkva += PAGE_SIZE;
1157	}
1158
1159	return ((void *)retkva);
1160}
1161
1162/*
1163 * Frees a number of pages to the system
1164 *
1165 * Arguments:
1166 *	mem   A pointer to the memory to be freed
1167 *	size  The size of the memory being freed
1168 *	flags The original p->us_flags field
1169 *
1170 * Returns:
1171 *	Nothing
1172 */
1173static void
1174page_free(void *mem, vm_size_t size, uint8_t flags)
1175{
1176	struct vmem *vmem;
1177
1178	if (flags & UMA_SLAB_KMEM)
1179		vmem = kmem_arena;
1180	else if (flags & UMA_SLAB_KERNEL)
1181		vmem = kernel_arena;
1182	else
1183		panic("UMA: page_free used with invalid flags %d", flags);
1184
1185	kmem_free(vmem, (vm_offset_t)mem, size);
1186}
1187
1188/*
1189 * Zero fill initializer
1190 *
1191 * Arguments/Returns follow uma_init specifications
1192 */
1193static int
1194zero_init(void *mem, int size, int flags)
1195{
1196	bzero(mem, size);
1197	return (0);
1198}
1199
1200/*
1201 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1202 *
1203 * Arguments
1204 *	keg  The zone we should initialize
1205 *
1206 * Returns
1207 *	Nothing
1208 */
1209static void
1210keg_small_init(uma_keg_t keg)
1211{
1212	u_int rsize;
1213	u_int memused;
1214	u_int wastedspace;
1215	u_int shsize;
1216	u_int slabsize;
1217
1218	if (keg->uk_flags & UMA_ZONE_PCPU) {
1219		u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU;
1220
1221		slabsize = sizeof(struct pcpu);
1222		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1223		    PAGE_SIZE);
1224	} else {
1225		slabsize = UMA_SLAB_SIZE;
1226		keg->uk_ppera = 1;
1227	}
1228
1229	/*
1230	 * Calculate the size of each allocation (rsize) according to
1231	 * alignment.  If the requested size is smaller than we have
1232	 * allocation bits for we round it up.
1233	 */
1234	rsize = keg->uk_size;
1235	if (rsize < slabsize / SLAB_SETSIZE)
1236		rsize = slabsize / SLAB_SETSIZE;
1237	if (rsize & keg->uk_align)
1238		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1239	keg->uk_rsize = rsize;
1240
1241	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1242	    keg->uk_rsize < sizeof(struct pcpu),
1243	    ("%s: size %u too large", __func__, keg->uk_rsize));
1244
1245	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1246		shsize = 0;
1247	else
1248		shsize = sizeof(struct uma_slab);
1249
1250	if (rsize <= slabsize - shsize)
1251		keg->uk_ipers = (slabsize - shsize) / rsize;
1252	else {
1253		/* Handle special case when we have 1 item per slab, so
1254		 * alignment requirement can be relaxed. */
1255		KASSERT(keg->uk_size <= slabsize - shsize,
1256		    ("%s: size %u greater than slab", __func__, keg->uk_size));
1257		keg->uk_ipers = 1;
1258	}
1259	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1260	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1261
1262	memused = keg->uk_ipers * rsize + shsize;
1263	wastedspace = slabsize - memused;
1264
1265	/*
1266	 * We can't do OFFPAGE if we're internal or if we've been
1267	 * asked to not go to the VM for buckets.  If we do this we
1268	 * may end up going to the VM  for slabs which we do not
1269	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1270	 * of UMA_ZONE_VM, which clearly forbids it.
1271	 */
1272	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1273	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1274		return;
1275
1276	/*
1277	 * See if using an OFFPAGE slab will limit our waste.  Only do
1278	 * this if it permits more items per-slab.
1279	 *
1280	 * XXX We could try growing slabsize to limit max waste as well.
1281	 * Historically this was not done because the VM could not
1282	 * efficiently handle contiguous allocations.
1283	 */
1284	if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
1285	    (keg->uk_ipers < (slabsize / keg->uk_rsize))) {
1286		keg->uk_ipers = slabsize / keg->uk_rsize;
1287		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1288		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1289#ifdef UMA_DEBUG
1290		printf("UMA decided we need offpage slab headers for "
1291		    "keg: %s, calculated wastedspace = %d, "
1292		    "maximum wasted space allowed = %d, "
1293		    "calculated ipers = %d, "
1294		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1295		    slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1296		    slabsize - keg->uk_ipers * keg->uk_rsize);
1297#endif
1298		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1299	}
1300
1301	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1302	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1303		keg->uk_flags |= UMA_ZONE_HASH;
1304}
1305
1306/*
1307 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1308 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1309 * more complicated.
1310 *
1311 * Arguments
1312 *	keg  The keg we should initialize
1313 *
1314 * Returns
1315 *	Nothing
1316 */
1317static void
1318keg_large_init(uma_keg_t keg)
1319{
1320	u_int shsize;
1321
1322	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1323	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1324	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1325	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1326	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1327
1328	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1329	keg->uk_ipers = 1;
1330	keg->uk_rsize = keg->uk_size;
1331
1332	/* Check whether we have enough space to not do OFFPAGE. */
1333	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1334		shsize = sizeof(struct uma_slab);
1335		if (shsize & UMA_ALIGN_PTR)
1336			shsize = (shsize & ~UMA_ALIGN_PTR) +
1337			    (UMA_ALIGN_PTR + 1);
1338
1339		if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) {
1340			/*
1341			 * We can't do OFFPAGE if we're internal, in which case
1342			 * we need an extra page per allocation to contain the
1343			 * slab header.
1344			 */
1345			if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0)
1346				keg->uk_flags |= UMA_ZONE_OFFPAGE;
1347			else
1348				keg->uk_ppera++;
1349		}
1350	}
1351
1352	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1353	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1354		keg->uk_flags |= UMA_ZONE_HASH;
1355}
1356
1357static void
1358keg_cachespread_init(uma_keg_t keg)
1359{
1360	int alignsize;
1361	int trailer;
1362	int pages;
1363	int rsize;
1364
1365	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1366	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1367
1368	alignsize = keg->uk_align + 1;
1369	rsize = keg->uk_size;
1370	/*
1371	 * We want one item to start on every align boundary in a page.  To
1372	 * do this we will span pages.  We will also extend the item by the
1373	 * size of align if it is an even multiple of align.  Otherwise, it
1374	 * would fall on the same boundary every time.
1375	 */
1376	if (rsize & keg->uk_align)
1377		rsize = (rsize & ~keg->uk_align) + alignsize;
1378	if ((rsize & alignsize) == 0)
1379		rsize += alignsize;
1380	trailer = rsize - keg->uk_size;
1381	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1382	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1383	keg->uk_rsize = rsize;
1384	keg->uk_ppera = pages;
1385	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1386	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1387	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1388	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1389	    keg->uk_ipers));
1390}
1391
1392/*
1393 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1394 * the keg onto the global keg list.
1395 *
1396 * Arguments/Returns follow uma_ctor specifications
1397 *	udata  Actually uma_kctor_args
1398 */
1399static int
1400keg_ctor(void *mem, int size, void *udata, int flags)
1401{
1402	struct uma_kctor_args *arg = udata;
1403	uma_keg_t keg = mem;
1404	uma_zone_t zone;
1405
1406	bzero(keg, size);
1407	keg->uk_size = arg->size;
1408	keg->uk_init = arg->uminit;
1409	keg->uk_fini = arg->fini;
1410	keg->uk_align = arg->align;
1411	keg->uk_free = 0;
1412	keg->uk_reserve = 0;
1413	keg->uk_pages = 0;
1414	keg->uk_flags = arg->flags;
1415	keg->uk_allocf = page_alloc;
1416	keg->uk_freef = page_free;
1417	keg->uk_slabzone = NULL;
1418
1419	/*
1420	 * The master zone is passed to us at keg-creation time.
1421	 */
1422	zone = arg->zone;
1423	keg->uk_name = zone->uz_name;
1424
1425	if (arg->flags & UMA_ZONE_VM)
1426		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1427
1428	if (arg->flags & UMA_ZONE_ZINIT)
1429		keg->uk_init = zero_init;
1430
1431	if (arg->flags & UMA_ZONE_MALLOC)
1432		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1433
1434	if (arg->flags & UMA_ZONE_PCPU)
1435#ifdef SMP
1436		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1437#else
1438		keg->uk_flags &= ~UMA_ZONE_PCPU;
1439#endif
1440
1441	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1442		keg_cachespread_init(keg);
1443	} else {
1444		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1445			keg_large_init(keg);
1446		else
1447			keg_small_init(keg);
1448	}
1449
1450	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1451		keg->uk_slabzone = slabzone;
1452
1453	/*
1454	 * If we haven't booted yet we need allocations to go through the
1455	 * startup cache until the vm is ready.
1456	 */
1457	if (keg->uk_ppera == 1) {
1458#ifdef UMA_MD_SMALL_ALLOC
1459		keg->uk_allocf = uma_small_alloc;
1460		keg->uk_freef = uma_small_free;
1461
1462		if (booted < UMA_STARTUP)
1463			keg->uk_allocf = startup_alloc;
1464#else
1465		if (booted < UMA_STARTUP2)
1466			keg->uk_allocf = startup_alloc;
1467#endif
1468	} else if (booted < UMA_STARTUP2 &&
1469	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1470		keg->uk_allocf = startup_alloc;
1471
1472	/*
1473	 * Initialize keg's lock
1474	 */
1475	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1476
1477	/*
1478	 * If we're putting the slab header in the actual page we need to
1479	 * figure out where in each page it goes.  This calculates a right
1480	 * justified offset into the memory on an ALIGN_PTR boundary.
1481	 */
1482	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1483		u_int totsize;
1484
1485		/* Size of the slab struct and free list */
1486		totsize = sizeof(struct uma_slab);
1487
1488		if (totsize & UMA_ALIGN_PTR)
1489			totsize = (totsize & ~UMA_ALIGN_PTR) +
1490			    (UMA_ALIGN_PTR + 1);
1491		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1492
1493		/*
1494		 * The only way the following is possible is if with our
1495		 * UMA_ALIGN_PTR adjustments we are now bigger than
1496		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1497		 * mathematically possible for all cases, so we make
1498		 * sure here anyway.
1499		 */
1500		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1501		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1502			printf("zone %s ipers %d rsize %d size %d\n",
1503			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1504			    keg->uk_size);
1505			panic("UMA slab won't fit.");
1506		}
1507	}
1508
1509	if (keg->uk_flags & UMA_ZONE_HASH)
1510		hash_alloc(&keg->uk_hash, 0);
1511
1512#ifdef UMA_DEBUG
1513	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1514	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1515	    keg->uk_ipers, keg->uk_ppera,
1516	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
1517	    keg->uk_free);
1518#endif
1519
1520	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1521
1522	rw_wlock(&uma_rwlock);
1523	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1524	rw_wunlock(&uma_rwlock);
1525	return (0);
1526}
1527
1528/*
1529 * Zone header ctor.  This initializes all fields, locks, etc.
1530 *
1531 * Arguments/Returns follow uma_ctor specifications
1532 *	udata  Actually uma_zctor_args
1533 */
1534static int
1535zone_ctor(void *mem, int size, void *udata, int flags)
1536{
1537	struct uma_zctor_args *arg = udata;
1538	uma_zone_t zone = mem;
1539	uma_zone_t z;
1540	uma_keg_t keg;
1541
1542	bzero(zone, size);
1543	zone->uz_name = arg->name;
1544	zone->uz_ctor = arg->ctor;
1545	zone->uz_dtor = arg->dtor;
1546	zone->uz_slab = zone_fetch_slab;
1547	zone->uz_init = NULL;
1548	zone->uz_fini = NULL;
1549	zone->uz_allocs = 0;
1550	zone->uz_frees = 0;
1551	zone->uz_fails = 0;
1552	zone->uz_sleeps = 0;
1553	zone->uz_count = 0;
1554	zone->uz_count_min = 0;
1555	zone->uz_flags = 0;
1556	zone->uz_warning = NULL;
1557	timevalclear(&zone->uz_ratecheck);
1558	keg = arg->keg;
1559
1560	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1561
1562	/*
1563	 * This is a pure cache zone, no kegs.
1564	 */
1565	if (arg->import) {
1566		if (arg->flags & UMA_ZONE_VM)
1567			arg->flags |= UMA_ZFLAG_CACHEONLY;
1568		zone->uz_flags = arg->flags;
1569		zone->uz_size = arg->size;
1570		zone->uz_import = arg->import;
1571		zone->uz_release = arg->release;
1572		zone->uz_arg = arg->arg;
1573		zone->uz_lockptr = &zone->uz_lock;
1574		rw_wlock(&uma_rwlock);
1575		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1576		rw_wunlock(&uma_rwlock);
1577		goto out;
1578	}
1579
1580	/*
1581	 * Use the regular zone/keg/slab allocator.
1582	 */
1583	zone->uz_import = (uma_import)zone_import;
1584	zone->uz_release = (uma_release)zone_release;
1585	zone->uz_arg = zone;
1586
1587	if (arg->flags & UMA_ZONE_SECONDARY) {
1588		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1589		zone->uz_init = arg->uminit;
1590		zone->uz_fini = arg->fini;
1591		zone->uz_lockptr = &keg->uk_lock;
1592		zone->uz_flags |= UMA_ZONE_SECONDARY;
1593		rw_wlock(&uma_rwlock);
1594		ZONE_LOCK(zone);
1595		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1596			if (LIST_NEXT(z, uz_link) == NULL) {
1597				LIST_INSERT_AFTER(z, zone, uz_link);
1598				break;
1599			}
1600		}
1601		ZONE_UNLOCK(zone);
1602		rw_wunlock(&uma_rwlock);
1603	} else if (keg == NULL) {
1604		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1605		    arg->align, arg->flags)) == NULL)
1606			return (ENOMEM);
1607	} else {
1608		struct uma_kctor_args karg;
1609		int error;
1610
1611		/* We should only be here from uma_startup() */
1612		karg.size = arg->size;
1613		karg.uminit = arg->uminit;
1614		karg.fini = arg->fini;
1615		karg.align = arg->align;
1616		karg.flags = arg->flags;
1617		karg.zone = zone;
1618		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1619		    flags);
1620		if (error)
1621			return (error);
1622	}
1623
1624	/*
1625	 * Link in the first keg.
1626	 */
1627	zone->uz_klink.kl_keg = keg;
1628	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1629	zone->uz_lockptr = &keg->uk_lock;
1630	zone->uz_size = keg->uk_size;
1631	zone->uz_flags |= (keg->uk_flags &
1632	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1633
1634	/*
1635	 * Some internal zones don't have room allocated for the per cpu
1636	 * caches.  If we're internal, bail out here.
1637	 */
1638	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1639		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1640		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1641		return (0);
1642	}
1643
1644out:
1645	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
1646	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
1647	    ("Invalid zone flag combination"));
1648	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
1649		zone->uz_count = BUCKET_MAX;
1650	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
1651		zone->uz_count = 0;
1652	else
1653		zone->uz_count = bucket_select(zone->uz_size);
1654	zone->uz_count_min = zone->uz_count;
1655
1656	return (0);
1657}
1658
1659/*
1660 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1661 * table and removes the keg from the global list.
1662 *
1663 * Arguments/Returns follow uma_dtor specifications
1664 *	udata  unused
1665 */
1666static void
1667keg_dtor(void *arg, int size, void *udata)
1668{
1669	uma_keg_t keg;
1670
1671	keg = (uma_keg_t)arg;
1672	KEG_LOCK(keg);
1673	if (keg->uk_free != 0) {
1674		printf("Freed UMA keg (%s) was not empty (%d items). "
1675		    " Lost %d pages of memory.\n",
1676		    keg->uk_name ? keg->uk_name : "",
1677		    keg->uk_free, keg->uk_pages);
1678	}
1679	KEG_UNLOCK(keg);
1680
1681	hash_free(&keg->uk_hash);
1682
1683	KEG_LOCK_FINI(keg);
1684}
1685
1686/*
1687 * Zone header dtor.
1688 *
1689 * Arguments/Returns follow uma_dtor specifications
1690 *	udata  unused
1691 */
1692static void
1693zone_dtor(void *arg, int size, void *udata)
1694{
1695	uma_klink_t klink;
1696	uma_zone_t zone;
1697	uma_keg_t keg;
1698
1699	zone = (uma_zone_t)arg;
1700	keg = zone_first_keg(zone);
1701
1702	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1703		cache_drain(zone);
1704
1705	rw_wlock(&uma_rwlock);
1706	LIST_REMOVE(zone, uz_link);
1707	rw_wunlock(&uma_rwlock);
1708	/*
1709	 * XXX there are some races here where
1710	 * the zone can be drained but zone lock
1711	 * released and then refilled before we
1712	 * remove it... we dont care for now
1713	 */
1714	zone_drain_wait(zone, M_WAITOK);
1715	/*
1716	 * Unlink all of our kegs.
1717	 */
1718	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1719		klink->kl_keg = NULL;
1720		LIST_REMOVE(klink, kl_link);
1721		if (klink == &zone->uz_klink)
1722			continue;
1723		free(klink, M_TEMP);
1724	}
1725	/*
1726	 * We only destroy kegs from non secondary zones.
1727	 */
1728	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1729		rw_wlock(&uma_rwlock);
1730		LIST_REMOVE(keg, uk_link);
1731		rw_wunlock(&uma_rwlock);
1732		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1733	}
1734	ZONE_LOCK_FINI(zone);
1735}
1736
1737/*
1738 * Traverses every zone in the system and calls a callback
1739 *
1740 * Arguments:
1741 *	zfunc  A pointer to a function which accepts a zone
1742 *		as an argument.
1743 *
1744 * Returns:
1745 *	Nothing
1746 */
1747static void
1748zone_foreach(void (*zfunc)(uma_zone_t))
1749{
1750	uma_keg_t keg;
1751	uma_zone_t zone;
1752
1753	rw_rlock(&uma_rwlock);
1754	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1755		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1756			zfunc(zone);
1757	}
1758	rw_runlock(&uma_rwlock);
1759}
1760
1761/* Public functions */
1762/* See uma.h */
1763void
1764uma_startup(void *bootmem, int boot_pages)
1765{
1766	struct uma_zctor_args args;
1767	uma_slab_t slab;
1768	int i;
1769
1770#ifdef UMA_DEBUG
1771	printf("Creating uma keg headers zone and keg.\n");
1772#endif
1773	rw_init(&uma_rwlock, "UMA lock");
1774
1775	/* "manually" create the initial zone */
1776	memset(&args, 0, sizeof(args));
1777	args.name = "UMA Kegs";
1778	args.size = sizeof(struct uma_keg);
1779	args.ctor = keg_ctor;
1780	args.dtor = keg_dtor;
1781	args.uminit = zero_init;
1782	args.fini = NULL;
1783	args.keg = &masterkeg;
1784	args.align = 32 - 1;
1785	args.flags = UMA_ZFLAG_INTERNAL;
1786	/* The initial zone has no Per cpu queues so it's smaller */
1787	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1788
1789#ifdef UMA_DEBUG
1790	printf("Filling boot free list.\n");
1791#endif
1792	for (i = 0; i < boot_pages; i++) {
1793		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1794		slab->us_data = (uint8_t *)slab;
1795		slab->us_flags = UMA_SLAB_BOOT;
1796		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1797	}
1798	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1799
1800#ifdef UMA_DEBUG
1801	printf("Creating uma zone headers zone and keg.\n");
1802#endif
1803	args.name = "UMA Zones";
1804	args.size = sizeof(struct uma_zone) +
1805	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1806	args.ctor = zone_ctor;
1807	args.dtor = zone_dtor;
1808	args.uminit = zero_init;
1809	args.fini = NULL;
1810	args.keg = NULL;
1811	args.align = 32 - 1;
1812	args.flags = UMA_ZFLAG_INTERNAL;
1813	/* The initial zone has no Per cpu queues so it's smaller */
1814	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1815
1816#ifdef UMA_DEBUG
1817	printf("Creating slab and hash zones.\n");
1818#endif
1819
1820	/* Now make a zone for slab headers */
1821	slabzone = uma_zcreate("UMA Slabs",
1822				sizeof(struct uma_slab),
1823				NULL, NULL, NULL, NULL,
1824				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1825
1826	hashzone = uma_zcreate("UMA Hash",
1827	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1828	    NULL, NULL, NULL, NULL,
1829	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1830
1831	bucket_init();
1832
1833	booted = UMA_STARTUP;
1834
1835#ifdef UMA_DEBUG
1836	printf("UMA startup complete.\n");
1837#endif
1838}
1839
1840/* see uma.h */
1841void
1842uma_startup2(void)
1843{
1844	booted = UMA_STARTUP2;
1845	bucket_enable();
1846	sx_init(&uma_drain_lock, "umadrain");
1847#ifdef UMA_DEBUG
1848	printf("UMA startup2 complete.\n");
1849#endif
1850}
1851
1852/*
1853 * Initialize our callout handle
1854 *
1855 */
1856
1857static void
1858uma_startup3(void)
1859{
1860#ifdef UMA_DEBUG
1861	printf("Starting callout.\n");
1862#endif
1863	callout_init(&uma_callout, 1);
1864	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1865#ifdef UMA_DEBUG
1866	printf("UMA startup3 complete.\n");
1867#endif
1868}
1869
1870static uma_keg_t
1871uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1872		int align, uint32_t flags)
1873{
1874	struct uma_kctor_args args;
1875
1876	args.size = size;
1877	args.uminit = uminit;
1878	args.fini = fini;
1879	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1880	args.flags = flags;
1881	args.zone = zone;
1882	return (zone_alloc_item(kegs, &args, M_WAITOK));
1883}
1884
1885/* See uma.h */
1886void
1887uma_set_align(int align)
1888{
1889
1890	if (align != UMA_ALIGN_CACHE)
1891		uma_align_cache = align;
1892}
1893
1894/* See uma.h */
1895uma_zone_t
1896uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1897		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1898
1899{
1900	struct uma_zctor_args args;
1901	uma_zone_t res;
1902	bool locked;
1903
1904	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
1905	    align, name));
1906
1907	/* This stuff is essential for the zone ctor */
1908	memset(&args, 0, sizeof(args));
1909	args.name = name;
1910	args.size = size;
1911	args.ctor = ctor;
1912	args.dtor = dtor;
1913	args.uminit = uminit;
1914	args.fini = fini;
1915#ifdef  INVARIANTS
1916	/*
1917	 * If a zone is being created with an empty constructor and
1918	 * destructor, pass UMA constructor/destructor which checks for
1919	 * memory use after free.
1920	 */
1921	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) &&
1922	    ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) {
1923		args.ctor = trash_ctor;
1924		args.dtor = trash_dtor;
1925		args.uminit = trash_init;
1926		args.fini = trash_fini;
1927	}
1928#endif
1929	args.align = align;
1930	args.flags = flags;
1931	args.keg = NULL;
1932
1933	if (booted < UMA_STARTUP2) {
1934		locked = false;
1935	} else {
1936		sx_slock(&uma_drain_lock);
1937		locked = true;
1938	}
1939	res = zone_alloc_item(zones, &args, M_WAITOK);
1940	if (locked)
1941		sx_sunlock(&uma_drain_lock);
1942	return (res);
1943}
1944
1945/* See uma.h */
1946uma_zone_t
1947uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1948		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1949{
1950	struct uma_zctor_args args;
1951	uma_keg_t keg;
1952	uma_zone_t res;
1953	bool locked;
1954
1955	keg = zone_first_keg(master);
1956	memset(&args, 0, sizeof(args));
1957	args.name = name;
1958	args.size = keg->uk_size;
1959	args.ctor = ctor;
1960	args.dtor = dtor;
1961	args.uminit = zinit;
1962	args.fini = zfini;
1963	args.align = keg->uk_align;
1964	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1965	args.keg = keg;
1966
1967	if (booted < UMA_STARTUP2) {
1968		locked = false;
1969	} else {
1970		sx_slock(&uma_drain_lock);
1971		locked = true;
1972	}
1973	/* XXX Attaches only one keg of potentially many. */
1974	res = zone_alloc_item(zones, &args, M_WAITOK);
1975	if (locked)
1976		sx_sunlock(&uma_drain_lock);
1977	return (res);
1978}
1979
1980/* See uma.h */
1981uma_zone_t
1982uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1983		    uma_init zinit, uma_fini zfini, uma_import zimport,
1984		    uma_release zrelease, void *arg, int flags)
1985{
1986	struct uma_zctor_args args;
1987
1988	memset(&args, 0, sizeof(args));
1989	args.name = name;
1990	args.size = size;
1991	args.ctor = ctor;
1992	args.dtor = dtor;
1993	args.uminit = zinit;
1994	args.fini = zfini;
1995	args.import = zimport;
1996	args.release = zrelease;
1997	args.arg = arg;
1998	args.align = 0;
1999	args.flags = flags;
2000
2001	return (zone_alloc_item(zones, &args, M_WAITOK));
2002}
2003
2004static void
2005zone_lock_pair(uma_zone_t a, uma_zone_t b)
2006{
2007	if (a < b) {
2008		ZONE_LOCK(a);
2009		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2010	} else {
2011		ZONE_LOCK(b);
2012		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2013	}
2014}
2015
2016static void
2017zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2018{
2019
2020	ZONE_UNLOCK(a);
2021	ZONE_UNLOCK(b);
2022}
2023
2024int
2025uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2026{
2027	uma_klink_t klink;
2028	uma_klink_t kl;
2029	int error;
2030
2031	error = 0;
2032	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2033
2034	zone_lock_pair(zone, master);
2035	/*
2036	 * zone must use vtoslab() to resolve objects and must already be
2037	 * a secondary.
2038	 */
2039	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2040	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2041		error = EINVAL;
2042		goto out;
2043	}
2044	/*
2045	 * The new master must also use vtoslab().
2046	 */
2047	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2048		error = EINVAL;
2049		goto out;
2050	}
2051
2052	/*
2053	 * The underlying object must be the same size.  rsize
2054	 * may be different.
2055	 */
2056	if (master->uz_size != zone->uz_size) {
2057		error = E2BIG;
2058		goto out;
2059	}
2060	/*
2061	 * Put it at the end of the list.
2062	 */
2063	klink->kl_keg = zone_first_keg(master);
2064	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2065		if (LIST_NEXT(kl, kl_link) == NULL) {
2066			LIST_INSERT_AFTER(kl, klink, kl_link);
2067			break;
2068		}
2069	}
2070	klink = NULL;
2071	zone->uz_flags |= UMA_ZFLAG_MULTI;
2072	zone->uz_slab = zone_fetch_slab_multi;
2073
2074out:
2075	zone_unlock_pair(zone, master);
2076	if (klink != NULL)
2077		free(klink, M_TEMP);
2078
2079	return (error);
2080}
2081
2082
2083/* See uma.h */
2084void
2085uma_zdestroy(uma_zone_t zone)
2086{
2087
2088	sx_slock(&uma_drain_lock);
2089	zone_free_item(zones, zone, NULL, SKIP_NONE);
2090	sx_sunlock(&uma_drain_lock);
2091}
2092
2093void
2094uma_zwait(uma_zone_t zone)
2095{
2096	void *item;
2097
2098	item = uma_zalloc_arg(zone, NULL, M_WAITOK);
2099	uma_zfree(zone, item);
2100}
2101
2102/* See uma.h */
2103void *
2104uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2105{
2106	void *item;
2107	uma_cache_t cache;
2108	uma_bucket_t bucket;
2109	int lockfail;
2110	int cpu;
2111
2112	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2113	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2114
2115	/* This is the fast path allocation */
2116#ifdef UMA_DEBUG_ALLOC_1
2117	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2118#endif
2119	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2120	    zone->uz_name, flags);
2121
2122	if (flags & M_WAITOK) {
2123		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2124		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2125	}
2126	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2127	    ("uma_zalloc_arg: called with spinlock or critical section held"));
2128
2129#ifdef DEBUG_MEMGUARD
2130	if (memguard_cmp_zone(zone)) {
2131		item = memguard_alloc(zone->uz_size, flags);
2132		if (item != NULL) {
2133			if (zone->uz_init != NULL &&
2134			    zone->uz_init(item, zone->uz_size, flags) != 0)
2135				return (NULL);
2136			if (zone->uz_ctor != NULL &&
2137			    zone->uz_ctor(item, zone->uz_size, udata,
2138			    flags) != 0) {
2139			    	zone->uz_fini(item, zone->uz_size);
2140				return (NULL);
2141			}
2142			return (item);
2143		}
2144		/* This is unfortunate but should not be fatal. */
2145	}
2146#endif
2147	/*
2148	 * If possible, allocate from the per-CPU cache.  There are two
2149	 * requirements for safe access to the per-CPU cache: (1) the thread
2150	 * accessing the cache must not be preempted or yield during access,
2151	 * and (2) the thread must not migrate CPUs without switching which
2152	 * cache it accesses.  We rely on a critical section to prevent
2153	 * preemption and migration.  We release the critical section in
2154	 * order to acquire the zone mutex if we are unable to allocate from
2155	 * the current cache; when we re-acquire the critical section, we
2156	 * must detect and handle migration if it has occurred.
2157	 */
2158	critical_enter();
2159	cpu = curcpu;
2160	cache = &zone->uz_cpu[cpu];
2161
2162zalloc_start:
2163	bucket = cache->uc_allocbucket;
2164	if (bucket != NULL && bucket->ub_cnt > 0) {
2165		bucket->ub_cnt--;
2166		item = bucket->ub_bucket[bucket->ub_cnt];
2167#ifdef INVARIANTS
2168		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2169#endif
2170		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2171		cache->uc_allocs++;
2172		critical_exit();
2173		if (zone->uz_ctor != NULL &&
2174		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2175			atomic_add_long(&zone->uz_fails, 1);
2176			zone_free_item(zone, item, udata, SKIP_DTOR);
2177			return (NULL);
2178		}
2179#ifdef INVARIANTS
2180		uma_dbg_alloc(zone, NULL, item);
2181#endif
2182		if (flags & M_ZERO)
2183			uma_zero_item(item, zone);
2184		return (item);
2185	}
2186
2187	/*
2188	 * We have run out of items in our alloc bucket.
2189	 * See if we can switch with our free bucket.
2190	 */
2191	bucket = cache->uc_freebucket;
2192	if (bucket != NULL && bucket->ub_cnt > 0) {
2193#ifdef UMA_DEBUG_ALLOC
2194		printf("uma_zalloc: Swapping empty with alloc.\n");
2195#endif
2196		cache->uc_freebucket = cache->uc_allocbucket;
2197		cache->uc_allocbucket = bucket;
2198		goto zalloc_start;
2199	}
2200
2201	/*
2202	 * Discard any empty allocation bucket while we hold no locks.
2203	 */
2204	bucket = cache->uc_allocbucket;
2205	cache->uc_allocbucket = NULL;
2206	critical_exit();
2207	if (bucket != NULL)
2208		bucket_free(zone, bucket, udata);
2209
2210	/* Short-circuit for zones without buckets and low memory. */
2211	if (zone->uz_count == 0 || bucketdisable)
2212		goto zalloc_item;
2213
2214	/*
2215	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2216	 * we must go back to the zone.  This requires the zone lock, so we
2217	 * must drop the critical section, then re-acquire it when we go back
2218	 * to the cache.  Since the critical section is released, we may be
2219	 * preempted or migrate.  As such, make sure not to maintain any
2220	 * thread-local state specific to the cache from prior to releasing
2221	 * the critical section.
2222	 */
2223	lockfail = 0;
2224	if (ZONE_TRYLOCK(zone) == 0) {
2225		/* Record contention to size the buckets. */
2226		ZONE_LOCK(zone);
2227		lockfail = 1;
2228	}
2229	critical_enter();
2230	cpu = curcpu;
2231	cache = &zone->uz_cpu[cpu];
2232
2233	/*
2234	 * Since we have locked the zone we may as well send back our stats.
2235	 */
2236	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2237	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2238	cache->uc_allocs = 0;
2239	cache->uc_frees = 0;
2240
2241	/* See if we lost the race to fill the cache. */
2242	if (cache->uc_allocbucket != NULL) {
2243		ZONE_UNLOCK(zone);
2244		goto zalloc_start;
2245	}
2246
2247	/*
2248	 * Check the zone's cache of buckets.
2249	 */
2250	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2251		KASSERT(bucket->ub_cnt != 0,
2252		    ("uma_zalloc_arg: Returning an empty bucket."));
2253
2254		LIST_REMOVE(bucket, ub_link);
2255		cache->uc_allocbucket = bucket;
2256		ZONE_UNLOCK(zone);
2257		goto zalloc_start;
2258	}
2259	/* We are no longer associated with this CPU. */
2260	critical_exit();
2261
2262	/*
2263	 * We bump the uz count when the cache size is insufficient to
2264	 * handle the working set.
2265	 */
2266	if (lockfail && zone->uz_count < BUCKET_MAX)
2267		zone->uz_count++;
2268	ZONE_UNLOCK(zone);
2269
2270	/*
2271	 * Now lets just fill a bucket and put it on the free list.  If that
2272	 * works we'll restart the allocation from the beginning and it
2273	 * will use the just filled bucket.
2274	 */
2275	bucket = zone_alloc_bucket(zone, udata, flags);
2276	if (bucket != NULL) {
2277		ZONE_LOCK(zone);
2278		critical_enter();
2279		cpu = curcpu;
2280		cache = &zone->uz_cpu[cpu];
2281		/*
2282		 * See if we lost the race or were migrated.  Cache the
2283		 * initialized bucket to make this less likely or claim
2284		 * the memory directly.
2285		 */
2286		if (cache->uc_allocbucket == NULL)
2287			cache->uc_allocbucket = bucket;
2288		else
2289			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2290		ZONE_UNLOCK(zone);
2291		goto zalloc_start;
2292	}
2293
2294	/*
2295	 * We may not be able to get a bucket so return an actual item.
2296	 */
2297#ifdef UMA_DEBUG
2298	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2299#endif
2300
2301zalloc_item:
2302	item = zone_alloc_item(zone, udata, flags);
2303
2304	return (item);
2305}
2306
2307static uma_slab_t
2308keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2309{
2310	uma_slab_t slab;
2311	int reserve;
2312
2313	mtx_assert(&keg->uk_lock, MA_OWNED);
2314	slab = NULL;
2315	reserve = 0;
2316	if ((flags & M_USE_RESERVE) == 0)
2317		reserve = keg->uk_reserve;
2318
2319	for (;;) {
2320		/*
2321		 * Find a slab with some space.  Prefer slabs that are partially
2322		 * used over those that are totally full.  This helps to reduce
2323		 * fragmentation.
2324		 */
2325		if (keg->uk_free > reserve) {
2326			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2327				slab = LIST_FIRST(&keg->uk_part_slab);
2328			} else {
2329				slab = LIST_FIRST(&keg->uk_free_slab);
2330				LIST_REMOVE(slab, us_link);
2331				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2332				    us_link);
2333			}
2334			MPASS(slab->us_keg == keg);
2335			return (slab);
2336		}
2337
2338		/*
2339		 * M_NOVM means don't ask at all!
2340		 */
2341		if (flags & M_NOVM)
2342			break;
2343
2344		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2345			keg->uk_flags |= UMA_ZFLAG_FULL;
2346			/*
2347			 * If this is not a multi-zone, set the FULL bit.
2348			 * Otherwise slab_multi() takes care of it.
2349			 */
2350			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2351				zone->uz_flags |= UMA_ZFLAG_FULL;
2352				zone_log_warning(zone);
2353				zone_maxaction(zone);
2354			}
2355			if (flags & M_NOWAIT)
2356				break;
2357			zone->uz_sleeps++;
2358			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2359			continue;
2360		}
2361		slab = keg_alloc_slab(keg, zone, flags);
2362		/*
2363		 * If we got a slab here it's safe to mark it partially used
2364		 * and return.  We assume that the caller is going to remove
2365		 * at least one item.
2366		 */
2367		if (slab) {
2368			MPASS(slab->us_keg == keg);
2369			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2370			return (slab);
2371		}
2372		/*
2373		 * We might not have been able to get a slab but another cpu
2374		 * could have while we were unlocked.  Check again before we
2375		 * fail.
2376		 */
2377		flags |= M_NOVM;
2378	}
2379	return (slab);
2380}
2381
2382static uma_slab_t
2383zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2384{
2385	uma_slab_t slab;
2386
2387	if (keg == NULL) {
2388		keg = zone_first_keg(zone);
2389		KEG_LOCK(keg);
2390	}
2391
2392	for (;;) {
2393		slab = keg_fetch_slab(keg, zone, flags);
2394		if (slab)
2395			return (slab);
2396		if (flags & (M_NOWAIT | M_NOVM))
2397			break;
2398	}
2399	KEG_UNLOCK(keg);
2400	return (NULL);
2401}
2402
2403/*
2404 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2405 * with the keg locked.  On NULL no lock is held.
2406 *
2407 * The last pointer is used to seed the search.  It is not required.
2408 */
2409static uma_slab_t
2410zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2411{
2412	uma_klink_t klink;
2413	uma_slab_t slab;
2414	uma_keg_t keg;
2415	int flags;
2416	int empty;
2417	int full;
2418
2419	/*
2420	 * Don't wait on the first pass.  This will skip limit tests
2421	 * as well.  We don't want to block if we can find a provider
2422	 * without blocking.
2423	 */
2424	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2425	/*
2426	 * Use the last slab allocated as a hint for where to start
2427	 * the search.
2428	 */
2429	if (last != NULL) {
2430		slab = keg_fetch_slab(last, zone, flags);
2431		if (slab)
2432			return (slab);
2433		KEG_UNLOCK(last);
2434	}
2435	/*
2436	 * Loop until we have a slab incase of transient failures
2437	 * while M_WAITOK is specified.  I'm not sure this is 100%
2438	 * required but we've done it for so long now.
2439	 */
2440	for (;;) {
2441		empty = 0;
2442		full = 0;
2443		/*
2444		 * Search the available kegs for slabs.  Be careful to hold the
2445		 * correct lock while calling into the keg layer.
2446		 */
2447		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2448			keg = klink->kl_keg;
2449			KEG_LOCK(keg);
2450			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2451				slab = keg_fetch_slab(keg, zone, flags);
2452				if (slab)
2453					return (slab);
2454			}
2455			if (keg->uk_flags & UMA_ZFLAG_FULL)
2456				full++;
2457			else
2458				empty++;
2459			KEG_UNLOCK(keg);
2460		}
2461		if (rflags & (M_NOWAIT | M_NOVM))
2462			break;
2463		flags = rflags;
2464		/*
2465		 * All kegs are full.  XXX We can't atomically check all kegs
2466		 * and sleep so just sleep for a short period and retry.
2467		 */
2468		if (full && !empty) {
2469			ZONE_LOCK(zone);
2470			zone->uz_flags |= UMA_ZFLAG_FULL;
2471			zone->uz_sleeps++;
2472			zone_log_warning(zone);
2473			zone_maxaction(zone);
2474			msleep(zone, zone->uz_lockptr, PVM,
2475			    "zonelimit", hz/100);
2476			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2477			ZONE_UNLOCK(zone);
2478			continue;
2479		}
2480	}
2481	return (NULL);
2482}
2483
2484static void *
2485slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2486{
2487	void *item;
2488	uint8_t freei;
2489
2490	MPASS(keg == slab->us_keg);
2491	mtx_assert(&keg->uk_lock, MA_OWNED);
2492
2493	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2494	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2495	item = slab->us_data + (keg->uk_rsize * freei);
2496	slab->us_freecount--;
2497	keg->uk_free--;
2498
2499	/* Move this slab to the full list */
2500	if (slab->us_freecount == 0) {
2501		LIST_REMOVE(slab, us_link);
2502		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2503	}
2504
2505	return (item);
2506}
2507
2508static int
2509zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2510{
2511	uma_slab_t slab;
2512	uma_keg_t keg;
2513	int i;
2514
2515	slab = NULL;
2516	keg = NULL;
2517	/* Try to keep the buckets totally full */
2518	for (i = 0; i < max; ) {
2519		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2520			break;
2521		keg = slab->us_keg;
2522		while (slab->us_freecount && i < max) {
2523			bucket[i++] = slab_alloc_item(keg, slab);
2524			if (keg->uk_free <= keg->uk_reserve)
2525				break;
2526		}
2527		/* Don't grab more than one slab at a time. */
2528		flags &= ~M_WAITOK;
2529		flags |= M_NOWAIT;
2530	}
2531	if (slab != NULL)
2532		KEG_UNLOCK(keg);
2533
2534	return i;
2535}
2536
2537static uma_bucket_t
2538zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2539{
2540	uma_bucket_t bucket;
2541	int max;
2542
2543	/* Don't wait for buckets, preserve caller's NOVM setting. */
2544	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2545	if (bucket == NULL)
2546		return (NULL);
2547
2548	max = MIN(bucket->ub_entries, zone->uz_count);
2549	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2550	    max, flags);
2551
2552	/*
2553	 * Initialize the memory if necessary.
2554	 */
2555	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2556		int i;
2557
2558		for (i = 0; i < bucket->ub_cnt; i++)
2559			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2560			    flags) != 0)
2561				break;
2562		/*
2563		 * If we couldn't initialize the whole bucket, put the
2564		 * rest back onto the freelist.
2565		 */
2566		if (i != bucket->ub_cnt) {
2567			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2568			    bucket->ub_cnt - i);
2569#ifdef INVARIANTS
2570			bzero(&bucket->ub_bucket[i],
2571			    sizeof(void *) * (bucket->ub_cnt - i));
2572#endif
2573			bucket->ub_cnt = i;
2574		}
2575	}
2576
2577	if (bucket->ub_cnt == 0) {
2578		bucket_free(zone, bucket, udata);
2579		atomic_add_long(&zone->uz_fails, 1);
2580		return (NULL);
2581	}
2582
2583	return (bucket);
2584}
2585
2586/*
2587 * Allocates a single item from a zone.
2588 *
2589 * Arguments
2590 *	zone   The zone to alloc for.
2591 *	udata  The data to be passed to the constructor.
2592 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2593 *
2594 * Returns
2595 *	NULL if there is no memory and M_NOWAIT is set
2596 *	An item if successful
2597 */
2598
2599static void *
2600zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2601{
2602	void *item;
2603
2604	item = NULL;
2605
2606#ifdef UMA_DEBUG_ALLOC
2607	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2608#endif
2609	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2610		goto fail;
2611	atomic_add_long(&zone->uz_allocs, 1);
2612
2613	/*
2614	 * We have to call both the zone's init (not the keg's init)
2615	 * and the zone's ctor.  This is because the item is going from
2616	 * a keg slab directly to the user, and the user is expecting it
2617	 * to be both zone-init'd as well as zone-ctor'd.
2618	 */
2619	if (zone->uz_init != NULL) {
2620		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2621			zone_free_item(zone, item, udata, SKIP_FINI);
2622			goto fail;
2623		}
2624	}
2625	if (zone->uz_ctor != NULL) {
2626		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2627			zone_free_item(zone, item, udata, SKIP_DTOR);
2628			goto fail;
2629		}
2630	}
2631#ifdef INVARIANTS
2632	uma_dbg_alloc(zone, NULL, item);
2633#endif
2634	if (flags & M_ZERO)
2635		uma_zero_item(item, zone);
2636
2637	return (item);
2638
2639fail:
2640	atomic_add_long(&zone->uz_fails, 1);
2641	return (NULL);
2642}
2643
2644/* See uma.h */
2645void
2646uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2647{
2648	uma_cache_t cache;
2649	uma_bucket_t bucket;
2650	int lockfail;
2651	int cpu;
2652
2653	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2654	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2655
2656#ifdef UMA_DEBUG_ALLOC_1
2657	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2658#endif
2659	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2660	    zone->uz_name);
2661
2662	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2663	    ("uma_zfree_arg: called with spinlock or critical section held"));
2664
2665        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2666        if (item == NULL)
2667                return;
2668#ifdef DEBUG_MEMGUARD
2669	if (is_memguard_addr(item)) {
2670		if (zone->uz_dtor != NULL)
2671			zone->uz_dtor(item, zone->uz_size, udata);
2672		if (zone->uz_fini != NULL)
2673			zone->uz_fini(item, zone->uz_size);
2674		memguard_free(item);
2675		return;
2676	}
2677#endif
2678#ifdef INVARIANTS
2679	if (zone->uz_flags & UMA_ZONE_MALLOC)
2680		uma_dbg_free(zone, udata, item);
2681	else
2682		uma_dbg_free(zone, NULL, item);
2683#endif
2684	if (zone->uz_dtor != NULL)
2685		zone->uz_dtor(item, zone->uz_size, udata);
2686
2687	/*
2688	 * The race here is acceptable.  If we miss it we'll just have to wait
2689	 * a little longer for the limits to be reset.
2690	 */
2691	if (zone->uz_flags & UMA_ZFLAG_FULL)
2692		goto zfree_item;
2693
2694	/*
2695	 * If possible, free to the per-CPU cache.  There are two
2696	 * requirements for safe access to the per-CPU cache: (1) the thread
2697	 * accessing the cache must not be preempted or yield during access,
2698	 * and (2) the thread must not migrate CPUs without switching which
2699	 * cache it accesses.  We rely on a critical section to prevent
2700	 * preemption and migration.  We release the critical section in
2701	 * order to acquire the zone mutex if we are unable to free to the
2702	 * current cache; when we re-acquire the critical section, we must
2703	 * detect and handle migration if it has occurred.
2704	 */
2705zfree_restart:
2706	critical_enter();
2707	cpu = curcpu;
2708	cache = &zone->uz_cpu[cpu];
2709
2710zfree_start:
2711	/*
2712	 * Try to free into the allocbucket first to give LIFO ordering
2713	 * for cache-hot datastructures.  Spill over into the freebucket
2714	 * if necessary.  Alloc will swap them if one runs dry.
2715	 */
2716	bucket = cache->uc_allocbucket;
2717	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2718		bucket = cache->uc_freebucket;
2719	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2720		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2721		    ("uma_zfree: Freeing to non free bucket index."));
2722		bucket->ub_bucket[bucket->ub_cnt] = item;
2723		bucket->ub_cnt++;
2724		cache->uc_frees++;
2725		critical_exit();
2726		return;
2727	}
2728
2729	/*
2730	 * We must go back the zone, which requires acquiring the zone lock,
2731	 * which in turn means we must release and re-acquire the critical
2732	 * section.  Since the critical section is released, we may be
2733	 * preempted or migrate.  As such, make sure not to maintain any
2734	 * thread-local state specific to the cache from prior to releasing
2735	 * the critical section.
2736	 */
2737	critical_exit();
2738	if (zone->uz_count == 0 || bucketdisable)
2739		goto zfree_item;
2740
2741	lockfail = 0;
2742	if (ZONE_TRYLOCK(zone) == 0) {
2743		/* Record contention to size the buckets. */
2744		ZONE_LOCK(zone);
2745		lockfail = 1;
2746	}
2747	critical_enter();
2748	cpu = curcpu;
2749	cache = &zone->uz_cpu[cpu];
2750
2751	/*
2752	 * Since we have locked the zone we may as well send back our stats.
2753	 */
2754	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2755	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2756	cache->uc_allocs = 0;
2757	cache->uc_frees = 0;
2758
2759	bucket = cache->uc_freebucket;
2760	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2761		ZONE_UNLOCK(zone);
2762		goto zfree_start;
2763	}
2764	cache->uc_freebucket = NULL;
2765	/* We are no longer associated with this CPU. */
2766	critical_exit();
2767
2768	/* Can we throw this on the zone full list? */
2769	if (bucket != NULL) {
2770#ifdef UMA_DEBUG_ALLOC
2771		printf("uma_zfree: Putting old bucket on the free list.\n");
2772#endif
2773		/* ub_cnt is pointing to the last free item */
2774		KASSERT(bucket->ub_cnt != 0,
2775		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2776		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2777	}
2778
2779	/*
2780	 * We bump the uz count when the cache size is insufficient to
2781	 * handle the working set.
2782	 */
2783	if (lockfail && zone->uz_count < BUCKET_MAX)
2784		zone->uz_count++;
2785	ZONE_UNLOCK(zone);
2786
2787#ifdef UMA_DEBUG_ALLOC
2788	printf("uma_zfree: Allocating new free bucket.\n");
2789#endif
2790	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2791	if (bucket) {
2792		critical_enter();
2793		cpu = curcpu;
2794		cache = &zone->uz_cpu[cpu];
2795		if (cache->uc_freebucket == NULL) {
2796			cache->uc_freebucket = bucket;
2797			goto zfree_start;
2798		}
2799		/*
2800		 * We lost the race, start over.  We have to drop our
2801		 * critical section to free the bucket.
2802		 */
2803		critical_exit();
2804		bucket_free(zone, bucket, udata);
2805		goto zfree_restart;
2806	}
2807
2808	/*
2809	 * If nothing else caught this, we'll just do an internal free.
2810	 */
2811zfree_item:
2812	zone_free_item(zone, item, udata, SKIP_DTOR);
2813
2814	return;
2815}
2816
2817static void
2818slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2819{
2820	uint8_t freei;
2821
2822	mtx_assert(&keg->uk_lock, MA_OWNED);
2823	MPASS(keg == slab->us_keg);
2824
2825	/* Do we need to remove from any lists? */
2826	if (slab->us_freecount+1 == keg->uk_ipers) {
2827		LIST_REMOVE(slab, us_link);
2828		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2829	} else if (slab->us_freecount == 0) {
2830		LIST_REMOVE(slab, us_link);
2831		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2832	}
2833
2834	/* Slab management. */
2835	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2836	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2837	slab->us_freecount++;
2838
2839	/* Keg statistics. */
2840	keg->uk_free++;
2841}
2842
2843static void
2844zone_release(uma_zone_t zone, void **bucket, int cnt)
2845{
2846	void *item;
2847	uma_slab_t slab;
2848	uma_keg_t keg;
2849	uint8_t *mem;
2850	int clearfull;
2851	int i;
2852
2853	clearfull = 0;
2854	keg = zone_first_keg(zone);
2855	KEG_LOCK(keg);
2856	for (i = 0; i < cnt; i++) {
2857		item = bucket[i];
2858		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2859			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2860			if (zone->uz_flags & UMA_ZONE_HASH) {
2861				slab = hash_sfind(&keg->uk_hash, mem);
2862			} else {
2863				mem += keg->uk_pgoff;
2864				slab = (uma_slab_t)mem;
2865			}
2866		} else {
2867			slab = vtoslab((vm_offset_t)item);
2868			if (slab->us_keg != keg) {
2869				KEG_UNLOCK(keg);
2870				keg = slab->us_keg;
2871				KEG_LOCK(keg);
2872			}
2873		}
2874		slab_free_item(keg, slab, item);
2875		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2876			if (keg->uk_pages < keg->uk_maxpages) {
2877				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2878				clearfull = 1;
2879			}
2880
2881			/*
2882			 * We can handle one more allocation. Since we're
2883			 * clearing ZFLAG_FULL, wake up all procs blocked
2884			 * on pages. This should be uncommon, so keeping this
2885			 * simple for now (rather than adding count of blocked
2886			 * threads etc).
2887			 */
2888			wakeup(keg);
2889		}
2890	}
2891	KEG_UNLOCK(keg);
2892	if (clearfull) {
2893		ZONE_LOCK(zone);
2894		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2895		wakeup(zone);
2896		ZONE_UNLOCK(zone);
2897	}
2898
2899}
2900
2901/*
2902 * Frees a single item to any zone.
2903 *
2904 * Arguments:
2905 *	zone   The zone to free to
2906 *	item   The item we're freeing
2907 *	udata  User supplied data for the dtor
2908 *	skip   Skip dtors and finis
2909 */
2910static void
2911zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2912{
2913
2914#ifdef INVARIANTS
2915	if (skip == SKIP_NONE) {
2916		if (zone->uz_flags & UMA_ZONE_MALLOC)
2917			uma_dbg_free(zone, udata, item);
2918		else
2919			uma_dbg_free(zone, NULL, item);
2920	}
2921#endif
2922	if (skip < SKIP_DTOR && zone->uz_dtor)
2923		zone->uz_dtor(item, zone->uz_size, udata);
2924
2925	if (skip < SKIP_FINI && zone->uz_fini)
2926		zone->uz_fini(item, zone->uz_size);
2927
2928	atomic_add_long(&zone->uz_frees, 1);
2929	zone->uz_release(zone->uz_arg, &item, 1);
2930}
2931
2932/* See uma.h */
2933int
2934uma_zone_set_max(uma_zone_t zone, int nitems)
2935{
2936	uma_keg_t keg;
2937
2938	keg = zone_first_keg(zone);
2939	if (keg == NULL)
2940		return (0);
2941	KEG_LOCK(keg);
2942	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2943	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2944		keg->uk_maxpages += keg->uk_ppera;
2945	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2946	KEG_UNLOCK(keg);
2947
2948	return (nitems);
2949}
2950
2951/* See uma.h */
2952int
2953uma_zone_get_max(uma_zone_t zone)
2954{
2955	int nitems;
2956	uma_keg_t keg;
2957
2958	keg = zone_first_keg(zone);
2959	if (keg == NULL)
2960		return (0);
2961	KEG_LOCK(keg);
2962	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2963	KEG_UNLOCK(keg);
2964
2965	return (nitems);
2966}
2967
2968/* See uma.h */
2969void
2970uma_zone_set_warning(uma_zone_t zone, const char *warning)
2971{
2972
2973	ZONE_LOCK(zone);
2974	zone->uz_warning = warning;
2975	ZONE_UNLOCK(zone);
2976}
2977
2978/* See uma.h */
2979void
2980uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
2981{
2982
2983	ZONE_LOCK(zone);
2984	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
2985	ZONE_UNLOCK(zone);
2986}
2987
2988/* See uma.h */
2989int
2990uma_zone_get_cur(uma_zone_t zone)
2991{
2992	int64_t nitems;
2993	u_int i;
2994
2995	ZONE_LOCK(zone);
2996	nitems = zone->uz_allocs - zone->uz_frees;
2997	CPU_FOREACH(i) {
2998		/*
2999		 * See the comment in sysctl_vm_zone_stats() regarding the
3000		 * safety of accessing the per-cpu caches. With the zone lock
3001		 * held, it is safe, but can potentially result in stale data.
3002		 */
3003		nitems += zone->uz_cpu[i].uc_allocs -
3004		    zone->uz_cpu[i].uc_frees;
3005	}
3006	ZONE_UNLOCK(zone);
3007
3008	return (nitems < 0 ? 0 : nitems);
3009}
3010
3011/* See uma.h */
3012void
3013uma_zone_set_init(uma_zone_t zone, uma_init uminit)
3014{
3015	uma_keg_t keg;
3016
3017	keg = zone_first_keg(zone);
3018	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3019	KEG_LOCK(keg);
3020	KASSERT(keg->uk_pages == 0,
3021	    ("uma_zone_set_init on non-empty keg"));
3022	keg->uk_init = uminit;
3023	KEG_UNLOCK(keg);
3024}
3025
3026/* See uma.h */
3027void
3028uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3029{
3030	uma_keg_t keg;
3031
3032	keg = zone_first_keg(zone);
3033	KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
3034	KEG_LOCK(keg);
3035	KASSERT(keg->uk_pages == 0,
3036	    ("uma_zone_set_fini on non-empty keg"));
3037	keg->uk_fini = fini;
3038	KEG_UNLOCK(keg);
3039}
3040
3041/* See uma.h */
3042void
3043uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3044{
3045
3046	ZONE_LOCK(zone);
3047	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3048	    ("uma_zone_set_zinit on non-empty keg"));
3049	zone->uz_init = zinit;
3050	ZONE_UNLOCK(zone);
3051}
3052
3053/* See uma.h */
3054void
3055uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3056{
3057
3058	ZONE_LOCK(zone);
3059	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3060	    ("uma_zone_set_zfini on non-empty keg"));
3061	zone->uz_fini = zfini;
3062	ZONE_UNLOCK(zone);
3063}
3064
3065/* See uma.h */
3066/* XXX uk_freef is not actually used with the zone locked */
3067void
3068uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3069{
3070	uma_keg_t keg;
3071
3072	keg = zone_first_keg(zone);
3073	KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
3074	KEG_LOCK(keg);
3075	keg->uk_freef = freef;
3076	KEG_UNLOCK(keg);
3077}
3078
3079/* See uma.h */
3080/* XXX uk_allocf is not actually used with the zone locked */
3081void
3082uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3083{
3084	uma_keg_t keg;
3085
3086	keg = zone_first_keg(zone);
3087	KEG_LOCK(keg);
3088	keg->uk_allocf = allocf;
3089	KEG_UNLOCK(keg);
3090}
3091
3092/* See uma.h */
3093void
3094uma_zone_reserve(uma_zone_t zone, int items)
3095{
3096	uma_keg_t keg;
3097
3098	keg = zone_first_keg(zone);
3099	if (keg == NULL)
3100		return;
3101	KEG_LOCK(keg);
3102	keg->uk_reserve = items;
3103	KEG_UNLOCK(keg);
3104
3105	return;
3106}
3107
3108/* See uma.h */
3109int
3110uma_zone_reserve_kva(uma_zone_t zone, int count)
3111{
3112	uma_keg_t keg;
3113	vm_offset_t kva;
3114	u_int pages;
3115
3116	keg = zone_first_keg(zone);
3117	if (keg == NULL)
3118		return (0);
3119	pages = count / keg->uk_ipers;
3120
3121	if (pages * keg->uk_ipers < count)
3122		pages++;
3123	pages *= keg->uk_ppera;
3124
3125#ifdef UMA_MD_SMALL_ALLOC
3126	if (keg->uk_ppera > 1) {
3127#else
3128	if (1) {
3129#endif
3130		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
3131		if (kva == 0)
3132			return (0);
3133	} else
3134		kva = 0;
3135	KEG_LOCK(keg);
3136	keg->uk_kva = kva;
3137	keg->uk_offset = 0;
3138	keg->uk_maxpages = pages;
3139#ifdef UMA_MD_SMALL_ALLOC
3140	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3141#else
3142	keg->uk_allocf = noobj_alloc;
3143#endif
3144	keg->uk_flags |= UMA_ZONE_NOFREE;
3145	KEG_UNLOCK(keg);
3146
3147	return (1);
3148}
3149
3150/* See uma.h */
3151void
3152uma_prealloc(uma_zone_t zone, int items)
3153{
3154	int slabs;
3155	uma_slab_t slab;
3156	uma_keg_t keg;
3157
3158	keg = zone_first_keg(zone);
3159	if (keg == NULL)
3160		return;
3161	KEG_LOCK(keg);
3162	slabs = items / keg->uk_ipers;
3163	if (slabs * keg->uk_ipers < items)
3164		slabs++;
3165	while (slabs > 0) {
3166		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3167		if (slab == NULL)
3168			break;
3169		MPASS(slab->us_keg == keg);
3170		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3171		slabs--;
3172	}
3173	KEG_UNLOCK(keg);
3174}
3175
3176/* See uma.h */
3177static void
3178uma_reclaim_locked(bool kmem_danger)
3179{
3180
3181#ifdef UMA_DEBUG
3182	printf("UMA: vm asked us to release pages!\n");
3183#endif
3184	sx_assert(&uma_drain_lock, SA_XLOCKED);
3185	bucket_enable();
3186	zone_foreach(zone_drain);
3187	if (vm_page_count_min() || kmem_danger) {
3188		cache_drain_safe(NULL);
3189		zone_foreach(zone_drain);
3190	}
3191	/*
3192	 * Some slabs may have been freed but this zone will be visited early
3193	 * we visit again so that we can free pages that are empty once other
3194	 * zones are drained.  We have to do the same for buckets.
3195	 */
3196	zone_drain(slabzone);
3197	bucket_zone_drain();
3198}
3199
3200void
3201uma_reclaim(void)
3202{
3203
3204	sx_xlock(&uma_drain_lock);
3205	uma_reclaim_locked(false);
3206	sx_xunlock(&uma_drain_lock);
3207}
3208
3209static int uma_reclaim_needed;
3210
3211void
3212uma_reclaim_wakeup(void)
3213{
3214
3215	uma_reclaim_needed = 1;
3216	wakeup(&uma_reclaim_needed);
3217}
3218
3219void
3220uma_reclaim_worker(void *arg __unused)
3221{
3222
3223	sx_xlock(&uma_drain_lock);
3224	for (;;) {
3225		sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM,
3226		    "umarcl", 0);
3227		if (uma_reclaim_needed) {
3228			uma_reclaim_needed = 0;
3229			sx_xunlock(&uma_drain_lock);
3230			EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
3231			sx_xlock(&uma_drain_lock);
3232			uma_reclaim_locked(true);
3233		}
3234	}
3235}
3236
3237/* See uma.h */
3238int
3239uma_zone_exhausted(uma_zone_t zone)
3240{
3241	int full;
3242
3243	ZONE_LOCK(zone);
3244	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3245	ZONE_UNLOCK(zone);
3246	return (full);
3247}
3248
3249int
3250uma_zone_exhausted_nolock(uma_zone_t zone)
3251{
3252	return (zone->uz_flags & UMA_ZFLAG_FULL);
3253}
3254
3255void *
3256uma_large_malloc(vm_size_t size, int wait)
3257{
3258	void *mem;
3259	uma_slab_t slab;
3260	uint8_t flags;
3261
3262	slab = zone_alloc_item(slabzone, NULL, wait);
3263	if (slab == NULL)
3264		return (NULL);
3265	mem = page_alloc(NULL, size, &flags, wait);
3266	if (mem) {
3267		vsetslab((vm_offset_t)mem, slab);
3268		slab->us_data = mem;
3269		slab->us_flags = flags | UMA_SLAB_MALLOC;
3270		slab->us_size = size;
3271	} else {
3272		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3273	}
3274
3275	return (mem);
3276}
3277
3278void
3279uma_large_free(uma_slab_t slab)
3280{
3281
3282	page_free(slab->us_data, slab->us_size, slab->us_flags);
3283	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3284}
3285
3286static void
3287uma_zero_item(void *item, uma_zone_t zone)
3288{
3289	int i;
3290
3291	if (zone->uz_flags & UMA_ZONE_PCPU) {
3292		CPU_FOREACH(i)
3293			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3294	} else
3295		bzero(item, zone->uz_size);
3296}
3297
3298void
3299uma_print_stats(void)
3300{
3301	zone_foreach(uma_print_zone);
3302}
3303
3304static void
3305slab_print(uma_slab_t slab)
3306{
3307	printf("slab: keg %p, data %p, freecount %d\n",
3308		slab->us_keg, slab->us_data, slab->us_freecount);
3309}
3310
3311static void
3312cache_print(uma_cache_t cache)
3313{
3314	printf("alloc: %p(%d), free: %p(%d)\n",
3315		cache->uc_allocbucket,
3316		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3317		cache->uc_freebucket,
3318		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3319}
3320
3321static void
3322uma_print_keg(uma_keg_t keg)
3323{
3324	uma_slab_t slab;
3325
3326	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3327	    "out %d free %d limit %d\n",
3328	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3329	    keg->uk_ipers, keg->uk_ppera,
3330	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
3331	    keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3332	printf("Part slabs:\n");
3333	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3334		slab_print(slab);
3335	printf("Free slabs:\n");
3336	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3337		slab_print(slab);
3338	printf("Full slabs:\n");
3339	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3340		slab_print(slab);
3341}
3342
3343void
3344uma_print_zone(uma_zone_t zone)
3345{
3346	uma_cache_t cache;
3347	uma_klink_t kl;
3348	int i;
3349
3350	printf("zone: %s(%p) size %d flags %#x\n",
3351	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3352	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3353		uma_print_keg(kl->kl_keg);
3354	CPU_FOREACH(i) {
3355		cache = &zone->uz_cpu[i];
3356		printf("CPU %d Cache:\n", i);
3357		cache_print(cache);
3358	}
3359}
3360
3361#ifdef DDB
3362/*
3363 * Generate statistics across both the zone and its per-cpu cache's.  Return
3364 * desired statistics if the pointer is non-NULL for that statistic.
3365 *
3366 * Note: does not update the zone statistics, as it can't safely clear the
3367 * per-CPU cache statistic.
3368 *
3369 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3370 * safe from off-CPU; we should modify the caches to track this information
3371 * directly so that we don't have to.
3372 */
3373static void
3374uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3375    uint64_t *freesp, uint64_t *sleepsp)
3376{
3377	uma_cache_t cache;
3378	uint64_t allocs, frees, sleeps;
3379	int cachefree, cpu;
3380
3381	allocs = frees = sleeps = 0;
3382	cachefree = 0;
3383	CPU_FOREACH(cpu) {
3384		cache = &z->uz_cpu[cpu];
3385		if (cache->uc_allocbucket != NULL)
3386			cachefree += cache->uc_allocbucket->ub_cnt;
3387		if (cache->uc_freebucket != NULL)
3388			cachefree += cache->uc_freebucket->ub_cnt;
3389		allocs += cache->uc_allocs;
3390		frees += cache->uc_frees;
3391	}
3392	allocs += z->uz_allocs;
3393	frees += z->uz_frees;
3394	sleeps += z->uz_sleeps;
3395	if (cachefreep != NULL)
3396		*cachefreep = cachefree;
3397	if (allocsp != NULL)
3398		*allocsp = allocs;
3399	if (freesp != NULL)
3400		*freesp = frees;
3401	if (sleepsp != NULL)
3402		*sleepsp = sleeps;
3403}
3404#endif /* DDB */
3405
3406static int
3407sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3408{
3409	uma_keg_t kz;
3410	uma_zone_t z;
3411	int count;
3412
3413	count = 0;
3414	rw_rlock(&uma_rwlock);
3415	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3416		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3417			count++;
3418	}
3419	rw_runlock(&uma_rwlock);
3420	return (sysctl_handle_int(oidp, &count, 0, req));
3421}
3422
3423static int
3424sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3425{
3426	struct uma_stream_header ush;
3427	struct uma_type_header uth;
3428	struct uma_percpu_stat *ups;
3429	uma_bucket_t bucket;
3430	struct sbuf sbuf;
3431	uma_cache_t cache;
3432	uma_klink_t kl;
3433	uma_keg_t kz;
3434	uma_zone_t z;
3435	uma_keg_t k;
3436	int count, error, i;
3437
3438	error = sysctl_wire_old_buffer(req, 0);
3439	if (error != 0)
3440		return (error);
3441	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3442	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
3443	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
3444
3445	count = 0;
3446	rw_rlock(&uma_rwlock);
3447	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3448		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3449			count++;
3450	}
3451
3452	/*
3453	 * Insert stream header.
3454	 */
3455	bzero(&ush, sizeof(ush));
3456	ush.ush_version = UMA_STREAM_VERSION;
3457	ush.ush_maxcpus = (mp_maxid + 1);
3458	ush.ush_count = count;
3459	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3460
3461	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3462		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3463			bzero(&uth, sizeof(uth));
3464			ZONE_LOCK(z);
3465			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3466			uth.uth_align = kz->uk_align;
3467			uth.uth_size = kz->uk_size;
3468			uth.uth_rsize = kz->uk_rsize;
3469			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3470				k = kl->kl_keg;
3471				uth.uth_maxpages += k->uk_maxpages;
3472				uth.uth_pages += k->uk_pages;
3473				uth.uth_keg_free += k->uk_free;
3474				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3475				    * k->uk_ipers;
3476			}
3477
3478			/*
3479			 * A zone is secondary is it is not the first entry
3480			 * on the keg's zone list.
3481			 */
3482			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3483			    (LIST_FIRST(&kz->uk_zones) != z))
3484				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3485
3486			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3487				uth.uth_zone_free += bucket->ub_cnt;
3488			uth.uth_allocs = z->uz_allocs;
3489			uth.uth_frees = z->uz_frees;
3490			uth.uth_fails = z->uz_fails;
3491			uth.uth_sleeps = z->uz_sleeps;
3492			/*
3493			 * While it is not normally safe to access the cache
3494			 * bucket pointers while not on the CPU that owns the
3495			 * cache, we only allow the pointers to be exchanged
3496			 * without the zone lock held, not invalidated, so
3497			 * accept the possible race associated with bucket
3498			 * exchange during monitoring.
3499			 */
3500			for (i = 0; i < mp_maxid + 1; i++) {
3501				bzero(&ups[i], sizeof(*ups));
3502				if (kz->uk_flags & UMA_ZFLAG_INTERNAL ||
3503				    CPU_ABSENT(i))
3504					continue;
3505				cache = &z->uz_cpu[i];
3506				if (cache->uc_allocbucket != NULL)
3507					ups[i].ups_cache_free +=
3508					    cache->uc_allocbucket->ub_cnt;
3509				if (cache->uc_freebucket != NULL)
3510					ups[i].ups_cache_free +=
3511					    cache->uc_freebucket->ub_cnt;
3512				ups[i].ups_allocs = cache->uc_allocs;
3513				ups[i].ups_frees = cache->uc_frees;
3514			}
3515			ZONE_UNLOCK(z);
3516			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3517			for (i = 0; i < mp_maxid + 1; i++)
3518				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
3519		}
3520	}
3521	rw_runlock(&uma_rwlock);
3522	error = sbuf_finish(&sbuf);
3523	sbuf_delete(&sbuf);
3524	free(ups, M_TEMP);
3525	return (error);
3526}
3527
3528int
3529sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3530{
3531	uma_zone_t zone = *(uma_zone_t *)arg1;
3532	int error, max;
3533
3534	max = uma_zone_get_max(zone);
3535	error = sysctl_handle_int(oidp, &max, 0, req);
3536	if (error || !req->newptr)
3537		return (error);
3538
3539	uma_zone_set_max(zone, max);
3540
3541	return (0);
3542}
3543
3544int
3545sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3546{
3547	uma_zone_t zone = *(uma_zone_t *)arg1;
3548	int cur;
3549
3550	cur = uma_zone_get_cur(zone);
3551	return (sysctl_handle_int(oidp, &cur, 0, req));
3552}
3553
3554#ifdef INVARIANTS
3555static uma_slab_t
3556uma_dbg_getslab(uma_zone_t zone, void *item)
3557{
3558	uma_slab_t slab;
3559	uma_keg_t keg;
3560	uint8_t *mem;
3561
3562	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
3563	if (zone->uz_flags & UMA_ZONE_VTOSLAB) {
3564		slab = vtoslab((vm_offset_t)mem);
3565	} else {
3566		/*
3567		 * It is safe to return the slab here even though the
3568		 * zone is unlocked because the item's allocation state
3569		 * essentially holds a reference.
3570		 */
3571		ZONE_LOCK(zone);
3572		keg = LIST_FIRST(&zone->uz_kegs)->kl_keg;
3573		if (keg->uk_flags & UMA_ZONE_HASH)
3574			slab = hash_sfind(&keg->uk_hash, mem);
3575		else
3576			slab = (uma_slab_t)(mem + keg->uk_pgoff);
3577		ZONE_UNLOCK(zone);
3578	}
3579
3580	return (slab);
3581}
3582
3583/*
3584 * Set up the slab's freei data such that uma_dbg_free can function.
3585 *
3586 */
3587static void
3588uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
3589{
3590	uma_keg_t keg;
3591	int freei;
3592
3593	if (zone_first_keg(zone) == NULL)
3594		return;
3595	if (slab == NULL) {
3596		slab = uma_dbg_getslab(zone, item);
3597		if (slab == NULL)
3598			panic("uma: item %p did not belong to zone %s\n",
3599			    item, zone->uz_name);
3600	}
3601	keg = slab->us_keg;
3602	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3603
3604	if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3605		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
3606		    item, zone, zone->uz_name, slab, freei);
3607	BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3608
3609	return;
3610}
3611
3612/*
3613 * Verifies freed addresses.  Checks for alignment, valid slab membership
3614 * and duplicate frees.
3615 *
3616 */
3617static void
3618uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
3619{
3620	uma_keg_t keg;
3621	int freei;
3622
3623	if (zone_first_keg(zone) == NULL)
3624		return;
3625	if (slab == NULL) {
3626		slab = uma_dbg_getslab(zone, item);
3627		if (slab == NULL)
3628			panic("uma: Freed item %p did not belong to zone %s\n",
3629			    item, zone->uz_name);
3630	}
3631	keg = slab->us_keg;
3632	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3633
3634	if (freei >= keg->uk_ipers)
3635		panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
3636		    item, zone, zone->uz_name, slab, freei);
3637
3638	if (((freei * keg->uk_rsize) + slab->us_data) != item)
3639		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
3640		    item, zone, zone->uz_name, slab, freei);
3641
3642	if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3643		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
3644		    item, zone, zone->uz_name, slab, freei);
3645
3646	BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3647}
3648#endif /* INVARIANTS */
3649
3650#ifdef DDB
3651DB_SHOW_COMMAND(uma, db_show_uma)
3652{
3653	uint64_t allocs, frees, sleeps;
3654	uma_bucket_t bucket;
3655	uma_keg_t kz;
3656	uma_zone_t z;
3657	int cachefree;
3658
3659	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3660	    "Free", "Requests", "Sleeps", "Bucket");
3661	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3662		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3663			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3664				allocs = z->uz_allocs;
3665				frees = z->uz_frees;
3666				sleeps = z->uz_sleeps;
3667				cachefree = 0;
3668			} else
3669				uma_zone_sumstat(z, &cachefree, &allocs,
3670				    &frees, &sleeps);
3671			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3672			    (LIST_FIRST(&kz->uk_zones) != z)))
3673				cachefree += kz->uk_free;
3674			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3675				cachefree += bucket->ub_cnt;
3676			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3677			    z->uz_name, (uintmax_t)kz->uk_size,
3678			    (intmax_t)(allocs - frees), cachefree,
3679			    (uintmax_t)allocs, sleeps, z->uz_count);
3680			if (db_pager_quit)
3681				return;
3682		}
3683	}
3684}
3685
3686DB_SHOW_COMMAND(umacache, db_show_umacache)
3687{
3688	uint64_t allocs, frees;
3689	uma_bucket_t bucket;
3690	uma_zone_t z;
3691	int cachefree;
3692
3693	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3694	    "Requests", "Bucket");
3695	LIST_FOREACH(z, &uma_cachezones, uz_link) {
3696		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3697		LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3698			cachefree += bucket->ub_cnt;
3699		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3700		    z->uz_name, (uintmax_t)z->uz_size,
3701		    (intmax_t)(allocs - frees), cachefree,
3702		    (uintmax_t)allocs, z->uz_count);
3703		if (db_pager_quit)
3704			return;
3705	}
3706}
3707#endif	/* DDB */
3708