uma_core.c revision 338389
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * efficient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/11/sys/vm/uma_core.c 338389 2018-08-29 17:58:01Z markj $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/eventhandler.h>
68#include <sys/kernel.h>
69#include <sys/types.h>
70#include <sys/queue.h>
71#include <sys/malloc.h>
72#include <sys/ktr.h>
73#include <sys/lock.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/random.h>
78#include <sys/rwlock.h>
79#include <sys/sbuf.h>
80#include <sys/sched.h>
81#include <sys/smp.h>
82#include <sys/taskqueue.h>
83#include <sys/vmmeter.h>
84
85#include <vm/vm.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_param.h>
90#include <vm/vm_map.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94#include <vm/uma_int.h>
95#include <vm/uma_dbg.h>
96
97#include <ddb/ddb.h>
98
99#ifdef DEBUG_MEMGUARD
100#include <vm/memguard.h>
101#endif
102
103/*
104 * This is the zone and keg from which all zones are spawned.  The idea is that
105 * even the zone & keg heads are allocated from the allocator, so we use the
106 * bss section to bootstrap us.
107 */
108static struct uma_keg masterkeg;
109static struct uma_zone masterzone_k;
110static struct uma_zone masterzone_z;
111static uma_zone_t kegs = &masterzone_k;
112static uma_zone_t zones = &masterzone_z;
113
114/* This is the zone from which all of uma_slab_t's are allocated. */
115static uma_zone_t slabzone;
116
117/*
118 * The initial hash tables come out of this zone so they can be allocated
119 * prior to malloc coming up.
120 */
121static uma_zone_t hashzone;
122
123/* The boot-time adjusted value for cache line alignment. */
124int uma_align_cache = 64 - 1;
125
126static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
127
128/*
129 * Are we allowed to allocate buckets?
130 */
131static int bucketdisable = 1;
132
133/* Linked list of all kegs in the system */
134static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
135
136/* Linked list of all cache-only zones in the system */
137static LIST_HEAD(,uma_zone) uma_cachezones =
138    LIST_HEAD_INITIALIZER(uma_cachezones);
139
140/* This RW lock protects the keg list */
141static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
142
143/* Linked list of boot time pages */
144static LIST_HEAD(,uma_slab) uma_boot_pages =
145    LIST_HEAD_INITIALIZER(uma_boot_pages);
146
147/* This mutex protects the boot time pages list */
148static struct mtx_padalign uma_boot_pages_mtx;
149
150static struct sx uma_drain_lock;
151
152/* Is the VM done starting up? */
153static int booted = 0;
154#define	UMA_STARTUP	1
155#define	UMA_STARTUP2	2
156
157/*
158 * This is the handle used to schedule events that need to happen
159 * outside of the allocation fast path.
160 */
161static struct callout uma_callout;
162#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
163
164/*
165 * This structure is passed as the zone ctor arg so that I don't have to create
166 * a special allocation function just for zones.
167 */
168struct uma_zctor_args {
169	const char *name;
170	size_t size;
171	uma_ctor ctor;
172	uma_dtor dtor;
173	uma_init uminit;
174	uma_fini fini;
175	uma_import import;
176	uma_release release;
177	void *arg;
178	uma_keg_t keg;
179	int align;
180	uint32_t flags;
181};
182
183struct uma_kctor_args {
184	uma_zone_t zone;
185	size_t size;
186	uma_init uminit;
187	uma_fini fini;
188	int align;
189	uint32_t flags;
190};
191
192struct uma_bucket_zone {
193	uma_zone_t	ubz_zone;
194	char		*ubz_name;
195	int		ubz_entries;	/* Number of items it can hold. */
196	int		ubz_maxsize;	/* Maximum allocation size per-item. */
197};
198
199/*
200 * Compute the actual number of bucket entries to pack them in power
201 * of two sizes for more efficient space utilization.
202 */
203#define	BUCKET_SIZE(n)						\
204    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
205
206#define	BUCKET_MAX	BUCKET_SIZE(256)
207
208struct uma_bucket_zone bucket_zones[] = {
209	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
210	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
211	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
212	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
213	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
214	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
215	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
216	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
217	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
218	{ NULL, NULL, 0}
219};
220
221/*
222 * Flags and enumerations to be passed to internal functions.
223 */
224enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
225
226/* Prototypes.. */
227
228static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
229static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
230static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
231static void page_free(void *, vm_size_t, uint8_t);
232static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
233static void cache_drain(uma_zone_t);
234static void bucket_drain(uma_zone_t, uma_bucket_t);
235static void bucket_cache_drain(uma_zone_t zone);
236static int keg_ctor(void *, int, void *, int);
237static void keg_dtor(void *, int, void *);
238static int zone_ctor(void *, int, void *, int);
239static void zone_dtor(void *, int, void *);
240static int zero_init(void *, int, int);
241static void keg_small_init(uma_keg_t keg);
242static void keg_large_init(uma_keg_t keg);
243static void zone_foreach(void (*zfunc)(uma_zone_t));
244static void zone_timeout(uma_zone_t zone);
245static int hash_alloc(struct uma_hash *);
246static int hash_expand(struct uma_hash *, struct uma_hash *);
247static void hash_free(struct uma_hash *hash);
248static void uma_timeout(void *);
249static void uma_startup3(void);
250static void *zone_alloc_item(uma_zone_t, void *, int);
251static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
252static void bucket_enable(void);
253static void bucket_init(void);
254static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
255static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
256static void bucket_zone_drain(void);
257static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
258static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
259static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
260static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
261static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
262static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
263    uma_fini fini, int align, uint32_t flags);
264static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
265static void zone_release(uma_zone_t zone, void **bucket, int cnt);
266static void uma_zero_item(void *item, uma_zone_t zone);
267
268void uma_print_zone(uma_zone_t);
269void uma_print_stats(void);
270static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
271static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
272
273#ifdef INVARIANTS
274static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
275static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
276#endif
277
278SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
279
280SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
281    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
282
283SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
284    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
285
286static int zone_warnings = 1;
287SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
288    "Warn when UMA zones becomes full");
289
290/*
291 * This routine checks to see whether or not it's safe to enable buckets.
292 */
293static void
294bucket_enable(void)
295{
296	bucketdisable = vm_page_count_min();
297}
298
299/*
300 * Initialize bucket_zones, the array of zones of buckets of various sizes.
301 *
302 * For each zone, calculate the memory required for each bucket, consisting
303 * of the header and an array of pointers.
304 */
305static void
306bucket_init(void)
307{
308	struct uma_bucket_zone *ubz;
309	int size;
310
311	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
312		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
313		size += sizeof(void *) * ubz->ubz_entries;
314		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
315		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
316		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
317	}
318}
319
320/*
321 * Given a desired number of entries for a bucket, return the zone from which
322 * to allocate the bucket.
323 */
324static struct uma_bucket_zone *
325bucket_zone_lookup(int entries)
326{
327	struct uma_bucket_zone *ubz;
328
329	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
330		if (ubz->ubz_entries >= entries)
331			return (ubz);
332	ubz--;
333	return (ubz);
334}
335
336static int
337bucket_select(int size)
338{
339	struct uma_bucket_zone *ubz;
340
341	ubz = &bucket_zones[0];
342	if (size > ubz->ubz_maxsize)
343		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
344
345	for (; ubz->ubz_entries != 0; ubz++)
346		if (ubz->ubz_maxsize < size)
347			break;
348	ubz--;
349	return (ubz->ubz_entries);
350}
351
352static uma_bucket_t
353bucket_alloc(uma_zone_t zone, void *udata, int flags)
354{
355	struct uma_bucket_zone *ubz;
356	uma_bucket_t bucket;
357
358	/*
359	 * This is to stop us from allocating per cpu buckets while we're
360	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
361	 * boot pages.  This also prevents us from allocating buckets in
362	 * low memory situations.
363	 */
364	if (bucketdisable)
365		return (NULL);
366	/*
367	 * To limit bucket recursion we store the original zone flags
368	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
369	 * NOVM flag to persist even through deep recursions.  We also
370	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
371	 * a bucket for a bucket zone so we do not allow infinite bucket
372	 * recursion.  This cookie will even persist to frees of unused
373	 * buckets via the allocation path or bucket allocations in the
374	 * free path.
375	 */
376	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
377		udata = (void *)(uintptr_t)zone->uz_flags;
378	else {
379		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
380			return (NULL);
381		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
382	}
383	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
384		flags |= M_NOVM;
385	ubz = bucket_zone_lookup(zone->uz_count);
386	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
387		ubz++;
388	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
389	if (bucket) {
390#ifdef INVARIANTS
391		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
392#endif
393		bucket->ub_cnt = 0;
394		bucket->ub_entries = ubz->ubz_entries;
395	}
396
397	return (bucket);
398}
399
400static void
401bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
402{
403	struct uma_bucket_zone *ubz;
404
405	KASSERT(bucket->ub_cnt == 0,
406	    ("bucket_free: Freeing a non free bucket."));
407	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
408		udata = (void *)(uintptr_t)zone->uz_flags;
409	ubz = bucket_zone_lookup(bucket->ub_entries);
410	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
411}
412
413static void
414bucket_zone_drain(void)
415{
416	struct uma_bucket_zone *ubz;
417
418	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
419		zone_drain(ubz->ubz_zone);
420}
421
422static void
423zone_log_warning(uma_zone_t zone)
424{
425	static const struct timeval warninterval = { 300, 0 };
426
427	if (!zone_warnings || zone->uz_warning == NULL)
428		return;
429
430	if (ratecheck(&zone->uz_ratecheck, &warninterval))
431		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
432}
433
434static inline void
435zone_maxaction(uma_zone_t zone)
436{
437
438	if (zone->uz_maxaction.ta_func != NULL)
439		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
440}
441
442static void
443zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
444{
445	uma_klink_t klink;
446
447	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
448		kegfn(klink->kl_keg);
449}
450
451/*
452 * Routine called by timeout which is used to fire off some time interval
453 * based calculations.  (stats, hash size, etc.)
454 *
455 * Arguments:
456 *	arg   Unused
457 *
458 * Returns:
459 *	Nothing
460 */
461static void
462uma_timeout(void *unused)
463{
464	bucket_enable();
465	zone_foreach(zone_timeout);
466
467	/* Reschedule this event */
468	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
469}
470
471/*
472 * Routine to perform timeout driven calculations.  This expands the
473 * hashes and does per cpu statistics aggregation.
474 *
475 *  Returns nothing.
476 */
477static void
478keg_timeout(uma_keg_t keg)
479{
480
481	KEG_LOCK(keg);
482	/*
483	 * Expand the keg hash table.
484	 *
485	 * This is done if the number of slabs is larger than the hash size.
486	 * What I'm trying to do here is completely reduce collisions.  This
487	 * may be a little aggressive.  Should I allow for two collisions max?
488	 */
489	if (keg->uk_flags & UMA_ZONE_HASH &&
490	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
491		struct uma_hash newhash;
492		struct uma_hash oldhash;
493		int ret;
494
495		/*
496		 * This is so involved because allocating and freeing
497		 * while the keg lock is held will lead to deadlock.
498		 * I have to do everything in stages and check for
499		 * races.
500		 */
501		newhash = keg->uk_hash;
502		KEG_UNLOCK(keg);
503		ret = hash_alloc(&newhash);
504		KEG_LOCK(keg);
505		if (ret) {
506			if (hash_expand(&keg->uk_hash, &newhash)) {
507				oldhash = keg->uk_hash;
508				keg->uk_hash = newhash;
509			} else
510				oldhash = newhash;
511
512			KEG_UNLOCK(keg);
513			hash_free(&oldhash);
514			return;
515		}
516	}
517	KEG_UNLOCK(keg);
518}
519
520static void
521zone_timeout(uma_zone_t zone)
522{
523
524	zone_foreach_keg(zone, &keg_timeout);
525}
526
527/*
528 * Allocate and zero fill the next sized hash table from the appropriate
529 * backing store.
530 *
531 * Arguments:
532 *	hash  A new hash structure with the old hash size in uh_hashsize
533 *
534 * Returns:
535 *	1 on success and 0 on failure.
536 */
537static int
538hash_alloc(struct uma_hash *hash)
539{
540	int oldsize;
541	int alloc;
542
543	oldsize = hash->uh_hashsize;
544
545	/* We're just going to go to a power of two greater */
546	if (oldsize)  {
547		hash->uh_hashsize = oldsize * 2;
548		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
549		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
550		    M_UMAHASH, M_NOWAIT);
551	} else {
552		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
553		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
554		    M_WAITOK);
555		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
556	}
557	if (hash->uh_slab_hash) {
558		bzero(hash->uh_slab_hash, alloc);
559		hash->uh_hashmask = hash->uh_hashsize - 1;
560		return (1);
561	}
562
563	return (0);
564}
565
566/*
567 * Expands the hash table for HASH zones.  This is done from zone_timeout
568 * to reduce collisions.  This must not be done in the regular allocation
569 * path, otherwise, we can recurse on the vm while allocating pages.
570 *
571 * Arguments:
572 *	oldhash  The hash you want to expand
573 *	newhash  The hash structure for the new table
574 *
575 * Returns:
576 *	Nothing
577 *
578 * Discussion:
579 */
580static int
581hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
582{
583	uma_slab_t slab;
584	int hval;
585	int i;
586
587	if (!newhash->uh_slab_hash)
588		return (0);
589
590	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
591		return (0);
592
593	/*
594	 * I need to investigate hash algorithms for resizing without a
595	 * full rehash.
596	 */
597
598	for (i = 0; i < oldhash->uh_hashsize; i++)
599		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
600			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
601			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
602			hval = UMA_HASH(newhash, slab->us_data);
603			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
604			    slab, us_hlink);
605		}
606
607	return (1);
608}
609
610/*
611 * Free the hash bucket to the appropriate backing store.
612 *
613 * Arguments:
614 *	slab_hash  The hash bucket we're freeing
615 *	hashsize   The number of entries in that hash bucket
616 *
617 * Returns:
618 *	Nothing
619 */
620static void
621hash_free(struct uma_hash *hash)
622{
623	if (hash->uh_slab_hash == NULL)
624		return;
625	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
626		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
627	else
628		free(hash->uh_slab_hash, M_UMAHASH);
629}
630
631/*
632 * Frees all outstanding items in a bucket
633 *
634 * Arguments:
635 *	zone   The zone to free to, must be unlocked.
636 *	bucket The free/alloc bucket with items, cpu queue must be locked.
637 *
638 * Returns:
639 *	Nothing
640 */
641
642static void
643bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
644{
645	int i;
646
647	if (bucket == NULL)
648		return;
649
650	if (zone->uz_fini)
651		for (i = 0; i < bucket->ub_cnt; i++)
652			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
653	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
654	bucket->ub_cnt = 0;
655}
656
657/*
658 * Drains the per cpu caches for a zone.
659 *
660 * NOTE: This may only be called while the zone is being turn down, and not
661 * during normal operation.  This is necessary in order that we do not have
662 * to migrate CPUs to drain the per-CPU caches.
663 *
664 * Arguments:
665 *	zone     The zone to drain, must be unlocked.
666 *
667 * Returns:
668 *	Nothing
669 */
670static void
671cache_drain(uma_zone_t zone)
672{
673	uma_cache_t cache;
674	int cpu;
675
676	/*
677	 * XXX: It is safe to not lock the per-CPU caches, because we're
678	 * tearing down the zone anyway.  I.e., there will be no further use
679	 * of the caches at this point.
680	 *
681	 * XXX: It would good to be able to assert that the zone is being
682	 * torn down to prevent improper use of cache_drain().
683	 *
684	 * XXX: We lock the zone before passing into bucket_cache_drain() as
685	 * it is used elsewhere.  Should the tear-down path be made special
686	 * there in some form?
687	 */
688	CPU_FOREACH(cpu) {
689		cache = &zone->uz_cpu[cpu];
690		bucket_drain(zone, cache->uc_allocbucket);
691		bucket_drain(zone, cache->uc_freebucket);
692		if (cache->uc_allocbucket != NULL)
693			bucket_free(zone, cache->uc_allocbucket, NULL);
694		if (cache->uc_freebucket != NULL)
695			bucket_free(zone, cache->uc_freebucket, NULL);
696		cache->uc_allocbucket = cache->uc_freebucket = NULL;
697	}
698	ZONE_LOCK(zone);
699	bucket_cache_drain(zone);
700	ZONE_UNLOCK(zone);
701}
702
703static void
704cache_shrink(uma_zone_t zone)
705{
706
707	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
708		return;
709
710	ZONE_LOCK(zone);
711	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
712	ZONE_UNLOCK(zone);
713}
714
715static void
716cache_drain_safe_cpu(uma_zone_t zone)
717{
718	uma_cache_t cache;
719	uma_bucket_t b1, b2;
720
721	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
722		return;
723
724	b1 = b2 = NULL;
725	ZONE_LOCK(zone);
726	critical_enter();
727	cache = &zone->uz_cpu[curcpu];
728	if (cache->uc_allocbucket) {
729		if (cache->uc_allocbucket->ub_cnt != 0)
730			LIST_INSERT_HEAD(&zone->uz_buckets,
731			    cache->uc_allocbucket, ub_link);
732		else
733			b1 = cache->uc_allocbucket;
734		cache->uc_allocbucket = NULL;
735	}
736	if (cache->uc_freebucket) {
737		if (cache->uc_freebucket->ub_cnt != 0)
738			LIST_INSERT_HEAD(&zone->uz_buckets,
739			    cache->uc_freebucket, ub_link);
740		else
741			b2 = cache->uc_freebucket;
742		cache->uc_freebucket = NULL;
743	}
744	critical_exit();
745	ZONE_UNLOCK(zone);
746	if (b1)
747		bucket_free(zone, b1, NULL);
748	if (b2)
749		bucket_free(zone, b2, NULL);
750}
751
752/*
753 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
754 * This is an expensive call because it needs to bind to all CPUs
755 * one by one and enter a critical section on each of them in order
756 * to safely access their cache buckets.
757 * Zone lock must not be held on call this function.
758 */
759static void
760cache_drain_safe(uma_zone_t zone)
761{
762	int cpu;
763
764	/*
765	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
766	 */
767	if (zone)
768		cache_shrink(zone);
769	else
770		zone_foreach(cache_shrink);
771
772	CPU_FOREACH(cpu) {
773		thread_lock(curthread);
774		sched_bind(curthread, cpu);
775		thread_unlock(curthread);
776
777		if (zone)
778			cache_drain_safe_cpu(zone);
779		else
780			zone_foreach(cache_drain_safe_cpu);
781	}
782	thread_lock(curthread);
783	sched_unbind(curthread);
784	thread_unlock(curthread);
785}
786
787/*
788 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
789 */
790static void
791bucket_cache_drain(uma_zone_t zone)
792{
793	uma_bucket_t bucket;
794
795	/*
796	 * Drain the bucket queues and free the buckets, we just keep two per
797	 * cpu (alloc/free).
798	 */
799	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
800		LIST_REMOVE(bucket, ub_link);
801		ZONE_UNLOCK(zone);
802		bucket_drain(zone, bucket);
803		bucket_free(zone, bucket, NULL);
804		ZONE_LOCK(zone);
805	}
806
807	/*
808	 * Shrink further bucket sizes.  Price of single zone lock collision
809	 * is probably lower then price of global cache drain.
810	 */
811	if (zone->uz_count > zone->uz_count_min)
812		zone->uz_count--;
813}
814
815static void
816keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
817{
818	uint8_t *mem;
819	int i;
820	uint8_t flags;
821
822	mem = slab->us_data;
823	flags = slab->us_flags;
824	i = start;
825	if (keg->uk_fini != NULL) {
826		for (i--; i > -1; i--)
827			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
828			    keg->uk_size);
829	}
830	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
831		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
832#ifdef UMA_DEBUG
833	printf("%s: Returning %d bytes.\n", keg->uk_name,
834	    PAGE_SIZE * keg->uk_ppera);
835#endif
836	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
837}
838
839/*
840 * Frees pages from a keg back to the system.  This is done on demand from
841 * the pageout daemon.
842 *
843 * Returns nothing.
844 */
845static void
846keg_drain(uma_keg_t keg)
847{
848	struct slabhead freeslabs = { 0 };
849	uma_slab_t slab, tmp;
850
851	/*
852	 * We don't want to take pages from statically allocated kegs at this
853	 * time
854	 */
855	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
856		return;
857
858#ifdef UMA_DEBUG
859	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
860#endif
861	KEG_LOCK(keg);
862	if (keg->uk_free == 0)
863		goto finished;
864
865	LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) {
866		/* We have nowhere to free these to. */
867		if (slab->us_flags & UMA_SLAB_BOOT)
868			continue;
869
870		LIST_REMOVE(slab, us_link);
871		keg->uk_pages -= keg->uk_ppera;
872		keg->uk_free -= keg->uk_ipers;
873
874		if (keg->uk_flags & UMA_ZONE_HASH)
875			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
876
877		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
878	}
879finished:
880	KEG_UNLOCK(keg);
881
882	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
883		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
884		keg_free_slab(keg, slab, keg->uk_ipers);
885	}
886}
887
888static void
889zone_drain_wait(uma_zone_t zone, int waitok)
890{
891
892	/*
893	 * Set draining to interlock with zone_dtor() so we can release our
894	 * locks as we go.  Only dtor() should do a WAITOK call since it
895	 * is the only call that knows the structure will still be available
896	 * when it wakes up.
897	 */
898	ZONE_LOCK(zone);
899	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
900		if (waitok == M_NOWAIT)
901			goto out;
902		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
903	}
904	zone->uz_flags |= UMA_ZFLAG_DRAINING;
905	bucket_cache_drain(zone);
906	ZONE_UNLOCK(zone);
907	/*
908	 * The DRAINING flag protects us from being freed while
909	 * we're running.  Normally the uma_rwlock would protect us but we
910	 * must be able to release and acquire the right lock for each keg.
911	 */
912	zone_foreach_keg(zone, &keg_drain);
913	ZONE_LOCK(zone);
914	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
915	wakeup(zone);
916out:
917	ZONE_UNLOCK(zone);
918}
919
920void
921zone_drain(uma_zone_t zone)
922{
923
924	zone_drain_wait(zone, M_NOWAIT);
925}
926
927/*
928 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
929 *
930 * Arguments:
931 *	wait  Shall we wait?
932 *
933 * Returns:
934 *	The slab that was allocated or NULL if there is no memory and the
935 *	caller specified M_NOWAIT.
936 */
937static uma_slab_t
938keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
939{
940	uma_alloc allocf;
941	uma_slab_t slab;
942	uint8_t *mem;
943	uint8_t flags;
944	int i;
945
946	mtx_assert(&keg->uk_lock, MA_OWNED);
947	slab = NULL;
948	mem = NULL;
949
950#ifdef UMA_DEBUG
951	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
952#endif
953	allocf = keg->uk_allocf;
954	KEG_UNLOCK(keg);
955
956	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
957		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
958		if (slab == NULL)
959			goto out;
960	}
961
962	/*
963	 * This reproduces the old vm_zone behavior of zero filling pages the
964	 * first time they are added to a zone.
965	 *
966	 * Malloced items are zeroed in uma_zalloc.
967	 */
968
969	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
970		wait |= M_ZERO;
971	else
972		wait &= ~M_ZERO;
973
974	if (keg->uk_flags & UMA_ZONE_NODUMP)
975		wait |= M_NODUMP;
976
977	/* zone is passed for legacy reasons. */
978	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
979	if (mem == NULL) {
980		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
981			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
982		slab = NULL;
983		goto out;
984	}
985
986	/* Point the slab into the allocated memory */
987	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
988		slab = (uma_slab_t )(mem + keg->uk_pgoff);
989
990	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
991		for (i = 0; i < keg->uk_ppera; i++)
992			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
993
994	slab->us_keg = keg;
995	slab->us_data = mem;
996	slab->us_freecount = keg->uk_ipers;
997	slab->us_flags = flags;
998	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
999#ifdef INVARIANTS
1000	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1001#endif
1002
1003	if (keg->uk_init != NULL) {
1004		for (i = 0; i < keg->uk_ipers; i++)
1005			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1006			    keg->uk_size, wait) != 0)
1007				break;
1008		if (i != keg->uk_ipers) {
1009			keg_free_slab(keg, slab, i);
1010			slab = NULL;
1011			goto out;
1012		}
1013	}
1014out:
1015	KEG_LOCK(keg);
1016
1017	if (slab != NULL) {
1018		if (keg->uk_flags & UMA_ZONE_HASH)
1019			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1020
1021		keg->uk_pages += keg->uk_ppera;
1022		keg->uk_free += keg->uk_ipers;
1023	}
1024
1025	return (slab);
1026}
1027
1028/*
1029 * This function is intended to be used early on in place of page_alloc() so
1030 * that we may use the boot time page cache to satisfy allocations before
1031 * the VM is ready.
1032 */
1033static void *
1034startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1035{
1036	uma_keg_t keg;
1037	uma_slab_t tmps;
1038	int pages, check_pages;
1039
1040	keg = zone_first_keg(zone);
1041	pages = howmany(bytes, PAGE_SIZE);
1042	check_pages = pages - 1;
1043	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1044
1045	/*
1046	 * Check our small startup cache to see if it has pages remaining.
1047	 */
1048	mtx_lock(&uma_boot_pages_mtx);
1049
1050	/* First check if we have enough room. */
1051	tmps = LIST_FIRST(&uma_boot_pages);
1052	while (tmps != NULL && check_pages-- > 0)
1053		tmps = LIST_NEXT(tmps, us_link);
1054	if (tmps != NULL) {
1055		/*
1056		 * It's ok to lose tmps references.  The last one will
1057		 * have tmps->us_data pointing to the start address of
1058		 * "pages" contiguous pages of memory.
1059		 */
1060		while (pages-- > 0) {
1061			tmps = LIST_FIRST(&uma_boot_pages);
1062			LIST_REMOVE(tmps, us_link);
1063		}
1064		mtx_unlock(&uma_boot_pages_mtx);
1065		*pflag = tmps->us_flags;
1066		return (tmps->us_data);
1067	}
1068	mtx_unlock(&uma_boot_pages_mtx);
1069	if (booted < UMA_STARTUP2)
1070		panic("UMA: Increase vm.boot_pages");
1071	/*
1072	 * Now that we've booted reset these users to their real allocator.
1073	 */
1074#ifdef UMA_MD_SMALL_ALLOC
1075	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1076#else
1077	keg->uk_allocf = page_alloc;
1078#endif
1079	return keg->uk_allocf(zone, bytes, pflag, wait);
1080}
1081
1082/*
1083 * Allocates a number of pages from the system
1084 *
1085 * Arguments:
1086 *	bytes  The number of bytes requested
1087 *	wait  Shall we wait?
1088 *
1089 * Returns:
1090 *	A pointer to the alloced memory or possibly
1091 *	NULL if M_NOWAIT is set.
1092 */
1093static void *
1094page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1095{
1096	void *p;	/* Returned page */
1097
1098	*pflag = UMA_SLAB_KMEM;
1099	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1100
1101	return (p);
1102}
1103
1104/*
1105 * Allocates a number of pages from within an object
1106 *
1107 * Arguments:
1108 *	bytes  The number of bytes requested
1109 *	wait   Shall we wait?
1110 *
1111 * Returns:
1112 *	A pointer to the alloced memory or possibly
1113 *	NULL if M_NOWAIT is set.
1114 */
1115static void *
1116noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
1117{
1118	TAILQ_HEAD(, vm_page) alloctail;
1119	u_long npages;
1120	vm_offset_t retkva, zkva;
1121	vm_page_t p, p_next;
1122	uma_keg_t keg;
1123
1124	TAILQ_INIT(&alloctail);
1125	keg = zone_first_keg(zone);
1126
1127	npages = howmany(bytes, PAGE_SIZE);
1128	while (npages > 0) {
1129		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1130		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1131		    ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1132		    VM_ALLOC_NOWAIT));
1133		if (p != NULL) {
1134			/*
1135			 * Since the page does not belong to an object, its
1136			 * listq is unused.
1137			 */
1138			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1139			npages--;
1140			continue;
1141		}
1142		/*
1143		 * Page allocation failed, free intermediate pages and
1144		 * exit.
1145		 */
1146		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1147			vm_page_unwire(p, PQ_NONE);
1148			vm_page_free(p);
1149		}
1150		return (NULL);
1151	}
1152	*flags = UMA_SLAB_PRIV;
1153	zkva = keg->uk_kva +
1154	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1155	retkva = zkva;
1156	TAILQ_FOREACH(p, &alloctail, listq) {
1157		pmap_qenter(zkva, &p, 1);
1158		zkva += PAGE_SIZE;
1159	}
1160
1161	return ((void *)retkva);
1162}
1163
1164/*
1165 * Frees a number of pages to the system
1166 *
1167 * Arguments:
1168 *	mem   A pointer to the memory to be freed
1169 *	size  The size of the memory being freed
1170 *	flags The original p->us_flags field
1171 *
1172 * Returns:
1173 *	Nothing
1174 */
1175static void
1176page_free(void *mem, vm_size_t size, uint8_t flags)
1177{
1178	struct vmem *vmem;
1179
1180	if (flags & UMA_SLAB_KMEM)
1181		vmem = kmem_arena;
1182	else if (flags & UMA_SLAB_KERNEL)
1183		vmem = kernel_arena;
1184	else
1185		panic("UMA: page_free used with invalid flags %d", flags);
1186
1187	kmem_free(vmem, (vm_offset_t)mem, size);
1188}
1189
1190/*
1191 * Zero fill initializer
1192 *
1193 * Arguments/Returns follow uma_init specifications
1194 */
1195static int
1196zero_init(void *mem, int size, int flags)
1197{
1198	bzero(mem, size);
1199	return (0);
1200}
1201
1202/*
1203 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1204 *
1205 * Arguments
1206 *	keg  The zone we should initialize
1207 *
1208 * Returns
1209 *	Nothing
1210 */
1211static void
1212keg_small_init(uma_keg_t keg)
1213{
1214	u_int rsize;
1215	u_int memused;
1216	u_int wastedspace;
1217	u_int shsize;
1218	u_int slabsize;
1219
1220	if (keg->uk_flags & UMA_ZONE_PCPU) {
1221		u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU;
1222
1223		slabsize = sizeof(struct pcpu);
1224		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1225		    PAGE_SIZE);
1226	} else {
1227		slabsize = UMA_SLAB_SIZE;
1228		keg->uk_ppera = 1;
1229	}
1230
1231	/*
1232	 * Calculate the size of each allocation (rsize) according to
1233	 * alignment.  If the requested size is smaller than we have
1234	 * allocation bits for we round it up.
1235	 */
1236	rsize = keg->uk_size;
1237	if (rsize < slabsize / SLAB_SETSIZE)
1238		rsize = slabsize / SLAB_SETSIZE;
1239	if (rsize & keg->uk_align)
1240		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1241	keg->uk_rsize = rsize;
1242
1243	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1244	    keg->uk_rsize < sizeof(struct pcpu),
1245	    ("%s: size %u too large", __func__, keg->uk_rsize));
1246
1247	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1248		shsize = 0;
1249	else
1250		shsize = sizeof(struct uma_slab);
1251
1252	if (rsize <= slabsize - shsize)
1253		keg->uk_ipers = (slabsize - shsize) / rsize;
1254	else {
1255		/* Handle special case when we have 1 item per slab, so
1256		 * alignment requirement can be relaxed. */
1257		KASSERT(keg->uk_size <= slabsize - shsize,
1258		    ("%s: size %u greater than slab", __func__, keg->uk_size));
1259		keg->uk_ipers = 1;
1260	}
1261	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1262	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1263
1264	memused = keg->uk_ipers * rsize + shsize;
1265	wastedspace = slabsize - memused;
1266
1267	/*
1268	 * We can't do OFFPAGE if we're internal or if we've been
1269	 * asked to not go to the VM for buckets.  If we do this we
1270	 * may end up going to the VM  for slabs which we do not
1271	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1272	 * of UMA_ZONE_VM, which clearly forbids it.
1273	 */
1274	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1275	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1276		return;
1277
1278	/*
1279	 * See if using an OFFPAGE slab will limit our waste.  Only do
1280	 * this if it permits more items per-slab.
1281	 *
1282	 * XXX We could try growing slabsize to limit max waste as well.
1283	 * Historically this was not done because the VM could not
1284	 * efficiently handle contiguous allocations.
1285	 */
1286	if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
1287	    (keg->uk_ipers < (slabsize / keg->uk_rsize))) {
1288		keg->uk_ipers = slabsize / keg->uk_rsize;
1289		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1290		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1291#ifdef UMA_DEBUG
1292		printf("UMA decided we need offpage slab headers for "
1293		    "keg: %s, calculated wastedspace = %d, "
1294		    "maximum wasted space allowed = %d, "
1295		    "calculated ipers = %d, "
1296		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1297		    slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1298		    slabsize - keg->uk_ipers * keg->uk_rsize);
1299#endif
1300		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1301	}
1302
1303	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1304	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1305		keg->uk_flags |= UMA_ZONE_HASH;
1306}
1307
1308/*
1309 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1310 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1311 * more complicated.
1312 *
1313 * Arguments
1314 *	keg  The keg we should initialize
1315 *
1316 * Returns
1317 *	Nothing
1318 */
1319static void
1320keg_large_init(uma_keg_t keg)
1321{
1322	u_int shsize;
1323
1324	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1325	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1326	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1327	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1328	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1329
1330	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1331	keg->uk_ipers = 1;
1332	keg->uk_rsize = keg->uk_size;
1333
1334	/* Check whether we have enough space to not do OFFPAGE. */
1335	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1336		shsize = sizeof(struct uma_slab);
1337		if (shsize & UMA_ALIGN_PTR)
1338			shsize = (shsize & ~UMA_ALIGN_PTR) +
1339			    (UMA_ALIGN_PTR + 1);
1340
1341		if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) {
1342			/*
1343			 * We can't do OFFPAGE if we're internal, in which case
1344			 * we need an extra page per allocation to contain the
1345			 * slab header.
1346			 */
1347			if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0)
1348				keg->uk_flags |= UMA_ZONE_OFFPAGE;
1349			else
1350				keg->uk_ppera++;
1351		}
1352	}
1353
1354	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1355	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1356		keg->uk_flags |= UMA_ZONE_HASH;
1357}
1358
1359static void
1360keg_cachespread_init(uma_keg_t keg)
1361{
1362	int alignsize;
1363	int trailer;
1364	int pages;
1365	int rsize;
1366
1367	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1368	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1369
1370	alignsize = keg->uk_align + 1;
1371	rsize = keg->uk_size;
1372	/*
1373	 * We want one item to start on every align boundary in a page.  To
1374	 * do this we will span pages.  We will also extend the item by the
1375	 * size of align if it is an even multiple of align.  Otherwise, it
1376	 * would fall on the same boundary every time.
1377	 */
1378	if (rsize & keg->uk_align)
1379		rsize = (rsize & ~keg->uk_align) + alignsize;
1380	if ((rsize & alignsize) == 0)
1381		rsize += alignsize;
1382	trailer = rsize - keg->uk_size;
1383	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1384	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1385	keg->uk_rsize = rsize;
1386	keg->uk_ppera = pages;
1387	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1388	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1389	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1390	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1391	    keg->uk_ipers));
1392}
1393
1394/*
1395 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1396 * the keg onto the global keg list.
1397 *
1398 * Arguments/Returns follow uma_ctor specifications
1399 *	udata  Actually uma_kctor_args
1400 */
1401static int
1402keg_ctor(void *mem, int size, void *udata, int flags)
1403{
1404	struct uma_kctor_args *arg = udata;
1405	uma_keg_t keg = mem;
1406	uma_zone_t zone;
1407
1408	bzero(keg, size);
1409	keg->uk_size = arg->size;
1410	keg->uk_init = arg->uminit;
1411	keg->uk_fini = arg->fini;
1412	keg->uk_align = arg->align;
1413	keg->uk_free = 0;
1414	keg->uk_reserve = 0;
1415	keg->uk_pages = 0;
1416	keg->uk_flags = arg->flags;
1417	keg->uk_allocf = page_alloc;
1418	keg->uk_freef = page_free;
1419	keg->uk_slabzone = NULL;
1420
1421	/*
1422	 * The master zone is passed to us at keg-creation time.
1423	 */
1424	zone = arg->zone;
1425	keg->uk_name = zone->uz_name;
1426
1427	if (arg->flags & UMA_ZONE_VM)
1428		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1429
1430	if (arg->flags & UMA_ZONE_ZINIT)
1431		keg->uk_init = zero_init;
1432
1433	if (arg->flags & UMA_ZONE_MALLOC)
1434		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1435
1436	if (arg->flags & UMA_ZONE_PCPU)
1437#ifdef SMP
1438		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1439#else
1440		keg->uk_flags &= ~UMA_ZONE_PCPU;
1441#endif
1442
1443	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1444		keg_cachespread_init(keg);
1445	} else {
1446		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1447			keg_large_init(keg);
1448		else
1449			keg_small_init(keg);
1450	}
1451
1452	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1453		keg->uk_slabzone = slabzone;
1454
1455	/*
1456	 * If we haven't booted yet we need allocations to go through the
1457	 * startup cache until the vm is ready.
1458	 */
1459	if (keg->uk_ppera == 1) {
1460#ifdef UMA_MD_SMALL_ALLOC
1461		keg->uk_allocf = uma_small_alloc;
1462		keg->uk_freef = uma_small_free;
1463
1464		if (booted < UMA_STARTUP)
1465			keg->uk_allocf = startup_alloc;
1466#else
1467		if (booted < UMA_STARTUP2)
1468			keg->uk_allocf = startup_alloc;
1469#endif
1470	} else if (booted < UMA_STARTUP2 &&
1471	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1472		keg->uk_allocf = startup_alloc;
1473
1474	/*
1475	 * Initialize keg's lock
1476	 */
1477	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1478
1479	/*
1480	 * If we're putting the slab header in the actual page we need to
1481	 * figure out where in each page it goes.  This calculates a right
1482	 * justified offset into the memory on an ALIGN_PTR boundary.
1483	 */
1484	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1485		u_int totsize;
1486
1487		/* Size of the slab struct and free list */
1488		totsize = sizeof(struct uma_slab);
1489
1490		if (totsize & UMA_ALIGN_PTR)
1491			totsize = (totsize & ~UMA_ALIGN_PTR) +
1492			    (UMA_ALIGN_PTR + 1);
1493		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1494
1495		/*
1496		 * The only way the following is possible is if with our
1497		 * UMA_ALIGN_PTR adjustments we are now bigger than
1498		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1499		 * mathematically possible for all cases, so we make
1500		 * sure here anyway.
1501		 */
1502		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1503		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1504			printf("zone %s ipers %d rsize %d size %d\n",
1505			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1506			    keg->uk_size);
1507			panic("UMA slab won't fit.");
1508		}
1509	}
1510
1511	if (keg->uk_flags & UMA_ZONE_HASH)
1512		hash_alloc(&keg->uk_hash);
1513
1514#ifdef UMA_DEBUG
1515	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1516	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1517	    keg->uk_ipers, keg->uk_ppera,
1518	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
1519	    keg->uk_free);
1520#endif
1521
1522	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1523
1524	rw_wlock(&uma_rwlock);
1525	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1526	rw_wunlock(&uma_rwlock);
1527	return (0);
1528}
1529
1530/*
1531 * Zone header ctor.  This initializes all fields, locks, etc.
1532 *
1533 * Arguments/Returns follow uma_ctor specifications
1534 *	udata  Actually uma_zctor_args
1535 */
1536static int
1537zone_ctor(void *mem, int size, void *udata, int flags)
1538{
1539	struct uma_zctor_args *arg = udata;
1540	uma_zone_t zone = mem;
1541	uma_zone_t z;
1542	uma_keg_t keg;
1543
1544	bzero(zone, size);
1545	zone->uz_name = arg->name;
1546	zone->uz_ctor = arg->ctor;
1547	zone->uz_dtor = arg->dtor;
1548	zone->uz_slab = zone_fetch_slab;
1549	zone->uz_init = NULL;
1550	zone->uz_fini = NULL;
1551	zone->uz_allocs = 0;
1552	zone->uz_frees = 0;
1553	zone->uz_fails = 0;
1554	zone->uz_sleeps = 0;
1555	zone->uz_count = 0;
1556	zone->uz_count_min = 0;
1557	zone->uz_flags = 0;
1558	zone->uz_warning = NULL;
1559	timevalclear(&zone->uz_ratecheck);
1560	keg = arg->keg;
1561
1562	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1563
1564	/*
1565	 * This is a pure cache zone, no kegs.
1566	 */
1567	if (arg->import) {
1568		if (arg->flags & UMA_ZONE_VM)
1569			arg->flags |= UMA_ZFLAG_CACHEONLY;
1570		zone->uz_flags = arg->flags;
1571		zone->uz_size = arg->size;
1572		zone->uz_import = arg->import;
1573		zone->uz_release = arg->release;
1574		zone->uz_arg = arg->arg;
1575		zone->uz_lockptr = &zone->uz_lock;
1576		rw_wlock(&uma_rwlock);
1577		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1578		rw_wunlock(&uma_rwlock);
1579		goto out;
1580	}
1581
1582	/*
1583	 * Use the regular zone/keg/slab allocator.
1584	 */
1585	zone->uz_import = (uma_import)zone_import;
1586	zone->uz_release = (uma_release)zone_release;
1587	zone->uz_arg = zone;
1588
1589	if (arg->flags & UMA_ZONE_SECONDARY) {
1590		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1591		zone->uz_init = arg->uminit;
1592		zone->uz_fini = arg->fini;
1593		zone->uz_lockptr = &keg->uk_lock;
1594		zone->uz_flags |= UMA_ZONE_SECONDARY;
1595		rw_wlock(&uma_rwlock);
1596		ZONE_LOCK(zone);
1597		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1598			if (LIST_NEXT(z, uz_link) == NULL) {
1599				LIST_INSERT_AFTER(z, zone, uz_link);
1600				break;
1601			}
1602		}
1603		ZONE_UNLOCK(zone);
1604		rw_wunlock(&uma_rwlock);
1605	} else if (keg == NULL) {
1606		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1607		    arg->align, arg->flags)) == NULL)
1608			return (ENOMEM);
1609	} else {
1610		struct uma_kctor_args karg;
1611		int error;
1612
1613		/* We should only be here from uma_startup() */
1614		karg.size = arg->size;
1615		karg.uminit = arg->uminit;
1616		karg.fini = arg->fini;
1617		karg.align = arg->align;
1618		karg.flags = arg->flags;
1619		karg.zone = zone;
1620		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1621		    flags);
1622		if (error)
1623			return (error);
1624	}
1625
1626	/*
1627	 * Link in the first keg.
1628	 */
1629	zone->uz_klink.kl_keg = keg;
1630	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1631	zone->uz_lockptr = &keg->uk_lock;
1632	zone->uz_size = keg->uk_size;
1633	zone->uz_flags |= (keg->uk_flags &
1634	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1635
1636	/*
1637	 * Some internal zones don't have room allocated for the per cpu
1638	 * caches.  If we're internal, bail out here.
1639	 */
1640	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1641		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1642		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1643		return (0);
1644	}
1645
1646out:
1647	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
1648	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
1649	    ("Invalid zone flag combination"));
1650	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
1651		zone->uz_count = BUCKET_MAX;
1652	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
1653		zone->uz_count = 0;
1654	else
1655		zone->uz_count = bucket_select(zone->uz_size);
1656	zone->uz_count_min = zone->uz_count;
1657
1658	return (0);
1659}
1660
1661/*
1662 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1663 * table and removes the keg from the global list.
1664 *
1665 * Arguments/Returns follow uma_dtor specifications
1666 *	udata  unused
1667 */
1668static void
1669keg_dtor(void *arg, int size, void *udata)
1670{
1671	uma_keg_t keg;
1672
1673	keg = (uma_keg_t)arg;
1674	KEG_LOCK(keg);
1675	if (keg->uk_free != 0) {
1676		printf("Freed UMA keg (%s) was not empty (%d items). "
1677		    " Lost %d pages of memory.\n",
1678		    keg->uk_name ? keg->uk_name : "",
1679		    keg->uk_free, keg->uk_pages);
1680	}
1681	KEG_UNLOCK(keg);
1682
1683	hash_free(&keg->uk_hash);
1684
1685	KEG_LOCK_FINI(keg);
1686}
1687
1688/*
1689 * Zone header dtor.
1690 *
1691 * Arguments/Returns follow uma_dtor specifications
1692 *	udata  unused
1693 */
1694static void
1695zone_dtor(void *arg, int size, void *udata)
1696{
1697	uma_klink_t klink;
1698	uma_zone_t zone;
1699	uma_keg_t keg;
1700
1701	zone = (uma_zone_t)arg;
1702	keg = zone_first_keg(zone);
1703
1704	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1705		cache_drain(zone);
1706
1707	rw_wlock(&uma_rwlock);
1708	LIST_REMOVE(zone, uz_link);
1709	rw_wunlock(&uma_rwlock);
1710	/*
1711	 * XXX there are some races here where
1712	 * the zone can be drained but zone lock
1713	 * released and then refilled before we
1714	 * remove it... we dont care for now
1715	 */
1716	zone_drain_wait(zone, M_WAITOK);
1717	/*
1718	 * Unlink all of our kegs.
1719	 */
1720	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1721		klink->kl_keg = NULL;
1722		LIST_REMOVE(klink, kl_link);
1723		if (klink == &zone->uz_klink)
1724			continue;
1725		free(klink, M_TEMP);
1726	}
1727	/*
1728	 * We only destroy kegs from non secondary zones.
1729	 */
1730	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1731		rw_wlock(&uma_rwlock);
1732		LIST_REMOVE(keg, uk_link);
1733		rw_wunlock(&uma_rwlock);
1734		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1735	}
1736	ZONE_LOCK_FINI(zone);
1737}
1738
1739/*
1740 * Traverses every zone in the system and calls a callback
1741 *
1742 * Arguments:
1743 *	zfunc  A pointer to a function which accepts a zone
1744 *		as an argument.
1745 *
1746 * Returns:
1747 *	Nothing
1748 */
1749static void
1750zone_foreach(void (*zfunc)(uma_zone_t))
1751{
1752	uma_keg_t keg;
1753	uma_zone_t zone;
1754
1755	rw_rlock(&uma_rwlock);
1756	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1757		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1758			zfunc(zone);
1759	}
1760	rw_runlock(&uma_rwlock);
1761}
1762
1763/* Public functions */
1764/* See uma.h */
1765void
1766uma_startup(void *bootmem, int boot_pages)
1767{
1768	struct uma_zctor_args args;
1769	uma_slab_t slab;
1770	int i;
1771
1772#ifdef UMA_DEBUG
1773	printf("Creating uma keg headers zone and keg.\n");
1774#endif
1775	rw_init(&uma_rwlock, "UMA lock");
1776
1777	/* "manually" create the initial zone */
1778	memset(&args, 0, sizeof(args));
1779	args.name = "UMA Kegs";
1780	args.size = sizeof(struct uma_keg);
1781	args.ctor = keg_ctor;
1782	args.dtor = keg_dtor;
1783	args.uminit = zero_init;
1784	args.fini = NULL;
1785	args.keg = &masterkeg;
1786	args.align = 32 - 1;
1787	args.flags = UMA_ZFLAG_INTERNAL;
1788	/* The initial zone has no Per cpu queues so it's smaller */
1789	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1790
1791#ifdef UMA_DEBUG
1792	printf("Filling boot free list.\n");
1793#endif
1794	for (i = 0; i < boot_pages; i++) {
1795		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1796		slab->us_data = (uint8_t *)slab;
1797		slab->us_flags = UMA_SLAB_BOOT;
1798		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1799	}
1800	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1801
1802#ifdef UMA_DEBUG
1803	printf("Creating uma zone headers zone and keg.\n");
1804#endif
1805	args.name = "UMA Zones";
1806	args.size = sizeof(struct uma_zone) +
1807	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1808	args.ctor = zone_ctor;
1809	args.dtor = zone_dtor;
1810	args.uminit = zero_init;
1811	args.fini = NULL;
1812	args.keg = NULL;
1813	args.align = 32 - 1;
1814	args.flags = UMA_ZFLAG_INTERNAL;
1815	/* The initial zone has no Per cpu queues so it's smaller */
1816	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1817
1818#ifdef UMA_DEBUG
1819	printf("Creating slab and hash zones.\n");
1820#endif
1821
1822	/* Now make a zone for slab headers */
1823	slabzone = uma_zcreate("UMA Slabs",
1824				sizeof(struct uma_slab),
1825				NULL, NULL, NULL, NULL,
1826				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1827
1828	hashzone = uma_zcreate("UMA Hash",
1829	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1830	    NULL, NULL, NULL, NULL,
1831	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1832
1833	bucket_init();
1834
1835	booted = UMA_STARTUP;
1836
1837#ifdef UMA_DEBUG
1838	printf("UMA startup complete.\n");
1839#endif
1840}
1841
1842/* see uma.h */
1843void
1844uma_startup2(void)
1845{
1846	booted = UMA_STARTUP2;
1847	bucket_enable();
1848	sx_init(&uma_drain_lock, "umadrain");
1849#ifdef UMA_DEBUG
1850	printf("UMA startup2 complete.\n");
1851#endif
1852}
1853
1854/*
1855 * Initialize our callout handle
1856 *
1857 */
1858
1859static void
1860uma_startup3(void)
1861{
1862#ifdef UMA_DEBUG
1863	printf("Starting callout.\n");
1864#endif
1865	callout_init(&uma_callout, 1);
1866	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1867#ifdef UMA_DEBUG
1868	printf("UMA startup3 complete.\n");
1869#endif
1870}
1871
1872static uma_keg_t
1873uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1874		int align, uint32_t flags)
1875{
1876	struct uma_kctor_args args;
1877
1878	args.size = size;
1879	args.uminit = uminit;
1880	args.fini = fini;
1881	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1882	args.flags = flags;
1883	args.zone = zone;
1884	return (zone_alloc_item(kegs, &args, M_WAITOK));
1885}
1886
1887/* See uma.h */
1888void
1889uma_set_align(int align)
1890{
1891
1892	if (align != UMA_ALIGN_CACHE)
1893		uma_align_cache = align;
1894}
1895
1896/* See uma.h */
1897uma_zone_t
1898uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1899		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1900
1901{
1902	struct uma_zctor_args args;
1903	uma_zone_t res;
1904	bool locked;
1905
1906	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
1907	    align, name));
1908
1909	/* This stuff is essential for the zone ctor */
1910	memset(&args, 0, sizeof(args));
1911	args.name = name;
1912	args.size = size;
1913	args.ctor = ctor;
1914	args.dtor = dtor;
1915	args.uminit = uminit;
1916	args.fini = fini;
1917#ifdef  INVARIANTS
1918	/*
1919	 * If a zone is being created with an empty constructor and
1920	 * destructor, pass UMA constructor/destructor which checks for
1921	 * memory use after free.
1922	 */
1923	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) &&
1924	    ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) {
1925		args.ctor = trash_ctor;
1926		args.dtor = trash_dtor;
1927		args.uminit = trash_init;
1928		args.fini = trash_fini;
1929	}
1930#endif
1931	args.align = align;
1932	args.flags = flags;
1933	args.keg = NULL;
1934
1935	if (booted < UMA_STARTUP2) {
1936		locked = false;
1937	} else {
1938		sx_slock(&uma_drain_lock);
1939		locked = true;
1940	}
1941	res = zone_alloc_item(zones, &args, M_WAITOK);
1942	if (locked)
1943		sx_sunlock(&uma_drain_lock);
1944	return (res);
1945}
1946
1947/* See uma.h */
1948uma_zone_t
1949uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1950		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1951{
1952	struct uma_zctor_args args;
1953	uma_keg_t keg;
1954	uma_zone_t res;
1955	bool locked;
1956
1957	keg = zone_first_keg(master);
1958	memset(&args, 0, sizeof(args));
1959	args.name = name;
1960	args.size = keg->uk_size;
1961	args.ctor = ctor;
1962	args.dtor = dtor;
1963	args.uminit = zinit;
1964	args.fini = zfini;
1965	args.align = keg->uk_align;
1966	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1967	args.keg = keg;
1968
1969	if (booted < UMA_STARTUP2) {
1970		locked = false;
1971	} else {
1972		sx_slock(&uma_drain_lock);
1973		locked = true;
1974	}
1975	/* XXX Attaches only one keg of potentially many. */
1976	res = zone_alloc_item(zones, &args, M_WAITOK);
1977	if (locked)
1978		sx_sunlock(&uma_drain_lock);
1979	return (res);
1980}
1981
1982/* See uma.h */
1983uma_zone_t
1984uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1985		    uma_init zinit, uma_fini zfini, uma_import zimport,
1986		    uma_release zrelease, void *arg, int flags)
1987{
1988	struct uma_zctor_args args;
1989
1990	memset(&args, 0, sizeof(args));
1991	args.name = name;
1992	args.size = size;
1993	args.ctor = ctor;
1994	args.dtor = dtor;
1995	args.uminit = zinit;
1996	args.fini = zfini;
1997	args.import = zimport;
1998	args.release = zrelease;
1999	args.arg = arg;
2000	args.align = 0;
2001	args.flags = flags;
2002
2003	return (zone_alloc_item(zones, &args, M_WAITOK));
2004}
2005
2006static void
2007zone_lock_pair(uma_zone_t a, uma_zone_t b)
2008{
2009	if (a < b) {
2010		ZONE_LOCK(a);
2011		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2012	} else {
2013		ZONE_LOCK(b);
2014		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2015	}
2016}
2017
2018static void
2019zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2020{
2021
2022	ZONE_UNLOCK(a);
2023	ZONE_UNLOCK(b);
2024}
2025
2026int
2027uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2028{
2029	uma_klink_t klink;
2030	uma_klink_t kl;
2031	int error;
2032
2033	error = 0;
2034	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2035
2036	zone_lock_pair(zone, master);
2037	/*
2038	 * zone must use vtoslab() to resolve objects and must already be
2039	 * a secondary.
2040	 */
2041	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2042	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2043		error = EINVAL;
2044		goto out;
2045	}
2046	/*
2047	 * The new master must also use vtoslab().
2048	 */
2049	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2050		error = EINVAL;
2051		goto out;
2052	}
2053
2054	/*
2055	 * The underlying object must be the same size.  rsize
2056	 * may be different.
2057	 */
2058	if (master->uz_size != zone->uz_size) {
2059		error = E2BIG;
2060		goto out;
2061	}
2062	/*
2063	 * Put it at the end of the list.
2064	 */
2065	klink->kl_keg = zone_first_keg(master);
2066	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2067		if (LIST_NEXT(kl, kl_link) == NULL) {
2068			LIST_INSERT_AFTER(kl, klink, kl_link);
2069			break;
2070		}
2071	}
2072	klink = NULL;
2073	zone->uz_flags |= UMA_ZFLAG_MULTI;
2074	zone->uz_slab = zone_fetch_slab_multi;
2075
2076out:
2077	zone_unlock_pair(zone, master);
2078	if (klink != NULL)
2079		free(klink, M_TEMP);
2080
2081	return (error);
2082}
2083
2084
2085/* See uma.h */
2086void
2087uma_zdestroy(uma_zone_t zone)
2088{
2089
2090	sx_slock(&uma_drain_lock);
2091	zone_free_item(zones, zone, NULL, SKIP_NONE);
2092	sx_sunlock(&uma_drain_lock);
2093}
2094
2095void
2096uma_zwait(uma_zone_t zone)
2097{
2098	void *item;
2099
2100	item = uma_zalloc_arg(zone, NULL, M_WAITOK);
2101	uma_zfree(zone, item);
2102}
2103
2104/* See uma.h */
2105void *
2106uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2107{
2108	void *item;
2109	uma_cache_t cache;
2110	uma_bucket_t bucket;
2111	int lockfail;
2112	int cpu;
2113
2114	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2115	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2116
2117	/* This is the fast path allocation */
2118#ifdef UMA_DEBUG_ALLOC_1
2119	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2120#endif
2121	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2122	    zone->uz_name, flags);
2123
2124	if (flags & M_WAITOK) {
2125		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2126		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2127	}
2128	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2129	    ("uma_zalloc_arg: called with spinlock or critical section held"));
2130
2131#ifdef DEBUG_MEMGUARD
2132	if (memguard_cmp_zone(zone)) {
2133		item = memguard_alloc(zone->uz_size, flags);
2134		if (item != NULL) {
2135			if (zone->uz_init != NULL &&
2136			    zone->uz_init(item, zone->uz_size, flags) != 0)
2137				return (NULL);
2138			if (zone->uz_ctor != NULL &&
2139			    zone->uz_ctor(item, zone->uz_size, udata,
2140			    flags) != 0) {
2141			    	zone->uz_fini(item, zone->uz_size);
2142				return (NULL);
2143			}
2144			return (item);
2145		}
2146		/* This is unfortunate but should not be fatal. */
2147	}
2148#endif
2149	/*
2150	 * If possible, allocate from the per-CPU cache.  There are two
2151	 * requirements for safe access to the per-CPU cache: (1) the thread
2152	 * accessing the cache must not be preempted or yield during access,
2153	 * and (2) the thread must not migrate CPUs without switching which
2154	 * cache it accesses.  We rely on a critical section to prevent
2155	 * preemption and migration.  We release the critical section in
2156	 * order to acquire the zone mutex if we are unable to allocate from
2157	 * the current cache; when we re-acquire the critical section, we
2158	 * must detect and handle migration if it has occurred.
2159	 */
2160	critical_enter();
2161	cpu = curcpu;
2162	cache = &zone->uz_cpu[cpu];
2163
2164zalloc_start:
2165	bucket = cache->uc_allocbucket;
2166	if (bucket != NULL && bucket->ub_cnt > 0) {
2167		bucket->ub_cnt--;
2168		item = bucket->ub_bucket[bucket->ub_cnt];
2169#ifdef INVARIANTS
2170		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2171#endif
2172		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2173		cache->uc_allocs++;
2174		critical_exit();
2175		if (zone->uz_ctor != NULL &&
2176		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2177			atomic_add_long(&zone->uz_fails, 1);
2178			zone_free_item(zone, item, udata, SKIP_DTOR);
2179			return (NULL);
2180		}
2181#ifdef INVARIANTS
2182		uma_dbg_alloc(zone, NULL, item);
2183#endif
2184		if (flags & M_ZERO)
2185			uma_zero_item(item, zone);
2186		return (item);
2187	}
2188
2189	/*
2190	 * We have run out of items in our alloc bucket.
2191	 * See if we can switch with our free bucket.
2192	 */
2193	bucket = cache->uc_freebucket;
2194	if (bucket != NULL && bucket->ub_cnt > 0) {
2195#ifdef UMA_DEBUG_ALLOC
2196		printf("uma_zalloc: Swapping empty with alloc.\n");
2197#endif
2198		cache->uc_freebucket = cache->uc_allocbucket;
2199		cache->uc_allocbucket = bucket;
2200		goto zalloc_start;
2201	}
2202
2203	/*
2204	 * Discard any empty allocation bucket while we hold no locks.
2205	 */
2206	bucket = cache->uc_allocbucket;
2207	cache->uc_allocbucket = NULL;
2208	critical_exit();
2209	if (bucket != NULL)
2210		bucket_free(zone, bucket, udata);
2211
2212	/* Short-circuit for zones without buckets and low memory. */
2213	if (zone->uz_count == 0 || bucketdisable)
2214		goto zalloc_item;
2215
2216	/*
2217	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2218	 * we must go back to the zone.  This requires the zone lock, so we
2219	 * must drop the critical section, then re-acquire it when we go back
2220	 * to the cache.  Since the critical section is released, we may be
2221	 * preempted or migrate.  As such, make sure not to maintain any
2222	 * thread-local state specific to the cache from prior to releasing
2223	 * the critical section.
2224	 */
2225	lockfail = 0;
2226	if (ZONE_TRYLOCK(zone) == 0) {
2227		/* Record contention to size the buckets. */
2228		ZONE_LOCK(zone);
2229		lockfail = 1;
2230	}
2231	critical_enter();
2232	cpu = curcpu;
2233	cache = &zone->uz_cpu[cpu];
2234
2235	/*
2236	 * Since we have locked the zone we may as well send back our stats.
2237	 */
2238	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2239	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2240	cache->uc_allocs = 0;
2241	cache->uc_frees = 0;
2242
2243	/* See if we lost the race to fill the cache. */
2244	if (cache->uc_allocbucket != NULL) {
2245		ZONE_UNLOCK(zone);
2246		goto zalloc_start;
2247	}
2248
2249	/*
2250	 * Check the zone's cache of buckets.
2251	 */
2252	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2253		KASSERT(bucket->ub_cnt != 0,
2254		    ("uma_zalloc_arg: Returning an empty bucket."));
2255
2256		LIST_REMOVE(bucket, ub_link);
2257		cache->uc_allocbucket = bucket;
2258		ZONE_UNLOCK(zone);
2259		goto zalloc_start;
2260	}
2261	/* We are no longer associated with this CPU. */
2262	critical_exit();
2263
2264	/*
2265	 * We bump the uz count when the cache size is insufficient to
2266	 * handle the working set.
2267	 */
2268	if (lockfail && zone->uz_count < BUCKET_MAX)
2269		zone->uz_count++;
2270	ZONE_UNLOCK(zone);
2271
2272	/*
2273	 * Now lets just fill a bucket and put it on the free list.  If that
2274	 * works we'll restart the allocation from the beginning and it
2275	 * will use the just filled bucket.
2276	 */
2277	bucket = zone_alloc_bucket(zone, udata, flags);
2278	if (bucket != NULL) {
2279		ZONE_LOCK(zone);
2280		critical_enter();
2281		cpu = curcpu;
2282		cache = &zone->uz_cpu[cpu];
2283		/*
2284		 * See if we lost the race or were migrated.  Cache the
2285		 * initialized bucket to make this less likely or claim
2286		 * the memory directly.
2287		 */
2288		if (cache->uc_allocbucket == NULL)
2289			cache->uc_allocbucket = bucket;
2290		else
2291			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2292		ZONE_UNLOCK(zone);
2293		goto zalloc_start;
2294	}
2295
2296	/*
2297	 * We may not be able to get a bucket so return an actual item.
2298	 */
2299#ifdef UMA_DEBUG
2300	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2301#endif
2302
2303zalloc_item:
2304	item = zone_alloc_item(zone, udata, flags);
2305
2306	return (item);
2307}
2308
2309static uma_slab_t
2310keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2311{
2312	uma_slab_t slab;
2313	int reserve;
2314
2315	mtx_assert(&keg->uk_lock, MA_OWNED);
2316	slab = NULL;
2317	reserve = 0;
2318	if ((flags & M_USE_RESERVE) == 0)
2319		reserve = keg->uk_reserve;
2320
2321	for (;;) {
2322		/*
2323		 * Find a slab with some space.  Prefer slabs that are partially
2324		 * used over those that are totally full.  This helps to reduce
2325		 * fragmentation.
2326		 */
2327		if (keg->uk_free > reserve) {
2328			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2329				slab = LIST_FIRST(&keg->uk_part_slab);
2330			} else {
2331				slab = LIST_FIRST(&keg->uk_free_slab);
2332				LIST_REMOVE(slab, us_link);
2333				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2334				    us_link);
2335			}
2336			MPASS(slab->us_keg == keg);
2337			return (slab);
2338		}
2339
2340		/*
2341		 * M_NOVM means don't ask at all!
2342		 */
2343		if (flags & M_NOVM)
2344			break;
2345
2346		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2347			keg->uk_flags |= UMA_ZFLAG_FULL;
2348			/*
2349			 * If this is not a multi-zone, set the FULL bit.
2350			 * Otherwise slab_multi() takes care of it.
2351			 */
2352			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2353				zone->uz_flags |= UMA_ZFLAG_FULL;
2354				zone_log_warning(zone);
2355				zone_maxaction(zone);
2356			}
2357			if (flags & M_NOWAIT)
2358				break;
2359			zone->uz_sleeps++;
2360			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2361			continue;
2362		}
2363		slab = keg_alloc_slab(keg, zone, flags);
2364		/*
2365		 * If we got a slab here it's safe to mark it partially used
2366		 * and return.  We assume that the caller is going to remove
2367		 * at least one item.
2368		 */
2369		if (slab) {
2370			MPASS(slab->us_keg == keg);
2371			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2372			return (slab);
2373		}
2374		/*
2375		 * We might not have been able to get a slab but another cpu
2376		 * could have while we were unlocked.  Check again before we
2377		 * fail.
2378		 */
2379		flags |= M_NOVM;
2380	}
2381	return (slab);
2382}
2383
2384static uma_slab_t
2385zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2386{
2387	uma_slab_t slab;
2388
2389	if (keg == NULL) {
2390		keg = zone_first_keg(zone);
2391		KEG_LOCK(keg);
2392	}
2393
2394	for (;;) {
2395		slab = keg_fetch_slab(keg, zone, flags);
2396		if (slab)
2397			return (slab);
2398		if (flags & (M_NOWAIT | M_NOVM))
2399			break;
2400	}
2401	KEG_UNLOCK(keg);
2402	return (NULL);
2403}
2404
2405/*
2406 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2407 * with the keg locked.  On NULL no lock is held.
2408 *
2409 * The last pointer is used to seed the search.  It is not required.
2410 */
2411static uma_slab_t
2412zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2413{
2414	uma_klink_t klink;
2415	uma_slab_t slab;
2416	uma_keg_t keg;
2417	int flags;
2418	int empty;
2419	int full;
2420
2421	/*
2422	 * Don't wait on the first pass.  This will skip limit tests
2423	 * as well.  We don't want to block if we can find a provider
2424	 * without blocking.
2425	 */
2426	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2427	/*
2428	 * Use the last slab allocated as a hint for where to start
2429	 * the search.
2430	 */
2431	if (last != NULL) {
2432		slab = keg_fetch_slab(last, zone, flags);
2433		if (slab)
2434			return (slab);
2435		KEG_UNLOCK(last);
2436	}
2437	/*
2438	 * Loop until we have a slab incase of transient failures
2439	 * while M_WAITOK is specified.  I'm not sure this is 100%
2440	 * required but we've done it for so long now.
2441	 */
2442	for (;;) {
2443		empty = 0;
2444		full = 0;
2445		/*
2446		 * Search the available kegs for slabs.  Be careful to hold the
2447		 * correct lock while calling into the keg layer.
2448		 */
2449		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2450			keg = klink->kl_keg;
2451			KEG_LOCK(keg);
2452			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2453				slab = keg_fetch_slab(keg, zone, flags);
2454				if (slab)
2455					return (slab);
2456			}
2457			if (keg->uk_flags & UMA_ZFLAG_FULL)
2458				full++;
2459			else
2460				empty++;
2461			KEG_UNLOCK(keg);
2462		}
2463		if (rflags & (M_NOWAIT | M_NOVM))
2464			break;
2465		flags = rflags;
2466		/*
2467		 * All kegs are full.  XXX We can't atomically check all kegs
2468		 * and sleep so just sleep for a short period and retry.
2469		 */
2470		if (full && !empty) {
2471			ZONE_LOCK(zone);
2472			zone->uz_flags |= UMA_ZFLAG_FULL;
2473			zone->uz_sleeps++;
2474			zone_log_warning(zone);
2475			zone_maxaction(zone);
2476			msleep(zone, zone->uz_lockptr, PVM,
2477			    "zonelimit", hz/100);
2478			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2479			ZONE_UNLOCK(zone);
2480			continue;
2481		}
2482	}
2483	return (NULL);
2484}
2485
2486static void *
2487slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2488{
2489	void *item;
2490	uint8_t freei;
2491
2492	MPASS(keg == slab->us_keg);
2493	mtx_assert(&keg->uk_lock, MA_OWNED);
2494
2495	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2496	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2497	item = slab->us_data + (keg->uk_rsize * freei);
2498	slab->us_freecount--;
2499	keg->uk_free--;
2500
2501	/* Move this slab to the full list */
2502	if (slab->us_freecount == 0) {
2503		LIST_REMOVE(slab, us_link);
2504		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2505	}
2506
2507	return (item);
2508}
2509
2510static int
2511zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2512{
2513	uma_slab_t slab;
2514	uma_keg_t keg;
2515	int i;
2516
2517	slab = NULL;
2518	keg = NULL;
2519	/* Try to keep the buckets totally full */
2520	for (i = 0; i < max; ) {
2521		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2522			break;
2523		keg = slab->us_keg;
2524		while (slab->us_freecount && i < max) {
2525			bucket[i++] = slab_alloc_item(keg, slab);
2526			if (keg->uk_free <= keg->uk_reserve)
2527				break;
2528		}
2529		/* Don't grab more than one slab at a time. */
2530		flags &= ~M_WAITOK;
2531		flags |= M_NOWAIT;
2532	}
2533	if (slab != NULL)
2534		KEG_UNLOCK(keg);
2535
2536	return i;
2537}
2538
2539static uma_bucket_t
2540zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2541{
2542	uma_bucket_t bucket;
2543	int max;
2544
2545	/* Don't wait for buckets, preserve caller's NOVM setting. */
2546	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2547	if (bucket == NULL)
2548		return (NULL);
2549
2550	max = MIN(bucket->ub_entries, zone->uz_count);
2551	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2552	    max, flags);
2553
2554	/*
2555	 * Initialize the memory if necessary.
2556	 */
2557	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2558		int i;
2559
2560		for (i = 0; i < bucket->ub_cnt; i++)
2561			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2562			    flags) != 0)
2563				break;
2564		/*
2565		 * If we couldn't initialize the whole bucket, put the
2566		 * rest back onto the freelist.
2567		 */
2568		if (i != bucket->ub_cnt) {
2569			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2570			    bucket->ub_cnt - i);
2571#ifdef INVARIANTS
2572			bzero(&bucket->ub_bucket[i],
2573			    sizeof(void *) * (bucket->ub_cnt - i));
2574#endif
2575			bucket->ub_cnt = i;
2576		}
2577	}
2578
2579	if (bucket->ub_cnt == 0) {
2580		bucket_free(zone, bucket, udata);
2581		atomic_add_long(&zone->uz_fails, 1);
2582		return (NULL);
2583	}
2584
2585	return (bucket);
2586}
2587
2588/*
2589 * Allocates a single item from a zone.
2590 *
2591 * Arguments
2592 *	zone   The zone to alloc for.
2593 *	udata  The data to be passed to the constructor.
2594 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2595 *
2596 * Returns
2597 *	NULL if there is no memory and M_NOWAIT is set
2598 *	An item if successful
2599 */
2600
2601static void *
2602zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2603{
2604	void *item;
2605
2606	item = NULL;
2607
2608#ifdef UMA_DEBUG_ALLOC
2609	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2610#endif
2611	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2612		goto fail;
2613	atomic_add_long(&zone->uz_allocs, 1);
2614
2615	/*
2616	 * We have to call both the zone's init (not the keg's init)
2617	 * and the zone's ctor.  This is because the item is going from
2618	 * a keg slab directly to the user, and the user is expecting it
2619	 * to be both zone-init'd as well as zone-ctor'd.
2620	 */
2621	if (zone->uz_init != NULL) {
2622		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2623			zone_free_item(zone, item, udata, SKIP_FINI);
2624			goto fail;
2625		}
2626	}
2627	if (zone->uz_ctor != NULL) {
2628		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2629			zone_free_item(zone, item, udata, SKIP_DTOR);
2630			goto fail;
2631		}
2632	}
2633#ifdef INVARIANTS
2634	uma_dbg_alloc(zone, NULL, item);
2635#endif
2636	if (flags & M_ZERO)
2637		uma_zero_item(item, zone);
2638
2639	return (item);
2640
2641fail:
2642	atomic_add_long(&zone->uz_fails, 1);
2643	return (NULL);
2644}
2645
2646/* See uma.h */
2647void
2648uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2649{
2650	uma_cache_t cache;
2651	uma_bucket_t bucket;
2652	int lockfail;
2653	int cpu;
2654
2655	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2656	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2657
2658#ifdef UMA_DEBUG_ALLOC_1
2659	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2660#endif
2661	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2662	    zone->uz_name);
2663
2664	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2665	    ("uma_zfree_arg: called with spinlock or critical section held"));
2666
2667        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2668        if (item == NULL)
2669                return;
2670#ifdef DEBUG_MEMGUARD
2671	if (is_memguard_addr(item)) {
2672		if (zone->uz_dtor != NULL)
2673			zone->uz_dtor(item, zone->uz_size, udata);
2674		if (zone->uz_fini != NULL)
2675			zone->uz_fini(item, zone->uz_size);
2676		memguard_free(item);
2677		return;
2678	}
2679#endif
2680#ifdef INVARIANTS
2681	if (zone->uz_flags & UMA_ZONE_MALLOC)
2682		uma_dbg_free(zone, udata, item);
2683	else
2684		uma_dbg_free(zone, NULL, item);
2685#endif
2686	if (zone->uz_dtor != NULL)
2687		zone->uz_dtor(item, zone->uz_size, udata);
2688
2689	/*
2690	 * The race here is acceptable.  If we miss it we'll just have to wait
2691	 * a little longer for the limits to be reset.
2692	 */
2693	if (zone->uz_flags & UMA_ZFLAG_FULL)
2694		goto zfree_item;
2695
2696	/*
2697	 * If possible, free to the per-CPU cache.  There are two
2698	 * requirements for safe access to the per-CPU cache: (1) the thread
2699	 * accessing the cache must not be preempted or yield during access,
2700	 * and (2) the thread must not migrate CPUs without switching which
2701	 * cache it accesses.  We rely on a critical section to prevent
2702	 * preemption and migration.  We release the critical section in
2703	 * order to acquire the zone mutex if we are unable to free to the
2704	 * current cache; when we re-acquire the critical section, we must
2705	 * detect and handle migration if it has occurred.
2706	 */
2707zfree_restart:
2708	critical_enter();
2709	cpu = curcpu;
2710	cache = &zone->uz_cpu[cpu];
2711
2712zfree_start:
2713	/*
2714	 * Try to free into the allocbucket first to give LIFO ordering
2715	 * for cache-hot datastructures.  Spill over into the freebucket
2716	 * if necessary.  Alloc will swap them if one runs dry.
2717	 */
2718	bucket = cache->uc_allocbucket;
2719	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2720		bucket = cache->uc_freebucket;
2721	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2722		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2723		    ("uma_zfree: Freeing to non free bucket index."));
2724		bucket->ub_bucket[bucket->ub_cnt] = item;
2725		bucket->ub_cnt++;
2726		cache->uc_frees++;
2727		critical_exit();
2728		return;
2729	}
2730
2731	/*
2732	 * We must go back the zone, which requires acquiring the zone lock,
2733	 * which in turn means we must release and re-acquire the critical
2734	 * section.  Since the critical section is released, we may be
2735	 * preempted or migrate.  As such, make sure not to maintain any
2736	 * thread-local state specific to the cache from prior to releasing
2737	 * the critical section.
2738	 */
2739	critical_exit();
2740	if (zone->uz_count == 0 || bucketdisable)
2741		goto zfree_item;
2742
2743	lockfail = 0;
2744	if (ZONE_TRYLOCK(zone) == 0) {
2745		/* Record contention to size the buckets. */
2746		ZONE_LOCK(zone);
2747		lockfail = 1;
2748	}
2749	critical_enter();
2750	cpu = curcpu;
2751	cache = &zone->uz_cpu[cpu];
2752
2753	/*
2754	 * Since we have locked the zone we may as well send back our stats.
2755	 */
2756	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2757	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2758	cache->uc_allocs = 0;
2759	cache->uc_frees = 0;
2760
2761	bucket = cache->uc_freebucket;
2762	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2763		ZONE_UNLOCK(zone);
2764		goto zfree_start;
2765	}
2766	cache->uc_freebucket = NULL;
2767	/* We are no longer associated with this CPU. */
2768	critical_exit();
2769
2770	/* Can we throw this on the zone full list? */
2771	if (bucket != NULL) {
2772#ifdef UMA_DEBUG_ALLOC
2773		printf("uma_zfree: Putting old bucket on the free list.\n");
2774#endif
2775		/* ub_cnt is pointing to the last free item */
2776		KASSERT(bucket->ub_cnt != 0,
2777		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2778		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2779	}
2780
2781	/*
2782	 * We bump the uz count when the cache size is insufficient to
2783	 * handle the working set.
2784	 */
2785	if (lockfail && zone->uz_count < BUCKET_MAX)
2786		zone->uz_count++;
2787	ZONE_UNLOCK(zone);
2788
2789#ifdef UMA_DEBUG_ALLOC
2790	printf("uma_zfree: Allocating new free bucket.\n");
2791#endif
2792	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2793	if (bucket) {
2794		critical_enter();
2795		cpu = curcpu;
2796		cache = &zone->uz_cpu[cpu];
2797		if (cache->uc_freebucket == NULL) {
2798			cache->uc_freebucket = bucket;
2799			goto zfree_start;
2800		}
2801		/*
2802		 * We lost the race, start over.  We have to drop our
2803		 * critical section to free the bucket.
2804		 */
2805		critical_exit();
2806		bucket_free(zone, bucket, udata);
2807		goto zfree_restart;
2808	}
2809
2810	/*
2811	 * If nothing else caught this, we'll just do an internal free.
2812	 */
2813zfree_item:
2814	zone_free_item(zone, item, udata, SKIP_DTOR);
2815
2816	return;
2817}
2818
2819static void
2820slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2821{
2822	uint8_t freei;
2823
2824	mtx_assert(&keg->uk_lock, MA_OWNED);
2825	MPASS(keg == slab->us_keg);
2826
2827	/* Do we need to remove from any lists? */
2828	if (slab->us_freecount+1 == keg->uk_ipers) {
2829		LIST_REMOVE(slab, us_link);
2830		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2831	} else if (slab->us_freecount == 0) {
2832		LIST_REMOVE(slab, us_link);
2833		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2834	}
2835
2836	/* Slab management. */
2837	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2838	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2839	slab->us_freecount++;
2840
2841	/* Keg statistics. */
2842	keg->uk_free++;
2843}
2844
2845static void
2846zone_release(uma_zone_t zone, void **bucket, int cnt)
2847{
2848	void *item;
2849	uma_slab_t slab;
2850	uma_keg_t keg;
2851	uint8_t *mem;
2852	int clearfull;
2853	int i;
2854
2855	clearfull = 0;
2856	keg = zone_first_keg(zone);
2857	KEG_LOCK(keg);
2858	for (i = 0; i < cnt; i++) {
2859		item = bucket[i];
2860		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2861			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2862			if (zone->uz_flags & UMA_ZONE_HASH) {
2863				slab = hash_sfind(&keg->uk_hash, mem);
2864			} else {
2865				mem += keg->uk_pgoff;
2866				slab = (uma_slab_t)mem;
2867			}
2868		} else {
2869			slab = vtoslab((vm_offset_t)item);
2870			if (slab->us_keg != keg) {
2871				KEG_UNLOCK(keg);
2872				keg = slab->us_keg;
2873				KEG_LOCK(keg);
2874			}
2875		}
2876		slab_free_item(keg, slab, item);
2877		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2878			if (keg->uk_pages < keg->uk_maxpages) {
2879				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2880				clearfull = 1;
2881			}
2882
2883			/*
2884			 * We can handle one more allocation. Since we're
2885			 * clearing ZFLAG_FULL, wake up all procs blocked
2886			 * on pages. This should be uncommon, so keeping this
2887			 * simple for now (rather than adding count of blocked
2888			 * threads etc).
2889			 */
2890			wakeup(keg);
2891		}
2892	}
2893	KEG_UNLOCK(keg);
2894	if (clearfull) {
2895		ZONE_LOCK(zone);
2896		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2897		wakeup(zone);
2898		ZONE_UNLOCK(zone);
2899	}
2900
2901}
2902
2903/*
2904 * Frees a single item to any zone.
2905 *
2906 * Arguments:
2907 *	zone   The zone to free to
2908 *	item   The item we're freeing
2909 *	udata  User supplied data for the dtor
2910 *	skip   Skip dtors and finis
2911 */
2912static void
2913zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2914{
2915
2916#ifdef INVARIANTS
2917	if (skip == SKIP_NONE) {
2918		if (zone->uz_flags & UMA_ZONE_MALLOC)
2919			uma_dbg_free(zone, udata, item);
2920		else
2921			uma_dbg_free(zone, NULL, item);
2922	}
2923#endif
2924	if (skip < SKIP_DTOR && zone->uz_dtor)
2925		zone->uz_dtor(item, zone->uz_size, udata);
2926
2927	if (skip < SKIP_FINI && zone->uz_fini)
2928		zone->uz_fini(item, zone->uz_size);
2929
2930	atomic_add_long(&zone->uz_frees, 1);
2931	zone->uz_release(zone->uz_arg, &item, 1);
2932}
2933
2934/* See uma.h */
2935int
2936uma_zone_set_max(uma_zone_t zone, int nitems)
2937{
2938	uma_keg_t keg;
2939
2940	keg = zone_first_keg(zone);
2941	if (keg == NULL)
2942		return (0);
2943	KEG_LOCK(keg);
2944	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2945	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2946		keg->uk_maxpages += keg->uk_ppera;
2947	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2948	KEG_UNLOCK(keg);
2949
2950	return (nitems);
2951}
2952
2953/* See uma.h */
2954int
2955uma_zone_get_max(uma_zone_t zone)
2956{
2957	int nitems;
2958	uma_keg_t keg;
2959
2960	keg = zone_first_keg(zone);
2961	if (keg == NULL)
2962		return (0);
2963	KEG_LOCK(keg);
2964	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2965	KEG_UNLOCK(keg);
2966
2967	return (nitems);
2968}
2969
2970/* See uma.h */
2971void
2972uma_zone_set_warning(uma_zone_t zone, const char *warning)
2973{
2974
2975	ZONE_LOCK(zone);
2976	zone->uz_warning = warning;
2977	ZONE_UNLOCK(zone);
2978}
2979
2980/* See uma.h */
2981void
2982uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
2983{
2984
2985	ZONE_LOCK(zone);
2986	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
2987	ZONE_UNLOCK(zone);
2988}
2989
2990/* See uma.h */
2991int
2992uma_zone_get_cur(uma_zone_t zone)
2993{
2994	int64_t nitems;
2995	u_int i;
2996
2997	ZONE_LOCK(zone);
2998	nitems = zone->uz_allocs - zone->uz_frees;
2999	CPU_FOREACH(i) {
3000		/*
3001		 * See the comment in sysctl_vm_zone_stats() regarding the
3002		 * safety of accessing the per-cpu caches. With the zone lock
3003		 * held, it is safe, but can potentially result in stale data.
3004		 */
3005		nitems += zone->uz_cpu[i].uc_allocs -
3006		    zone->uz_cpu[i].uc_frees;
3007	}
3008	ZONE_UNLOCK(zone);
3009
3010	return (nitems < 0 ? 0 : nitems);
3011}
3012
3013/* See uma.h */
3014void
3015uma_zone_set_init(uma_zone_t zone, uma_init uminit)
3016{
3017	uma_keg_t keg;
3018
3019	keg = zone_first_keg(zone);
3020	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3021	KEG_LOCK(keg);
3022	KASSERT(keg->uk_pages == 0,
3023	    ("uma_zone_set_init on non-empty keg"));
3024	keg->uk_init = uminit;
3025	KEG_UNLOCK(keg);
3026}
3027
3028/* See uma.h */
3029void
3030uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3031{
3032	uma_keg_t keg;
3033
3034	keg = zone_first_keg(zone);
3035	KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
3036	KEG_LOCK(keg);
3037	KASSERT(keg->uk_pages == 0,
3038	    ("uma_zone_set_fini on non-empty keg"));
3039	keg->uk_fini = fini;
3040	KEG_UNLOCK(keg);
3041}
3042
3043/* See uma.h */
3044void
3045uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3046{
3047
3048	ZONE_LOCK(zone);
3049	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3050	    ("uma_zone_set_zinit on non-empty keg"));
3051	zone->uz_init = zinit;
3052	ZONE_UNLOCK(zone);
3053}
3054
3055/* See uma.h */
3056void
3057uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3058{
3059
3060	ZONE_LOCK(zone);
3061	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3062	    ("uma_zone_set_zfini on non-empty keg"));
3063	zone->uz_fini = zfini;
3064	ZONE_UNLOCK(zone);
3065}
3066
3067/* See uma.h */
3068/* XXX uk_freef is not actually used with the zone locked */
3069void
3070uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3071{
3072	uma_keg_t keg;
3073
3074	keg = zone_first_keg(zone);
3075	KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
3076	KEG_LOCK(keg);
3077	keg->uk_freef = freef;
3078	KEG_UNLOCK(keg);
3079}
3080
3081/* See uma.h */
3082/* XXX uk_allocf is not actually used with the zone locked */
3083void
3084uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3085{
3086	uma_keg_t keg;
3087
3088	keg = zone_first_keg(zone);
3089	KEG_LOCK(keg);
3090	keg->uk_allocf = allocf;
3091	KEG_UNLOCK(keg);
3092}
3093
3094/* See uma.h */
3095void
3096uma_zone_reserve(uma_zone_t zone, int items)
3097{
3098	uma_keg_t keg;
3099
3100	keg = zone_first_keg(zone);
3101	if (keg == NULL)
3102		return;
3103	KEG_LOCK(keg);
3104	keg->uk_reserve = items;
3105	KEG_UNLOCK(keg);
3106
3107	return;
3108}
3109
3110/* See uma.h */
3111int
3112uma_zone_reserve_kva(uma_zone_t zone, int count)
3113{
3114	uma_keg_t keg;
3115	vm_offset_t kva;
3116	u_int pages;
3117
3118	keg = zone_first_keg(zone);
3119	if (keg == NULL)
3120		return (0);
3121	pages = count / keg->uk_ipers;
3122
3123	if (pages * keg->uk_ipers < count)
3124		pages++;
3125	pages *= keg->uk_ppera;
3126
3127#ifdef UMA_MD_SMALL_ALLOC
3128	if (keg->uk_ppera > 1) {
3129#else
3130	if (1) {
3131#endif
3132		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
3133		if (kva == 0)
3134			return (0);
3135	} else
3136		kva = 0;
3137	KEG_LOCK(keg);
3138	keg->uk_kva = kva;
3139	keg->uk_offset = 0;
3140	keg->uk_maxpages = pages;
3141#ifdef UMA_MD_SMALL_ALLOC
3142	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3143#else
3144	keg->uk_allocf = noobj_alloc;
3145#endif
3146	keg->uk_flags |= UMA_ZONE_NOFREE;
3147	KEG_UNLOCK(keg);
3148
3149	return (1);
3150}
3151
3152/* See uma.h */
3153void
3154uma_prealloc(uma_zone_t zone, int items)
3155{
3156	int slabs;
3157	uma_slab_t slab;
3158	uma_keg_t keg;
3159
3160	keg = zone_first_keg(zone);
3161	if (keg == NULL)
3162		return;
3163	KEG_LOCK(keg);
3164	slabs = items / keg->uk_ipers;
3165	if (slabs * keg->uk_ipers < items)
3166		slabs++;
3167	while (slabs > 0) {
3168		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3169		if (slab == NULL)
3170			break;
3171		MPASS(slab->us_keg == keg);
3172		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3173		slabs--;
3174	}
3175	KEG_UNLOCK(keg);
3176}
3177
3178/* See uma.h */
3179static void
3180uma_reclaim_locked(bool kmem_danger)
3181{
3182
3183#ifdef UMA_DEBUG
3184	printf("UMA: vm asked us to release pages!\n");
3185#endif
3186	sx_assert(&uma_drain_lock, SA_XLOCKED);
3187	bucket_enable();
3188	zone_foreach(zone_drain);
3189	if (vm_page_count_min() || kmem_danger) {
3190		cache_drain_safe(NULL);
3191		zone_foreach(zone_drain);
3192	}
3193	/*
3194	 * Some slabs may have been freed but this zone will be visited early
3195	 * we visit again so that we can free pages that are empty once other
3196	 * zones are drained.  We have to do the same for buckets.
3197	 */
3198	zone_drain(slabzone);
3199	bucket_zone_drain();
3200}
3201
3202void
3203uma_reclaim(void)
3204{
3205
3206	sx_xlock(&uma_drain_lock);
3207	uma_reclaim_locked(false);
3208	sx_xunlock(&uma_drain_lock);
3209}
3210
3211static int uma_reclaim_needed;
3212
3213void
3214uma_reclaim_wakeup(void)
3215{
3216
3217	uma_reclaim_needed = 1;
3218	wakeup(&uma_reclaim_needed);
3219}
3220
3221void
3222uma_reclaim_worker(void *arg __unused)
3223{
3224
3225	sx_xlock(&uma_drain_lock);
3226	for (;;) {
3227		sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM,
3228		    "umarcl", 0);
3229		if (uma_reclaim_needed) {
3230			uma_reclaim_needed = 0;
3231			sx_xunlock(&uma_drain_lock);
3232			EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
3233			sx_xlock(&uma_drain_lock);
3234			uma_reclaim_locked(true);
3235		}
3236	}
3237}
3238
3239/* See uma.h */
3240int
3241uma_zone_exhausted(uma_zone_t zone)
3242{
3243	int full;
3244
3245	ZONE_LOCK(zone);
3246	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3247	ZONE_UNLOCK(zone);
3248	return (full);
3249}
3250
3251int
3252uma_zone_exhausted_nolock(uma_zone_t zone)
3253{
3254	return (zone->uz_flags & UMA_ZFLAG_FULL);
3255}
3256
3257void *
3258uma_large_malloc(vm_size_t size, int wait)
3259{
3260	void *mem;
3261	uma_slab_t slab;
3262	uint8_t flags;
3263
3264	slab = zone_alloc_item(slabzone, NULL, wait);
3265	if (slab == NULL)
3266		return (NULL);
3267	mem = page_alloc(NULL, size, &flags, wait);
3268	if (mem) {
3269		vsetslab((vm_offset_t)mem, slab);
3270		slab->us_data = mem;
3271		slab->us_flags = flags | UMA_SLAB_MALLOC;
3272		slab->us_size = size;
3273	} else {
3274		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3275	}
3276
3277	return (mem);
3278}
3279
3280void
3281uma_large_free(uma_slab_t slab)
3282{
3283
3284	page_free(slab->us_data, slab->us_size, slab->us_flags);
3285	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3286}
3287
3288static void
3289uma_zero_item(void *item, uma_zone_t zone)
3290{
3291	int i;
3292
3293	if (zone->uz_flags & UMA_ZONE_PCPU) {
3294		CPU_FOREACH(i)
3295			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3296	} else
3297		bzero(item, zone->uz_size);
3298}
3299
3300void
3301uma_print_stats(void)
3302{
3303	zone_foreach(uma_print_zone);
3304}
3305
3306static void
3307slab_print(uma_slab_t slab)
3308{
3309	printf("slab: keg %p, data %p, freecount %d\n",
3310		slab->us_keg, slab->us_data, slab->us_freecount);
3311}
3312
3313static void
3314cache_print(uma_cache_t cache)
3315{
3316	printf("alloc: %p(%d), free: %p(%d)\n",
3317		cache->uc_allocbucket,
3318		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3319		cache->uc_freebucket,
3320		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3321}
3322
3323static void
3324uma_print_keg(uma_keg_t keg)
3325{
3326	uma_slab_t slab;
3327
3328	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3329	    "out %d free %d limit %d\n",
3330	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3331	    keg->uk_ipers, keg->uk_ppera,
3332	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
3333	    keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3334	printf("Part slabs:\n");
3335	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3336		slab_print(slab);
3337	printf("Free slabs:\n");
3338	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3339		slab_print(slab);
3340	printf("Full slabs:\n");
3341	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3342		slab_print(slab);
3343}
3344
3345void
3346uma_print_zone(uma_zone_t zone)
3347{
3348	uma_cache_t cache;
3349	uma_klink_t kl;
3350	int i;
3351
3352	printf("zone: %s(%p) size %d flags %#x\n",
3353	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3354	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3355		uma_print_keg(kl->kl_keg);
3356	CPU_FOREACH(i) {
3357		cache = &zone->uz_cpu[i];
3358		printf("CPU %d Cache:\n", i);
3359		cache_print(cache);
3360	}
3361}
3362
3363#ifdef DDB
3364/*
3365 * Generate statistics across both the zone and its per-cpu cache's.  Return
3366 * desired statistics if the pointer is non-NULL for that statistic.
3367 *
3368 * Note: does not update the zone statistics, as it can't safely clear the
3369 * per-CPU cache statistic.
3370 *
3371 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3372 * safe from off-CPU; we should modify the caches to track this information
3373 * directly so that we don't have to.
3374 */
3375static void
3376uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3377    uint64_t *freesp, uint64_t *sleepsp)
3378{
3379	uma_cache_t cache;
3380	uint64_t allocs, frees, sleeps;
3381	int cachefree, cpu;
3382
3383	allocs = frees = sleeps = 0;
3384	cachefree = 0;
3385	CPU_FOREACH(cpu) {
3386		cache = &z->uz_cpu[cpu];
3387		if (cache->uc_allocbucket != NULL)
3388			cachefree += cache->uc_allocbucket->ub_cnt;
3389		if (cache->uc_freebucket != NULL)
3390			cachefree += cache->uc_freebucket->ub_cnt;
3391		allocs += cache->uc_allocs;
3392		frees += cache->uc_frees;
3393	}
3394	allocs += z->uz_allocs;
3395	frees += z->uz_frees;
3396	sleeps += z->uz_sleeps;
3397	if (cachefreep != NULL)
3398		*cachefreep = cachefree;
3399	if (allocsp != NULL)
3400		*allocsp = allocs;
3401	if (freesp != NULL)
3402		*freesp = frees;
3403	if (sleepsp != NULL)
3404		*sleepsp = sleeps;
3405}
3406#endif /* DDB */
3407
3408static int
3409sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3410{
3411	uma_keg_t kz;
3412	uma_zone_t z;
3413	int count;
3414
3415	count = 0;
3416	rw_rlock(&uma_rwlock);
3417	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3418		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3419			count++;
3420	}
3421	rw_runlock(&uma_rwlock);
3422	return (sysctl_handle_int(oidp, &count, 0, req));
3423}
3424
3425static int
3426sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3427{
3428	struct uma_stream_header ush;
3429	struct uma_type_header uth;
3430	struct uma_percpu_stat *ups;
3431	uma_bucket_t bucket;
3432	struct sbuf sbuf;
3433	uma_cache_t cache;
3434	uma_klink_t kl;
3435	uma_keg_t kz;
3436	uma_zone_t z;
3437	uma_keg_t k;
3438	int count, error, i;
3439
3440	error = sysctl_wire_old_buffer(req, 0);
3441	if (error != 0)
3442		return (error);
3443	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3444	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
3445	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
3446
3447	count = 0;
3448	rw_rlock(&uma_rwlock);
3449	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3450		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3451			count++;
3452	}
3453
3454	/*
3455	 * Insert stream header.
3456	 */
3457	bzero(&ush, sizeof(ush));
3458	ush.ush_version = UMA_STREAM_VERSION;
3459	ush.ush_maxcpus = (mp_maxid + 1);
3460	ush.ush_count = count;
3461	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3462
3463	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3464		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3465			bzero(&uth, sizeof(uth));
3466			ZONE_LOCK(z);
3467			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3468			uth.uth_align = kz->uk_align;
3469			uth.uth_size = kz->uk_size;
3470			uth.uth_rsize = kz->uk_rsize;
3471			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3472				k = kl->kl_keg;
3473				uth.uth_maxpages += k->uk_maxpages;
3474				uth.uth_pages += k->uk_pages;
3475				uth.uth_keg_free += k->uk_free;
3476				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3477				    * k->uk_ipers;
3478			}
3479
3480			/*
3481			 * A zone is secondary is it is not the first entry
3482			 * on the keg's zone list.
3483			 */
3484			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3485			    (LIST_FIRST(&kz->uk_zones) != z))
3486				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3487
3488			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3489				uth.uth_zone_free += bucket->ub_cnt;
3490			uth.uth_allocs = z->uz_allocs;
3491			uth.uth_frees = z->uz_frees;
3492			uth.uth_fails = z->uz_fails;
3493			uth.uth_sleeps = z->uz_sleeps;
3494			/*
3495			 * While it is not normally safe to access the cache
3496			 * bucket pointers while not on the CPU that owns the
3497			 * cache, we only allow the pointers to be exchanged
3498			 * without the zone lock held, not invalidated, so
3499			 * accept the possible race associated with bucket
3500			 * exchange during monitoring.
3501			 */
3502			for (i = 0; i < mp_maxid + 1; i++) {
3503				bzero(&ups[i], sizeof(*ups));
3504				if (kz->uk_flags & UMA_ZFLAG_INTERNAL ||
3505				    CPU_ABSENT(i))
3506					continue;
3507				cache = &z->uz_cpu[i];
3508				if (cache->uc_allocbucket != NULL)
3509					ups[i].ups_cache_free +=
3510					    cache->uc_allocbucket->ub_cnt;
3511				if (cache->uc_freebucket != NULL)
3512					ups[i].ups_cache_free +=
3513					    cache->uc_freebucket->ub_cnt;
3514				ups[i].ups_allocs = cache->uc_allocs;
3515				ups[i].ups_frees = cache->uc_frees;
3516			}
3517			ZONE_UNLOCK(z);
3518			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3519			for (i = 0; i < mp_maxid + 1; i++)
3520				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
3521		}
3522	}
3523	rw_runlock(&uma_rwlock);
3524	error = sbuf_finish(&sbuf);
3525	sbuf_delete(&sbuf);
3526	free(ups, M_TEMP);
3527	return (error);
3528}
3529
3530int
3531sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3532{
3533	uma_zone_t zone = *(uma_zone_t *)arg1;
3534	int error, max;
3535
3536	max = uma_zone_get_max(zone);
3537	error = sysctl_handle_int(oidp, &max, 0, req);
3538	if (error || !req->newptr)
3539		return (error);
3540
3541	uma_zone_set_max(zone, max);
3542
3543	return (0);
3544}
3545
3546int
3547sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3548{
3549	uma_zone_t zone = *(uma_zone_t *)arg1;
3550	int cur;
3551
3552	cur = uma_zone_get_cur(zone);
3553	return (sysctl_handle_int(oidp, &cur, 0, req));
3554}
3555
3556#ifdef INVARIANTS
3557static uma_slab_t
3558uma_dbg_getslab(uma_zone_t zone, void *item)
3559{
3560	uma_slab_t slab;
3561	uma_keg_t keg;
3562	uint8_t *mem;
3563
3564	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
3565	if (zone->uz_flags & UMA_ZONE_VTOSLAB) {
3566		slab = vtoslab((vm_offset_t)mem);
3567	} else {
3568		/*
3569		 * It is safe to return the slab here even though the
3570		 * zone is unlocked because the item's allocation state
3571		 * essentially holds a reference.
3572		 */
3573		ZONE_LOCK(zone);
3574		keg = LIST_FIRST(&zone->uz_kegs)->kl_keg;
3575		if (keg->uk_flags & UMA_ZONE_HASH)
3576			slab = hash_sfind(&keg->uk_hash, mem);
3577		else
3578			slab = (uma_slab_t)(mem + keg->uk_pgoff);
3579		ZONE_UNLOCK(zone);
3580	}
3581
3582	return (slab);
3583}
3584
3585/*
3586 * Set up the slab's freei data such that uma_dbg_free can function.
3587 *
3588 */
3589static void
3590uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
3591{
3592	uma_keg_t keg;
3593	int freei;
3594
3595	if (zone_first_keg(zone) == NULL)
3596		return;
3597	if (slab == NULL) {
3598		slab = uma_dbg_getslab(zone, item);
3599		if (slab == NULL)
3600			panic("uma: item %p did not belong to zone %s\n",
3601			    item, zone->uz_name);
3602	}
3603	keg = slab->us_keg;
3604	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3605
3606	if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3607		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
3608		    item, zone, zone->uz_name, slab, freei);
3609	BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3610
3611	return;
3612}
3613
3614/*
3615 * Verifies freed addresses.  Checks for alignment, valid slab membership
3616 * and duplicate frees.
3617 *
3618 */
3619static void
3620uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
3621{
3622	uma_keg_t keg;
3623	int freei;
3624
3625	if (zone_first_keg(zone) == NULL)
3626		return;
3627	if (slab == NULL) {
3628		slab = uma_dbg_getslab(zone, item);
3629		if (slab == NULL)
3630			panic("uma: Freed item %p did not belong to zone %s\n",
3631			    item, zone->uz_name);
3632	}
3633	keg = slab->us_keg;
3634	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3635
3636	if (freei >= keg->uk_ipers)
3637		panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
3638		    item, zone, zone->uz_name, slab, freei);
3639
3640	if (((freei * keg->uk_rsize) + slab->us_data) != item)
3641		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
3642		    item, zone, zone->uz_name, slab, freei);
3643
3644	if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3645		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
3646		    item, zone, zone->uz_name, slab, freei);
3647
3648	BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3649}
3650#endif /* INVARIANTS */
3651
3652#ifdef DDB
3653DB_SHOW_COMMAND(uma, db_show_uma)
3654{
3655	uint64_t allocs, frees, sleeps;
3656	uma_bucket_t bucket;
3657	uma_keg_t kz;
3658	uma_zone_t z;
3659	int cachefree;
3660
3661	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3662	    "Free", "Requests", "Sleeps", "Bucket");
3663	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3664		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3665			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3666				allocs = z->uz_allocs;
3667				frees = z->uz_frees;
3668				sleeps = z->uz_sleeps;
3669				cachefree = 0;
3670			} else
3671				uma_zone_sumstat(z, &cachefree, &allocs,
3672				    &frees, &sleeps);
3673			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3674			    (LIST_FIRST(&kz->uk_zones) != z)))
3675				cachefree += kz->uk_free;
3676			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3677				cachefree += bucket->ub_cnt;
3678			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3679			    z->uz_name, (uintmax_t)kz->uk_size,
3680			    (intmax_t)(allocs - frees), cachefree,
3681			    (uintmax_t)allocs, sleeps, z->uz_count);
3682			if (db_pager_quit)
3683				return;
3684		}
3685	}
3686}
3687
3688DB_SHOW_COMMAND(umacache, db_show_umacache)
3689{
3690	uint64_t allocs, frees;
3691	uma_bucket_t bucket;
3692	uma_zone_t z;
3693	int cachefree;
3694
3695	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3696	    "Requests", "Bucket");
3697	LIST_FOREACH(z, &uma_cachezones, uz_link) {
3698		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3699		LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3700			cachefree += bucket->ub_cnt;
3701		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3702		    z->uz_name, (uintmax_t)z->uz_size,
3703		    (intmax_t)(allocs - frees), cachefree,
3704		    (uintmax_t)allocs, z->uz_count);
3705		if (db_pager_quit)
3706			return;
3707	}
3708}
3709#endif	/* DDB */
3710