uma_core.c revision 332572
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * efficient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/11/sys/vm/uma_core.c 332572 2018-04-16 15:07:19Z glebius $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/eventhandler.h>
68#include <sys/kernel.h>
69#include <sys/types.h>
70#include <sys/queue.h>
71#include <sys/malloc.h>
72#include <sys/ktr.h>
73#include <sys/lock.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/random.h>
78#include <sys/rwlock.h>
79#include <sys/sbuf.h>
80#include <sys/sched.h>
81#include <sys/smp.h>
82#include <sys/taskqueue.h>
83#include <sys/vmmeter.h>
84
85#include <vm/vm.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_param.h>
90#include <vm/vm_map.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94#include <vm/uma_int.h>
95#include <vm/uma_dbg.h>
96
97#include <ddb/ddb.h>
98
99#ifdef DEBUG_MEMGUARD
100#include <vm/memguard.h>
101#endif
102
103/*
104 * This is the zone and keg from which all zones are spawned.  The idea is that
105 * even the zone & keg heads are allocated from the allocator, so we use the
106 * bss section to bootstrap us.
107 */
108static struct uma_keg masterkeg;
109static struct uma_zone masterzone_k;
110static struct uma_zone masterzone_z;
111static uma_zone_t kegs = &masterzone_k;
112static uma_zone_t zones = &masterzone_z;
113
114/* This is the zone from which all of uma_slab_t's are allocated. */
115static uma_zone_t slabzone;
116
117/*
118 * The initial hash tables come out of this zone so they can be allocated
119 * prior to malloc coming up.
120 */
121static uma_zone_t hashzone;
122
123/* The boot-time adjusted value for cache line alignment. */
124int uma_align_cache = 64 - 1;
125
126static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
127
128/*
129 * Are we allowed to allocate buckets?
130 */
131static int bucketdisable = 1;
132
133/* Linked list of all kegs in the system */
134static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
135
136/* Linked list of all cache-only zones in the system */
137static LIST_HEAD(,uma_zone) uma_cachezones =
138    LIST_HEAD_INITIALIZER(uma_cachezones);
139
140/* This RW lock protects the keg list */
141static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
142
143/* Linked list of boot time pages */
144static LIST_HEAD(,uma_slab) uma_boot_pages =
145    LIST_HEAD_INITIALIZER(uma_boot_pages);
146
147/* This mutex protects the boot time pages list */
148static struct mtx_padalign uma_boot_pages_mtx;
149
150static struct sx uma_drain_lock;
151
152/* Is the VM done starting up? */
153static int booted = 0;
154#define	UMA_STARTUP	1
155#define	UMA_STARTUP2	2
156
157/*
158 * This is the handle used to schedule events that need to happen
159 * outside of the allocation fast path.
160 */
161static struct callout uma_callout;
162#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
163
164/*
165 * This structure is passed as the zone ctor arg so that I don't have to create
166 * a special allocation function just for zones.
167 */
168struct uma_zctor_args {
169	const char *name;
170	size_t size;
171	uma_ctor ctor;
172	uma_dtor dtor;
173	uma_init uminit;
174	uma_fini fini;
175	uma_import import;
176	uma_release release;
177	void *arg;
178	uma_keg_t keg;
179	int align;
180	uint32_t flags;
181};
182
183struct uma_kctor_args {
184	uma_zone_t zone;
185	size_t size;
186	uma_init uminit;
187	uma_fini fini;
188	int align;
189	uint32_t flags;
190};
191
192struct uma_bucket_zone {
193	uma_zone_t	ubz_zone;
194	char		*ubz_name;
195	int		ubz_entries;	/* Number of items it can hold. */
196	int		ubz_maxsize;	/* Maximum allocation size per-item. */
197};
198
199/*
200 * Compute the actual number of bucket entries to pack them in power
201 * of two sizes for more efficient space utilization.
202 */
203#define	BUCKET_SIZE(n)						\
204    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
205
206#define	BUCKET_MAX	BUCKET_SIZE(256)
207
208struct uma_bucket_zone bucket_zones[] = {
209	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
210	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
211	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
212	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
213	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
214	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
215	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
216	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
217	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
218	{ NULL, NULL, 0}
219};
220
221/*
222 * Flags and enumerations to be passed to internal functions.
223 */
224enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
225
226/* Prototypes.. */
227
228static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
229static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
230static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
231static void page_free(void *, vm_size_t, uint8_t);
232static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
233static void cache_drain(uma_zone_t);
234static void bucket_drain(uma_zone_t, uma_bucket_t);
235static void bucket_cache_drain(uma_zone_t zone);
236static int keg_ctor(void *, int, void *, int);
237static void keg_dtor(void *, int, void *);
238static int zone_ctor(void *, int, void *, int);
239static void zone_dtor(void *, int, void *);
240static int zero_init(void *, int, int);
241static void keg_small_init(uma_keg_t keg);
242static void keg_large_init(uma_keg_t keg);
243static void zone_foreach(void (*zfunc)(uma_zone_t));
244static void zone_timeout(uma_zone_t zone);
245static int hash_alloc(struct uma_hash *);
246static int hash_expand(struct uma_hash *, struct uma_hash *);
247static void hash_free(struct uma_hash *hash);
248static void uma_timeout(void *);
249static void uma_startup3(void);
250static void *zone_alloc_item(uma_zone_t, void *, int);
251static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
252static void bucket_enable(void);
253static void bucket_init(void);
254static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
255static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
256static void bucket_zone_drain(void);
257static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
258static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
259static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
260static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
261static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
262static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
263    uma_fini fini, int align, uint32_t flags);
264static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
265static void zone_release(uma_zone_t zone, void **bucket, int cnt);
266static void uma_zero_item(void *item, uma_zone_t zone);
267
268void uma_print_zone(uma_zone_t);
269void uma_print_stats(void);
270static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
271static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
272
273#ifdef INVARIANTS
274static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
275static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
276#endif
277
278SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
279
280SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
281    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
282
283SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
284    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
285
286static int zone_warnings = 1;
287SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
288    "Warn when UMA zones becomes full");
289
290/*
291 * This routine checks to see whether or not it's safe to enable buckets.
292 */
293static void
294bucket_enable(void)
295{
296	bucketdisable = vm_page_count_min();
297}
298
299/*
300 * Initialize bucket_zones, the array of zones of buckets of various sizes.
301 *
302 * For each zone, calculate the memory required for each bucket, consisting
303 * of the header and an array of pointers.
304 */
305static void
306bucket_init(void)
307{
308	struct uma_bucket_zone *ubz;
309	int size;
310
311	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
312		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
313		size += sizeof(void *) * ubz->ubz_entries;
314		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
315		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
316		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
317	}
318}
319
320/*
321 * Given a desired number of entries for a bucket, return the zone from which
322 * to allocate the bucket.
323 */
324static struct uma_bucket_zone *
325bucket_zone_lookup(int entries)
326{
327	struct uma_bucket_zone *ubz;
328
329	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
330		if (ubz->ubz_entries >= entries)
331			return (ubz);
332	ubz--;
333	return (ubz);
334}
335
336static int
337bucket_select(int size)
338{
339	struct uma_bucket_zone *ubz;
340
341	ubz = &bucket_zones[0];
342	if (size > ubz->ubz_maxsize)
343		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
344
345	for (; ubz->ubz_entries != 0; ubz++)
346		if (ubz->ubz_maxsize < size)
347			break;
348	ubz--;
349	return (ubz->ubz_entries);
350}
351
352static uma_bucket_t
353bucket_alloc(uma_zone_t zone, void *udata, int flags)
354{
355	struct uma_bucket_zone *ubz;
356	uma_bucket_t bucket;
357
358	/*
359	 * This is to stop us from allocating per cpu buckets while we're
360	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
361	 * boot pages.  This also prevents us from allocating buckets in
362	 * low memory situations.
363	 */
364	if (bucketdisable)
365		return (NULL);
366	/*
367	 * To limit bucket recursion we store the original zone flags
368	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
369	 * NOVM flag to persist even through deep recursions.  We also
370	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
371	 * a bucket for a bucket zone so we do not allow infinite bucket
372	 * recursion.  This cookie will even persist to frees of unused
373	 * buckets via the allocation path or bucket allocations in the
374	 * free path.
375	 */
376	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
377		udata = (void *)(uintptr_t)zone->uz_flags;
378	else {
379		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
380			return (NULL);
381		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
382	}
383	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
384		flags |= M_NOVM;
385	ubz = bucket_zone_lookup(zone->uz_count);
386	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
387		ubz++;
388	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
389	if (bucket) {
390#ifdef INVARIANTS
391		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
392#endif
393		bucket->ub_cnt = 0;
394		bucket->ub_entries = ubz->ubz_entries;
395	}
396
397	return (bucket);
398}
399
400static void
401bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
402{
403	struct uma_bucket_zone *ubz;
404
405	KASSERT(bucket->ub_cnt == 0,
406	    ("bucket_free: Freeing a non free bucket."));
407	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
408		udata = (void *)(uintptr_t)zone->uz_flags;
409	ubz = bucket_zone_lookup(bucket->ub_entries);
410	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
411}
412
413static void
414bucket_zone_drain(void)
415{
416	struct uma_bucket_zone *ubz;
417
418	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
419		zone_drain(ubz->ubz_zone);
420}
421
422static void
423zone_log_warning(uma_zone_t zone)
424{
425	static const struct timeval warninterval = { 300, 0 };
426
427	if (!zone_warnings || zone->uz_warning == NULL)
428		return;
429
430	if (ratecheck(&zone->uz_ratecheck, &warninterval))
431		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
432}
433
434static inline void
435zone_maxaction(uma_zone_t zone)
436{
437
438	if (zone->uz_maxaction.ta_func != NULL)
439		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
440}
441
442static void
443zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
444{
445	uma_klink_t klink;
446
447	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
448		kegfn(klink->kl_keg);
449}
450
451/*
452 * Routine called by timeout which is used to fire off some time interval
453 * based calculations.  (stats, hash size, etc.)
454 *
455 * Arguments:
456 *	arg   Unused
457 *
458 * Returns:
459 *	Nothing
460 */
461static void
462uma_timeout(void *unused)
463{
464	bucket_enable();
465	zone_foreach(zone_timeout);
466
467	/* Reschedule this event */
468	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
469}
470
471/*
472 * Routine to perform timeout driven calculations.  This expands the
473 * hashes and does per cpu statistics aggregation.
474 *
475 *  Returns nothing.
476 */
477static void
478keg_timeout(uma_keg_t keg)
479{
480
481	KEG_LOCK(keg);
482	/*
483	 * Expand the keg hash table.
484	 *
485	 * This is done if the number of slabs is larger than the hash size.
486	 * What I'm trying to do here is completely reduce collisions.  This
487	 * may be a little aggressive.  Should I allow for two collisions max?
488	 */
489	if (keg->uk_flags & UMA_ZONE_HASH &&
490	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
491		struct uma_hash newhash;
492		struct uma_hash oldhash;
493		int ret;
494
495		/*
496		 * This is so involved because allocating and freeing
497		 * while the keg lock is held will lead to deadlock.
498		 * I have to do everything in stages and check for
499		 * races.
500		 */
501		newhash = keg->uk_hash;
502		KEG_UNLOCK(keg);
503		ret = hash_alloc(&newhash);
504		KEG_LOCK(keg);
505		if (ret) {
506			if (hash_expand(&keg->uk_hash, &newhash)) {
507				oldhash = keg->uk_hash;
508				keg->uk_hash = newhash;
509			} else
510				oldhash = newhash;
511
512			KEG_UNLOCK(keg);
513			hash_free(&oldhash);
514			return;
515		}
516	}
517	KEG_UNLOCK(keg);
518}
519
520static void
521zone_timeout(uma_zone_t zone)
522{
523
524	zone_foreach_keg(zone, &keg_timeout);
525}
526
527/*
528 * Allocate and zero fill the next sized hash table from the appropriate
529 * backing store.
530 *
531 * Arguments:
532 *	hash  A new hash structure with the old hash size in uh_hashsize
533 *
534 * Returns:
535 *	1 on success and 0 on failure.
536 */
537static int
538hash_alloc(struct uma_hash *hash)
539{
540	int oldsize;
541	int alloc;
542
543	oldsize = hash->uh_hashsize;
544
545	/* We're just going to go to a power of two greater */
546	if (oldsize)  {
547		hash->uh_hashsize = oldsize * 2;
548		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
549		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
550		    M_UMAHASH, M_NOWAIT);
551	} else {
552		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
553		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
554		    M_WAITOK);
555		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
556	}
557	if (hash->uh_slab_hash) {
558		bzero(hash->uh_slab_hash, alloc);
559		hash->uh_hashmask = hash->uh_hashsize - 1;
560		return (1);
561	}
562
563	return (0);
564}
565
566/*
567 * Expands the hash table for HASH zones.  This is done from zone_timeout
568 * to reduce collisions.  This must not be done in the regular allocation
569 * path, otherwise, we can recurse on the vm while allocating pages.
570 *
571 * Arguments:
572 *	oldhash  The hash you want to expand
573 *	newhash  The hash structure for the new table
574 *
575 * Returns:
576 *	Nothing
577 *
578 * Discussion:
579 */
580static int
581hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
582{
583	uma_slab_t slab;
584	int hval;
585	int i;
586
587	if (!newhash->uh_slab_hash)
588		return (0);
589
590	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
591		return (0);
592
593	/*
594	 * I need to investigate hash algorithms for resizing without a
595	 * full rehash.
596	 */
597
598	for (i = 0; i < oldhash->uh_hashsize; i++)
599		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
600			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
601			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
602			hval = UMA_HASH(newhash, slab->us_data);
603			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
604			    slab, us_hlink);
605		}
606
607	return (1);
608}
609
610/*
611 * Free the hash bucket to the appropriate backing store.
612 *
613 * Arguments:
614 *	slab_hash  The hash bucket we're freeing
615 *	hashsize   The number of entries in that hash bucket
616 *
617 * Returns:
618 *	Nothing
619 */
620static void
621hash_free(struct uma_hash *hash)
622{
623	if (hash->uh_slab_hash == NULL)
624		return;
625	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
626		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
627	else
628		free(hash->uh_slab_hash, M_UMAHASH);
629}
630
631/*
632 * Frees all outstanding items in a bucket
633 *
634 * Arguments:
635 *	zone   The zone to free to, must be unlocked.
636 *	bucket The free/alloc bucket with items, cpu queue must be locked.
637 *
638 * Returns:
639 *	Nothing
640 */
641
642static void
643bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
644{
645	int i;
646
647	if (bucket == NULL)
648		return;
649
650	if (zone->uz_fini)
651		for (i = 0; i < bucket->ub_cnt; i++)
652			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
653	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
654	bucket->ub_cnt = 0;
655}
656
657/*
658 * Drains the per cpu caches for a zone.
659 *
660 * NOTE: This may only be called while the zone is being turn down, and not
661 * during normal operation.  This is necessary in order that we do not have
662 * to migrate CPUs to drain the per-CPU caches.
663 *
664 * Arguments:
665 *	zone     The zone to drain, must be unlocked.
666 *
667 * Returns:
668 *	Nothing
669 */
670static void
671cache_drain(uma_zone_t zone)
672{
673	uma_cache_t cache;
674	int cpu;
675
676	/*
677	 * XXX: It is safe to not lock the per-CPU caches, because we're
678	 * tearing down the zone anyway.  I.e., there will be no further use
679	 * of the caches at this point.
680	 *
681	 * XXX: It would good to be able to assert that the zone is being
682	 * torn down to prevent improper use of cache_drain().
683	 *
684	 * XXX: We lock the zone before passing into bucket_cache_drain() as
685	 * it is used elsewhere.  Should the tear-down path be made special
686	 * there in some form?
687	 */
688	CPU_FOREACH(cpu) {
689		cache = &zone->uz_cpu[cpu];
690		bucket_drain(zone, cache->uc_allocbucket);
691		bucket_drain(zone, cache->uc_freebucket);
692		if (cache->uc_allocbucket != NULL)
693			bucket_free(zone, cache->uc_allocbucket, NULL);
694		if (cache->uc_freebucket != NULL)
695			bucket_free(zone, cache->uc_freebucket, NULL);
696		cache->uc_allocbucket = cache->uc_freebucket = NULL;
697	}
698	ZONE_LOCK(zone);
699	bucket_cache_drain(zone);
700	ZONE_UNLOCK(zone);
701}
702
703static void
704cache_shrink(uma_zone_t zone)
705{
706
707	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
708		return;
709
710	ZONE_LOCK(zone);
711	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
712	ZONE_UNLOCK(zone);
713}
714
715static void
716cache_drain_safe_cpu(uma_zone_t zone)
717{
718	uma_cache_t cache;
719	uma_bucket_t b1, b2;
720
721	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
722		return;
723
724	b1 = b2 = NULL;
725	ZONE_LOCK(zone);
726	critical_enter();
727	cache = &zone->uz_cpu[curcpu];
728	if (cache->uc_allocbucket) {
729		if (cache->uc_allocbucket->ub_cnt != 0)
730			LIST_INSERT_HEAD(&zone->uz_buckets,
731			    cache->uc_allocbucket, ub_link);
732		else
733			b1 = cache->uc_allocbucket;
734		cache->uc_allocbucket = NULL;
735	}
736	if (cache->uc_freebucket) {
737		if (cache->uc_freebucket->ub_cnt != 0)
738			LIST_INSERT_HEAD(&zone->uz_buckets,
739			    cache->uc_freebucket, ub_link);
740		else
741			b2 = cache->uc_freebucket;
742		cache->uc_freebucket = NULL;
743	}
744	critical_exit();
745	ZONE_UNLOCK(zone);
746	if (b1)
747		bucket_free(zone, b1, NULL);
748	if (b2)
749		bucket_free(zone, b2, NULL);
750}
751
752/*
753 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
754 * This is an expensive call because it needs to bind to all CPUs
755 * one by one and enter a critical section on each of them in order
756 * to safely access their cache buckets.
757 * Zone lock must not be held on call this function.
758 */
759static void
760cache_drain_safe(uma_zone_t zone)
761{
762	int cpu;
763
764	/*
765	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
766	 */
767	if (zone)
768		cache_shrink(zone);
769	else
770		zone_foreach(cache_shrink);
771
772	CPU_FOREACH(cpu) {
773		thread_lock(curthread);
774		sched_bind(curthread, cpu);
775		thread_unlock(curthread);
776
777		if (zone)
778			cache_drain_safe_cpu(zone);
779		else
780			zone_foreach(cache_drain_safe_cpu);
781	}
782	thread_lock(curthread);
783	sched_unbind(curthread);
784	thread_unlock(curthread);
785}
786
787/*
788 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
789 */
790static void
791bucket_cache_drain(uma_zone_t zone)
792{
793	uma_bucket_t bucket;
794
795	/*
796	 * Drain the bucket queues and free the buckets, we just keep two per
797	 * cpu (alloc/free).
798	 */
799	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
800		LIST_REMOVE(bucket, ub_link);
801		ZONE_UNLOCK(zone);
802		bucket_drain(zone, bucket);
803		bucket_free(zone, bucket, NULL);
804		ZONE_LOCK(zone);
805	}
806
807	/*
808	 * Shrink further bucket sizes.  Price of single zone lock collision
809	 * is probably lower then price of global cache drain.
810	 */
811	if (zone->uz_count > zone->uz_count_min)
812		zone->uz_count--;
813}
814
815static void
816keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
817{
818	uint8_t *mem;
819	int i;
820	uint8_t flags;
821
822	mem = slab->us_data;
823	flags = slab->us_flags;
824	i = start;
825	if (keg->uk_fini != NULL) {
826		for (i--; i > -1; i--)
827			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
828			    keg->uk_size);
829	}
830	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
831		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
832#ifdef UMA_DEBUG
833	printf("%s: Returning %d bytes.\n", keg->uk_name,
834	    PAGE_SIZE * keg->uk_ppera);
835#endif
836	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
837}
838
839/*
840 * Frees pages from a keg back to the system.  This is done on demand from
841 * the pageout daemon.
842 *
843 * Returns nothing.
844 */
845static void
846keg_drain(uma_keg_t keg)
847{
848	struct slabhead freeslabs = { 0 };
849	uma_slab_t slab, tmp;
850
851	/*
852	 * We don't want to take pages from statically allocated kegs at this
853	 * time
854	 */
855	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
856		return;
857
858#ifdef UMA_DEBUG
859	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
860#endif
861	KEG_LOCK(keg);
862	if (keg->uk_free == 0)
863		goto finished;
864
865	LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) {
866		/* We have nowhere to free these to. */
867		if (slab->us_flags & UMA_SLAB_BOOT)
868			continue;
869
870		LIST_REMOVE(slab, us_link);
871		keg->uk_pages -= keg->uk_ppera;
872		keg->uk_free -= keg->uk_ipers;
873
874		if (keg->uk_flags & UMA_ZONE_HASH)
875			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
876
877		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
878	}
879finished:
880	KEG_UNLOCK(keg);
881
882	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
883		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
884		keg_free_slab(keg, slab, keg->uk_ipers);
885	}
886}
887
888static void
889zone_drain_wait(uma_zone_t zone, int waitok)
890{
891
892	/*
893	 * Set draining to interlock with zone_dtor() so we can release our
894	 * locks as we go.  Only dtor() should do a WAITOK call since it
895	 * is the only call that knows the structure will still be available
896	 * when it wakes up.
897	 */
898	ZONE_LOCK(zone);
899	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
900		if (waitok == M_NOWAIT)
901			goto out;
902		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
903	}
904	zone->uz_flags |= UMA_ZFLAG_DRAINING;
905	bucket_cache_drain(zone);
906	ZONE_UNLOCK(zone);
907	/*
908	 * The DRAINING flag protects us from being freed while
909	 * we're running.  Normally the uma_rwlock would protect us but we
910	 * must be able to release and acquire the right lock for each keg.
911	 */
912	zone_foreach_keg(zone, &keg_drain);
913	ZONE_LOCK(zone);
914	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
915	wakeup(zone);
916out:
917	ZONE_UNLOCK(zone);
918}
919
920void
921zone_drain(uma_zone_t zone)
922{
923
924	zone_drain_wait(zone, M_NOWAIT);
925}
926
927/*
928 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
929 *
930 * Arguments:
931 *	wait  Shall we wait?
932 *
933 * Returns:
934 *	The slab that was allocated or NULL if there is no memory and the
935 *	caller specified M_NOWAIT.
936 */
937static uma_slab_t
938keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
939{
940	uma_alloc allocf;
941	uma_slab_t slab;
942	uint8_t *mem;
943	uint8_t flags;
944	int i;
945
946	mtx_assert(&keg->uk_lock, MA_OWNED);
947	slab = NULL;
948	mem = NULL;
949
950#ifdef UMA_DEBUG
951	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
952#endif
953	allocf = keg->uk_allocf;
954	KEG_UNLOCK(keg);
955
956	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
957		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
958		if (slab == NULL)
959			goto out;
960	}
961
962	/*
963	 * This reproduces the old vm_zone behavior of zero filling pages the
964	 * first time they are added to a zone.
965	 *
966	 * Malloced items are zeroed in uma_zalloc.
967	 */
968
969	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
970		wait |= M_ZERO;
971	else
972		wait &= ~M_ZERO;
973
974	if (keg->uk_flags & UMA_ZONE_NODUMP)
975		wait |= M_NODUMP;
976
977	/* zone is passed for legacy reasons. */
978	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
979	if (mem == NULL) {
980		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
981			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
982		slab = NULL;
983		goto out;
984	}
985
986	/* Point the slab into the allocated memory */
987	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
988		slab = (uma_slab_t )(mem + keg->uk_pgoff);
989
990	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
991		for (i = 0; i < keg->uk_ppera; i++)
992			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
993
994	slab->us_keg = keg;
995	slab->us_data = mem;
996	slab->us_freecount = keg->uk_ipers;
997	slab->us_flags = flags;
998	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
999#ifdef INVARIANTS
1000	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1001#endif
1002
1003	if (keg->uk_init != NULL) {
1004		for (i = 0; i < keg->uk_ipers; i++)
1005			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1006			    keg->uk_size, wait) != 0)
1007				break;
1008		if (i != keg->uk_ipers) {
1009			keg_free_slab(keg, slab, i);
1010			slab = NULL;
1011			goto out;
1012		}
1013	}
1014out:
1015	KEG_LOCK(keg);
1016
1017	if (slab != NULL) {
1018		if (keg->uk_flags & UMA_ZONE_HASH)
1019			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1020
1021		keg->uk_pages += keg->uk_ppera;
1022		keg->uk_free += keg->uk_ipers;
1023	}
1024
1025	return (slab);
1026}
1027
1028/*
1029 * This function is intended to be used early on in place of page_alloc() so
1030 * that we may use the boot time page cache to satisfy allocations before
1031 * the VM is ready.
1032 */
1033static void *
1034startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1035{
1036	uma_keg_t keg;
1037	uma_slab_t tmps;
1038	int pages, check_pages;
1039
1040	keg = zone_first_keg(zone);
1041	pages = howmany(bytes, PAGE_SIZE);
1042	check_pages = pages - 1;
1043	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1044
1045	/*
1046	 * Check our small startup cache to see if it has pages remaining.
1047	 */
1048	mtx_lock(&uma_boot_pages_mtx);
1049
1050	/* First check if we have enough room. */
1051	tmps = LIST_FIRST(&uma_boot_pages);
1052	while (tmps != NULL && check_pages-- > 0)
1053		tmps = LIST_NEXT(tmps, us_link);
1054	if (tmps != NULL) {
1055		/*
1056		 * It's ok to lose tmps references.  The last one will
1057		 * have tmps->us_data pointing to the start address of
1058		 * "pages" contiguous pages of memory.
1059		 */
1060		while (pages-- > 0) {
1061			tmps = LIST_FIRST(&uma_boot_pages);
1062			LIST_REMOVE(tmps, us_link);
1063		}
1064		mtx_unlock(&uma_boot_pages_mtx);
1065		*pflag = tmps->us_flags;
1066		return (tmps->us_data);
1067	}
1068	mtx_unlock(&uma_boot_pages_mtx);
1069	if (booted < UMA_STARTUP2)
1070		panic("UMA: Increase vm.boot_pages");
1071	/*
1072	 * Now that we've booted reset these users to their real allocator.
1073	 */
1074#ifdef UMA_MD_SMALL_ALLOC
1075	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1076#else
1077	keg->uk_allocf = page_alloc;
1078#endif
1079	return keg->uk_allocf(zone, bytes, pflag, wait);
1080}
1081
1082/*
1083 * Allocates a number of pages from the system
1084 *
1085 * Arguments:
1086 *	bytes  The number of bytes requested
1087 *	wait  Shall we wait?
1088 *
1089 * Returns:
1090 *	A pointer to the alloced memory or possibly
1091 *	NULL if M_NOWAIT is set.
1092 */
1093static void *
1094page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1095{
1096	void *p;	/* Returned page */
1097
1098	*pflag = UMA_SLAB_KMEM;
1099	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1100
1101	return (p);
1102}
1103
1104/*
1105 * Allocates a number of pages from within an object
1106 *
1107 * Arguments:
1108 *	bytes  The number of bytes requested
1109 *	wait   Shall we wait?
1110 *
1111 * Returns:
1112 *	A pointer to the alloced memory or possibly
1113 *	NULL if M_NOWAIT is set.
1114 */
1115static void *
1116noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
1117{
1118	TAILQ_HEAD(, vm_page) alloctail;
1119	u_long npages;
1120	vm_offset_t retkva, zkva;
1121	vm_page_t p, p_next;
1122	uma_keg_t keg;
1123
1124	TAILQ_INIT(&alloctail);
1125	keg = zone_first_keg(zone);
1126
1127	npages = howmany(bytes, PAGE_SIZE);
1128	while (npages > 0) {
1129		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1130		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1131		    ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1132		    VM_ALLOC_NOWAIT));
1133		if (p != NULL) {
1134			/*
1135			 * Since the page does not belong to an object, its
1136			 * listq is unused.
1137			 */
1138			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1139			npages--;
1140			continue;
1141		}
1142		/*
1143		 * Page allocation failed, free intermediate pages and
1144		 * exit.
1145		 */
1146		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1147			vm_page_unwire(p, PQ_NONE);
1148			vm_page_free(p);
1149		}
1150		return (NULL);
1151	}
1152	*flags = UMA_SLAB_PRIV;
1153	zkva = keg->uk_kva +
1154	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1155	retkva = zkva;
1156	TAILQ_FOREACH(p, &alloctail, listq) {
1157		pmap_qenter(zkva, &p, 1);
1158		zkva += PAGE_SIZE;
1159	}
1160
1161	return ((void *)retkva);
1162}
1163
1164/*
1165 * Frees a number of pages to the system
1166 *
1167 * Arguments:
1168 *	mem   A pointer to the memory to be freed
1169 *	size  The size of the memory being freed
1170 *	flags The original p->us_flags field
1171 *
1172 * Returns:
1173 *	Nothing
1174 */
1175static void
1176page_free(void *mem, vm_size_t size, uint8_t flags)
1177{
1178	struct vmem *vmem;
1179
1180	if (flags & UMA_SLAB_KMEM)
1181		vmem = kmem_arena;
1182	else if (flags & UMA_SLAB_KERNEL)
1183		vmem = kernel_arena;
1184	else
1185		panic("UMA: page_free used with invalid flags %d", flags);
1186
1187	kmem_free(vmem, (vm_offset_t)mem, size);
1188}
1189
1190/*
1191 * Zero fill initializer
1192 *
1193 * Arguments/Returns follow uma_init specifications
1194 */
1195static int
1196zero_init(void *mem, int size, int flags)
1197{
1198	bzero(mem, size);
1199	return (0);
1200}
1201
1202/*
1203 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1204 *
1205 * Arguments
1206 *	keg  The zone we should initialize
1207 *
1208 * Returns
1209 *	Nothing
1210 */
1211static void
1212keg_small_init(uma_keg_t keg)
1213{
1214	u_int rsize;
1215	u_int memused;
1216	u_int wastedspace;
1217	u_int shsize;
1218	u_int slabsize;
1219
1220	if (keg->uk_flags & UMA_ZONE_PCPU) {
1221		u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU;
1222
1223		slabsize = sizeof(struct pcpu);
1224		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1225		    PAGE_SIZE);
1226	} else {
1227		slabsize = UMA_SLAB_SIZE;
1228		keg->uk_ppera = 1;
1229	}
1230
1231	/*
1232	 * Calculate the size of each allocation (rsize) according to
1233	 * alignment.  If the requested size is smaller than we have
1234	 * allocation bits for we round it up.
1235	 */
1236	rsize = keg->uk_size;
1237	if (rsize < slabsize / SLAB_SETSIZE)
1238		rsize = slabsize / SLAB_SETSIZE;
1239	if (rsize & keg->uk_align)
1240		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1241	keg->uk_rsize = rsize;
1242
1243	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1244	    keg->uk_rsize < sizeof(struct pcpu),
1245	    ("%s: size %u too large", __func__, keg->uk_rsize));
1246
1247	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1248		shsize = 0;
1249	else
1250		shsize = sizeof(struct uma_slab);
1251
1252	if (rsize <= slabsize - shsize)
1253		keg->uk_ipers = (slabsize - shsize) / rsize;
1254	else {
1255		/* Handle special case when we have 1 item per slab, so
1256		 * alignment requirement can be relaxed. */
1257		KASSERT(keg->uk_size <= slabsize - shsize,
1258		    ("%s: size %u greater than slab", __func__, keg->uk_size));
1259		keg->uk_ipers = 1;
1260	}
1261	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1262	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1263
1264	memused = keg->uk_ipers * rsize + shsize;
1265	wastedspace = slabsize - memused;
1266
1267	/*
1268	 * We can't do OFFPAGE if we're internal or if we've been
1269	 * asked to not go to the VM for buckets.  If we do this we
1270	 * may end up going to the VM  for slabs which we do not
1271	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1272	 * of UMA_ZONE_VM, which clearly forbids it.
1273	 */
1274	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1275	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1276		return;
1277
1278	/*
1279	 * See if using an OFFPAGE slab will limit our waste.  Only do
1280	 * this if it permits more items per-slab.
1281	 *
1282	 * XXX We could try growing slabsize to limit max waste as well.
1283	 * Historically this was not done because the VM could not
1284	 * efficiently handle contiguous allocations.
1285	 */
1286	if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
1287	    (keg->uk_ipers < (slabsize / keg->uk_rsize))) {
1288		keg->uk_ipers = slabsize / keg->uk_rsize;
1289		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1290		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1291#ifdef UMA_DEBUG
1292		printf("UMA decided we need offpage slab headers for "
1293		    "keg: %s, calculated wastedspace = %d, "
1294		    "maximum wasted space allowed = %d, "
1295		    "calculated ipers = %d, "
1296		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1297		    slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1298		    slabsize - keg->uk_ipers * keg->uk_rsize);
1299#endif
1300		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1301	}
1302
1303	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1304	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1305		keg->uk_flags |= UMA_ZONE_HASH;
1306}
1307
1308/*
1309 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1310 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1311 * more complicated.
1312 *
1313 * Arguments
1314 *	keg  The keg we should initialize
1315 *
1316 * Returns
1317 *	Nothing
1318 */
1319static void
1320keg_large_init(uma_keg_t keg)
1321{
1322	u_int shsize;
1323
1324	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1325	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1326	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1327	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1328	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1329
1330	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1331	keg->uk_ipers = 1;
1332	keg->uk_rsize = keg->uk_size;
1333
1334	/* Check whether we have enough space to not do OFFPAGE. */
1335	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1336		shsize = sizeof(struct uma_slab);
1337		if (shsize & UMA_ALIGN_PTR)
1338			shsize = (shsize & ~UMA_ALIGN_PTR) +
1339			    (UMA_ALIGN_PTR + 1);
1340
1341		if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) {
1342			/*
1343			 * We can't do OFFPAGE if we're internal, in which case
1344			 * we need an extra page per allocation to contain the
1345			 * slab header.
1346			 */
1347			if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0)
1348				keg->uk_flags |= UMA_ZONE_OFFPAGE;
1349			else
1350				keg->uk_ppera++;
1351		}
1352	}
1353
1354	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1355	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1356		keg->uk_flags |= UMA_ZONE_HASH;
1357}
1358
1359static void
1360keg_cachespread_init(uma_keg_t keg)
1361{
1362	int alignsize;
1363	int trailer;
1364	int pages;
1365	int rsize;
1366
1367	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1368	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1369
1370	alignsize = keg->uk_align + 1;
1371	rsize = keg->uk_size;
1372	/*
1373	 * We want one item to start on every align boundary in a page.  To
1374	 * do this we will span pages.  We will also extend the item by the
1375	 * size of align if it is an even multiple of align.  Otherwise, it
1376	 * would fall on the same boundary every time.
1377	 */
1378	if (rsize & keg->uk_align)
1379		rsize = (rsize & ~keg->uk_align) + alignsize;
1380	if ((rsize & alignsize) == 0)
1381		rsize += alignsize;
1382	trailer = rsize - keg->uk_size;
1383	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1384	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1385	keg->uk_rsize = rsize;
1386	keg->uk_ppera = pages;
1387	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1388	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1389	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1390	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1391	    keg->uk_ipers));
1392}
1393
1394/*
1395 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1396 * the keg onto the global keg list.
1397 *
1398 * Arguments/Returns follow uma_ctor specifications
1399 *	udata  Actually uma_kctor_args
1400 */
1401static int
1402keg_ctor(void *mem, int size, void *udata, int flags)
1403{
1404	struct uma_kctor_args *arg = udata;
1405	uma_keg_t keg = mem;
1406	uma_zone_t zone;
1407
1408	bzero(keg, size);
1409	keg->uk_size = arg->size;
1410	keg->uk_init = arg->uminit;
1411	keg->uk_fini = arg->fini;
1412	keg->uk_align = arg->align;
1413	keg->uk_free = 0;
1414	keg->uk_reserve = 0;
1415	keg->uk_pages = 0;
1416	keg->uk_flags = arg->flags;
1417	keg->uk_allocf = page_alloc;
1418	keg->uk_freef = page_free;
1419	keg->uk_slabzone = NULL;
1420
1421	/*
1422	 * The master zone is passed to us at keg-creation time.
1423	 */
1424	zone = arg->zone;
1425	keg->uk_name = zone->uz_name;
1426
1427	if (arg->flags & UMA_ZONE_VM)
1428		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1429
1430	if (arg->flags & UMA_ZONE_ZINIT)
1431		keg->uk_init = zero_init;
1432
1433	if (arg->flags & UMA_ZONE_MALLOC)
1434		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1435
1436	if (arg->flags & UMA_ZONE_PCPU)
1437#ifdef SMP
1438		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1439#else
1440		keg->uk_flags &= ~UMA_ZONE_PCPU;
1441#endif
1442
1443	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1444		keg_cachespread_init(keg);
1445	} else {
1446		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1447			keg_large_init(keg);
1448		else
1449			keg_small_init(keg);
1450	}
1451
1452	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1453		keg->uk_slabzone = slabzone;
1454
1455	/*
1456	 * If we haven't booted yet we need allocations to go through the
1457	 * startup cache until the vm is ready.
1458	 */
1459	if (keg->uk_ppera == 1) {
1460#ifdef UMA_MD_SMALL_ALLOC
1461		keg->uk_allocf = uma_small_alloc;
1462		keg->uk_freef = uma_small_free;
1463
1464		if (booted < UMA_STARTUP)
1465			keg->uk_allocf = startup_alloc;
1466#else
1467		if (booted < UMA_STARTUP2)
1468			keg->uk_allocf = startup_alloc;
1469#endif
1470	} else if (booted < UMA_STARTUP2 &&
1471	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1472		keg->uk_allocf = startup_alloc;
1473
1474	/*
1475	 * Initialize keg's lock
1476	 */
1477	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1478
1479	/*
1480	 * If we're putting the slab header in the actual page we need to
1481	 * figure out where in each page it goes.  This calculates a right
1482	 * justified offset into the memory on an ALIGN_PTR boundary.
1483	 */
1484	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1485		u_int totsize;
1486
1487		/* Size of the slab struct and free list */
1488		totsize = sizeof(struct uma_slab);
1489
1490		if (totsize & UMA_ALIGN_PTR)
1491			totsize = (totsize & ~UMA_ALIGN_PTR) +
1492			    (UMA_ALIGN_PTR + 1);
1493		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1494
1495		/*
1496		 * The only way the following is possible is if with our
1497		 * UMA_ALIGN_PTR adjustments we are now bigger than
1498		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1499		 * mathematically possible for all cases, so we make
1500		 * sure here anyway.
1501		 */
1502		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1503		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1504			printf("zone %s ipers %d rsize %d size %d\n",
1505			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1506			    keg->uk_size);
1507			panic("UMA slab won't fit.");
1508		}
1509	}
1510
1511	if (keg->uk_flags & UMA_ZONE_HASH)
1512		hash_alloc(&keg->uk_hash);
1513
1514#ifdef UMA_DEBUG
1515	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1516	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1517	    keg->uk_ipers, keg->uk_ppera,
1518	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
1519	    keg->uk_free);
1520#endif
1521
1522	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1523
1524	rw_wlock(&uma_rwlock);
1525	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1526	rw_wunlock(&uma_rwlock);
1527	return (0);
1528}
1529
1530/*
1531 * Zone header ctor.  This initializes all fields, locks, etc.
1532 *
1533 * Arguments/Returns follow uma_ctor specifications
1534 *	udata  Actually uma_zctor_args
1535 */
1536static int
1537zone_ctor(void *mem, int size, void *udata, int flags)
1538{
1539	struct uma_zctor_args *arg = udata;
1540	uma_zone_t zone = mem;
1541	uma_zone_t z;
1542	uma_keg_t keg;
1543
1544	bzero(zone, size);
1545	zone->uz_name = arg->name;
1546	zone->uz_ctor = arg->ctor;
1547	zone->uz_dtor = arg->dtor;
1548	zone->uz_slab = zone_fetch_slab;
1549	zone->uz_init = NULL;
1550	zone->uz_fini = NULL;
1551	zone->uz_allocs = 0;
1552	zone->uz_frees = 0;
1553	zone->uz_fails = 0;
1554	zone->uz_sleeps = 0;
1555	zone->uz_count = 0;
1556	zone->uz_count_min = 0;
1557	zone->uz_flags = 0;
1558	zone->uz_warning = NULL;
1559	timevalclear(&zone->uz_ratecheck);
1560	keg = arg->keg;
1561
1562	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1563
1564	/*
1565	 * This is a pure cache zone, no kegs.
1566	 */
1567	if (arg->import) {
1568		if (arg->flags & UMA_ZONE_VM)
1569			arg->flags |= UMA_ZFLAG_CACHEONLY;
1570		zone->uz_flags = arg->flags;
1571		zone->uz_size = arg->size;
1572		zone->uz_import = arg->import;
1573		zone->uz_release = arg->release;
1574		zone->uz_arg = arg->arg;
1575		zone->uz_lockptr = &zone->uz_lock;
1576		rw_wlock(&uma_rwlock);
1577		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1578		rw_wunlock(&uma_rwlock);
1579		goto out;
1580	}
1581
1582	/*
1583	 * Use the regular zone/keg/slab allocator.
1584	 */
1585	zone->uz_import = (uma_import)zone_import;
1586	zone->uz_release = (uma_release)zone_release;
1587	zone->uz_arg = zone;
1588
1589	if (arg->flags & UMA_ZONE_SECONDARY) {
1590		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1591		zone->uz_init = arg->uminit;
1592		zone->uz_fini = arg->fini;
1593		zone->uz_lockptr = &keg->uk_lock;
1594		zone->uz_flags |= UMA_ZONE_SECONDARY;
1595		rw_wlock(&uma_rwlock);
1596		ZONE_LOCK(zone);
1597		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1598			if (LIST_NEXT(z, uz_link) == NULL) {
1599				LIST_INSERT_AFTER(z, zone, uz_link);
1600				break;
1601			}
1602		}
1603		ZONE_UNLOCK(zone);
1604		rw_wunlock(&uma_rwlock);
1605	} else if (keg == NULL) {
1606		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1607		    arg->align, arg->flags)) == NULL)
1608			return (ENOMEM);
1609	} else {
1610		struct uma_kctor_args karg;
1611		int error;
1612
1613		/* We should only be here from uma_startup() */
1614		karg.size = arg->size;
1615		karg.uminit = arg->uminit;
1616		karg.fini = arg->fini;
1617		karg.align = arg->align;
1618		karg.flags = arg->flags;
1619		karg.zone = zone;
1620		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1621		    flags);
1622		if (error)
1623			return (error);
1624	}
1625
1626	/*
1627	 * Link in the first keg.
1628	 */
1629	zone->uz_klink.kl_keg = keg;
1630	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1631	zone->uz_lockptr = &keg->uk_lock;
1632	zone->uz_size = keg->uk_size;
1633	zone->uz_flags |= (keg->uk_flags &
1634	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1635
1636	/*
1637	 * Some internal zones don't have room allocated for the per cpu
1638	 * caches.  If we're internal, bail out here.
1639	 */
1640	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1641		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1642		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1643		return (0);
1644	}
1645
1646out:
1647	if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
1648		zone->uz_count = bucket_select(zone->uz_size);
1649	else
1650		zone->uz_count = BUCKET_MAX;
1651	zone->uz_count_min = zone->uz_count;
1652
1653	return (0);
1654}
1655
1656/*
1657 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1658 * table and removes the keg from the global list.
1659 *
1660 * Arguments/Returns follow uma_dtor specifications
1661 *	udata  unused
1662 */
1663static void
1664keg_dtor(void *arg, int size, void *udata)
1665{
1666	uma_keg_t keg;
1667
1668	keg = (uma_keg_t)arg;
1669	KEG_LOCK(keg);
1670	if (keg->uk_free != 0) {
1671		printf("Freed UMA keg (%s) was not empty (%d items). "
1672		    " Lost %d pages of memory.\n",
1673		    keg->uk_name ? keg->uk_name : "",
1674		    keg->uk_free, keg->uk_pages);
1675	}
1676	KEG_UNLOCK(keg);
1677
1678	hash_free(&keg->uk_hash);
1679
1680	KEG_LOCK_FINI(keg);
1681}
1682
1683/*
1684 * Zone header dtor.
1685 *
1686 * Arguments/Returns follow uma_dtor specifications
1687 *	udata  unused
1688 */
1689static void
1690zone_dtor(void *arg, int size, void *udata)
1691{
1692	uma_klink_t klink;
1693	uma_zone_t zone;
1694	uma_keg_t keg;
1695
1696	zone = (uma_zone_t)arg;
1697	keg = zone_first_keg(zone);
1698
1699	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1700		cache_drain(zone);
1701
1702	rw_wlock(&uma_rwlock);
1703	LIST_REMOVE(zone, uz_link);
1704	rw_wunlock(&uma_rwlock);
1705	/*
1706	 * XXX there are some races here where
1707	 * the zone can be drained but zone lock
1708	 * released and then refilled before we
1709	 * remove it... we dont care for now
1710	 */
1711	zone_drain_wait(zone, M_WAITOK);
1712	/*
1713	 * Unlink all of our kegs.
1714	 */
1715	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1716		klink->kl_keg = NULL;
1717		LIST_REMOVE(klink, kl_link);
1718		if (klink == &zone->uz_klink)
1719			continue;
1720		free(klink, M_TEMP);
1721	}
1722	/*
1723	 * We only destroy kegs from non secondary zones.
1724	 */
1725	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1726		rw_wlock(&uma_rwlock);
1727		LIST_REMOVE(keg, uk_link);
1728		rw_wunlock(&uma_rwlock);
1729		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1730	}
1731	ZONE_LOCK_FINI(zone);
1732}
1733
1734/*
1735 * Traverses every zone in the system and calls a callback
1736 *
1737 * Arguments:
1738 *	zfunc  A pointer to a function which accepts a zone
1739 *		as an argument.
1740 *
1741 * Returns:
1742 *	Nothing
1743 */
1744static void
1745zone_foreach(void (*zfunc)(uma_zone_t))
1746{
1747	uma_keg_t keg;
1748	uma_zone_t zone;
1749
1750	rw_rlock(&uma_rwlock);
1751	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1752		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1753			zfunc(zone);
1754	}
1755	rw_runlock(&uma_rwlock);
1756}
1757
1758/* Public functions */
1759/* See uma.h */
1760void
1761uma_startup(void *bootmem, int boot_pages)
1762{
1763	struct uma_zctor_args args;
1764	uma_slab_t slab;
1765	int i;
1766
1767#ifdef UMA_DEBUG
1768	printf("Creating uma keg headers zone and keg.\n");
1769#endif
1770	rw_init(&uma_rwlock, "UMA lock");
1771
1772	/* "manually" create the initial zone */
1773	memset(&args, 0, sizeof(args));
1774	args.name = "UMA Kegs";
1775	args.size = sizeof(struct uma_keg);
1776	args.ctor = keg_ctor;
1777	args.dtor = keg_dtor;
1778	args.uminit = zero_init;
1779	args.fini = NULL;
1780	args.keg = &masterkeg;
1781	args.align = 32 - 1;
1782	args.flags = UMA_ZFLAG_INTERNAL;
1783	/* The initial zone has no Per cpu queues so it's smaller */
1784	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1785
1786#ifdef UMA_DEBUG
1787	printf("Filling boot free list.\n");
1788#endif
1789	for (i = 0; i < boot_pages; i++) {
1790		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1791		slab->us_data = (uint8_t *)slab;
1792		slab->us_flags = UMA_SLAB_BOOT;
1793		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1794	}
1795	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1796
1797#ifdef UMA_DEBUG
1798	printf("Creating uma zone headers zone and keg.\n");
1799#endif
1800	args.name = "UMA Zones";
1801	args.size = sizeof(struct uma_zone) +
1802	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1803	args.ctor = zone_ctor;
1804	args.dtor = zone_dtor;
1805	args.uminit = zero_init;
1806	args.fini = NULL;
1807	args.keg = NULL;
1808	args.align = 32 - 1;
1809	args.flags = UMA_ZFLAG_INTERNAL;
1810	/* The initial zone has no Per cpu queues so it's smaller */
1811	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1812
1813#ifdef UMA_DEBUG
1814	printf("Creating slab and hash zones.\n");
1815#endif
1816
1817	/* Now make a zone for slab headers */
1818	slabzone = uma_zcreate("UMA Slabs",
1819				sizeof(struct uma_slab),
1820				NULL, NULL, NULL, NULL,
1821				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1822
1823	hashzone = uma_zcreate("UMA Hash",
1824	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1825	    NULL, NULL, NULL, NULL,
1826	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1827
1828	bucket_init();
1829
1830	booted = UMA_STARTUP;
1831
1832#ifdef UMA_DEBUG
1833	printf("UMA startup complete.\n");
1834#endif
1835}
1836
1837/* see uma.h */
1838void
1839uma_startup2(void)
1840{
1841	booted = UMA_STARTUP2;
1842	bucket_enable();
1843	sx_init(&uma_drain_lock, "umadrain");
1844#ifdef UMA_DEBUG
1845	printf("UMA startup2 complete.\n");
1846#endif
1847}
1848
1849/*
1850 * Initialize our callout handle
1851 *
1852 */
1853
1854static void
1855uma_startup3(void)
1856{
1857#ifdef UMA_DEBUG
1858	printf("Starting callout.\n");
1859#endif
1860	callout_init(&uma_callout, 1);
1861	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1862#ifdef UMA_DEBUG
1863	printf("UMA startup3 complete.\n");
1864#endif
1865}
1866
1867static uma_keg_t
1868uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1869		int align, uint32_t flags)
1870{
1871	struct uma_kctor_args args;
1872
1873	args.size = size;
1874	args.uminit = uminit;
1875	args.fini = fini;
1876	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1877	args.flags = flags;
1878	args.zone = zone;
1879	return (zone_alloc_item(kegs, &args, M_WAITOK));
1880}
1881
1882/* See uma.h */
1883void
1884uma_set_align(int align)
1885{
1886
1887	if (align != UMA_ALIGN_CACHE)
1888		uma_align_cache = align;
1889}
1890
1891/* See uma.h */
1892uma_zone_t
1893uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1894		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1895
1896{
1897	struct uma_zctor_args args;
1898	uma_zone_t res;
1899	bool locked;
1900
1901	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
1902	    align, name));
1903
1904	/* This stuff is essential for the zone ctor */
1905	memset(&args, 0, sizeof(args));
1906	args.name = name;
1907	args.size = size;
1908	args.ctor = ctor;
1909	args.dtor = dtor;
1910	args.uminit = uminit;
1911	args.fini = fini;
1912#ifdef  INVARIANTS
1913	/*
1914	 * If a zone is being created with an empty constructor and
1915	 * destructor, pass UMA constructor/destructor which checks for
1916	 * memory use after free.
1917	 */
1918	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) &&
1919	    ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) {
1920		args.ctor = trash_ctor;
1921		args.dtor = trash_dtor;
1922		args.uminit = trash_init;
1923		args.fini = trash_fini;
1924	}
1925#endif
1926	args.align = align;
1927	args.flags = flags;
1928	args.keg = NULL;
1929
1930	if (booted < UMA_STARTUP2) {
1931		locked = false;
1932	} else {
1933		sx_slock(&uma_drain_lock);
1934		locked = true;
1935	}
1936	res = zone_alloc_item(zones, &args, M_WAITOK);
1937	if (locked)
1938		sx_sunlock(&uma_drain_lock);
1939	return (res);
1940}
1941
1942/* See uma.h */
1943uma_zone_t
1944uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1945		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1946{
1947	struct uma_zctor_args args;
1948	uma_keg_t keg;
1949	uma_zone_t res;
1950	bool locked;
1951
1952	keg = zone_first_keg(master);
1953	memset(&args, 0, sizeof(args));
1954	args.name = name;
1955	args.size = keg->uk_size;
1956	args.ctor = ctor;
1957	args.dtor = dtor;
1958	args.uminit = zinit;
1959	args.fini = zfini;
1960	args.align = keg->uk_align;
1961	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1962	args.keg = keg;
1963
1964	if (booted < UMA_STARTUP2) {
1965		locked = false;
1966	} else {
1967		sx_slock(&uma_drain_lock);
1968		locked = true;
1969	}
1970	/* XXX Attaches only one keg of potentially many. */
1971	res = zone_alloc_item(zones, &args, M_WAITOK);
1972	if (locked)
1973		sx_sunlock(&uma_drain_lock);
1974	return (res);
1975}
1976
1977/* See uma.h */
1978uma_zone_t
1979uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1980		    uma_init zinit, uma_fini zfini, uma_import zimport,
1981		    uma_release zrelease, void *arg, int flags)
1982{
1983	struct uma_zctor_args args;
1984
1985	memset(&args, 0, sizeof(args));
1986	args.name = name;
1987	args.size = size;
1988	args.ctor = ctor;
1989	args.dtor = dtor;
1990	args.uminit = zinit;
1991	args.fini = zfini;
1992	args.import = zimport;
1993	args.release = zrelease;
1994	args.arg = arg;
1995	args.align = 0;
1996	args.flags = flags;
1997
1998	return (zone_alloc_item(zones, &args, M_WAITOK));
1999}
2000
2001static void
2002zone_lock_pair(uma_zone_t a, uma_zone_t b)
2003{
2004	if (a < b) {
2005		ZONE_LOCK(a);
2006		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2007	} else {
2008		ZONE_LOCK(b);
2009		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2010	}
2011}
2012
2013static void
2014zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2015{
2016
2017	ZONE_UNLOCK(a);
2018	ZONE_UNLOCK(b);
2019}
2020
2021int
2022uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2023{
2024	uma_klink_t klink;
2025	uma_klink_t kl;
2026	int error;
2027
2028	error = 0;
2029	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2030
2031	zone_lock_pair(zone, master);
2032	/*
2033	 * zone must use vtoslab() to resolve objects and must already be
2034	 * a secondary.
2035	 */
2036	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2037	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2038		error = EINVAL;
2039		goto out;
2040	}
2041	/*
2042	 * The new master must also use vtoslab().
2043	 */
2044	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2045		error = EINVAL;
2046		goto out;
2047	}
2048
2049	/*
2050	 * The underlying object must be the same size.  rsize
2051	 * may be different.
2052	 */
2053	if (master->uz_size != zone->uz_size) {
2054		error = E2BIG;
2055		goto out;
2056	}
2057	/*
2058	 * Put it at the end of the list.
2059	 */
2060	klink->kl_keg = zone_first_keg(master);
2061	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2062		if (LIST_NEXT(kl, kl_link) == NULL) {
2063			LIST_INSERT_AFTER(kl, klink, kl_link);
2064			break;
2065		}
2066	}
2067	klink = NULL;
2068	zone->uz_flags |= UMA_ZFLAG_MULTI;
2069	zone->uz_slab = zone_fetch_slab_multi;
2070
2071out:
2072	zone_unlock_pair(zone, master);
2073	if (klink != NULL)
2074		free(klink, M_TEMP);
2075
2076	return (error);
2077}
2078
2079
2080/* See uma.h */
2081void
2082uma_zdestroy(uma_zone_t zone)
2083{
2084
2085	sx_slock(&uma_drain_lock);
2086	zone_free_item(zones, zone, NULL, SKIP_NONE);
2087	sx_sunlock(&uma_drain_lock);
2088}
2089
2090void
2091uma_zwait(uma_zone_t zone)
2092{
2093	void *item;
2094
2095	item = uma_zalloc_arg(zone, NULL, M_WAITOK);
2096	uma_zfree(zone, item);
2097}
2098
2099/* See uma.h */
2100void *
2101uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2102{
2103	void *item;
2104	uma_cache_t cache;
2105	uma_bucket_t bucket;
2106	int lockfail;
2107	int cpu;
2108
2109	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2110	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2111
2112	/* This is the fast path allocation */
2113#ifdef UMA_DEBUG_ALLOC_1
2114	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2115#endif
2116	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2117	    zone->uz_name, flags);
2118
2119	if (flags & M_WAITOK) {
2120		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2121		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2122	}
2123	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2124	    ("uma_zalloc_arg: called with spinlock or critical section held"));
2125
2126#ifdef DEBUG_MEMGUARD
2127	if (memguard_cmp_zone(zone)) {
2128		item = memguard_alloc(zone->uz_size, flags);
2129		if (item != NULL) {
2130			if (zone->uz_init != NULL &&
2131			    zone->uz_init(item, zone->uz_size, flags) != 0)
2132				return (NULL);
2133			if (zone->uz_ctor != NULL &&
2134			    zone->uz_ctor(item, zone->uz_size, udata,
2135			    flags) != 0) {
2136			    	zone->uz_fini(item, zone->uz_size);
2137				return (NULL);
2138			}
2139			return (item);
2140		}
2141		/* This is unfortunate but should not be fatal. */
2142	}
2143#endif
2144	/*
2145	 * If possible, allocate from the per-CPU cache.  There are two
2146	 * requirements for safe access to the per-CPU cache: (1) the thread
2147	 * accessing the cache must not be preempted or yield during access,
2148	 * and (2) the thread must not migrate CPUs without switching which
2149	 * cache it accesses.  We rely on a critical section to prevent
2150	 * preemption and migration.  We release the critical section in
2151	 * order to acquire the zone mutex if we are unable to allocate from
2152	 * the current cache; when we re-acquire the critical section, we
2153	 * must detect and handle migration if it has occurred.
2154	 */
2155	critical_enter();
2156	cpu = curcpu;
2157	cache = &zone->uz_cpu[cpu];
2158
2159zalloc_start:
2160	bucket = cache->uc_allocbucket;
2161	if (bucket != NULL && bucket->ub_cnt > 0) {
2162		bucket->ub_cnt--;
2163		item = bucket->ub_bucket[bucket->ub_cnt];
2164#ifdef INVARIANTS
2165		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2166#endif
2167		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2168		cache->uc_allocs++;
2169		critical_exit();
2170		if (zone->uz_ctor != NULL &&
2171		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2172			atomic_add_long(&zone->uz_fails, 1);
2173			zone_free_item(zone, item, udata, SKIP_DTOR);
2174			return (NULL);
2175		}
2176#ifdef INVARIANTS
2177		uma_dbg_alloc(zone, NULL, item);
2178#endif
2179		if (flags & M_ZERO)
2180			uma_zero_item(item, zone);
2181		return (item);
2182	}
2183
2184	/*
2185	 * We have run out of items in our alloc bucket.
2186	 * See if we can switch with our free bucket.
2187	 */
2188	bucket = cache->uc_freebucket;
2189	if (bucket != NULL && bucket->ub_cnt > 0) {
2190#ifdef UMA_DEBUG_ALLOC
2191		printf("uma_zalloc: Swapping empty with alloc.\n");
2192#endif
2193		cache->uc_freebucket = cache->uc_allocbucket;
2194		cache->uc_allocbucket = bucket;
2195		goto zalloc_start;
2196	}
2197
2198	/*
2199	 * Discard any empty allocation bucket while we hold no locks.
2200	 */
2201	bucket = cache->uc_allocbucket;
2202	cache->uc_allocbucket = NULL;
2203	critical_exit();
2204	if (bucket != NULL)
2205		bucket_free(zone, bucket, udata);
2206
2207	/* Short-circuit for zones without buckets and low memory. */
2208	if (zone->uz_count == 0 || bucketdisable)
2209		goto zalloc_item;
2210
2211	/*
2212	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2213	 * we must go back to the zone.  This requires the zone lock, so we
2214	 * must drop the critical section, then re-acquire it when we go back
2215	 * to the cache.  Since the critical section is released, we may be
2216	 * preempted or migrate.  As such, make sure not to maintain any
2217	 * thread-local state specific to the cache from prior to releasing
2218	 * the critical section.
2219	 */
2220	lockfail = 0;
2221	if (ZONE_TRYLOCK(zone) == 0) {
2222		/* Record contention to size the buckets. */
2223		ZONE_LOCK(zone);
2224		lockfail = 1;
2225	}
2226	critical_enter();
2227	cpu = curcpu;
2228	cache = &zone->uz_cpu[cpu];
2229
2230	/*
2231	 * Since we have locked the zone we may as well send back our stats.
2232	 */
2233	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2234	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2235	cache->uc_allocs = 0;
2236	cache->uc_frees = 0;
2237
2238	/* See if we lost the race to fill the cache. */
2239	if (cache->uc_allocbucket != NULL) {
2240		ZONE_UNLOCK(zone);
2241		goto zalloc_start;
2242	}
2243
2244	/*
2245	 * Check the zone's cache of buckets.
2246	 */
2247	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2248		KASSERT(bucket->ub_cnt != 0,
2249		    ("uma_zalloc_arg: Returning an empty bucket."));
2250
2251		LIST_REMOVE(bucket, ub_link);
2252		cache->uc_allocbucket = bucket;
2253		ZONE_UNLOCK(zone);
2254		goto zalloc_start;
2255	}
2256	/* We are no longer associated with this CPU. */
2257	critical_exit();
2258
2259	/*
2260	 * We bump the uz count when the cache size is insufficient to
2261	 * handle the working set.
2262	 */
2263	if (lockfail && zone->uz_count < BUCKET_MAX)
2264		zone->uz_count++;
2265	ZONE_UNLOCK(zone);
2266
2267	/*
2268	 * Now lets just fill a bucket and put it on the free list.  If that
2269	 * works we'll restart the allocation from the beginning and it
2270	 * will use the just filled bucket.
2271	 */
2272	bucket = zone_alloc_bucket(zone, udata, flags);
2273	if (bucket != NULL) {
2274		ZONE_LOCK(zone);
2275		critical_enter();
2276		cpu = curcpu;
2277		cache = &zone->uz_cpu[cpu];
2278		/*
2279		 * See if we lost the race or were migrated.  Cache the
2280		 * initialized bucket to make this less likely or claim
2281		 * the memory directly.
2282		 */
2283		if (cache->uc_allocbucket == NULL)
2284			cache->uc_allocbucket = bucket;
2285		else
2286			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2287		ZONE_UNLOCK(zone);
2288		goto zalloc_start;
2289	}
2290
2291	/*
2292	 * We may not be able to get a bucket so return an actual item.
2293	 */
2294#ifdef UMA_DEBUG
2295	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2296#endif
2297
2298zalloc_item:
2299	item = zone_alloc_item(zone, udata, flags);
2300
2301	return (item);
2302}
2303
2304static uma_slab_t
2305keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2306{
2307	uma_slab_t slab;
2308	int reserve;
2309
2310	mtx_assert(&keg->uk_lock, MA_OWNED);
2311	slab = NULL;
2312	reserve = 0;
2313	if ((flags & M_USE_RESERVE) == 0)
2314		reserve = keg->uk_reserve;
2315
2316	for (;;) {
2317		/*
2318		 * Find a slab with some space.  Prefer slabs that are partially
2319		 * used over those that are totally full.  This helps to reduce
2320		 * fragmentation.
2321		 */
2322		if (keg->uk_free > reserve) {
2323			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2324				slab = LIST_FIRST(&keg->uk_part_slab);
2325			} else {
2326				slab = LIST_FIRST(&keg->uk_free_slab);
2327				LIST_REMOVE(slab, us_link);
2328				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2329				    us_link);
2330			}
2331			MPASS(slab->us_keg == keg);
2332			return (slab);
2333		}
2334
2335		/*
2336		 * M_NOVM means don't ask at all!
2337		 */
2338		if (flags & M_NOVM)
2339			break;
2340
2341		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2342			keg->uk_flags |= UMA_ZFLAG_FULL;
2343			/*
2344			 * If this is not a multi-zone, set the FULL bit.
2345			 * Otherwise slab_multi() takes care of it.
2346			 */
2347			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2348				zone->uz_flags |= UMA_ZFLAG_FULL;
2349				zone_log_warning(zone);
2350				zone_maxaction(zone);
2351			}
2352			if (flags & M_NOWAIT)
2353				break;
2354			zone->uz_sleeps++;
2355			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2356			continue;
2357		}
2358		slab = keg_alloc_slab(keg, zone, flags);
2359		/*
2360		 * If we got a slab here it's safe to mark it partially used
2361		 * and return.  We assume that the caller is going to remove
2362		 * at least one item.
2363		 */
2364		if (slab) {
2365			MPASS(slab->us_keg == keg);
2366			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2367			return (slab);
2368		}
2369		/*
2370		 * We might not have been able to get a slab but another cpu
2371		 * could have while we were unlocked.  Check again before we
2372		 * fail.
2373		 */
2374		flags |= M_NOVM;
2375	}
2376	return (slab);
2377}
2378
2379static uma_slab_t
2380zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2381{
2382	uma_slab_t slab;
2383
2384	if (keg == NULL) {
2385		keg = zone_first_keg(zone);
2386		KEG_LOCK(keg);
2387	}
2388
2389	for (;;) {
2390		slab = keg_fetch_slab(keg, zone, flags);
2391		if (slab)
2392			return (slab);
2393		if (flags & (M_NOWAIT | M_NOVM))
2394			break;
2395	}
2396	KEG_UNLOCK(keg);
2397	return (NULL);
2398}
2399
2400/*
2401 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2402 * with the keg locked.  On NULL no lock is held.
2403 *
2404 * The last pointer is used to seed the search.  It is not required.
2405 */
2406static uma_slab_t
2407zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2408{
2409	uma_klink_t klink;
2410	uma_slab_t slab;
2411	uma_keg_t keg;
2412	int flags;
2413	int empty;
2414	int full;
2415
2416	/*
2417	 * Don't wait on the first pass.  This will skip limit tests
2418	 * as well.  We don't want to block if we can find a provider
2419	 * without blocking.
2420	 */
2421	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2422	/*
2423	 * Use the last slab allocated as a hint for where to start
2424	 * the search.
2425	 */
2426	if (last != NULL) {
2427		slab = keg_fetch_slab(last, zone, flags);
2428		if (slab)
2429			return (slab);
2430		KEG_UNLOCK(last);
2431	}
2432	/*
2433	 * Loop until we have a slab incase of transient failures
2434	 * while M_WAITOK is specified.  I'm not sure this is 100%
2435	 * required but we've done it for so long now.
2436	 */
2437	for (;;) {
2438		empty = 0;
2439		full = 0;
2440		/*
2441		 * Search the available kegs for slabs.  Be careful to hold the
2442		 * correct lock while calling into the keg layer.
2443		 */
2444		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2445			keg = klink->kl_keg;
2446			KEG_LOCK(keg);
2447			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2448				slab = keg_fetch_slab(keg, zone, flags);
2449				if (slab)
2450					return (slab);
2451			}
2452			if (keg->uk_flags & UMA_ZFLAG_FULL)
2453				full++;
2454			else
2455				empty++;
2456			KEG_UNLOCK(keg);
2457		}
2458		if (rflags & (M_NOWAIT | M_NOVM))
2459			break;
2460		flags = rflags;
2461		/*
2462		 * All kegs are full.  XXX We can't atomically check all kegs
2463		 * and sleep so just sleep for a short period and retry.
2464		 */
2465		if (full && !empty) {
2466			ZONE_LOCK(zone);
2467			zone->uz_flags |= UMA_ZFLAG_FULL;
2468			zone->uz_sleeps++;
2469			zone_log_warning(zone);
2470			zone_maxaction(zone);
2471			msleep(zone, zone->uz_lockptr, PVM,
2472			    "zonelimit", hz/100);
2473			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2474			ZONE_UNLOCK(zone);
2475			continue;
2476		}
2477	}
2478	return (NULL);
2479}
2480
2481static void *
2482slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2483{
2484	void *item;
2485	uint8_t freei;
2486
2487	MPASS(keg == slab->us_keg);
2488	mtx_assert(&keg->uk_lock, MA_OWNED);
2489
2490	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2491	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2492	item = slab->us_data + (keg->uk_rsize * freei);
2493	slab->us_freecount--;
2494	keg->uk_free--;
2495
2496	/* Move this slab to the full list */
2497	if (slab->us_freecount == 0) {
2498		LIST_REMOVE(slab, us_link);
2499		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2500	}
2501
2502	return (item);
2503}
2504
2505static int
2506zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2507{
2508	uma_slab_t slab;
2509	uma_keg_t keg;
2510	int i;
2511
2512	slab = NULL;
2513	keg = NULL;
2514	/* Try to keep the buckets totally full */
2515	for (i = 0; i < max; ) {
2516		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2517			break;
2518		keg = slab->us_keg;
2519		while (slab->us_freecount && i < max) {
2520			bucket[i++] = slab_alloc_item(keg, slab);
2521			if (keg->uk_free <= keg->uk_reserve)
2522				break;
2523		}
2524		/* Don't grab more than one slab at a time. */
2525		flags &= ~M_WAITOK;
2526		flags |= M_NOWAIT;
2527	}
2528	if (slab != NULL)
2529		KEG_UNLOCK(keg);
2530
2531	return i;
2532}
2533
2534static uma_bucket_t
2535zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2536{
2537	uma_bucket_t bucket;
2538	int max;
2539
2540	/* Don't wait for buckets, preserve caller's NOVM setting. */
2541	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2542	if (bucket == NULL)
2543		return (NULL);
2544
2545	max = MIN(bucket->ub_entries, zone->uz_count);
2546	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2547	    max, flags);
2548
2549	/*
2550	 * Initialize the memory if necessary.
2551	 */
2552	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2553		int i;
2554
2555		for (i = 0; i < bucket->ub_cnt; i++)
2556			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2557			    flags) != 0)
2558				break;
2559		/*
2560		 * If we couldn't initialize the whole bucket, put the
2561		 * rest back onto the freelist.
2562		 */
2563		if (i != bucket->ub_cnt) {
2564			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2565			    bucket->ub_cnt - i);
2566#ifdef INVARIANTS
2567			bzero(&bucket->ub_bucket[i],
2568			    sizeof(void *) * (bucket->ub_cnt - i));
2569#endif
2570			bucket->ub_cnt = i;
2571		}
2572	}
2573
2574	if (bucket->ub_cnt == 0) {
2575		bucket_free(zone, bucket, udata);
2576		atomic_add_long(&zone->uz_fails, 1);
2577		return (NULL);
2578	}
2579
2580	return (bucket);
2581}
2582
2583/*
2584 * Allocates a single item from a zone.
2585 *
2586 * Arguments
2587 *	zone   The zone to alloc for.
2588 *	udata  The data to be passed to the constructor.
2589 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2590 *
2591 * Returns
2592 *	NULL if there is no memory and M_NOWAIT is set
2593 *	An item if successful
2594 */
2595
2596static void *
2597zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2598{
2599	void *item;
2600
2601	item = NULL;
2602
2603#ifdef UMA_DEBUG_ALLOC
2604	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2605#endif
2606	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2607		goto fail;
2608	atomic_add_long(&zone->uz_allocs, 1);
2609
2610	/*
2611	 * We have to call both the zone's init (not the keg's init)
2612	 * and the zone's ctor.  This is because the item is going from
2613	 * a keg slab directly to the user, and the user is expecting it
2614	 * to be both zone-init'd as well as zone-ctor'd.
2615	 */
2616	if (zone->uz_init != NULL) {
2617		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2618			zone_free_item(zone, item, udata, SKIP_FINI);
2619			goto fail;
2620		}
2621	}
2622	if (zone->uz_ctor != NULL) {
2623		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2624			zone_free_item(zone, item, udata, SKIP_DTOR);
2625			goto fail;
2626		}
2627	}
2628#ifdef INVARIANTS
2629	uma_dbg_alloc(zone, NULL, item);
2630#endif
2631	if (flags & M_ZERO)
2632		uma_zero_item(item, zone);
2633
2634	return (item);
2635
2636fail:
2637	atomic_add_long(&zone->uz_fails, 1);
2638	return (NULL);
2639}
2640
2641/* See uma.h */
2642void
2643uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2644{
2645	uma_cache_t cache;
2646	uma_bucket_t bucket;
2647	int lockfail;
2648	int cpu;
2649
2650	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2651	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2652
2653#ifdef UMA_DEBUG_ALLOC_1
2654	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2655#endif
2656	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2657	    zone->uz_name);
2658
2659	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2660	    ("uma_zfree_arg: called with spinlock or critical section held"));
2661
2662        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2663        if (item == NULL)
2664                return;
2665#ifdef DEBUG_MEMGUARD
2666	if (is_memguard_addr(item)) {
2667		if (zone->uz_dtor != NULL)
2668			zone->uz_dtor(item, zone->uz_size, udata);
2669		if (zone->uz_fini != NULL)
2670			zone->uz_fini(item, zone->uz_size);
2671		memguard_free(item);
2672		return;
2673	}
2674#endif
2675#ifdef INVARIANTS
2676	if (zone->uz_flags & UMA_ZONE_MALLOC)
2677		uma_dbg_free(zone, udata, item);
2678	else
2679		uma_dbg_free(zone, NULL, item);
2680#endif
2681	if (zone->uz_dtor != NULL)
2682		zone->uz_dtor(item, zone->uz_size, udata);
2683
2684	/*
2685	 * The race here is acceptable.  If we miss it we'll just have to wait
2686	 * a little longer for the limits to be reset.
2687	 */
2688	if (zone->uz_flags & UMA_ZFLAG_FULL)
2689		goto zfree_item;
2690
2691	/*
2692	 * If possible, free to the per-CPU cache.  There are two
2693	 * requirements for safe access to the per-CPU cache: (1) the thread
2694	 * accessing the cache must not be preempted or yield during access,
2695	 * and (2) the thread must not migrate CPUs without switching which
2696	 * cache it accesses.  We rely on a critical section to prevent
2697	 * preemption and migration.  We release the critical section in
2698	 * order to acquire the zone mutex if we are unable to free to the
2699	 * current cache; when we re-acquire the critical section, we must
2700	 * detect and handle migration if it has occurred.
2701	 */
2702zfree_restart:
2703	critical_enter();
2704	cpu = curcpu;
2705	cache = &zone->uz_cpu[cpu];
2706
2707zfree_start:
2708	/*
2709	 * Try to free into the allocbucket first to give LIFO ordering
2710	 * for cache-hot datastructures.  Spill over into the freebucket
2711	 * if necessary.  Alloc will swap them if one runs dry.
2712	 */
2713	bucket = cache->uc_allocbucket;
2714	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2715		bucket = cache->uc_freebucket;
2716	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2717		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2718		    ("uma_zfree: Freeing to non free bucket index."));
2719		bucket->ub_bucket[bucket->ub_cnt] = item;
2720		bucket->ub_cnt++;
2721		cache->uc_frees++;
2722		critical_exit();
2723		return;
2724	}
2725
2726	/*
2727	 * We must go back the zone, which requires acquiring the zone lock,
2728	 * which in turn means we must release and re-acquire the critical
2729	 * section.  Since the critical section is released, we may be
2730	 * preempted or migrate.  As such, make sure not to maintain any
2731	 * thread-local state specific to the cache from prior to releasing
2732	 * the critical section.
2733	 */
2734	critical_exit();
2735	if (zone->uz_count == 0 || bucketdisable)
2736		goto zfree_item;
2737
2738	lockfail = 0;
2739	if (ZONE_TRYLOCK(zone) == 0) {
2740		/* Record contention to size the buckets. */
2741		ZONE_LOCK(zone);
2742		lockfail = 1;
2743	}
2744	critical_enter();
2745	cpu = curcpu;
2746	cache = &zone->uz_cpu[cpu];
2747
2748	/*
2749	 * Since we have locked the zone we may as well send back our stats.
2750	 */
2751	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2752	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2753	cache->uc_allocs = 0;
2754	cache->uc_frees = 0;
2755
2756	bucket = cache->uc_freebucket;
2757	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2758		ZONE_UNLOCK(zone);
2759		goto zfree_start;
2760	}
2761	cache->uc_freebucket = NULL;
2762	/* We are no longer associated with this CPU. */
2763	critical_exit();
2764
2765	/* Can we throw this on the zone full list? */
2766	if (bucket != NULL) {
2767#ifdef UMA_DEBUG_ALLOC
2768		printf("uma_zfree: Putting old bucket on the free list.\n");
2769#endif
2770		/* ub_cnt is pointing to the last free item */
2771		KASSERT(bucket->ub_cnt != 0,
2772		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2773		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2774	}
2775
2776	/*
2777	 * We bump the uz count when the cache size is insufficient to
2778	 * handle the working set.
2779	 */
2780	if (lockfail && zone->uz_count < BUCKET_MAX)
2781		zone->uz_count++;
2782	ZONE_UNLOCK(zone);
2783
2784#ifdef UMA_DEBUG_ALLOC
2785	printf("uma_zfree: Allocating new free bucket.\n");
2786#endif
2787	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2788	if (bucket) {
2789		critical_enter();
2790		cpu = curcpu;
2791		cache = &zone->uz_cpu[cpu];
2792		if (cache->uc_freebucket == NULL) {
2793			cache->uc_freebucket = bucket;
2794			goto zfree_start;
2795		}
2796		/*
2797		 * We lost the race, start over.  We have to drop our
2798		 * critical section to free the bucket.
2799		 */
2800		critical_exit();
2801		bucket_free(zone, bucket, udata);
2802		goto zfree_restart;
2803	}
2804
2805	/*
2806	 * If nothing else caught this, we'll just do an internal free.
2807	 */
2808zfree_item:
2809	zone_free_item(zone, item, udata, SKIP_DTOR);
2810
2811	return;
2812}
2813
2814static void
2815slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2816{
2817	uint8_t freei;
2818
2819	mtx_assert(&keg->uk_lock, MA_OWNED);
2820	MPASS(keg == slab->us_keg);
2821
2822	/* Do we need to remove from any lists? */
2823	if (slab->us_freecount+1 == keg->uk_ipers) {
2824		LIST_REMOVE(slab, us_link);
2825		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2826	} else if (slab->us_freecount == 0) {
2827		LIST_REMOVE(slab, us_link);
2828		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2829	}
2830
2831	/* Slab management. */
2832	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2833	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2834	slab->us_freecount++;
2835
2836	/* Keg statistics. */
2837	keg->uk_free++;
2838}
2839
2840static void
2841zone_release(uma_zone_t zone, void **bucket, int cnt)
2842{
2843	void *item;
2844	uma_slab_t slab;
2845	uma_keg_t keg;
2846	uint8_t *mem;
2847	int clearfull;
2848	int i;
2849
2850	clearfull = 0;
2851	keg = zone_first_keg(zone);
2852	KEG_LOCK(keg);
2853	for (i = 0; i < cnt; i++) {
2854		item = bucket[i];
2855		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2856			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2857			if (zone->uz_flags & UMA_ZONE_HASH) {
2858				slab = hash_sfind(&keg->uk_hash, mem);
2859			} else {
2860				mem += keg->uk_pgoff;
2861				slab = (uma_slab_t)mem;
2862			}
2863		} else {
2864			slab = vtoslab((vm_offset_t)item);
2865			if (slab->us_keg != keg) {
2866				KEG_UNLOCK(keg);
2867				keg = slab->us_keg;
2868				KEG_LOCK(keg);
2869			}
2870		}
2871		slab_free_item(keg, slab, item);
2872		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2873			if (keg->uk_pages < keg->uk_maxpages) {
2874				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2875				clearfull = 1;
2876			}
2877
2878			/*
2879			 * We can handle one more allocation. Since we're
2880			 * clearing ZFLAG_FULL, wake up all procs blocked
2881			 * on pages. This should be uncommon, so keeping this
2882			 * simple for now (rather than adding count of blocked
2883			 * threads etc).
2884			 */
2885			wakeup(keg);
2886		}
2887	}
2888	KEG_UNLOCK(keg);
2889	if (clearfull) {
2890		ZONE_LOCK(zone);
2891		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2892		wakeup(zone);
2893		ZONE_UNLOCK(zone);
2894	}
2895
2896}
2897
2898/*
2899 * Frees a single item to any zone.
2900 *
2901 * Arguments:
2902 *	zone   The zone to free to
2903 *	item   The item we're freeing
2904 *	udata  User supplied data for the dtor
2905 *	skip   Skip dtors and finis
2906 */
2907static void
2908zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2909{
2910
2911#ifdef INVARIANTS
2912	if (skip == SKIP_NONE) {
2913		if (zone->uz_flags & UMA_ZONE_MALLOC)
2914			uma_dbg_free(zone, udata, item);
2915		else
2916			uma_dbg_free(zone, NULL, item);
2917	}
2918#endif
2919	if (skip < SKIP_DTOR && zone->uz_dtor)
2920		zone->uz_dtor(item, zone->uz_size, udata);
2921
2922	if (skip < SKIP_FINI && zone->uz_fini)
2923		zone->uz_fini(item, zone->uz_size);
2924
2925	atomic_add_long(&zone->uz_frees, 1);
2926	zone->uz_release(zone->uz_arg, &item, 1);
2927}
2928
2929/* See uma.h */
2930int
2931uma_zone_set_max(uma_zone_t zone, int nitems)
2932{
2933	uma_keg_t keg;
2934
2935	keg = zone_first_keg(zone);
2936	if (keg == NULL)
2937		return (0);
2938	KEG_LOCK(keg);
2939	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2940	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2941		keg->uk_maxpages += keg->uk_ppera;
2942	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2943	KEG_UNLOCK(keg);
2944
2945	return (nitems);
2946}
2947
2948/* See uma.h */
2949int
2950uma_zone_get_max(uma_zone_t zone)
2951{
2952	int nitems;
2953	uma_keg_t keg;
2954
2955	keg = zone_first_keg(zone);
2956	if (keg == NULL)
2957		return (0);
2958	KEG_LOCK(keg);
2959	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2960	KEG_UNLOCK(keg);
2961
2962	return (nitems);
2963}
2964
2965/* See uma.h */
2966void
2967uma_zone_set_warning(uma_zone_t zone, const char *warning)
2968{
2969
2970	ZONE_LOCK(zone);
2971	zone->uz_warning = warning;
2972	ZONE_UNLOCK(zone);
2973}
2974
2975/* See uma.h */
2976void
2977uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
2978{
2979
2980	ZONE_LOCK(zone);
2981	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
2982	ZONE_UNLOCK(zone);
2983}
2984
2985/* See uma.h */
2986int
2987uma_zone_get_cur(uma_zone_t zone)
2988{
2989	int64_t nitems;
2990	u_int i;
2991
2992	ZONE_LOCK(zone);
2993	nitems = zone->uz_allocs - zone->uz_frees;
2994	CPU_FOREACH(i) {
2995		/*
2996		 * See the comment in sysctl_vm_zone_stats() regarding the
2997		 * safety of accessing the per-cpu caches. With the zone lock
2998		 * held, it is safe, but can potentially result in stale data.
2999		 */
3000		nitems += zone->uz_cpu[i].uc_allocs -
3001		    zone->uz_cpu[i].uc_frees;
3002	}
3003	ZONE_UNLOCK(zone);
3004
3005	return (nitems < 0 ? 0 : nitems);
3006}
3007
3008/* See uma.h */
3009void
3010uma_zone_set_init(uma_zone_t zone, uma_init uminit)
3011{
3012	uma_keg_t keg;
3013
3014	keg = zone_first_keg(zone);
3015	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3016	KEG_LOCK(keg);
3017	KASSERT(keg->uk_pages == 0,
3018	    ("uma_zone_set_init on non-empty keg"));
3019	keg->uk_init = uminit;
3020	KEG_UNLOCK(keg);
3021}
3022
3023/* See uma.h */
3024void
3025uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3026{
3027	uma_keg_t keg;
3028
3029	keg = zone_first_keg(zone);
3030	KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
3031	KEG_LOCK(keg);
3032	KASSERT(keg->uk_pages == 0,
3033	    ("uma_zone_set_fini on non-empty keg"));
3034	keg->uk_fini = fini;
3035	KEG_UNLOCK(keg);
3036}
3037
3038/* See uma.h */
3039void
3040uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3041{
3042
3043	ZONE_LOCK(zone);
3044	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3045	    ("uma_zone_set_zinit on non-empty keg"));
3046	zone->uz_init = zinit;
3047	ZONE_UNLOCK(zone);
3048}
3049
3050/* See uma.h */
3051void
3052uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3053{
3054
3055	ZONE_LOCK(zone);
3056	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3057	    ("uma_zone_set_zfini on non-empty keg"));
3058	zone->uz_fini = zfini;
3059	ZONE_UNLOCK(zone);
3060}
3061
3062/* See uma.h */
3063/* XXX uk_freef is not actually used with the zone locked */
3064void
3065uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3066{
3067	uma_keg_t keg;
3068
3069	keg = zone_first_keg(zone);
3070	KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
3071	KEG_LOCK(keg);
3072	keg->uk_freef = freef;
3073	KEG_UNLOCK(keg);
3074}
3075
3076/* See uma.h */
3077/* XXX uk_allocf is not actually used with the zone locked */
3078void
3079uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3080{
3081	uma_keg_t keg;
3082
3083	keg = zone_first_keg(zone);
3084	KEG_LOCK(keg);
3085	keg->uk_allocf = allocf;
3086	KEG_UNLOCK(keg);
3087}
3088
3089/* See uma.h */
3090void
3091uma_zone_reserve(uma_zone_t zone, int items)
3092{
3093	uma_keg_t keg;
3094
3095	keg = zone_first_keg(zone);
3096	if (keg == NULL)
3097		return;
3098	KEG_LOCK(keg);
3099	keg->uk_reserve = items;
3100	KEG_UNLOCK(keg);
3101
3102	return;
3103}
3104
3105/* See uma.h */
3106int
3107uma_zone_reserve_kva(uma_zone_t zone, int count)
3108{
3109	uma_keg_t keg;
3110	vm_offset_t kva;
3111	u_int pages;
3112
3113	keg = zone_first_keg(zone);
3114	if (keg == NULL)
3115		return (0);
3116	pages = count / keg->uk_ipers;
3117
3118	if (pages * keg->uk_ipers < count)
3119		pages++;
3120	pages *= keg->uk_ppera;
3121
3122#ifdef UMA_MD_SMALL_ALLOC
3123	if (keg->uk_ppera > 1) {
3124#else
3125	if (1) {
3126#endif
3127		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
3128		if (kva == 0)
3129			return (0);
3130	} else
3131		kva = 0;
3132	KEG_LOCK(keg);
3133	keg->uk_kva = kva;
3134	keg->uk_offset = 0;
3135	keg->uk_maxpages = pages;
3136#ifdef UMA_MD_SMALL_ALLOC
3137	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3138#else
3139	keg->uk_allocf = noobj_alloc;
3140#endif
3141	keg->uk_flags |= UMA_ZONE_NOFREE;
3142	KEG_UNLOCK(keg);
3143
3144	return (1);
3145}
3146
3147/* See uma.h */
3148void
3149uma_prealloc(uma_zone_t zone, int items)
3150{
3151	int slabs;
3152	uma_slab_t slab;
3153	uma_keg_t keg;
3154
3155	keg = zone_first_keg(zone);
3156	if (keg == NULL)
3157		return;
3158	KEG_LOCK(keg);
3159	slabs = items / keg->uk_ipers;
3160	if (slabs * keg->uk_ipers < items)
3161		slabs++;
3162	while (slabs > 0) {
3163		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3164		if (slab == NULL)
3165			break;
3166		MPASS(slab->us_keg == keg);
3167		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3168		slabs--;
3169	}
3170	KEG_UNLOCK(keg);
3171}
3172
3173/* See uma.h */
3174static void
3175uma_reclaim_locked(bool kmem_danger)
3176{
3177
3178#ifdef UMA_DEBUG
3179	printf("UMA: vm asked us to release pages!\n");
3180#endif
3181	sx_assert(&uma_drain_lock, SA_XLOCKED);
3182	bucket_enable();
3183	zone_foreach(zone_drain);
3184	if (vm_page_count_min() || kmem_danger) {
3185		cache_drain_safe(NULL);
3186		zone_foreach(zone_drain);
3187	}
3188	/*
3189	 * Some slabs may have been freed but this zone will be visited early
3190	 * we visit again so that we can free pages that are empty once other
3191	 * zones are drained.  We have to do the same for buckets.
3192	 */
3193	zone_drain(slabzone);
3194	bucket_zone_drain();
3195}
3196
3197void
3198uma_reclaim(void)
3199{
3200
3201	sx_xlock(&uma_drain_lock);
3202	uma_reclaim_locked(false);
3203	sx_xunlock(&uma_drain_lock);
3204}
3205
3206static int uma_reclaim_needed;
3207
3208void
3209uma_reclaim_wakeup(void)
3210{
3211
3212	uma_reclaim_needed = 1;
3213	wakeup(&uma_reclaim_needed);
3214}
3215
3216void
3217uma_reclaim_worker(void *arg __unused)
3218{
3219
3220	sx_xlock(&uma_drain_lock);
3221	for (;;) {
3222		sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM,
3223		    "umarcl", 0);
3224		if (uma_reclaim_needed) {
3225			uma_reclaim_needed = 0;
3226			sx_xunlock(&uma_drain_lock);
3227			EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
3228			sx_xlock(&uma_drain_lock);
3229			uma_reclaim_locked(true);
3230		}
3231	}
3232}
3233
3234/* See uma.h */
3235int
3236uma_zone_exhausted(uma_zone_t zone)
3237{
3238	int full;
3239
3240	ZONE_LOCK(zone);
3241	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3242	ZONE_UNLOCK(zone);
3243	return (full);
3244}
3245
3246int
3247uma_zone_exhausted_nolock(uma_zone_t zone)
3248{
3249	return (zone->uz_flags & UMA_ZFLAG_FULL);
3250}
3251
3252void *
3253uma_large_malloc(vm_size_t size, int wait)
3254{
3255	void *mem;
3256	uma_slab_t slab;
3257	uint8_t flags;
3258
3259	slab = zone_alloc_item(slabzone, NULL, wait);
3260	if (slab == NULL)
3261		return (NULL);
3262	mem = page_alloc(NULL, size, &flags, wait);
3263	if (mem) {
3264		vsetslab((vm_offset_t)mem, slab);
3265		slab->us_data = mem;
3266		slab->us_flags = flags | UMA_SLAB_MALLOC;
3267		slab->us_size = size;
3268	} else {
3269		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3270	}
3271
3272	return (mem);
3273}
3274
3275void
3276uma_large_free(uma_slab_t slab)
3277{
3278
3279	page_free(slab->us_data, slab->us_size, slab->us_flags);
3280	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3281}
3282
3283static void
3284uma_zero_item(void *item, uma_zone_t zone)
3285{
3286	int i;
3287
3288	if (zone->uz_flags & UMA_ZONE_PCPU) {
3289		CPU_FOREACH(i)
3290			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3291	} else
3292		bzero(item, zone->uz_size);
3293}
3294
3295void
3296uma_print_stats(void)
3297{
3298	zone_foreach(uma_print_zone);
3299}
3300
3301static void
3302slab_print(uma_slab_t slab)
3303{
3304	printf("slab: keg %p, data %p, freecount %d\n",
3305		slab->us_keg, slab->us_data, slab->us_freecount);
3306}
3307
3308static void
3309cache_print(uma_cache_t cache)
3310{
3311	printf("alloc: %p(%d), free: %p(%d)\n",
3312		cache->uc_allocbucket,
3313		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3314		cache->uc_freebucket,
3315		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3316}
3317
3318static void
3319uma_print_keg(uma_keg_t keg)
3320{
3321	uma_slab_t slab;
3322
3323	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3324	    "out %d free %d limit %d\n",
3325	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3326	    keg->uk_ipers, keg->uk_ppera,
3327	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
3328	    keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3329	printf("Part slabs:\n");
3330	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3331		slab_print(slab);
3332	printf("Free slabs:\n");
3333	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3334		slab_print(slab);
3335	printf("Full slabs:\n");
3336	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3337		slab_print(slab);
3338}
3339
3340void
3341uma_print_zone(uma_zone_t zone)
3342{
3343	uma_cache_t cache;
3344	uma_klink_t kl;
3345	int i;
3346
3347	printf("zone: %s(%p) size %d flags %#x\n",
3348	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3349	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3350		uma_print_keg(kl->kl_keg);
3351	CPU_FOREACH(i) {
3352		cache = &zone->uz_cpu[i];
3353		printf("CPU %d Cache:\n", i);
3354		cache_print(cache);
3355	}
3356}
3357
3358#ifdef DDB
3359/*
3360 * Generate statistics across both the zone and its per-cpu cache's.  Return
3361 * desired statistics if the pointer is non-NULL for that statistic.
3362 *
3363 * Note: does not update the zone statistics, as it can't safely clear the
3364 * per-CPU cache statistic.
3365 *
3366 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3367 * safe from off-CPU; we should modify the caches to track this information
3368 * directly so that we don't have to.
3369 */
3370static void
3371uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3372    uint64_t *freesp, uint64_t *sleepsp)
3373{
3374	uma_cache_t cache;
3375	uint64_t allocs, frees, sleeps;
3376	int cachefree, cpu;
3377
3378	allocs = frees = sleeps = 0;
3379	cachefree = 0;
3380	CPU_FOREACH(cpu) {
3381		cache = &z->uz_cpu[cpu];
3382		if (cache->uc_allocbucket != NULL)
3383			cachefree += cache->uc_allocbucket->ub_cnt;
3384		if (cache->uc_freebucket != NULL)
3385			cachefree += cache->uc_freebucket->ub_cnt;
3386		allocs += cache->uc_allocs;
3387		frees += cache->uc_frees;
3388	}
3389	allocs += z->uz_allocs;
3390	frees += z->uz_frees;
3391	sleeps += z->uz_sleeps;
3392	if (cachefreep != NULL)
3393		*cachefreep = cachefree;
3394	if (allocsp != NULL)
3395		*allocsp = allocs;
3396	if (freesp != NULL)
3397		*freesp = frees;
3398	if (sleepsp != NULL)
3399		*sleepsp = sleeps;
3400}
3401#endif /* DDB */
3402
3403static int
3404sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3405{
3406	uma_keg_t kz;
3407	uma_zone_t z;
3408	int count;
3409
3410	count = 0;
3411	rw_rlock(&uma_rwlock);
3412	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3413		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3414			count++;
3415	}
3416	rw_runlock(&uma_rwlock);
3417	return (sysctl_handle_int(oidp, &count, 0, req));
3418}
3419
3420static int
3421sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3422{
3423	struct uma_stream_header ush;
3424	struct uma_type_header uth;
3425	struct uma_percpu_stat *ups;
3426	uma_bucket_t bucket;
3427	struct sbuf sbuf;
3428	uma_cache_t cache;
3429	uma_klink_t kl;
3430	uma_keg_t kz;
3431	uma_zone_t z;
3432	uma_keg_t k;
3433	int count, error, i;
3434
3435	error = sysctl_wire_old_buffer(req, 0);
3436	if (error != 0)
3437		return (error);
3438	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3439	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
3440	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
3441
3442	count = 0;
3443	rw_rlock(&uma_rwlock);
3444	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3445		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3446			count++;
3447	}
3448
3449	/*
3450	 * Insert stream header.
3451	 */
3452	bzero(&ush, sizeof(ush));
3453	ush.ush_version = UMA_STREAM_VERSION;
3454	ush.ush_maxcpus = (mp_maxid + 1);
3455	ush.ush_count = count;
3456	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3457
3458	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3459		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3460			bzero(&uth, sizeof(uth));
3461			ZONE_LOCK(z);
3462			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3463			uth.uth_align = kz->uk_align;
3464			uth.uth_size = kz->uk_size;
3465			uth.uth_rsize = kz->uk_rsize;
3466			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3467				k = kl->kl_keg;
3468				uth.uth_maxpages += k->uk_maxpages;
3469				uth.uth_pages += k->uk_pages;
3470				uth.uth_keg_free += k->uk_free;
3471				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3472				    * k->uk_ipers;
3473			}
3474
3475			/*
3476			 * A zone is secondary is it is not the first entry
3477			 * on the keg's zone list.
3478			 */
3479			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3480			    (LIST_FIRST(&kz->uk_zones) != z))
3481				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3482
3483			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3484				uth.uth_zone_free += bucket->ub_cnt;
3485			uth.uth_allocs = z->uz_allocs;
3486			uth.uth_frees = z->uz_frees;
3487			uth.uth_fails = z->uz_fails;
3488			uth.uth_sleeps = z->uz_sleeps;
3489			/*
3490			 * While it is not normally safe to access the cache
3491			 * bucket pointers while not on the CPU that owns the
3492			 * cache, we only allow the pointers to be exchanged
3493			 * without the zone lock held, not invalidated, so
3494			 * accept the possible race associated with bucket
3495			 * exchange during monitoring.
3496			 */
3497			for (i = 0; i < mp_maxid + 1; i++) {
3498				bzero(&ups[i], sizeof(*ups));
3499				if (kz->uk_flags & UMA_ZFLAG_INTERNAL ||
3500				    CPU_ABSENT(i))
3501					continue;
3502				cache = &z->uz_cpu[i];
3503				if (cache->uc_allocbucket != NULL)
3504					ups[i].ups_cache_free +=
3505					    cache->uc_allocbucket->ub_cnt;
3506				if (cache->uc_freebucket != NULL)
3507					ups[i].ups_cache_free +=
3508					    cache->uc_freebucket->ub_cnt;
3509				ups[i].ups_allocs = cache->uc_allocs;
3510				ups[i].ups_frees = cache->uc_frees;
3511			}
3512			ZONE_UNLOCK(z);
3513			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3514			for (i = 0; i < mp_maxid + 1; i++)
3515				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
3516		}
3517	}
3518	rw_runlock(&uma_rwlock);
3519	error = sbuf_finish(&sbuf);
3520	sbuf_delete(&sbuf);
3521	free(ups, M_TEMP);
3522	return (error);
3523}
3524
3525int
3526sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3527{
3528	uma_zone_t zone = *(uma_zone_t *)arg1;
3529	int error, max;
3530
3531	max = uma_zone_get_max(zone);
3532	error = sysctl_handle_int(oidp, &max, 0, req);
3533	if (error || !req->newptr)
3534		return (error);
3535
3536	uma_zone_set_max(zone, max);
3537
3538	return (0);
3539}
3540
3541int
3542sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3543{
3544	uma_zone_t zone = *(uma_zone_t *)arg1;
3545	int cur;
3546
3547	cur = uma_zone_get_cur(zone);
3548	return (sysctl_handle_int(oidp, &cur, 0, req));
3549}
3550
3551#ifdef INVARIANTS
3552static uma_slab_t
3553uma_dbg_getslab(uma_zone_t zone, void *item)
3554{
3555	uma_slab_t slab;
3556	uma_keg_t keg;
3557	uint8_t *mem;
3558
3559	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
3560	if (zone->uz_flags & UMA_ZONE_VTOSLAB) {
3561		slab = vtoslab((vm_offset_t)mem);
3562	} else {
3563		/*
3564		 * It is safe to return the slab here even though the
3565		 * zone is unlocked because the item's allocation state
3566		 * essentially holds a reference.
3567		 */
3568		ZONE_LOCK(zone);
3569		keg = LIST_FIRST(&zone->uz_kegs)->kl_keg;
3570		if (keg->uk_flags & UMA_ZONE_HASH)
3571			slab = hash_sfind(&keg->uk_hash, mem);
3572		else
3573			slab = (uma_slab_t)(mem + keg->uk_pgoff);
3574		ZONE_UNLOCK(zone);
3575	}
3576
3577	return (slab);
3578}
3579
3580/*
3581 * Set up the slab's freei data such that uma_dbg_free can function.
3582 *
3583 */
3584static void
3585uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
3586{
3587	uma_keg_t keg;
3588	int freei;
3589
3590	if (zone_first_keg(zone) == NULL)
3591		return;
3592	if (slab == NULL) {
3593		slab = uma_dbg_getslab(zone, item);
3594		if (slab == NULL)
3595			panic("uma: item %p did not belong to zone %s\n",
3596			    item, zone->uz_name);
3597	}
3598	keg = slab->us_keg;
3599	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3600
3601	if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3602		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
3603		    item, zone, zone->uz_name, slab, freei);
3604	BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3605
3606	return;
3607}
3608
3609/*
3610 * Verifies freed addresses.  Checks for alignment, valid slab membership
3611 * and duplicate frees.
3612 *
3613 */
3614static void
3615uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
3616{
3617	uma_keg_t keg;
3618	int freei;
3619
3620	if (zone_first_keg(zone) == NULL)
3621		return;
3622	if (slab == NULL) {
3623		slab = uma_dbg_getslab(zone, item);
3624		if (slab == NULL)
3625			panic("uma: Freed item %p did not belong to zone %s\n",
3626			    item, zone->uz_name);
3627	}
3628	keg = slab->us_keg;
3629	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3630
3631	if (freei >= keg->uk_ipers)
3632		panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
3633		    item, zone, zone->uz_name, slab, freei);
3634
3635	if (((freei * keg->uk_rsize) + slab->us_data) != item)
3636		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
3637		    item, zone, zone->uz_name, slab, freei);
3638
3639	if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3640		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
3641		    item, zone, zone->uz_name, slab, freei);
3642
3643	BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3644}
3645#endif /* INVARIANTS */
3646
3647#ifdef DDB
3648DB_SHOW_COMMAND(uma, db_show_uma)
3649{
3650	uint64_t allocs, frees, sleeps;
3651	uma_bucket_t bucket;
3652	uma_keg_t kz;
3653	uma_zone_t z;
3654	int cachefree;
3655
3656	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3657	    "Free", "Requests", "Sleeps", "Bucket");
3658	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3659		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3660			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3661				allocs = z->uz_allocs;
3662				frees = z->uz_frees;
3663				sleeps = z->uz_sleeps;
3664				cachefree = 0;
3665			} else
3666				uma_zone_sumstat(z, &cachefree, &allocs,
3667				    &frees, &sleeps);
3668			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3669			    (LIST_FIRST(&kz->uk_zones) != z)))
3670				cachefree += kz->uk_free;
3671			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3672				cachefree += bucket->ub_cnt;
3673			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3674			    z->uz_name, (uintmax_t)kz->uk_size,
3675			    (intmax_t)(allocs - frees), cachefree,
3676			    (uintmax_t)allocs, sleeps, z->uz_count);
3677			if (db_pager_quit)
3678				return;
3679		}
3680	}
3681}
3682
3683DB_SHOW_COMMAND(umacache, db_show_umacache)
3684{
3685	uint64_t allocs, frees;
3686	uma_bucket_t bucket;
3687	uma_zone_t z;
3688	int cachefree;
3689
3690	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3691	    "Requests", "Bucket");
3692	LIST_FOREACH(z, &uma_cachezones, uz_link) {
3693		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3694		LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3695			cachefree += bucket->ub_cnt;
3696		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3697		    z->uz_name, (uintmax_t)z->uz_size,
3698		    (intmax_t)(allocs - frees), cachefree,
3699		    (uintmax_t)allocs, z->uz_count);
3700		if (db_pager_quit)
3701			return;
3702	}
3703}
3704#endif	/* DDB */
3705