uma_core.c revision 327785
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * efficient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/11/sys/vm/uma_core.c 327785 2018-01-10 20:39:26Z markj $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/eventhandler.h>
68#include <sys/kernel.h>
69#include <sys/types.h>
70#include <sys/queue.h>
71#include <sys/malloc.h>
72#include <sys/ktr.h>
73#include <sys/lock.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/random.h>
78#include <sys/rwlock.h>
79#include <sys/sbuf.h>
80#include <sys/sched.h>
81#include <sys/smp.h>
82#include <sys/taskqueue.h>
83#include <sys/vmmeter.h>
84
85#include <vm/vm.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_param.h>
90#include <vm/vm_map.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94#include <vm/uma_int.h>
95#include <vm/uma_dbg.h>
96
97#include <ddb/ddb.h>
98
99#ifdef DEBUG_MEMGUARD
100#include <vm/memguard.h>
101#endif
102
103/*
104 * This is the zone and keg from which all zones are spawned.  The idea is that
105 * even the zone & keg heads are allocated from the allocator, so we use the
106 * bss section to bootstrap us.
107 */
108static struct uma_keg masterkeg;
109static struct uma_zone masterzone_k;
110static struct uma_zone masterzone_z;
111static uma_zone_t kegs = &masterzone_k;
112static uma_zone_t zones = &masterzone_z;
113
114/* This is the zone from which all of uma_slab_t's are allocated. */
115static uma_zone_t slabzone;
116
117/*
118 * The initial hash tables come out of this zone so they can be allocated
119 * prior to malloc coming up.
120 */
121static uma_zone_t hashzone;
122
123/* The boot-time adjusted value for cache line alignment. */
124int uma_align_cache = 64 - 1;
125
126static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
127
128/*
129 * Are we allowed to allocate buckets?
130 */
131static int bucketdisable = 1;
132
133/* Linked list of all kegs in the system */
134static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
135
136/* Linked list of all cache-only zones in the system */
137static LIST_HEAD(,uma_zone) uma_cachezones =
138    LIST_HEAD_INITIALIZER(uma_cachezones);
139
140/* This RW lock protects the keg list */
141static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
142
143/* Linked list of boot time pages */
144static LIST_HEAD(,uma_slab) uma_boot_pages =
145    LIST_HEAD_INITIALIZER(uma_boot_pages);
146
147/* This mutex protects the boot time pages list */
148static struct mtx_padalign uma_boot_pages_mtx;
149
150static struct sx uma_drain_lock;
151
152/* Is the VM done starting up? */
153static int booted = 0;
154#define	UMA_STARTUP	1
155#define	UMA_STARTUP2	2
156
157/*
158 * This is the handle used to schedule events that need to happen
159 * outside of the allocation fast path.
160 */
161static struct callout uma_callout;
162#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
163
164/*
165 * This structure is passed as the zone ctor arg so that I don't have to create
166 * a special allocation function just for zones.
167 */
168struct uma_zctor_args {
169	const char *name;
170	size_t size;
171	uma_ctor ctor;
172	uma_dtor dtor;
173	uma_init uminit;
174	uma_fini fini;
175	uma_import import;
176	uma_release release;
177	void *arg;
178	uma_keg_t keg;
179	int align;
180	uint32_t flags;
181};
182
183struct uma_kctor_args {
184	uma_zone_t zone;
185	size_t size;
186	uma_init uminit;
187	uma_fini fini;
188	int align;
189	uint32_t flags;
190};
191
192struct uma_bucket_zone {
193	uma_zone_t	ubz_zone;
194	char		*ubz_name;
195	int		ubz_entries;	/* Number of items it can hold. */
196	int		ubz_maxsize;	/* Maximum allocation size per-item. */
197};
198
199/*
200 * Compute the actual number of bucket entries to pack them in power
201 * of two sizes for more efficient space utilization.
202 */
203#define	BUCKET_SIZE(n)						\
204    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
205
206#define	BUCKET_MAX	BUCKET_SIZE(256)
207
208struct uma_bucket_zone bucket_zones[] = {
209	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
210	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
211	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
212	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
213	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
214	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
215	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
216	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
217	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
218	{ NULL, NULL, 0}
219};
220
221/*
222 * Flags and enumerations to be passed to internal functions.
223 */
224enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
225
226/* Prototypes.. */
227
228static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
229static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
230static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
231static void page_free(void *, vm_size_t, uint8_t);
232static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
233static void cache_drain(uma_zone_t);
234static void bucket_drain(uma_zone_t, uma_bucket_t);
235static void bucket_cache_drain(uma_zone_t zone);
236static int keg_ctor(void *, int, void *, int);
237static void keg_dtor(void *, int, void *);
238static int zone_ctor(void *, int, void *, int);
239static void zone_dtor(void *, int, void *);
240static int zero_init(void *, int, int);
241static void keg_small_init(uma_keg_t keg);
242static void keg_large_init(uma_keg_t keg);
243static void zone_foreach(void (*zfunc)(uma_zone_t));
244static void zone_timeout(uma_zone_t zone);
245static int hash_alloc(struct uma_hash *);
246static int hash_expand(struct uma_hash *, struct uma_hash *);
247static void hash_free(struct uma_hash *hash);
248static void uma_timeout(void *);
249static void uma_startup3(void);
250static void *zone_alloc_item(uma_zone_t, void *, int);
251static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
252static void bucket_enable(void);
253static void bucket_init(void);
254static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
255static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
256static void bucket_zone_drain(void);
257static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
258static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
259static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
260static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
261static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
262static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
263    uma_fini fini, int align, uint32_t flags);
264static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
265static void zone_release(uma_zone_t zone, void **bucket, int cnt);
266static void uma_zero_item(void *item, uma_zone_t zone);
267
268void uma_print_zone(uma_zone_t);
269void uma_print_stats(void);
270static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
271static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
272
273#ifdef INVARIANTS
274static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
275static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
276#endif
277
278SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
279
280SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
281    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
282
283SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
284    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
285
286static int zone_warnings = 1;
287SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
288    "Warn when UMA zones becomes full");
289
290/*
291 * This routine checks to see whether or not it's safe to enable buckets.
292 */
293static void
294bucket_enable(void)
295{
296	bucketdisable = vm_page_count_min();
297}
298
299/*
300 * Initialize bucket_zones, the array of zones of buckets of various sizes.
301 *
302 * For each zone, calculate the memory required for each bucket, consisting
303 * of the header and an array of pointers.
304 */
305static void
306bucket_init(void)
307{
308	struct uma_bucket_zone *ubz;
309	int size;
310
311	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
312		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
313		size += sizeof(void *) * ubz->ubz_entries;
314		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
315		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
316		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
317	}
318}
319
320/*
321 * Given a desired number of entries for a bucket, return the zone from which
322 * to allocate the bucket.
323 */
324static struct uma_bucket_zone *
325bucket_zone_lookup(int entries)
326{
327	struct uma_bucket_zone *ubz;
328
329	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
330		if (ubz->ubz_entries >= entries)
331			return (ubz);
332	ubz--;
333	return (ubz);
334}
335
336static int
337bucket_select(int size)
338{
339	struct uma_bucket_zone *ubz;
340
341	ubz = &bucket_zones[0];
342	if (size > ubz->ubz_maxsize)
343		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
344
345	for (; ubz->ubz_entries != 0; ubz++)
346		if (ubz->ubz_maxsize < size)
347			break;
348	ubz--;
349	return (ubz->ubz_entries);
350}
351
352static uma_bucket_t
353bucket_alloc(uma_zone_t zone, void *udata, int flags)
354{
355	struct uma_bucket_zone *ubz;
356	uma_bucket_t bucket;
357
358	/*
359	 * This is to stop us from allocating per cpu buckets while we're
360	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
361	 * boot pages.  This also prevents us from allocating buckets in
362	 * low memory situations.
363	 */
364	if (bucketdisable)
365		return (NULL);
366	/*
367	 * To limit bucket recursion we store the original zone flags
368	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
369	 * NOVM flag to persist even through deep recursions.  We also
370	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
371	 * a bucket for a bucket zone so we do not allow infinite bucket
372	 * recursion.  This cookie will even persist to frees of unused
373	 * buckets via the allocation path or bucket allocations in the
374	 * free path.
375	 */
376	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
377		udata = (void *)(uintptr_t)zone->uz_flags;
378	else {
379		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
380			return (NULL);
381		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
382	}
383	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
384		flags |= M_NOVM;
385	ubz = bucket_zone_lookup(zone->uz_count);
386	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
387		ubz++;
388	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
389	if (bucket) {
390#ifdef INVARIANTS
391		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
392#endif
393		bucket->ub_cnt = 0;
394		bucket->ub_entries = ubz->ubz_entries;
395	}
396
397	return (bucket);
398}
399
400static void
401bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
402{
403	struct uma_bucket_zone *ubz;
404
405	KASSERT(bucket->ub_cnt == 0,
406	    ("bucket_free: Freeing a non free bucket."));
407	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
408		udata = (void *)(uintptr_t)zone->uz_flags;
409	ubz = bucket_zone_lookup(bucket->ub_entries);
410	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
411}
412
413static void
414bucket_zone_drain(void)
415{
416	struct uma_bucket_zone *ubz;
417
418	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
419		zone_drain(ubz->ubz_zone);
420}
421
422static void
423zone_log_warning(uma_zone_t zone)
424{
425	static const struct timeval warninterval = { 300, 0 };
426
427	if (!zone_warnings || zone->uz_warning == NULL)
428		return;
429
430	if (ratecheck(&zone->uz_ratecheck, &warninterval))
431		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
432}
433
434static inline void
435zone_maxaction(uma_zone_t zone)
436{
437
438	if (zone->uz_maxaction.ta_func != NULL)
439		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
440}
441
442static void
443zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
444{
445	uma_klink_t klink;
446
447	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
448		kegfn(klink->kl_keg);
449}
450
451/*
452 * Routine called by timeout which is used to fire off some time interval
453 * based calculations.  (stats, hash size, etc.)
454 *
455 * Arguments:
456 *	arg   Unused
457 *
458 * Returns:
459 *	Nothing
460 */
461static void
462uma_timeout(void *unused)
463{
464	bucket_enable();
465	zone_foreach(zone_timeout);
466
467	/* Reschedule this event */
468	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
469}
470
471/*
472 * Routine to perform timeout driven calculations.  This expands the
473 * hashes and does per cpu statistics aggregation.
474 *
475 *  Returns nothing.
476 */
477static void
478keg_timeout(uma_keg_t keg)
479{
480
481	KEG_LOCK(keg);
482	/*
483	 * Expand the keg hash table.
484	 *
485	 * This is done if the number of slabs is larger than the hash size.
486	 * What I'm trying to do here is completely reduce collisions.  This
487	 * may be a little aggressive.  Should I allow for two collisions max?
488	 */
489	if (keg->uk_flags & UMA_ZONE_HASH &&
490	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
491		struct uma_hash newhash;
492		struct uma_hash oldhash;
493		int ret;
494
495		/*
496		 * This is so involved because allocating and freeing
497		 * while the keg lock is held will lead to deadlock.
498		 * I have to do everything in stages and check for
499		 * races.
500		 */
501		newhash = keg->uk_hash;
502		KEG_UNLOCK(keg);
503		ret = hash_alloc(&newhash);
504		KEG_LOCK(keg);
505		if (ret) {
506			if (hash_expand(&keg->uk_hash, &newhash)) {
507				oldhash = keg->uk_hash;
508				keg->uk_hash = newhash;
509			} else
510				oldhash = newhash;
511
512			KEG_UNLOCK(keg);
513			hash_free(&oldhash);
514			return;
515		}
516	}
517	KEG_UNLOCK(keg);
518}
519
520static void
521zone_timeout(uma_zone_t zone)
522{
523
524	zone_foreach_keg(zone, &keg_timeout);
525}
526
527/*
528 * Allocate and zero fill the next sized hash table from the appropriate
529 * backing store.
530 *
531 * Arguments:
532 *	hash  A new hash structure with the old hash size in uh_hashsize
533 *
534 * Returns:
535 *	1 on success and 0 on failure.
536 */
537static int
538hash_alloc(struct uma_hash *hash)
539{
540	int oldsize;
541	int alloc;
542
543	oldsize = hash->uh_hashsize;
544
545	/* We're just going to go to a power of two greater */
546	if (oldsize)  {
547		hash->uh_hashsize = oldsize * 2;
548		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
549		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
550		    M_UMAHASH, M_NOWAIT);
551	} else {
552		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
553		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
554		    M_WAITOK);
555		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
556	}
557	if (hash->uh_slab_hash) {
558		bzero(hash->uh_slab_hash, alloc);
559		hash->uh_hashmask = hash->uh_hashsize - 1;
560		return (1);
561	}
562
563	return (0);
564}
565
566/*
567 * Expands the hash table for HASH zones.  This is done from zone_timeout
568 * to reduce collisions.  This must not be done in the regular allocation
569 * path, otherwise, we can recurse on the vm while allocating pages.
570 *
571 * Arguments:
572 *	oldhash  The hash you want to expand
573 *	newhash  The hash structure for the new table
574 *
575 * Returns:
576 *	Nothing
577 *
578 * Discussion:
579 */
580static int
581hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
582{
583	uma_slab_t slab;
584	int hval;
585	int i;
586
587	if (!newhash->uh_slab_hash)
588		return (0);
589
590	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
591		return (0);
592
593	/*
594	 * I need to investigate hash algorithms for resizing without a
595	 * full rehash.
596	 */
597
598	for (i = 0; i < oldhash->uh_hashsize; i++)
599		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
600			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
601			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
602			hval = UMA_HASH(newhash, slab->us_data);
603			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
604			    slab, us_hlink);
605		}
606
607	return (1);
608}
609
610/*
611 * Free the hash bucket to the appropriate backing store.
612 *
613 * Arguments:
614 *	slab_hash  The hash bucket we're freeing
615 *	hashsize   The number of entries in that hash bucket
616 *
617 * Returns:
618 *	Nothing
619 */
620static void
621hash_free(struct uma_hash *hash)
622{
623	if (hash->uh_slab_hash == NULL)
624		return;
625	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
626		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
627	else
628		free(hash->uh_slab_hash, M_UMAHASH);
629}
630
631/*
632 * Frees all outstanding items in a bucket
633 *
634 * Arguments:
635 *	zone   The zone to free to, must be unlocked.
636 *	bucket The free/alloc bucket with items, cpu queue must be locked.
637 *
638 * Returns:
639 *	Nothing
640 */
641
642static void
643bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
644{
645	int i;
646
647	if (bucket == NULL)
648		return;
649
650	if (zone->uz_fini)
651		for (i = 0; i < bucket->ub_cnt; i++)
652			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
653	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
654	bucket->ub_cnt = 0;
655}
656
657/*
658 * Drains the per cpu caches for a zone.
659 *
660 * NOTE: This may only be called while the zone is being turn down, and not
661 * during normal operation.  This is necessary in order that we do not have
662 * to migrate CPUs to drain the per-CPU caches.
663 *
664 * Arguments:
665 *	zone     The zone to drain, must be unlocked.
666 *
667 * Returns:
668 *	Nothing
669 */
670static void
671cache_drain(uma_zone_t zone)
672{
673	uma_cache_t cache;
674	int cpu;
675
676	/*
677	 * XXX: It is safe to not lock the per-CPU caches, because we're
678	 * tearing down the zone anyway.  I.e., there will be no further use
679	 * of the caches at this point.
680	 *
681	 * XXX: It would good to be able to assert that the zone is being
682	 * torn down to prevent improper use of cache_drain().
683	 *
684	 * XXX: We lock the zone before passing into bucket_cache_drain() as
685	 * it is used elsewhere.  Should the tear-down path be made special
686	 * there in some form?
687	 */
688	CPU_FOREACH(cpu) {
689		cache = &zone->uz_cpu[cpu];
690		bucket_drain(zone, cache->uc_allocbucket);
691		bucket_drain(zone, cache->uc_freebucket);
692		if (cache->uc_allocbucket != NULL)
693			bucket_free(zone, cache->uc_allocbucket, NULL);
694		if (cache->uc_freebucket != NULL)
695			bucket_free(zone, cache->uc_freebucket, NULL);
696		cache->uc_allocbucket = cache->uc_freebucket = NULL;
697	}
698	ZONE_LOCK(zone);
699	bucket_cache_drain(zone);
700	ZONE_UNLOCK(zone);
701}
702
703static void
704cache_shrink(uma_zone_t zone)
705{
706
707	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
708		return;
709
710	ZONE_LOCK(zone);
711	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
712	ZONE_UNLOCK(zone);
713}
714
715static void
716cache_drain_safe_cpu(uma_zone_t zone)
717{
718	uma_cache_t cache;
719	uma_bucket_t b1, b2;
720
721	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
722		return;
723
724	b1 = b2 = NULL;
725	ZONE_LOCK(zone);
726	critical_enter();
727	cache = &zone->uz_cpu[curcpu];
728	if (cache->uc_allocbucket) {
729		if (cache->uc_allocbucket->ub_cnt != 0)
730			LIST_INSERT_HEAD(&zone->uz_buckets,
731			    cache->uc_allocbucket, ub_link);
732		else
733			b1 = cache->uc_allocbucket;
734		cache->uc_allocbucket = NULL;
735	}
736	if (cache->uc_freebucket) {
737		if (cache->uc_freebucket->ub_cnt != 0)
738			LIST_INSERT_HEAD(&zone->uz_buckets,
739			    cache->uc_freebucket, ub_link);
740		else
741			b2 = cache->uc_freebucket;
742		cache->uc_freebucket = NULL;
743	}
744	critical_exit();
745	ZONE_UNLOCK(zone);
746	if (b1)
747		bucket_free(zone, b1, NULL);
748	if (b2)
749		bucket_free(zone, b2, NULL);
750}
751
752/*
753 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
754 * This is an expensive call because it needs to bind to all CPUs
755 * one by one and enter a critical section on each of them in order
756 * to safely access their cache buckets.
757 * Zone lock must not be held on call this function.
758 */
759static void
760cache_drain_safe(uma_zone_t zone)
761{
762	int cpu;
763
764	/*
765	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
766	 */
767	if (zone)
768		cache_shrink(zone);
769	else
770		zone_foreach(cache_shrink);
771
772	CPU_FOREACH(cpu) {
773		thread_lock(curthread);
774		sched_bind(curthread, cpu);
775		thread_unlock(curthread);
776
777		if (zone)
778			cache_drain_safe_cpu(zone);
779		else
780			zone_foreach(cache_drain_safe_cpu);
781	}
782	thread_lock(curthread);
783	sched_unbind(curthread);
784	thread_unlock(curthread);
785}
786
787/*
788 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
789 */
790static void
791bucket_cache_drain(uma_zone_t zone)
792{
793	uma_bucket_t bucket;
794
795	/*
796	 * Drain the bucket queues and free the buckets, we just keep two per
797	 * cpu (alloc/free).
798	 */
799	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
800		LIST_REMOVE(bucket, ub_link);
801		ZONE_UNLOCK(zone);
802		bucket_drain(zone, bucket);
803		bucket_free(zone, bucket, NULL);
804		ZONE_LOCK(zone);
805	}
806
807	/*
808	 * Shrink further bucket sizes.  Price of single zone lock collision
809	 * is probably lower then price of global cache drain.
810	 */
811	if (zone->uz_count > zone->uz_count_min)
812		zone->uz_count--;
813}
814
815static void
816keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
817{
818	uint8_t *mem;
819	int i;
820	uint8_t flags;
821
822	mem = slab->us_data;
823	flags = slab->us_flags;
824	i = start;
825	if (keg->uk_fini != NULL) {
826		for (i--; i > -1; i--)
827			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
828			    keg->uk_size);
829	}
830	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
831		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
832#ifdef UMA_DEBUG
833	printf("%s: Returning %d bytes.\n", keg->uk_name,
834	    PAGE_SIZE * keg->uk_ppera);
835#endif
836	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
837}
838
839/*
840 * Frees pages from a keg back to the system.  This is done on demand from
841 * the pageout daemon.
842 *
843 * Returns nothing.
844 */
845static void
846keg_drain(uma_keg_t keg)
847{
848	struct slabhead freeslabs = { 0 };
849	uma_slab_t slab, tmp;
850
851	/*
852	 * We don't want to take pages from statically allocated kegs at this
853	 * time
854	 */
855	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
856		return;
857
858#ifdef UMA_DEBUG
859	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
860#endif
861	KEG_LOCK(keg);
862	if (keg->uk_free == 0)
863		goto finished;
864
865	LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) {
866		/* We have nowhere to free these to. */
867		if (slab->us_flags & UMA_SLAB_BOOT)
868			continue;
869
870		LIST_REMOVE(slab, us_link);
871		keg->uk_pages -= keg->uk_ppera;
872		keg->uk_free -= keg->uk_ipers;
873
874		if (keg->uk_flags & UMA_ZONE_HASH)
875			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
876
877		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
878	}
879finished:
880	KEG_UNLOCK(keg);
881
882	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
883		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
884		keg_free_slab(keg, slab, keg->uk_ipers);
885	}
886}
887
888static void
889zone_drain_wait(uma_zone_t zone, int waitok)
890{
891
892	/*
893	 * Set draining to interlock with zone_dtor() so we can release our
894	 * locks as we go.  Only dtor() should do a WAITOK call since it
895	 * is the only call that knows the structure will still be available
896	 * when it wakes up.
897	 */
898	ZONE_LOCK(zone);
899	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
900		if (waitok == M_NOWAIT)
901			goto out;
902		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
903	}
904	zone->uz_flags |= UMA_ZFLAG_DRAINING;
905	bucket_cache_drain(zone);
906	ZONE_UNLOCK(zone);
907	/*
908	 * The DRAINING flag protects us from being freed while
909	 * we're running.  Normally the uma_rwlock would protect us but we
910	 * must be able to release and acquire the right lock for each keg.
911	 */
912	zone_foreach_keg(zone, &keg_drain);
913	ZONE_LOCK(zone);
914	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
915	wakeup(zone);
916out:
917	ZONE_UNLOCK(zone);
918}
919
920void
921zone_drain(uma_zone_t zone)
922{
923
924	zone_drain_wait(zone, M_NOWAIT);
925}
926
927/*
928 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
929 *
930 * Arguments:
931 *	wait  Shall we wait?
932 *
933 * Returns:
934 *	The slab that was allocated or NULL if there is no memory and the
935 *	caller specified M_NOWAIT.
936 */
937static uma_slab_t
938keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
939{
940	uma_alloc allocf;
941	uma_slab_t slab;
942	uint8_t *mem;
943	uint8_t flags;
944	int i;
945
946	mtx_assert(&keg->uk_lock, MA_OWNED);
947	slab = NULL;
948	mem = NULL;
949
950#ifdef UMA_DEBUG
951	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
952#endif
953	allocf = keg->uk_allocf;
954	KEG_UNLOCK(keg);
955
956	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
957		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
958		if (slab == NULL)
959			goto out;
960	}
961
962	/*
963	 * This reproduces the old vm_zone behavior of zero filling pages the
964	 * first time they are added to a zone.
965	 *
966	 * Malloced items are zeroed in uma_zalloc.
967	 */
968
969	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
970		wait |= M_ZERO;
971	else
972		wait &= ~M_ZERO;
973
974	if (keg->uk_flags & UMA_ZONE_NODUMP)
975		wait |= M_NODUMP;
976
977	/* zone is passed for legacy reasons. */
978	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
979	if (mem == NULL) {
980		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
981			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
982		slab = NULL;
983		goto out;
984	}
985
986	/* Point the slab into the allocated memory */
987	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
988		slab = (uma_slab_t )(mem + keg->uk_pgoff);
989
990	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
991		for (i = 0; i < keg->uk_ppera; i++)
992			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
993
994	slab->us_keg = keg;
995	slab->us_data = mem;
996	slab->us_freecount = keg->uk_ipers;
997	slab->us_flags = flags;
998	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
999#ifdef INVARIANTS
1000	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1001#endif
1002
1003	if (keg->uk_init != NULL) {
1004		for (i = 0; i < keg->uk_ipers; i++)
1005			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1006			    keg->uk_size, wait) != 0)
1007				break;
1008		if (i != keg->uk_ipers) {
1009			keg_free_slab(keg, slab, i);
1010			slab = NULL;
1011			goto out;
1012		}
1013	}
1014out:
1015	KEG_LOCK(keg);
1016
1017	if (slab != NULL) {
1018		if (keg->uk_flags & UMA_ZONE_HASH)
1019			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1020
1021		keg->uk_pages += keg->uk_ppera;
1022		keg->uk_free += keg->uk_ipers;
1023	}
1024
1025	return (slab);
1026}
1027
1028/*
1029 * This function is intended to be used early on in place of page_alloc() so
1030 * that we may use the boot time page cache to satisfy allocations before
1031 * the VM is ready.
1032 */
1033static void *
1034startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1035{
1036	uma_keg_t keg;
1037	uma_slab_t tmps;
1038	int pages, check_pages;
1039
1040	keg = zone_first_keg(zone);
1041	pages = howmany(bytes, PAGE_SIZE);
1042	check_pages = pages - 1;
1043	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1044
1045	/*
1046	 * Check our small startup cache to see if it has pages remaining.
1047	 */
1048	mtx_lock(&uma_boot_pages_mtx);
1049
1050	/* First check if we have enough room. */
1051	tmps = LIST_FIRST(&uma_boot_pages);
1052	while (tmps != NULL && check_pages-- > 0)
1053		tmps = LIST_NEXT(tmps, us_link);
1054	if (tmps != NULL) {
1055		/*
1056		 * It's ok to lose tmps references.  The last one will
1057		 * have tmps->us_data pointing to the start address of
1058		 * "pages" contiguous pages of memory.
1059		 */
1060		while (pages-- > 0) {
1061			tmps = LIST_FIRST(&uma_boot_pages);
1062			LIST_REMOVE(tmps, us_link);
1063		}
1064		mtx_unlock(&uma_boot_pages_mtx);
1065		*pflag = tmps->us_flags;
1066		return (tmps->us_data);
1067	}
1068	mtx_unlock(&uma_boot_pages_mtx);
1069	if (booted < UMA_STARTUP2)
1070		panic("UMA: Increase vm.boot_pages");
1071	/*
1072	 * Now that we've booted reset these users to their real allocator.
1073	 */
1074#ifdef UMA_MD_SMALL_ALLOC
1075	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1076#else
1077	keg->uk_allocf = page_alloc;
1078#endif
1079	return keg->uk_allocf(zone, bytes, pflag, wait);
1080}
1081
1082/*
1083 * Allocates a number of pages from the system
1084 *
1085 * Arguments:
1086 *	bytes  The number of bytes requested
1087 *	wait  Shall we wait?
1088 *
1089 * Returns:
1090 *	A pointer to the alloced memory or possibly
1091 *	NULL if M_NOWAIT is set.
1092 */
1093static void *
1094page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1095{
1096	void *p;	/* Returned page */
1097
1098	*pflag = UMA_SLAB_KMEM;
1099	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1100
1101	return (p);
1102}
1103
1104/*
1105 * Allocates a number of pages from within an object
1106 *
1107 * Arguments:
1108 *	bytes  The number of bytes requested
1109 *	wait   Shall we wait?
1110 *
1111 * Returns:
1112 *	A pointer to the alloced memory or possibly
1113 *	NULL if M_NOWAIT is set.
1114 */
1115static void *
1116noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
1117{
1118	TAILQ_HEAD(, vm_page) alloctail;
1119	u_long npages;
1120	vm_offset_t retkva, zkva;
1121	vm_page_t p, p_next;
1122	uma_keg_t keg;
1123
1124	TAILQ_INIT(&alloctail);
1125	keg = zone_first_keg(zone);
1126
1127	npages = howmany(bytes, PAGE_SIZE);
1128	while (npages > 0) {
1129		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1130		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1131		    ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1132		    VM_ALLOC_NOWAIT));
1133		if (p != NULL) {
1134			/*
1135			 * Since the page does not belong to an object, its
1136			 * listq is unused.
1137			 */
1138			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1139			npages--;
1140			continue;
1141		}
1142		/*
1143		 * Page allocation failed, free intermediate pages and
1144		 * exit.
1145		 */
1146		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1147			vm_page_unwire(p, PQ_NONE);
1148			vm_page_free(p);
1149		}
1150		return (NULL);
1151	}
1152	*flags = UMA_SLAB_PRIV;
1153	zkva = keg->uk_kva +
1154	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1155	retkva = zkva;
1156	TAILQ_FOREACH(p, &alloctail, listq) {
1157		pmap_qenter(zkva, &p, 1);
1158		zkva += PAGE_SIZE;
1159	}
1160
1161	return ((void *)retkva);
1162}
1163
1164/*
1165 * Frees a number of pages to the system
1166 *
1167 * Arguments:
1168 *	mem   A pointer to the memory to be freed
1169 *	size  The size of the memory being freed
1170 *	flags The original p->us_flags field
1171 *
1172 * Returns:
1173 *	Nothing
1174 */
1175static void
1176page_free(void *mem, vm_size_t size, uint8_t flags)
1177{
1178	struct vmem *vmem;
1179
1180	if (flags & UMA_SLAB_KMEM)
1181		vmem = kmem_arena;
1182	else if (flags & UMA_SLAB_KERNEL)
1183		vmem = kernel_arena;
1184	else
1185		panic("UMA: page_free used with invalid flags %d", flags);
1186
1187	kmem_free(vmem, (vm_offset_t)mem, size);
1188}
1189
1190/*
1191 * Zero fill initializer
1192 *
1193 * Arguments/Returns follow uma_init specifications
1194 */
1195static int
1196zero_init(void *mem, int size, int flags)
1197{
1198	bzero(mem, size);
1199	return (0);
1200}
1201
1202/*
1203 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1204 *
1205 * Arguments
1206 *	keg  The zone we should initialize
1207 *
1208 * Returns
1209 *	Nothing
1210 */
1211static void
1212keg_small_init(uma_keg_t keg)
1213{
1214	u_int rsize;
1215	u_int memused;
1216	u_int wastedspace;
1217	u_int shsize;
1218	u_int slabsize;
1219
1220	if (keg->uk_flags & UMA_ZONE_PCPU) {
1221		u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU;
1222
1223		slabsize = sizeof(struct pcpu);
1224		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1225		    PAGE_SIZE);
1226	} else {
1227		slabsize = UMA_SLAB_SIZE;
1228		keg->uk_ppera = 1;
1229	}
1230
1231	/*
1232	 * Calculate the size of each allocation (rsize) according to
1233	 * alignment.  If the requested size is smaller than we have
1234	 * allocation bits for we round it up.
1235	 */
1236	rsize = keg->uk_size;
1237	if (rsize < slabsize / SLAB_SETSIZE)
1238		rsize = slabsize / SLAB_SETSIZE;
1239	if (rsize & keg->uk_align)
1240		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1241	keg->uk_rsize = rsize;
1242
1243	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1244	    keg->uk_rsize < sizeof(struct pcpu),
1245	    ("%s: size %u too large", __func__, keg->uk_rsize));
1246
1247	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1248		shsize = 0;
1249	else
1250		shsize = sizeof(struct uma_slab);
1251
1252	keg->uk_ipers = (slabsize - shsize) / rsize;
1253	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1254	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1255
1256	memused = keg->uk_ipers * rsize + shsize;
1257	wastedspace = slabsize - memused;
1258
1259	/*
1260	 * We can't do OFFPAGE if we're internal or if we've been
1261	 * asked to not go to the VM for buckets.  If we do this we
1262	 * may end up going to the VM  for slabs which we do not
1263	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1264	 * of UMA_ZONE_VM, which clearly forbids it.
1265	 */
1266	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1267	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1268		return;
1269
1270	/*
1271	 * See if using an OFFPAGE slab will limit our waste.  Only do
1272	 * this if it permits more items per-slab.
1273	 *
1274	 * XXX We could try growing slabsize to limit max waste as well.
1275	 * Historically this was not done because the VM could not
1276	 * efficiently handle contiguous allocations.
1277	 */
1278	if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
1279	    (keg->uk_ipers < (slabsize / keg->uk_rsize))) {
1280		keg->uk_ipers = slabsize / keg->uk_rsize;
1281		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1282		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1283#ifdef UMA_DEBUG
1284		printf("UMA decided we need offpage slab headers for "
1285		    "keg: %s, calculated wastedspace = %d, "
1286		    "maximum wasted space allowed = %d, "
1287		    "calculated ipers = %d, "
1288		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1289		    slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1290		    slabsize - keg->uk_ipers * keg->uk_rsize);
1291#endif
1292		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1293	}
1294
1295	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1296	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1297		keg->uk_flags |= UMA_ZONE_HASH;
1298}
1299
1300/*
1301 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1302 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1303 * more complicated.
1304 *
1305 * Arguments
1306 *	keg  The keg we should initialize
1307 *
1308 * Returns
1309 *	Nothing
1310 */
1311static void
1312keg_large_init(uma_keg_t keg)
1313{
1314	u_int shsize;
1315
1316	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1317	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1318	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1319	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1320	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1321
1322	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1323	keg->uk_ipers = 1;
1324	keg->uk_rsize = keg->uk_size;
1325
1326	/* Check whether we have enough space to not do OFFPAGE. */
1327	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1328		shsize = sizeof(struct uma_slab);
1329		if (shsize & UMA_ALIGN_PTR)
1330			shsize = (shsize & ~UMA_ALIGN_PTR) +
1331			    (UMA_ALIGN_PTR + 1);
1332
1333		if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) {
1334			/*
1335			 * We can't do OFFPAGE if we're internal, in which case
1336			 * we need an extra page per allocation to contain the
1337			 * slab header.
1338			 */
1339			if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0)
1340				keg->uk_flags |= UMA_ZONE_OFFPAGE;
1341			else
1342				keg->uk_ppera++;
1343		}
1344	}
1345
1346	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1347	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1348		keg->uk_flags |= UMA_ZONE_HASH;
1349}
1350
1351static void
1352keg_cachespread_init(uma_keg_t keg)
1353{
1354	int alignsize;
1355	int trailer;
1356	int pages;
1357	int rsize;
1358
1359	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1360	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1361
1362	alignsize = keg->uk_align + 1;
1363	rsize = keg->uk_size;
1364	/*
1365	 * We want one item to start on every align boundary in a page.  To
1366	 * do this we will span pages.  We will also extend the item by the
1367	 * size of align if it is an even multiple of align.  Otherwise, it
1368	 * would fall on the same boundary every time.
1369	 */
1370	if (rsize & keg->uk_align)
1371		rsize = (rsize & ~keg->uk_align) + alignsize;
1372	if ((rsize & alignsize) == 0)
1373		rsize += alignsize;
1374	trailer = rsize - keg->uk_size;
1375	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1376	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1377	keg->uk_rsize = rsize;
1378	keg->uk_ppera = pages;
1379	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1380	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1381	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1382	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1383	    keg->uk_ipers));
1384}
1385
1386/*
1387 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1388 * the keg onto the global keg list.
1389 *
1390 * Arguments/Returns follow uma_ctor specifications
1391 *	udata  Actually uma_kctor_args
1392 */
1393static int
1394keg_ctor(void *mem, int size, void *udata, int flags)
1395{
1396	struct uma_kctor_args *arg = udata;
1397	uma_keg_t keg = mem;
1398	uma_zone_t zone;
1399
1400	bzero(keg, size);
1401	keg->uk_size = arg->size;
1402	keg->uk_init = arg->uminit;
1403	keg->uk_fini = arg->fini;
1404	keg->uk_align = arg->align;
1405	keg->uk_free = 0;
1406	keg->uk_reserve = 0;
1407	keg->uk_pages = 0;
1408	keg->uk_flags = arg->flags;
1409	keg->uk_allocf = page_alloc;
1410	keg->uk_freef = page_free;
1411	keg->uk_slabzone = NULL;
1412
1413	/*
1414	 * The master zone is passed to us at keg-creation time.
1415	 */
1416	zone = arg->zone;
1417	keg->uk_name = zone->uz_name;
1418
1419	if (arg->flags & UMA_ZONE_VM)
1420		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1421
1422	if (arg->flags & UMA_ZONE_ZINIT)
1423		keg->uk_init = zero_init;
1424
1425	if (arg->flags & UMA_ZONE_MALLOC)
1426		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1427
1428	if (arg->flags & UMA_ZONE_PCPU)
1429#ifdef SMP
1430		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1431#else
1432		keg->uk_flags &= ~UMA_ZONE_PCPU;
1433#endif
1434
1435	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1436		keg_cachespread_init(keg);
1437	} else {
1438		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1439			keg_large_init(keg);
1440		else
1441			keg_small_init(keg);
1442	}
1443
1444	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1445		keg->uk_slabzone = slabzone;
1446
1447	/*
1448	 * If we haven't booted yet we need allocations to go through the
1449	 * startup cache until the vm is ready.
1450	 */
1451	if (keg->uk_ppera == 1) {
1452#ifdef UMA_MD_SMALL_ALLOC
1453		keg->uk_allocf = uma_small_alloc;
1454		keg->uk_freef = uma_small_free;
1455
1456		if (booted < UMA_STARTUP)
1457			keg->uk_allocf = startup_alloc;
1458#else
1459		if (booted < UMA_STARTUP2)
1460			keg->uk_allocf = startup_alloc;
1461#endif
1462	} else if (booted < UMA_STARTUP2 &&
1463	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1464		keg->uk_allocf = startup_alloc;
1465
1466	/*
1467	 * Initialize keg's lock
1468	 */
1469	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1470
1471	/*
1472	 * If we're putting the slab header in the actual page we need to
1473	 * figure out where in each page it goes.  This calculates a right
1474	 * justified offset into the memory on an ALIGN_PTR boundary.
1475	 */
1476	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1477		u_int totsize;
1478
1479		/* Size of the slab struct and free list */
1480		totsize = sizeof(struct uma_slab);
1481
1482		if (totsize & UMA_ALIGN_PTR)
1483			totsize = (totsize & ~UMA_ALIGN_PTR) +
1484			    (UMA_ALIGN_PTR + 1);
1485		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1486
1487		/*
1488		 * The only way the following is possible is if with our
1489		 * UMA_ALIGN_PTR adjustments we are now bigger than
1490		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1491		 * mathematically possible for all cases, so we make
1492		 * sure here anyway.
1493		 */
1494		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1495		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1496			printf("zone %s ipers %d rsize %d size %d\n",
1497			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1498			    keg->uk_size);
1499			panic("UMA slab won't fit.");
1500		}
1501	}
1502
1503	if (keg->uk_flags & UMA_ZONE_HASH)
1504		hash_alloc(&keg->uk_hash);
1505
1506#ifdef UMA_DEBUG
1507	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1508	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1509	    keg->uk_ipers, keg->uk_ppera,
1510	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
1511	    keg->uk_free);
1512#endif
1513
1514	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1515
1516	rw_wlock(&uma_rwlock);
1517	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1518	rw_wunlock(&uma_rwlock);
1519	return (0);
1520}
1521
1522/*
1523 * Zone header ctor.  This initializes all fields, locks, etc.
1524 *
1525 * Arguments/Returns follow uma_ctor specifications
1526 *	udata  Actually uma_zctor_args
1527 */
1528static int
1529zone_ctor(void *mem, int size, void *udata, int flags)
1530{
1531	struct uma_zctor_args *arg = udata;
1532	uma_zone_t zone = mem;
1533	uma_zone_t z;
1534	uma_keg_t keg;
1535
1536	bzero(zone, size);
1537	zone->uz_name = arg->name;
1538	zone->uz_ctor = arg->ctor;
1539	zone->uz_dtor = arg->dtor;
1540	zone->uz_slab = zone_fetch_slab;
1541	zone->uz_init = NULL;
1542	zone->uz_fini = NULL;
1543	zone->uz_allocs = 0;
1544	zone->uz_frees = 0;
1545	zone->uz_fails = 0;
1546	zone->uz_sleeps = 0;
1547	zone->uz_count = 0;
1548	zone->uz_count_min = 0;
1549	zone->uz_flags = 0;
1550	zone->uz_warning = NULL;
1551	timevalclear(&zone->uz_ratecheck);
1552	keg = arg->keg;
1553
1554	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1555
1556	/*
1557	 * This is a pure cache zone, no kegs.
1558	 */
1559	if (arg->import) {
1560		if (arg->flags & UMA_ZONE_VM)
1561			arg->flags |= UMA_ZFLAG_CACHEONLY;
1562		zone->uz_flags = arg->flags;
1563		zone->uz_size = arg->size;
1564		zone->uz_import = arg->import;
1565		zone->uz_release = arg->release;
1566		zone->uz_arg = arg->arg;
1567		zone->uz_lockptr = &zone->uz_lock;
1568		rw_wlock(&uma_rwlock);
1569		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1570		rw_wunlock(&uma_rwlock);
1571		goto out;
1572	}
1573
1574	/*
1575	 * Use the regular zone/keg/slab allocator.
1576	 */
1577	zone->uz_import = (uma_import)zone_import;
1578	zone->uz_release = (uma_release)zone_release;
1579	zone->uz_arg = zone;
1580
1581	if (arg->flags & UMA_ZONE_SECONDARY) {
1582		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1583		zone->uz_init = arg->uminit;
1584		zone->uz_fini = arg->fini;
1585		zone->uz_lockptr = &keg->uk_lock;
1586		zone->uz_flags |= UMA_ZONE_SECONDARY;
1587		rw_wlock(&uma_rwlock);
1588		ZONE_LOCK(zone);
1589		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1590			if (LIST_NEXT(z, uz_link) == NULL) {
1591				LIST_INSERT_AFTER(z, zone, uz_link);
1592				break;
1593			}
1594		}
1595		ZONE_UNLOCK(zone);
1596		rw_wunlock(&uma_rwlock);
1597	} else if (keg == NULL) {
1598		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1599		    arg->align, arg->flags)) == NULL)
1600			return (ENOMEM);
1601	} else {
1602		struct uma_kctor_args karg;
1603		int error;
1604
1605		/* We should only be here from uma_startup() */
1606		karg.size = arg->size;
1607		karg.uminit = arg->uminit;
1608		karg.fini = arg->fini;
1609		karg.align = arg->align;
1610		karg.flags = arg->flags;
1611		karg.zone = zone;
1612		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1613		    flags);
1614		if (error)
1615			return (error);
1616	}
1617
1618	/*
1619	 * Link in the first keg.
1620	 */
1621	zone->uz_klink.kl_keg = keg;
1622	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1623	zone->uz_lockptr = &keg->uk_lock;
1624	zone->uz_size = keg->uk_size;
1625	zone->uz_flags |= (keg->uk_flags &
1626	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1627
1628	/*
1629	 * Some internal zones don't have room allocated for the per cpu
1630	 * caches.  If we're internal, bail out here.
1631	 */
1632	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1633		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1634		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1635		return (0);
1636	}
1637
1638out:
1639	if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
1640		zone->uz_count = bucket_select(zone->uz_size);
1641	else
1642		zone->uz_count = BUCKET_MAX;
1643	zone->uz_count_min = zone->uz_count;
1644
1645	return (0);
1646}
1647
1648/*
1649 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1650 * table and removes the keg from the global list.
1651 *
1652 * Arguments/Returns follow uma_dtor specifications
1653 *	udata  unused
1654 */
1655static void
1656keg_dtor(void *arg, int size, void *udata)
1657{
1658	uma_keg_t keg;
1659
1660	keg = (uma_keg_t)arg;
1661	KEG_LOCK(keg);
1662	if (keg->uk_free != 0) {
1663		printf("Freed UMA keg (%s) was not empty (%d items). "
1664		    " Lost %d pages of memory.\n",
1665		    keg->uk_name ? keg->uk_name : "",
1666		    keg->uk_free, keg->uk_pages);
1667	}
1668	KEG_UNLOCK(keg);
1669
1670	hash_free(&keg->uk_hash);
1671
1672	KEG_LOCK_FINI(keg);
1673}
1674
1675/*
1676 * Zone header dtor.
1677 *
1678 * Arguments/Returns follow uma_dtor specifications
1679 *	udata  unused
1680 */
1681static void
1682zone_dtor(void *arg, int size, void *udata)
1683{
1684	uma_klink_t klink;
1685	uma_zone_t zone;
1686	uma_keg_t keg;
1687
1688	zone = (uma_zone_t)arg;
1689	keg = zone_first_keg(zone);
1690
1691	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1692		cache_drain(zone);
1693
1694	rw_wlock(&uma_rwlock);
1695	LIST_REMOVE(zone, uz_link);
1696	rw_wunlock(&uma_rwlock);
1697	/*
1698	 * XXX there are some races here where
1699	 * the zone can be drained but zone lock
1700	 * released and then refilled before we
1701	 * remove it... we dont care for now
1702	 */
1703	zone_drain_wait(zone, M_WAITOK);
1704	/*
1705	 * Unlink all of our kegs.
1706	 */
1707	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1708		klink->kl_keg = NULL;
1709		LIST_REMOVE(klink, kl_link);
1710		if (klink == &zone->uz_klink)
1711			continue;
1712		free(klink, M_TEMP);
1713	}
1714	/*
1715	 * We only destroy kegs from non secondary zones.
1716	 */
1717	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1718		rw_wlock(&uma_rwlock);
1719		LIST_REMOVE(keg, uk_link);
1720		rw_wunlock(&uma_rwlock);
1721		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1722	}
1723	ZONE_LOCK_FINI(zone);
1724}
1725
1726/*
1727 * Traverses every zone in the system and calls a callback
1728 *
1729 * Arguments:
1730 *	zfunc  A pointer to a function which accepts a zone
1731 *		as an argument.
1732 *
1733 * Returns:
1734 *	Nothing
1735 */
1736static void
1737zone_foreach(void (*zfunc)(uma_zone_t))
1738{
1739	uma_keg_t keg;
1740	uma_zone_t zone;
1741
1742	rw_rlock(&uma_rwlock);
1743	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1744		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1745			zfunc(zone);
1746	}
1747	rw_runlock(&uma_rwlock);
1748}
1749
1750/* Public functions */
1751/* See uma.h */
1752void
1753uma_startup(void *bootmem, int boot_pages)
1754{
1755	struct uma_zctor_args args;
1756	uma_slab_t slab;
1757	int i;
1758
1759#ifdef UMA_DEBUG
1760	printf("Creating uma keg headers zone and keg.\n");
1761#endif
1762	rw_init(&uma_rwlock, "UMA lock");
1763
1764	/* "manually" create the initial zone */
1765	memset(&args, 0, sizeof(args));
1766	args.name = "UMA Kegs";
1767	args.size = sizeof(struct uma_keg);
1768	args.ctor = keg_ctor;
1769	args.dtor = keg_dtor;
1770	args.uminit = zero_init;
1771	args.fini = NULL;
1772	args.keg = &masterkeg;
1773	args.align = 32 - 1;
1774	args.flags = UMA_ZFLAG_INTERNAL;
1775	/* The initial zone has no Per cpu queues so it's smaller */
1776	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1777
1778#ifdef UMA_DEBUG
1779	printf("Filling boot free list.\n");
1780#endif
1781	for (i = 0; i < boot_pages; i++) {
1782		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1783		slab->us_data = (uint8_t *)slab;
1784		slab->us_flags = UMA_SLAB_BOOT;
1785		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1786	}
1787	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1788
1789#ifdef UMA_DEBUG
1790	printf("Creating uma zone headers zone and keg.\n");
1791#endif
1792	args.name = "UMA Zones";
1793	args.size = sizeof(struct uma_zone) +
1794	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1795	args.ctor = zone_ctor;
1796	args.dtor = zone_dtor;
1797	args.uminit = zero_init;
1798	args.fini = NULL;
1799	args.keg = NULL;
1800	args.align = 32 - 1;
1801	args.flags = UMA_ZFLAG_INTERNAL;
1802	/* The initial zone has no Per cpu queues so it's smaller */
1803	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1804
1805#ifdef UMA_DEBUG
1806	printf("Creating slab and hash zones.\n");
1807#endif
1808
1809	/* Now make a zone for slab headers */
1810	slabzone = uma_zcreate("UMA Slabs",
1811				sizeof(struct uma_slab),
1812				NULL, NULL, NULL, NULL,
1813				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1814
1815	hashzone = uma_zcreate("UMA Hash",
1816	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1817	    NULL, NULL, NULL, NULL,
1818	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1819
1820	bucket_init();
1821
1822	booted = UMA_STARTUP;
1823
1824#ifdef UMA_DEBUG
1825	printf("UMA startup complete.\n");
1826#endif
1827}
1828
1829/* see uma.h */
1830void
1831uma_startup2(void)
1832{
1833	booted = UMA_STARTUP2;
1834	bucket_enable();
1835	sx_init(&uma_drain_lock, "umadrain");
1836#ifdef UMA_DEBUG
1837	printf("UMA startup2 complete.\n");
1838#endif
1839}
1840
1841/*
1842 * Initialize our callout handle
1843 *
1844 */
1845
1846static void
1847uma_startup3(void)
1848{
1849#ifdef UMA_DEBUG
1850	printf("Starting callout.\n");
1851#endif
1852	callout_init(&uma_callout, 1);
1853	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1854#ifdef UMA_DEBUG
1855	printf("UMA startup3 complete.\n");
1856#endif
1857}
1858
1859static uma_keg_t
1860uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1861		int align, uint32_t flags)
1862{
1863	struct uma_kctor_args args;
1864
1865	args.size = size;
1866	args.uminit = uminit;
1867	args.fini = fini;
1868	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1869	args.flags = flags;
1870	args.zone = zone;
1871	return (zone_alloc_item(kegs, &args, M_WAITOK));
1872}
1873
1874/* See uma.h */
1875void
1876uma_set_align(int align)
1877{
1878
1879	if (align != UMA_ALIGN_CACHE)
1880		uma_align_cache = align;
1881}
1882
1883/* See uma.h */
1884uma_zone_t
1885uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1886		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1887
1888{
1889	struct uma_zctor_args args;
1890	uma_zone_t res;
1891	bool locked;
1892
1893	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
1894	    align, name));
1895
1896	/* This stuff is essential for the zone ctor */
1897	memset(&args, 0, sizeof(args));
1898	args.name = name;
1899	args.size = size;
1900	args.ctor = ctor;
1901	args.dtor = dtor;
1902	args.uminit = uminit;
1903	args.fini = fini;
1904#ifdef  INVARIANTS
1905	/*
1906	 * If a zone is being created with an empty constructor and
1907	 * destructor, pass UMA constructor/destructor which checks for
1908	 * memory use after free.
1909	 */
1910	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) &&
1911	    ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) {
1912		args.ctor = trash_ctor;
1913		args.dtor = trash_dtor;
1914		args.uminit = trash_init;
1915		args.fini = trash_fini;
1916	}
1917#endif
1918	args.align = align;
1919	args.flags = flags;
1920	args.keg = NULL;
1921
1922	if (booted < UMA_STARTUP2) {
1923		locked = false;
1924	} else {
1925		sx_slock(&uma_drain_lock);
1926		locked = true;
1927	}
1928	res = zone_alloc_item(zones, &args, M_WAITOK);
1929	if (locked)
1930		sx_sunlock(&uma_drain_lock);
1931	return (res);
1932}
1933
1934/* See uma.h */
1935uma_zone_t
1936uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1937		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1938{
1939	struct uma_zctor_args args;
1940	uma_keg_t keg;
1941	uma_zone_t res;
1942	bool locked;
1943
1944	keg = zone_first_keg(master);
1945	memset(&args, 0, sizeof(args));
1946	args.name = name;
1947	args.size = keg->uk_size;
1948	args.ctor = ctor;
1949	args.dtor = dtor;
1950	args.uminit = zinit;
1951	args.fini = zfini;
1952	args.align = keg->uk_align;
1953	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1954	args.keg = keg;
1955
1956	if (booted < UMA_STARTUP2) {
1957		locked = false;
1958	} else {
1959		sx_slock(&uma_drain_lock);
1960		locked = true;
1961	}
1962	/* XXX Attaches only one keg of potentially many. */
1963	res = zone_alloc_item(zones, &args, M_WAITOK);
1964	if (locked)
1965		sx_sunlock(&uma_drain_lock);
1966	return (res);
1967}
1968
1969/* See uma.h */
1970uma_zone_t
1971uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1972		    uma_init zinit, uma_fini zfini, uma_import zimport,
1973		    uma_release zrelease, void *arg, int flags)
1974{
1975	struct uma_zctor_args args;
1976
1977	memset(&args, 0, sizeof(args));
1978	args.name = name;
1979	args.size = size;
1980	args.ctor = ctor;
1981	args.dtor = dtor;
1982	args.uminit = zinit;
1983	args.fini = zfini;
1984	args.import = zimport;
1985	args.release = zrelease;
1986	args.arg = arg;
1987	args.align = 0;
1988	args.flags = flags;
1989
1990	return (zone_alloc_item(zones, &args, M_WAITOK));
1991}
1992
1993static void
1994zone_lock_pair(uma_zone_t a, uma_zone_t b)
1995{
1996	if (a < b) {
1997		ZONE_LOCK(a);
1998		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
1999	} else {
2000		ZONE_LOCK(b);
2001		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2002	}
2003}
2004
2005static void
2006zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2007{
2008
2009	ZONE_UNLOCK(a);
2010	ZONE_UNLOCK(b);
2011}
2012
2013int
2014uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2015{
2016	uma_klink_t klink;
2017	uma_klink_t kl;
2018	int error;
2019
2020	error = 0;
2021	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2022
2023	zone_lock_pair(zone, master);
2024	/*
2025	 * zone must use vtoslab() to resolve objects and must already be
2026	 * a secondary.
2027	 */
2028	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2029	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2030		error = EINVAL;
2031		goto out;
2032	}
2033	/*
2034	 * The new master must also use vtoslab().
2035	 */
2036	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2037		error = EINVAL;
2038		goto out;
2039	}
2040
2041	/*
2042	 * The underlying object must be the same size.  rsize
2043	 * may be different.
2044	 */
2045	if (master->uz_size != zone->uz_size) {
2046		error = E2BIG;
2047		goto out;
2048	}
2049	/*
2050	 * Put it at the end of the list.
2051	 */
2052	klink->kl_keg = zone_first_keg(master);
2053	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2054		if (LIST_NEXT(kl, kl_link) == NULL) {
2055			LIST_INSERT_AFTER(kl, klink, kl_link);
2056			break;
2057		}
2058	}
2059	klink = NULL;
2060	zone->uz_flags |= UMA_ZFLAG_MULTI;
2061	zone->uz_slab = zone_fetch_slab_multi;
2062
2063out:
2064	zone_unlock_pair(zone, master);
2065	if (klink != NULL)
2066		free(klink, M_TEMP);
2067
2068	return (error);
2069}
2070
2071
2072/* See uma.h */
2073void
2074uma_zdestroy(uma_zone_t zone)
2075{
2076
2077	sx_slock(&uma_drain_lock);
2078	zone_free_item(zones, zone, NULL, SKIP_NONE);
2079	sx_sunlock(&uma_drain_lock);
2080}
2081
2082void
2083uma_zwait(uma_zone_t zone)
2084{
2085	void *item;
2086
2087	item = uma_zalloc_arg(zone, NULL, M_WAITOK);
2088	uma_zfree(zone, item);
2089}
2090
2091/* See uma.h */
2092void *
2093uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2094{
2095	void *item;
2096	uma_cache_t cache;
2097	uma_bucket_t bucket;
2098	int lockfail;
2099	int cpu;
2100
2101	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2102	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2103
2104	/* This is the fast path allocation */
2105#ifdef UMA_DEBUG_ALLOC_1
2106	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2107#endif
2108	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2109	    zone->uz_name, flags);
2110
2111	if (flags & M_WAITOK) {
2112		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2113		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2114	}
2115	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2116	    ("uma_zalloc_arg: called with spinlock or critical section held"));
2117
2118#ifdef DEBUG_MEMGUARD
2119	if (memguard_cmp_zone(zone)) {
2120		item = memguard_alloc(zone->uz_size, flags);
2121		if (item != NULL) {
2122			if (zone->uz_init != NULL &&
2123			    zone->uz_init(item, zone->uz_size, flags) != 0)
2124				return (NULL);
2125			if (zone->uz_ctor != NULL &&
2126			    zone->uz_ctor(item, zone->uz_size, udata,
2127			    flags) != 0) {
2128			    	zone->uz_fini(item, zone->uz_size);
2129				return (NULL);
2130			}
2131			return (item);
2132		}
2133		/* This is unfortunate but should not be fatal. */
2134	}
2135#endif
2136	/*
2137	 * If possible, allocate from the per-CPU cache.  There are two
2138	 * requirements for safe access to the per-CPU cache: (1) the thread
2139	 * accessing the cache must not be preempted or yield during access,
2140	 * and (2) the thread must not migrate CPUs without switching which
2141	 * cache it accesses.  We rely on a critical section to prevent
2142	 * preemption and migration.  We release the critical section in
2143	 * order to acquire the zone mutex if we are unable to allocate from
2144	 * the current cache; when we re-acquire the critical section, we
2145	 * must detect and handle migration if it has occurred.
2146	 */
2147	critical_enter();
2148	cpu = curcpu;
2149	cache = &zone->uz_cpu[cpu];
2150
2151zalloc_start:
2152	bucket = cache->uc_allocbucket;
2153	if (bucket != NULL && bucket->ub_cnt > 0) {
2154		bucket->ub_cnt--;
2155		item = bucket->ub_bucket[bucket->ub_cnt];
2156#ifdef INVARIANTS
2157		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2158#endif
2159		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2160		cache->uc_allocs++;
2161		critical_exit();
2162		if (zone->uz_ctor != NULL &&
2163		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2164			atomic_add_long(&zone->uz_fails, 1);
2165			zone_free_item(zone, item, udata, SKIP_DTOR);
2166			return (NULL);
2167		}
2168#ifdef INVARIANTS
2169		uma_dbg_alloc(zone, NULL, item);
2170#endif
2171		if (flags & M_ZERO)
2172			uma_zero_item(item, zone);
2173		return (item);
2174	}
2175
2176	/*
2177	 * We have run out of items in our alloc bucket.
2178	 * See if we can switch with our free bucket.
2179	 */
2180	bucket = cache->uc_freebucket;
2181	if (bucket != NULL && bucket->ub_cnt > 0) {
2182#ifdef UMA_DEBUG_ALLOC
2183		printf("uma_zalloc: Swapping empty with alloc.\n");
2184#endif
2185		cache->uc_freebucket = cache->uc_allocbucket;
2186		cache->uc_allocbucket = bucket;
2187		goto zalloc_start;
2188	}
2189
2190	/*
2191	 * Discard any empty allocation bucket while we hold no locks.
2192	 */
2193	bucket = cache->uc_allocbucket;
2194	cache->uc_allocbucket = NULL;
2195	critical_exit();
2196	if (bucket != NULL)
2197		bucket_free(zone, bucket, udata);
2198
2199	/* Short-circuit for zones without buckets and low memory. */
2200	if (zone->uz_count == 0 || bucketdisable)
2201		goto zalloc_item;
2202
2203	/*
2204	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2205	 * we must go back to the zone.  This requires the zone lock, so we
2206	 * must drop the critical section, then re-acquire it when we go back
2207	 * to the cache.  Since the critical section is released, we may be
2208	 * preempted or migrate.  As such, make sure not to maintain any
2209	 * thread-local state specific to the cache from prior to releasing
2210	 * the critical section.
2211	 */
2212	lockfail = 0;
2213	if (ZONE_TRYLOCK(zone) == 0) {
2214		/* Record contention to size the buckets. */
2215		ZONE_LOCK(zone);
2216		lockfail = 1;
2217	}
2218	critical_enter();
2219	cpu = curcpu;
2220	cache = &zone->uz_cpu[cpu];
2221
2222	/*
2223	 * Since we have locked the zone we may as well send back our stats.
2224	 */
2225	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2226	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2227	cache->uc_allocs = 0;
2228	cache->uc_frees = 0;
2229
2230	/* See if we lost the race to fill the cache. */
2231	if (cache->uc_allocbucket != NULL) {
2232		ZONE_UNLOCK(zone);
2233		goto zalloc_start;
2234	}
2235
2236	/*
2237	 * Check the zone's cache of buckets.
2238	 */
2239	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2240		KASSERT(bucket->ub_cnt != 0,
2241		    ("uma_zalloc_arg: Returning an empty bucket."));
2242
2243		LIST_REMOVE(bucket, ub_link);
2244		cache->uc_allocbucket = bucket;
2245		ZONE_UNLOCK(zone);
2246		goto zalloc_start;
2247	}
2248	/* We are no longer associated with this CPU. */
2249	critical_exit();
2250
2251	/*
2252	 * We bump the uz count when the cache size is insufficient to
2253	 * handle the working set.
2254	 */
2255	if (lockfail && zone->uz_count < BUCKET_MAX)
2256		zone->uz_count++;
2257	ZONE_UNLOCK(zone);
2258
2259	/*
2260	 * Now lets just fill a bucket and put it on the free list.  If that
2261	 * works we'll restart the allocation from the beginning and it
2262	 * will use the just filled bucket.
2263	 */
2264	bucket = zone_alloc_bucket(zone, udata, flags);
2265	if (bucket != NULL) {
2266		ZONE_LOCK(zone);
2267		critical_enter();
2268		cpu = curcpu;
2269		cache = &zone->uz_cpu[cpu];
2270		/*
2271		 * See if we lost the race or were migrated.  Cache the
2272		 * initialized bucket to make this less likely or claim
2273		 * the memory directly.
2274		 */
2275		if (cache->uc_allocbucket == NULL)
2276			cache->uc_allocbucket = bucket;
2277		else
2278			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2279		ZONE_UNLOCK(zone);
2280		goto zalloc_start;
2281	}
2282
2283	/*
2284	 * We may not be able to get a bucket so return an actual item.
2285	 */
2286#ifdef UMA_DEBUG
2287	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2288#endif
2289
2290zalloc_item:
2291	item = zone_alloc_item(zone, udata, flags);
2292
2293	return (item);
2294}
2295
2296static uma_slab_t
2297keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2298{
2299	uma_slab_t slab;
2300	int reserve;
2301
2302	mtx_assert(&keg->uk_lock, MA_OWNED);
2303	slab = NULL;
2304	reserve = 0;
2305	if ((flags & M_USE_RESERVE) == 0)
2306		reserve = keg->uk_reserve;
2307
2308	for (;;) {
2309		/*
2310		 * Find a slab with some space.  Prefer slabs that are partially
2311		 * used over those that are totally full.  This helps to reduce
2312		 * fragmentation.
2313		 */
2314		if (keg->uk_free > reserve) {
2315			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2316				slab = LIST_FIRST(&keg->uk_part_slab);
2317			} else {
2318				slab = LIST_FIRST(&keg->uk_free_slab);
2319				LIST_REMOVE(slab, us_link);
2320				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2321				    us_link);
2322			}
2323			MPASS(slab->us_keg == keg);
2324			return (slab);
2325		}
2326
2327		/*
2328		 * M_NOVM means don't ask at all!
2329		 */
2330		if (flags & M_NOVM)
2331			break;
2332
2333		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2334			keg->uk_flags |= UMA_ZFLAG_FULL;
2335			/*
2336			 * If this is not a multi-zone, set the FULL bit.
2337			 * Otherwise slab_multi() takes care of it.
2338			 */
2339			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2340				zone->uz_flags |= UMA_ZFLAG_FULL;
2341				zone_log_warning(zone);
2342				zone_maxaction(zone);
2343			}
2344			if (flags & M_NOWAIT)
2345				break;
2346			zone->uz_sleeps++;
2347			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2348			continue;
2349		}
2350		slab = keg_alloc_slab(keg, zone, flags);
2351		/*
2352		 * If we got a slab here it's safe to mark it partially used
2353		 * and return.  We assume that the caller is going to remove
2354		 * at least one item.
2355		 */
2356		if (slab) {
2357			MPASS(slab->us_keg == keg);
2358			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2359			return (slab);
2360		}
2361		/*
2362		 * We might not have been able to get a slab but another cpu
2363		 * could have while we were unlocked.  Check again before we
2364		 * fail.
2365		 */
2366		flags |= M_NOVM;
2367	}
2368	return (slab);
2369}
2370
2371static uma_slab_t
2372zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2373{
2374	uma_slab_t slab;
2375
2376	if (keg == NULL) {
2377		keg = zone_first_keg(zone);
2378		KEG_LOCK(keg);
2379	}
2380
2381	for (;;) {
2382		slab = keg_fetch_slab(keg, zone, flags);
2383		if (slab)
2384			return (slab);
2385		if (flags & (M_NOWAIT | M_NOVM))
2386			break;
2387	}
2388	KEG_UNLOCK(keg);
2389	return (NULL);
2390}
2391
2392/*
2393 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2394 * with the keg locked.  On NULL no lock is held.
2395 *
2396 * The last pointer is used to seed the search.  It is not required.
2397 */
2398static uma_slab_t
2399zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2400{
2401	uma_klink_t klink;
2402	uma_slab_t slab;
2403	uma_keg_t keg;
2404	int flags;
2405	int empty;
2406	int full;
2407
2408	/*
2409	 * Don't wait on the first pass.  This will skip limit tests
2410	 * as well.  We don't want to block if we can find a provider
2411	 * without blocking.
2412	 */
2413	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2414	/*
2415	 * Use the last slab allocated as a hint for where to start
2416	 * the search.
2417	 */
2418	if (last != NULL) {
2419		slab = keg_fetch_slab(last, zone, flags);
2420		if (slab)
2421			return (slab);
2422		KEG_UNLOCK(last);
2423	}
2424	/*
2425	 * Loop until we have a slab incase of transient failures
2426	 * while M_WAITOK is specified.  I'm not sure this is 100%
2427	 * required but we've done it for so long now.
2428	 */
2429	for (;;) {
2430		empty = 0;
2431		full = 0;
2432		/*
2433		 * Search the available kegs for slabs.  Be careful to hold the
2434		 * correct lock while calling into the keg layer.
2435		 */
2436		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2437			keg = klink->kl_keg;
2438			KEG_LOCK(keg);
2439			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2440				slab = keg_fetch_slab(keg, zone, flags);
2441				if (slab)
2442					return (slab);
2443			}
2444			if (keg->uk_flags & UMA_ZFLAG_FULL)
2445				full++;
2446			else
2447				empty++;
2448			KEG_UNLOCK(keg);
2449		}
2450		if (rflags & (M_NOWAIT | M_NOVM))
2451			break;
2452		flags = rflags;
2453		/*
2454		 * All kegs are full.  XXX We can't atomically check all kegs
2455		 * and sleep so just sleep for a short period and retry.
2456		 */
2457		if (full && !empty) {
2458			ZONE_LOCK(zone);
2459			zone->uz_flags |= UMA_ZFLAG_FULL;
2460			zone->uz_sleeps++;
2461			zone_log_warning(zone);
2462			zone_maxaction(zone);
2463			msleep(zone, zone->uz_lockptr, PVM,
2464			    "zonelimit", hz/100);
2465			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2466			ZONE_UNLOCK(zone);
2467			continue;
2468		}
2469	}
2470	return (NULL);
2471}
2472
2473static void *
2474slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2475{
2476	void *item;
2477	uint8_t freei;
2478
2479	MPASS(keg == slab->us_keg);
2480	mtx_assert(&keg->uk_lock, MA_OWNED);
2481
2482	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2483	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2484	item = slab->us_data + (keg->uk_rsize * freei);
2485	slab->us_freecount--;
2486	keg->uk_free--;
2487
2488	/* Move this slab to the full list */
2489	if (slab->us_freecount == 0) {
2490		LIST_REMOVE(slab, us_link);
2491		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2492	}
2493
2494	return (item);
2495}
2496
2497static int
2498zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2499{
2500	uma_slab_t slab;
2501	uma_keg_t keg;
2502	int i;
2503
2504	slab = NULL;
2505	keg = NULL;
2506	/* Try to keep the buckets totally full */
2507	for (i = 0; i < max; ) {
2508		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2509			break;
2510		keg = slab->us_keg;
2511		while (slab->us_freecount && i < max) {
2512			bucket[i++] = slab_alloc_item(keg, slab);
2513			if (keg->uk_free <= keg->uk_reserve)
2514				break;
2515		}
2516		/* Don't grab more than one slab at a time. */
2517		flags &= ~M_WAITOK;
2518		flags |= M_NOWAIT;
2519	}
2520	if (slab != NULL)
2521		KEG_UNLOCK(keg);
2522
2523	return i;
2524}
2525
2526static uma_bucket_t
2527zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2528{
2529	uma_bucket_t bucket;
2530	int max;
2531
2532	/* Don't wait for buckets, preserve caller's NOVM setting. */
2533	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2534	if (bucket == NULL)
2535		return (NULL);
2536
2537	max = MIN(bucket->ub_entries, zone->uz_count);
2538	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2539	    max, flags);
2540
2541	/*
2542	 * Initialize the memory if necessary.
2543	 */
2544	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2545		int i;
2546
2547		for (i = 0; i < bucket->ub_cnt; i++)
2548			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2549			    flags) != 0)
2550				break;
2551		/*
2552		 * If we couldn't initialize the whole bucket, put the
2553		 * rest back onto the freelist.
2554		 */
2555		if (i != bucket->ub_cnt) {
2556			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2557			    bucket->ub_cnt - i);
2558#ifdef INVARIANTS
2559			bzero(&bucket->ub_bucket[i],
2560			    sizeof(void *) * (bucket->ub_cnt - i));
2561#endif
2562			bucket->ub_cnt = i;
2563		}
2564	}
2565
2566	if (bucket->ub_cnt == 0) {
2567		bucket_free(zone, bucket, udata);
2568		atomic_add_long(&zone->uz_fails, 1);
2569		return (NULL);
2570	}
2571
2572	return (bucket);
2573}
2574
2575/*
2576 * Allocates a single item from a zone.
2577 *
2578 * Arguments
2579 *	zone   The zone to alloc for.
2580 *	udata  The data to be passed to the constructor.
2581 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2582 *
2583 * Returns
2584 *	NULL if there is no memory and M_NOWAIT is set
2585 *	An item if successful
2586 */
2587
2588static void *
2589zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2590{
2591	void *item;
2592
2593	item = NULL;
2594
2595#ifdef UMA_DEBUG_ALLOC
2596	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2597#endif
2598	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2599		goto fail;
2600	atomic_add_long(&zone->uz_allocs, 1);
2601
2602	/*
2603	 * We have to call both the zone's init (not the keg's init)
2604	 * and the zone's ctor.  This is because the item is going from
2605	 * a keg slab directly to the user, and the user is expecting it
2606	 * to be both zone-init'd as well as zone-ctor'd.
2607	 */
2608	if (zone->uz_init != NULL) {
2609		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2610			zone_free_item(zone, item, udata, SKIP_FINI);
2611			goto fail;
2612		}
2613	}
2614	if (zone->uz_ctor != NULL) {
2615		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2616			zone_free_item(zone, item, udata, SKIP_DTOR);
2617			goto fail;
2618		}
2619	}
2620#ifdef INVARIANTS
2621	uma_dbg_alloc(zone, NULL, item);
2622#endif
2623	if (flags & M_ZERO)
2624		uma_zero_item(item, zone);
2625
2626	return (item);
2627
2628fail:
2629	atomic_add_long(&zone->uz_fails, 1);
2630	return (NULL);
2631}
2632
2633/* See uma.h */
2634void
2635uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2636{
2637	uma_cache_t cache;
2638	uma_bucket_t bucket;
2639	int lockfail;
2640	int cpu;
2641
2642	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2643	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2644
2645#ifdef UMA_DEBUG_ALLOC_1
2646	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2647#endif
2648	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2649	    zone->uz_name);
2650
2651	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2652	    ("uma_zfree_arg: called with spinlock or critical section held"));
2653
2654        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2655        if (item == NULL)
2656                return;
2657#ifdef DEBUG_MEMGUARD
2658	if (is_memguard_addr(item)) {
2659		if (zone->uz_dtor != NULL)
2660			zone->uz_dtor(item, zone->uz_size, udata);
2661		if (zone->uz_fini != NULL)
2662			zone->uz_fini(item, zone->uz_size);
2663		memguard_free(item);
2664		return;
2665	}
2666#endif
2667#ifdef INVARIANTS
2668	if (zone->uz_flags & UMA_ZONE_MALLOC)
2669		uma_dbg_free(zone, udata, item);
2670	else
2671		uma_dbg_free(zone, NULL, item);
2672#endif
2673	if (zone->uz_dtor != NULL)
2674		zone->uz_dtor(item, zone->uz_size, udata);
2675
2676	/*
2677	 * The race here is acceptable.  If we miss it we'll just have to wait
2678	 * a little longer for the limits to be reset.
2679	 */
2680	if (zone->uz_flags & UMA_ZFLAG_FULL)
2681		goto zfree_item;
2682
2683	/*
2684	 * If possible, free to the per-CPU cache.  There are two
2685	 * requirements for safe access to the per-CPU cache: (1) the thread
2686	 * accessing the cache must not be preempted or yield during access,
2687	 * and (2) the thread must not migrate CPUs without switching which
2688	 * cache it accesses.  We rely on a critical section to prevent
2689	 * preemption and migration.  We release the critical section in
2690	 * order to acquire the zone mutex if we are unable to free to the
2691	 * current cache; when we re-acquire the critical section, we must
2692	 * detect and handle migration if it has occurred.
2693	 */
2694zfree_restart:
2695	critical_enter();
2696	cpu = curcpu;
2697	cache = &zone->uz_cpu[cpu];
2698
2699zfree_start:
2700	/*
2701	 * Try to free into the allocbucket first to give LIFO ordering
2702	 * for cache-hot datastructures.  Spill over into the freebucket
2703	 * if necessary.  Alloc will swap them if one runs dry.
2704	 */
2705	bucket = cache->uc_allocbucket;
2706	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2707		bucket = cache->uc_freebucket;
2708	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2709		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2710		    ("uma_zfree: Freeing to non free bucket index."));
2711		bucket->ub_bucket[bucket->ub_cnt] = item;
2712		bucket->ub_cnt++;
2713		cache->uc_frees++;
2714		critical_exit();
2715		return;
2716	}
2717
2718	/*
2719	 * We must go back the zone, which requires acquiring the zone lock,
2720	 * which in turn means we must release and re-acquire the critical
2721	 * section.  Since the critical section is released, we may be
2722	 * preempted or migrate.  As such, make sure not to maintain any
2723	 * thread-local state specific to the cache from prior to releasing
2724	 * the critical section.
2725	 */
2726	critical_exit();
2727	if (zone->uz_count == 0 || bucketdisable)
2728		goto zfree_item;
2729
2730	lockfail = 0;
2731	if (ZONE_TRYLOCK(zone) == 0) {
2732		/* Record contention to size the buckets. */
2733		ZONE_LOCK(zone);
2734		lockfail = 1;
2735	}
2736	critical_enter();
2737	cpu = curcpu;
2738	cache = &zone->uz_cpu[cpu];
2739
2740	/*
2741	 * Since we have locked the zone we may as well send back our stats.
2742	 */
2743	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2744	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2745	cache->uc_allocs = 0;
2746	cache->uc_frees = 0;
2747
2748	bucket = cache->uc_freebucket;
2749	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2750		ZONE_UNLOCK(zone);
2751		goto zfree_start;
2752	}
2753	cache->uc_freebucket = NULL;
2754	/* We are no longer associated with this CPU. */
2755	critical_exit();
2756
2757	/* Can we throw this on the zone full list? */
2758	if (bucket != NULL) {
2759#ifdef UMA_DEBUG_ALLOC
2760		printf("uma_zfree: Putting old bucket on the free list.\n");
2761#endif
2762		/* ub_cnt is pointing to the last free item */
2763		KASSERT(bucket->ub_cnt != 0,
2764		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2765		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2766	}
2767
2768	/*
2769	 * We bump the uz count when the cache size is insufficient to
2770	 * handle the working set.
2771	 */
2772	if (lockfail && zone->uz_count < BUCKET_MAX)
2773		zone->uz_count++;
2774	ZONE_UNLOCK(zone);
2775
2776#ifdef UMA_DEBUG_ALLOC
2777	printf("uma_zfree: Allocating new free bucket.\n");
2778#endif
2779	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2780	if (bucket) {
2781		critical_enter();
2782		cpu = curcpu;
2783		cache = &zone->uz_cpu[cpu];
2784		if (cache->uc_freebucket == NULL) {
2785			cache->uc_freebucket = bucket;
2786			goto zfree_start;
2787		}
2788		/*
2789		 * We lost the race, start over.  We have to drop our
2790		 * critical section to free the bucket.
2791		 */
2792		critical_exit();
2793		bucket_free(zone, bucket, udata);
2794		goto zfree_restart;
2795	}
2796
2797	/*
2798	 * If nothing else caught this, we'll just do an internal free.
2799	 */
2800zfree_item:
2801	zone_free_item(zone, item, udata, SKIP_DTOR);
2802
2803	return;
2804}
2805
2806static void
2807slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2808{
2809	uint8_t freei;
2810
2811	mtx_assert(&keg->uk_lock, MA_OWNED);
2812	MPASS(keg == slab->us_keg);
2813
2814	/* Do we need to remove from any lists? */
2815	if (slab->us_freecount+1 == keg->uk_ipers) {
2816		LIST_REMOVE(slab, us_link);
2817		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2818	} else if (slab->us_freecount == 0) {
2819		LIST_REMOVE(slab, us_link);
2820		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2821	}
2822
2823	/* Slab management. */
2824	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2825	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2826	slab->us_freecount++;
2827
2828	/* Keg statistics. */
2829	keg->uk_free++;
2830}
2831
2832static void
2833zone_release(uma_zone_t zone, void **bucket, int cnt)
2834{
2835	void *item;
2836	uma_slab_t slab;
2837	uma_keg_t keg;
2838	uint8_t *mem;
2839	int clearfull;
2840	int i;
2841
2842	clearfull = 0;
2843	keg = zone_first_keg(zone);
2844	KEG_LOCK(keg);
2845	for (i = 0; i < cnt; i++) {
2846		item = bucket[i];
2847		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2848			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2849			if (zone->uz_flags & UMA_ZONE_HASH) {
2850				slab = hash_sfind(&keg->uk_hash, mem);
2851			} else {
2852				mem += keg->uk_pgoff;
2853				slab = (uma_slab_t)mem;
2854			}
2855		} else {
2856			slab = vtoslab((vm_offset_t)item);
2857			if (slab->us_keg != keg) {
2858				KEG_UNLOCK(keg);
2859				keg = slab->us_keg;
2860				KEG_LOCK(keg);
2861			}
2862		}
2863		slab_free_item(keg, slab, item);
2864		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2865			if (keg->uk_pages < keg->uk_maxpages) {
2866				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2867				clearfull = 1;
2868			}
2869
2870			/*
2871			 * We can handle one more allocation. Since we're
2872			 * clearing ZFLAG_FULL, wake up all procs blocked
2873			 * on pages. This should be uncommon, so keeping this
2874			 * simple for now (rather than adding count of blocked
2875			 * threads etc).
2876			 */
2877			wakeup(keg);
2878		}
2879	}
2880	KEG_UNLOCK(keg);
2881	if (clearfull) {
2882		ZONE_LOCK(zone);
2883		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2884		wakeup(zone);
2885		ZONE_UNLOCK(zone);
2886	}
2887
2888}
2889
2890/*
2891 * Frees a single item to any zone.
2892 *
2893 * Arguments:
2894 *	zone   The zone to free to
2895 *	item   The item we're freeing
2896 *	udata  User supplied data for the dtor
2897 *	skip   Skip dtors and finis
2898 */
2899static void
2900zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2901{
2902
2903#ifdef INVARIANTS
2904	if (skip == SKIP_NONE) {
2905		if (zone->uz_flags & UMA_ZONE_MALLOC)
2906			uma_dbg_free(zone, udata, item);
2907		else
2908			uma_dbg_free(zone, NULL, item);
2909	}
2910#endif
2911	if (skip < SKIP_DTOR && zone->uz_dtor)
2912		zone->uz_dtor(item, zone->uz_size, udata);
2913
2914	if (skip < SKIP_FINI && zone->uz_fini)
2915		zone->uz_fini(item, zone->uz_size);
2916
2917	atomic_add_long(&zone->uz_frees, 1);
2918	zone->uz_release(zone->uz_arg, &item, 1);
2919}
2920
2921/* See uma.h */
2922int
2923uma_zone_set_max(uma_zone_t zone, int nitems)
2924{
2925	uma_keg_t keg;
2926
2927	keg = zone_first_keg(zone);
2928	if (keg == NULL)
2929		return (0);
2930	KEG_LOCK(keg);
2931	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2932	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2933		keg->uk_maxpages += keg->uk_ppera;
2934	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2935	KEG_UNLOCK(keg);
2936
2937	return (nitems);
2938}
2939
2940/* See uma.h */
2941int
2942uma_zone_get_max(uma_zone_t zone)
2943{
2944	int nitems;
2945	uma_keg_t keg;
2946
2947	keg = zone_first_keg(zone);
2948	if (keg == NULL)
2949		return (0);
2950	KEG_LOCK(keg);
2951	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2952	KEG_UNLOCK(keg);
2953
2954	return (nitems);
2955}
2956
2957/* See uma.h */
2958void
2959uma_zone_set_warning(uma_zone_t zone, const char *warning)
2960{
2961
2962	ZONE_LOCK(zone);
2963	zone->uz_warning = warning;
2964	ZONE_UNLOCK(zone);
2965}
2966
2967/* See uma.h */
2968void
2969uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
2970{
2971
2972	ZONE_LOCK(zone);
2973	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
2974	ZONE_UNLOCK(zone);
2975}
2976
2977/* See uma.h */
2978int
2979uma_zone_get_cur(uma_zone_t zone)
2980{
2981	int64_t nitems;
2982	u_int i;
2983
2984	ZONE_LOCK(zone);
2985	nitems = zone->uz_allocs - zone->uz_frees;
2986	CPU_FOREACH(i) {
2987		/*
2988		 * See the comment in sysctl_vm_zone_stats() regarding the
2989		 * safety of accessing the per-cpu caches. With the zone lock
2990		 * held, it is safe, but can potentially result in stale data.
2991		 */
2992		nitems += zone->uz_cpu[i].uc_allocs -
2993		    zone->uz_cpu[i].uc_frees;
2994	}
2995	ZONE_UNLOCK(zone);
2996
2997	return (nitems < 0 ? 0 : nitems);
2998}
2999
3000/* See uma.h */
3001void
3002uma_zone_set_init(uma_zone_t zone, uma_init uminit)
3003{
3004	uma_keg_t keg;
3005
3006	keg = zone_first_keg(zone);
3007	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3008	KEG_LOCK(keg);
3009	KASSERT(keg->uk_pages == 0,
3010	    ("uma_zone_set_init on non-empty keg"));
3011	keg->uk_init = uminit;
3012	KEG_UNLOCK(keg);
3013}
3014
3015/* See uma.h */
3016void
3017uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3018{
3019	uma_keg_t keg;
3020
3021	keg = zone_first_keg(zone);
3022	KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
3023	KEG_LOCK(keg);
3024	KASSERT(keg->uk_pages == 0,
3025	    ("uma_zone_set_fini on non-empty keg"));
3026	keg->uk_fini = fini;
3027	KEG_UNLOCK(keg);
3028}
3029
3030/* See uma.h */
3031void
3032uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3033{
3034
3035	ZONE_LOCK(zone);
3036	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3037	    ("uma_zone_set_zinit on non-empty keg"));
3038	zone->uz_init = zinit;
3039	ZONE_UNLOCK(zone);
3040}
3041
3042/* See uma.h */
3043void
3044uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3045{
3046
3047	ZONE_LOCK(zone);
3048	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3049	    ("uma_zone_set_zfini on non-empty keg"));
3050	zone->uz_fini = zfini;
3051	ZONE_UNLOCK(zone);
3052}
3053
3054/* See uma.h */
3055/* XXX uk_freef is not actually used with the zone locked */
3056void
3057uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3058{
3059	uma_keg_t keg;
3060
3061	keg = zone_first_keg(zone);
3062	KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
3063	KEG_LOCK(keg);
3064	keg->uk_freef = freef;
3065	KEG_UNLOCK(keg);
3066}
3067
3068/* See uma.h */
3069/* XXX uk_allocf is not actually used with the zone locked */
3070void
3071uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3072{
3073	uma_keg_t keg;
3074
3075	keg = zone_first_keg(zone);
3076	KEG_LOCK(keg);
3077	keg->uk_allocf = allocf;
3078	KEG_UNLOCK(keg);
3079}
3080
3081/* See uma.h */
3082void
3083uma_zone_reserve(uma_zone_t zone, int items)
3084{
3085	uma_keg_t keg;
3086
3087	keg = zone_first_keg(zone);
3088	if (keg == NULL)
3089		return;
3090	KEG_LOCK(keg);
3091	keg->uk_reserve = items;
3092	KEG_UNLOCK(keg);
3093
3094	return;
3095}
3096
3097/* See uma.h */
3098int
3099uma_zone_reserve_kva(uma_zone_t zone, int count)
3100{
3101	uma_keg_t keg;
3102	vm_offset_t kva;
3103	u_int pages;
3104
3105	keg = zone_first_keg(zone);
3106	if (keg == NULL)
3107		return (0);
3108	pages = count / keg->uk_ipers;
3109
3110	if (pages * keg->uk_ipers < count)
3111		pages++;
3112	pages *= keg->uk_ppera;
3113
3114#ifdef UMA_MD_SMALL_ALLOC
3115	if (keg->uk_ppera > 1) {
3116#else
3117	if (1) {
3118#endif
3119		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
3120		if (kva == 0)
3121			return (0);
3122	} else
3123		kva = 0;
3124	KEG_LOCK(keg);
3125	keg->uk_kva = kva;
3126	keg->uk_offset = 0;
3127	keg->uk_maxpages = pages;
3128#ifdef UMA_MD_SMALL_ALLOC
3129	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3130#else
3131	keg->uk_allocf = noobj_alloc;
3132#endif
3133	keg->uk_flags |= UMA_ZONE_NOFREE;
3134	KEG_UNLOCK(keg);
3135
3136	return (1);
3137}
3138
3139/* See uma.h */
3140void
3141uma_prealloc(uma_zone_t zone, int items)
3142{
3143	int slabs;
3144	uma_slab_t slab;
3145	uma_keg_t keg;
3146
3147	keg = zone_first_keg(zone);
3148	if (keg == NULL)
3149		return;
3150	KEG_LOCK(keg);
3151	slabs = items / keg->uk_ipers;
3152	if (slabs * keg->uk_ipers < items)
3153		slabs++;
3154	while (slabs > 0) {
3155		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3156		if (slab == NULL)
3157			break;
3158		MPASS(slab->us_keg == keg);
3159		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3160		slabs--;
3161	}
3162	KEG_UNLOCK(keg);
3163}
3164
3165/* See uma.h */
3166static void
3167uma_reclaim_locked(bool kmem_danger)
3168{
3169
3170#ifdef UMA_DEBUG
3171	printf("UMA: vm asked us to release pages!\n");
3172#endif
3173	sx_assert(&uma_drain_lock, SA_XLOCKED);
3174	bucket_enable();
3175	zone_foreach(zone_drain);
3176	if (vm_page_count_min() || kmem_danger) {
3177		cache_drain_safe(NULL);
3178		zone_foreach(zone_drain);
3179	}
3180	/*
3181	 * Some slabs may have been freed but this zone will be visited early
3182	 * we visit again so that we can free pages that are empty once other
3183	 * zones are drained.  We have to do the same for buckets.
3184	 */
3185	zone_drain(slabzone);
3186	bucket_zone_drain();
3187}
3188
3189void
3190uma_reclaim(void)
3191{
3192
3193	sx_xlock(&uma_drain_lock);
3194	uma_reclaim_locked(false);
3195	sx_xunlock(&uma_drain_lock);
3196}
3197
3198static int uma_reclaim_needed;
3199
3200void
3201uma_reclaim_wakeup(void)
3202{
3203
3204	uma_reclaim_needed = 1;
3205	wakeup(&uma_reclaim_needed);
3206}
3207
3208void
3209uma_reclaim_worker(void *arg __unused)
3210{
3211
3212	sx_xlock(&uma_drain_lock);
3213	for (;;) {
3214		sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM,
3215		    "umarcl", 0);
3216		if (uma_reclaim_needed) {
3217			uma_reclaim_needed = 0;
3218			sx_xunlock(&uma_drain_lock);
3219			EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
3220			sx_xlock(&uma_drain_lock);
3221			uma_reclaim_locked(true);
3222		}
3223	}
3224}
3225
3226/* See uma.h */
3227int
3228uma_zone_exhausted(uma_zone_t zone)
3229{
3230	int full;
3231
3232	ZONE_LOCK(zone);
3233	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3234	ZONE_UNLOCK(zone);
3235	return (full);
3236}
3237
3238int
3239uma_zone_exhausted_nolock(uma_zone_t zone)
3240{
3241	return (zone->uz_flags & UMA_ZFLAG_FULL);
3242}
3243
3244void *
3245uma_large_malloc(vm_size_t size, int wait)
3246{
3247	void *mem;
3248	uma_slab_t slab;
3249	uint8_t flags;
3250
3251	slab = zone_alloc_item(slabzone, NULL, wait);
3252	if (slab == NULL)
3253		return (NULL);
3254	mem = page_alloc(NULL, size, &flags, wait);
3255	if (mem) {
3256		vsetslab((vm_offset_t)mem, slab);
3257		slab->us_data = mem;
3258		slab->us_flags = flags | UMA_SLAB_MALLOC;
3259		slab->us_size = size;
3260	} else {
3261		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3262	}
3263
3264	return (mem);
3265}
3266
3267void
3268uma_large_free(uma_slab_t slab)
3269{
3270
3271	page_free(slab->us_data, slab->us_size, slab->us_flags);
3272	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3273}
3274
3275static void
3276uma_zero_item(void *item, uma_zone_t zone)
3277{
3278	int i;
3279
3280	if (zone->uz_flags & UMA_ZONE_PCPU) {
3281		CPU_FOREACH(i)
3282			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3283	} else
3284		bzero(item, zone->uz_size);
3285}
3286
3287void
3288uma_print_stats(void)
3289{
3290	zone_foreach(uma_print_zone);
3291}
3292
3293static void
3294slab_print(uma_slab_t slab)
3295{
3296	printf("slab: keg %p, data %p, freecount %d\n",
3297		slab->us_keg, slab->us_data, slab->us_freecount);
3298}
3299
3300static void
3301cache_print(uma_cache_t cache)
3302{
3303	printf("alloc: %p(%d), free: %p(%d)\n",
3304		cache->uc_allocbucket,
3305		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3306		cache->uc_freebucket,
3307		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3308}
3309
3310static void
3311uma_print_keg(uma_keg_t keg)
3312{
3313	uma_slab_t slab;
3314
3315	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3316	    "out %d free %d limit %d\n",
3317	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3318	    keg->uk_ipers, keg->uk_ppera,
3319	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
3320	    keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3321	printf("Part slabs:\n");
3322	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3323		slab_print(slab);
3324	printf("Free slabs:\n");
3325	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3326		slab_print(slab);
3327	printf("Full slabs:\n");
3328	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3329		slab_print(slab);
3330}
3331
3332void
3333uma_print_zone(uma_zone_t zone)
3334{
3335	uma_cache_t cache;
3336	uma_klink_t kl;
3337	int i;
3338
3339	printf("zone: %s(%p) size %d flags %#x\n",
3340	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3341	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3342		uma_print_keg(kl->kl_keg);
3343	CPU_FOREACH(i) {
3344		cache = &zone->uz_cpu[i];
3345		printf("CPU %d Cache:\n", i);
3346		cache_print(cache);
3347	}
3348}
3349
3350#ifdef DDB
3351/*
3352 * Generate statistics across both the zone and its per-cpu cache's.  Return
3353 * desired statistics if the pointer is non-NULL for that statistic.
3354 *
3355 * Note: does not update the zone statistics, as it can't safely clear the
3356 * per-CPU cache statistic.
3357 *
3358 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3359 * safe from off-CPU; we should modify the caches to track this information
3360 * directly so that we don't have to.
3361 */
3362static void
3363uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3364    uint64_t *freesp, uint64_t *sleepsp)
3365{
3366	uma_cache_t cache;
3367	uint64_t allocs, frees, sleeps;
3368	int cachefree, cpu;
3369
3370	allocs = frees = sleeps = 0;
3371	cachefree = 0;
3372	CPU_FOREACH(cpu) {
3373		cache = &z->uz_cpu[cpu];
3374		if (cache->uc_allocbucket != NULL)
3375			cachefree += cache->uc_allocbucket->ub_cnt;
3376		if (cache->uc_freebucket != NULL)
3377			cachefree += cache->uc_freebucket->ub_cnt;
3378		allocs += cache->uc_allocs;
3379		frees += cache->uc_frees;
3380	}
3381	allocs += z->uz_allocs;
3382	frees += z->uz_frees;
3383	sleeps += z->uz_sleeps;
3384	if (cachefreep != NULL)
3385		*cachefreep = cachefree;
3386	if (allocsp != NULL)
3387		*allocsp = allocs;
3388	if (freesp != NULL)
3389		*freesp = frees;
3390	if (sleepsp != NULL)
3391		*sleepsp = sleeps;
3392}
3393#endif /* DDB */
3394
3395static int
3396sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3397{
3398	uma_keg_t kz;
3399	uma_zone_t z;
3400	int count;
3401
3402	count = 0;
3403	rw_rlock(&uma_rwlock);
3404	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3405		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3406			count++;
3407	}
3408	rw_runlock(&uma_rwlock);
3409	return (sysctl_handle_int(oidp, &count, 0, req));
3410}
3411
3412static int
3413sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3414{
3415	struct uma_stream_header ush;
3416	struct uma_type_header uth;
3417	struct uma_percpu_stat ups;
3418	uma_bucket_t bucket;
3419	struct sbuf sbuf;
3420	uma_cache_t cache;
3421	uma_klink_t kl;
3422	uma_keg_t kz;
3423	uma_zone_t z;
3424	uma_keg_t k;
3425	int count, error, i;
3426
3427	error = sysctl_wire_old_buffer(req, 0);
3428	if (error != 0)
3429		return (error);
3430	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3431	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
3432
3433	count = 0;
3434	rw_rlock(&uma_rwlock);
3435	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3436		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3437			count++;
3438	}
3439
3440	/*
3441	 * Insert stream header.
3442	 */
3443	bzero(&ush, sizeof(ush));
3444	ush.ush_version = UMA_STREAM_VERSION;
3445	ush.ush_maxcpus = (mp_maxid + 1);
3446	ush.ush_count = count;
3447	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3448
3449	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3450		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3451			bzero(&uth, sizeof(uth));
3452			ZONE_LOCK(z);
3453			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3454			uth.uth_align = kz->uk_align;
3455			uth.uth_size = kz->uk_size;
3456			uth.uth_rsize = kz->uk_rsize;
3457			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3458				k = kl->kl_keg;
3459				uth.uth_maxpages += k->uk_maxpages;
3460				uth.uth_pages += k->uk_pages;
3461				uth.uth_keg_free += k->uk_free;
3462				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3463				    * k->uk_ipers;
3464			}
3465
3466			/*
3467			 * A zone is secondary is it is not the first entry
3468			 * on the keg's zone list.
3469			 */
3470			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3471			    (LIST_FIRST(&kz->uk_zones) != z))
3472				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3473
3474			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3475				uth.uth_zone_free += bucket->ub_cnt;
3476			uth.uth_allocs = z->uz_allocs;
3477			uth.uth_frees = z->uz_frees;
3478			uth.uth_fails = z->uz_fails;
3479			uth.uth_sleeps = z->uz_sleeps;
3480			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3481			/*
3482			 * While it is not normally safe to access the cache
3483			 * bucket pointers while not on the CPU that owns the
3484			 * cache, we only allow the pointers to be exchanged
3485			 * without the zone lock held, not invalidated, so
3486			 * accept the possible race associated with bucket
3487			 * exchange during monitoring.
3488			 */
3489			for (i = 0; i < (mp_maxid + 1); i++) {
3490				bzero(&ups, sizeof(ups));
3491				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3492					goto skip;
3493				if (CPU_ABSENT(i))
3494					goto skip;
3495				cache = &z->uz_cpu[i];
3496				if (cache->uc_allocbucket != NULL)
3497					ups.ups_cache_free +=
3498					    cache->uc_allocbucket->ub_cnt;
3499				if (cache->uc_freebucket != NULL)
3500					ups.ups_cache_free +=
3501					    cache->uc_freebucket->ub_cnt;
3502				ups.ups_allocs = cache->uc_allocs;
3503				ups.ups_frees = cache->uc_frees;
3504skip:
3505				(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3506			}
3507			ZONE_UNLOCK(z);
3508		}
3509	}
3510	rw_runlock(&uma_rwlock);
3511	error = sbuf_finish(&sbuf);
3512	sbuf_delete(&sbuf);
3513	return (error);
3514}
3515
3516int
3517sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3518{
3519	uma_zone_t zone = *(uma_zone_t *)arg1;
3520	int error, max;
3521
3522	max = uma_zone_get_max(zone);
3523	error = sysctl_handle_int(oidp, &max, 0, req);
3524	if (error || !req->newptr)
3525		return (error);
3526
3527	uma_zone_set_max(zone, max);
3528
3529	return (0);
3530}
3531
3532int
3533sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3534{
3535	uma_zone_t zone = *(uma_zone_t *)arg1;
3536	int cur;
3537
3538	cur = uma_zone_get_cur(zone);
3539	return (sysctl_handle_int(oidp, &cur, 0, req));
3540}
3541
3542#ifdef INVARIANTS
3543static uma_slab_t
3544uma_dbg_getslab(uma_zone_t zone, void *item)
3545{
3546	uma_slab_t slab;
3547	uma_keg_t keg;
3548	uint8_t *mem;
3549
3550	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
3551	if (zone->uz_flags & UMA_ZONE_VTOSLAB) {
3552		slab = vtoslab((vm_offset_t)mem);
3553	} else {
3554		/*
3555		 * It is safe to return the slab here even though the
3556		 * zone is unlocked because the item's allocation state
3557		 * essentially holds a reference.
3558		 */
3559		ZONE_LOCK(zone);
3560		keg = LIST_FIRST(&zone->uz_kegs)->kl_keg;
3561		if (keg->uk_flags & UMA_ZONE_HASH)
3562			slab = hash_sfind(&keg->uk_hash, mem);
3563		else
3564			slab = (uma_slab_t)(mem + keg->uk_pgoff);
3565		ZONE_UNLOCK(zone);
3566	}
3567
3568	return (slab);
3569}
3570
3571/*
3572 * Set up the slab's freei data such that uma_dbg_free can function.
3573 *
3574 */
3575static void
3576uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
3577{
3578	uma_keg_t keg;
3579	int freei;
3580
3581	if (zone_first_keg(zone) == NULL)
3582		return;
3583	if (slab == NULL) {
3584		slab = uma_dbg_getslab(zone, item);
3585		if (slab == NULL)
3586			panic("uma: item %p did not belong to zone %s\n",
3587			    item, zone->uz_name);
3588	}
3589	keg = slab->us_keg;
3590	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3591
3592	if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3593		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
3594		    item, zone, zone->uz_name, slab, freei);
3595	BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3596
3597	return;
3598}
3599
3600/*
3601 * Verifies freed addresses.  Checks for alignment, valid slab membership
3602 * and duplicate frees.
3603 *
3604 */
3605static void
3606uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
3607{
3608	uma_keg_t keg;
3609	int freei;
3610
3611	if (zone_first_keg(zone) == NULL)
3612		return;
3613	if (slab == NULL) {
3614		slab = uma_dbg_getslab(zone, item);
3615		if (slab == NULL)
3616			panic("uma: Freed item %p did not belong to zone %s\n",
3617			    item, zone->uz_name);
3618	}
3619	keg = slab->us_keg;
3620	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3621
3622	if (freei >= keg->uk_ipers)
3623		panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
3624		    item, zone, zone->uz_name, slab, freei);
3625
3626	if (((freei * keg->uk_rsize) + slab->us_data) != item)
3627		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
3628		    item, zone, zone->uz_name, slab, freei);
3629
3630	if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3631		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
3632		    item, zone, zone->uz_name, slab, freei);
3633
3634	BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3635}
3636#endif /* INVARIANTS */
3637
3638#ifdef DDB
3639DB_SHOW_COMMAND(uma, db_show_uma)
3640{
3641	uint64_t allocs, frees, sleeps;
3642	uma_bucket_t bucket;
3643	uma_keg_t kz;
3644	uma_zone_t z;
3645	int cachefree;
3646
3647	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3648	    "Free", "Requests", "Sleeps", "Bucket");
3649	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3650		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3651			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3652				allocs = z->uz_allocs;
3653				frees = z->uz_frees;
3654				sleeps = z->uz_sleeps;
3655				cachefree = 0;
3656			} else
3657				uma_zone_sumstat(z, &cachefree, &allocs,
3658				    &frees, &sleeps);
3659			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3660			    (LIST_FIRST(&kz->uk_zones) != z)))
3661				cachefree += kz->uk_free;
3662			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3663				cachefree += bucket->ub_cnt;
3664			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3665			    z->uz_name, (uintmax_t)kz->uk_size,
3666			    (intmax_t)(allocs - frees), cachefree,
3667			    (uintmax_t)allocs, sleeps, z->uz_count);
3668			if (db_pager_quit)
3669				return;
3670		}
3671	}
3672}
3673
3674DB_SHOW_COMMAND(umacache, db_show_umacache)
3675{
3676	uint64_t allocs, frees;
3677	uma_bucket_t bucket;
3678	uma_zone_t z;
3679	int cachefree;
3680
3681	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3682	    "Requests", "Bucket");
3683	LIST_FOREACH(z, &uma_cachezones, uz_link) {
3684		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3685		LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3686			cachefree += bucket->ub_cnt;
3687		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3688		    z->uz_name, (uintmax_t)z->uz_size,
3689		    (intmax_t)(allocs - frees), cachefree,
3690		    (uintmax_t)allocs, z->uz_count);
3691		if (db_pager_quit)
3692			return;
3693	}
3694}
3695#endif	/* DDB */
3696