uma_core.c revision 316836
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * efficient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/11/sys/vm/uma_core.c 316836 2017-04-14 14:34:48Z avg $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/eventhandler.h>
68#include <sys/kernel.h>
69#include <sys/types.h>
70#include <sys/queue.h>
71#include <sys/malloc.h>
72#include <sys/ktr.h>
73#include <sys/lock.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/random.h>
78#include <sys/rwlock.h>
79#include <sys/sbuf.h>
80#include <sys/sched.h>
81#include <sys/smp.h>
82#include <sys/taskqueue.h>
83#include <sys/vmmeter.h>
84
85#include <vm/vm.h>
86#include <vm/vm_object.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_param.h>
90#include <vm/vm_map.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/uma.h>
94#include <vm/uma_int.h>
95#include <vm/uma_dbg.h>
96
97#include <ddb/ddb.h>
98
99#ifdef DEBUG_MEMGUARD
100#include <vm/memguard.h>
101#endif
102
103/*
104 * This is the zone and keg from which all zones are spawned.  The idea is that
105 * even the zone & keg heads are allocated from the allocator, so we use the
106 * bss section to bootstrap us.
107 */
108static struct uma_keg masterkeg;
109static struct uma_zone masterzone_k;
110static struct uma_zone masterzone_z;
111static uma_zone_t kegs = &masterzone_k;
112static uma_zone_t zones = &masterzone_z;
113
114/* This is the zone from which all of uma_slab_t's are allocated. */
115static uma_zone_t slabzone;
116
117/*
118 * The initial hash tables come out of this zone so they can be allocated
119 * prior to malloc coming up.
120 */
121static uma_zone_t hashzone;
122
123/* The boot-time adjusted value for cache line alignment. */
124int uma_align_cache = 64 - 1;
125
126static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
127
128/*
129 * Are we allowed to allocate buckets?
130 */
131static int bucketdisable = 1;
132
133/* Linked list of all kegs in the system */
134static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
135
136/* Linked list of all cache-only zones in the system */
137static LIST_HEAD(,uma_zone) uma_cachezones =
138    LIST_HEAD_INITIALIZER(uma_cachezones);
139
140/* This RW lock protects the keg list */
141static struct rwlock_padalign uma_rwlock;
142
143/* Linked list of boot time pages */
144static LIST_HEAD(,uma_slab) uma_boot_pages =
145    LIST_HEAD_INITIALIZER(uma_boot_pages);
146
147/* This mutex protects the boot time pages list */
148static struct mtx_padalign uma_boot_pages_mtx;
149
150static struct sx uma_drain_lock;
151
152/* Is the VM done starting up? */
153static int booted = 0;
154#define	UMA_STARTUP	1
155#define	UMA_STARTUP2	2
156
157/*
158 * This is the handle used to schedule events that need to happen
159 * outside of the allocation fast path.
160 */
161static struct callout uma_callout;
162#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
163
164/*
165 * This structure is passed as the zone ctor arg so that I don't have to create
166 * a special allocation function just for zones.
167 */
168struct uma_zctor_args {
169	const char *name;
170	size_t size;
171	uma_ctor ctor;
172	uma_dtor dtor;
173	uma_init uminit;
174	uma_fini fini;
175	uma_import import;
176	uma_release release;
177	void *arg;
178	uma_keg_t keg;
179	int align;
180	uint32_t flags;
181};
182
183struct uma_kctor_args {
184	uma_zone_t zone;
185	size_t size;
186	uma_init uminit;
187	uma_fini fini;
188	int align;
189	uint32_t flags;
190};
191
192struct uma_bucket_zone {
193	uma_zone_t	ubz_zone;
194	char		*ubz_name;
195	int		ubz_entries;	/* Number of items it can hold. */
196	int		ubz_maxsize;	/* Maximum allocation size per-item. */
197};
198
199/*
200 * Compute the actual number of bucket entries to pack them in power
201 * of two sizes for more efficient space utilization.
202 */
203#define	BUCKET_SIZE(n)						\
204    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
205
206#define	BUCKET_MAX	BUCKET_SIZE(256)
207
208struct uma_bucket_zone bucket_zones[] = {
209	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
210	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
211	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
212	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
213	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
214	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
215	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
216	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
217	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
218	{ NULL, NULL, 0}
219};
220
221/*
222 * Flags and enumerations to be passed to internal functions.
223 */
224enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
225
226/* Prototypes.. */
227
228static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
229static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
230static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
231static void page_free(void *, vm_size_t, uint8_t);
232static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
233static void cache_drain(uma_zone_t);
234static void bucket_drain(uma_zone_t, uma_bucket_t);
235static void bucket_cache_drain(uma_zone_t zone);
236static int keg_ctor(void *, int, void *, int);
237static void keg_dtor(void *, int, void *);
238static int zone_ctor(void *, int, void *, int);
239static void zone_dtor(void *, int, void *);
240static int zero_init(void *, int, int);
241static void keg_small_init(uma_keg_t keg);
242static void keg_large_init(uma_keg_t keg);
243static void zone_foreach(void (*zfunc)(uma_zone_t));
244static void zone_timeout(uma_zone_t zone);
245static int hash_alloc(struct uma_hash *);
246static int hash_expand(struct uma_hash *, struct uma_hash *);
247static void hash_free(struct uma_hash *hash);
248static void uma_timeout(void *);
249static void uma_startup3(void);
250static void *zone_alloc_item(uma_zone_t, void *, int);
251static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
252static void bucket_enable(void);
253static void bucket_init(void);
254static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
255static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
256static void bucket_zone_drain(void);
257static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
258static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
259static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
260static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
261static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
262static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
263    uma_fini fini, int align, uint32_t flags);
264static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
265static void zone_release(uma_zone_t zone, void **bucket, int cnt);
266static void uma_zero_item(void *item, uma_zone_t zone);
267
268void uma_print_zone(uma_zone_t);
269void uma_print_stats(void);
270static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
271static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
272
273#ifdef INVARIANTS
274static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
275static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
276#endif
277
278SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
279
280SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
281    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
282
283SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
284    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
285
286static int zone_warnings = 1;
287SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
288    "Warn when UMA zones becomes full");
289
290/*
291 * This routine checks to see whether or not it's safe to enable buckets.
292 */
293static void
294bucket_enable(void)
295{
296	bucketdisable = vm_page_count_min();
297}
298
299/*
300 * Initialize bucket_zones, the array of zones of buckets of various sizes.
301 *
302 * For each zone, calculate the memory required for each bucket, consisting
303 * of the header and an array of pointers.
304 */
305static void
306bucket_init(void)
307{
308	struct uma_bucket_zone *ubz;
309	int size;
310
311	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
312		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
313		size += sizeof(void *) * ubz->ubz_entries;
314		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
315		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
316		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
317	}
318}
319
320/*
321 * Given a desired number of entries for a bucket, return the zone from which
322 * to allocate the bucket.
323 */
324static struct uma_bucket_zone *
325bucket_zone_lookup(int entries)
326{
327	struct uma_bucket_zone *ubz;
328
329	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
330		if (ubz->ubz_entries >= entries)
331			return (ubz);
332	ubz--;
333	return (ubz);
334}
335
336static int
337bucket_select(int size)
338{
339	struct uma_bucket_zone *ubz;
340
341	ubz = &bucket_zones[0];
342	if (size > ubz->ubz_maxsize)
343		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
344
345	for (; ubz->ubz_entries != 0; ubz++)
346		if (ubz->ubz_maxsize < size)
347			break;
348	ubz--;
349	return (ubz->ubz_entries);
350}
351
352static uma_bucket_t
353bucket_alloc(uma_zone_t zone, void *udata, int flags)
354{
355	struct uma_bucket_zone *ubz;
356	uma_bucket_t bucket;
357
358	/*
359	 * This is to stop us from allocating per cpu buckets while we're
360	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
361	 * boot pages.  This also prevents us from allocating buckets in
362	 * low memory situations.
363	 */
364	if (bucketdisable)
365		return (NULL);
366	/*
367	 * To limit bucket recursion we store the original zone flags
368	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
369	 * NOVM flag to persist even through deep recursions.  We also
370	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
371	 * a bucket for a bucket zone so we do not allow infinite bucket
372	 * recursion.  This cookie will even persist to frees of unused
373	 * buckets via the allocation path or bucket allocations in the
374	 * free path.
375	 */
376	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
377		udata = (void *)(uintptr_t)zone->uz_flags;
378	else {
379		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
380			return (NULL);
381		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
382	}
383	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
384		flags |= M_NOVM;
385	ubz = bucket_zone_lookup(zone->uz_count);
386	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
387		ubz++;
388	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
389	if (bucket) {
390#ifdef INVARIANTS
391		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
392#endif
393		bucket->ub_cnt = 0;
394		bucket->ub_entries = ubz->ubz_entries;
395	}
396
397	return (bucket);
398}
399
400static void
401bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
402{
403	struct uma_bucket_zone *ubz;
404
405	KASSERT(bucket->ub_cnt == 0,
406	    ("bucket_free: Freeing a non free bucket."));
407	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
408		udata = (void *)(uintptr_t)zone->uz_flags;
409	ubz = bucket_zone_lookup(bucket->ub_entries);
410	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
411}
412
413static void
414bucket_zone_drain(void)
415{
416	struct uma_bucket_zone *ubz;
417
418	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
419		zone_drain(ubz->ubz_zone);
420}
421
422static void
423zone_log_warning(uma_zone_t zone)
424{
425	static const struct timeval warninterval = { 300, 0 };
426
427	if (!zone_warnings || zone->uz_warning == NULL)
428		return;
429
430	if (ratecheck(&zone->uz_ratecheck, &warninterval))
431		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
432}
433
434static inline void
435zone_maxaction(uma_zone_t zone)
436{
437
438	if (zone->uz_maxaction.ta_func != NULL)
439		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
440}
441
442static void
443zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
444{
445	uma_klink_t klink;
446
447	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
448		kegfn(klink->kl_keg);
449}
450
451/*
452 * Routine called by timeout which is used to fire off some time interval
453 * based calculations.  (stats, hash size, etc.)
454 *
455 * Arguments:
456 *	arg   Unused
457 *
458 * Returns:
459 *	Nothing
460 */
461static void
462uma_timeout(void *unused)
463{
464	bucket_enable();
465	zone_foreach(zone_timeout);
466
467	/* Reschedule this event */
468	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
469}
470
471/*
472 * Routine to perform timeout driven calculations.  This expands the
473 * hashes and does per cpu statistics aggregation.
474 *
475 *  Returns nothing.
476 */
477static void
478keg_timeout(uma_keg_t keg)
479{
480
481	KEG_LOCK(keg);
482	/*
483	 * Expand the keg hash table.
484	 *
485	 * This is done if the number of slabs is larger than the hash size.
486	 * What I'm trying to do here is completely reduce collisions.  This
487	 * may be a little aggressive.  Should I allow for two collisions max?
488	 */
489	if (keg->uk_flags & UMA_ZONE_HASH &&
490	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
491		struct uma_hash newhash;
492		struct uma_hash oldhash;
493		int ret;
494
495		/*
496		 * This is so involved because allocating and freeing
497		 * while the keg lock is held will lead to deadlock.
498		 * I have to do everything in stages and check for
499		 * races.
500		 */
501		newhash = keg->uk_hash;
502		KEG_UNLOCK(keg);
503		ret = hash_alloc(&newhash);
504		KEG_LOCK(keg);
505		if (ret) {
506			if (hash_expand(&keg->uk_hash, &newhash)) {
507				oldhash = keg->uk_hash;
508				keg->uk_hash = newhash;
509			} else
510				oldhash = newhash;
511
512			KEG_UNLOCK(keg);
513			hash_free(&oldhash);
514			return;
515		}
516	}
517	KEG_UNLOCK(keg);
518}
519
520static void
521zone_timeout(uma_zone_t zone)
522{
523
524	zone_foreach_keg(zone, &keg_timeout);
525}
526
527/*
528 * Allocate and zero fill the next sized hash table from the appropriate
529 * backing store.
530 *
531 * Arguments:
532 *	hash  A new hash structure with the old hash size in uh_hashsize
533 *
534 * Returns:
535 *	1 on success and 0 on failure.
536 */
537static int
538hash_alloc(struct uma_hash *hash)
539{
540	int oldsize;
541	int alloc;
542
543	oldsize = hash->uh_hashsize;
544
545	/* We're just going to go to a power of two greater */
546	if (oldsize)  {
547		hash->uh_hashsize = oldsize * 2;
548		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
549		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
550		    M_UMAHASH, M_NOWAIT);
551	} else {
552		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
553		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
554		    M_WAITOK);
555		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
556	}
557	if (hash->uh_slab_hash) {
558		bzero(hash->uh_slab_hash, alloc);
559		hash->uh_hashmask = hash->uh_hashsize - 1;
560		return (1);
561	}
562
563	return (0);
564}
565
566/*
567 * Expands the hash table for HASH zones.  This is done from zone_timeout
568 * to reduce collisions.  This must not be done in the regular allocation
569 * path, otherwise, we can recurse on the vm while allocating pages.
570 *
571 * Arguments:
572 *	oldhash  The hash you want to expand
573 *	newhash  The hash structure for the new table
574 *
575 * Returns:
576 *	Nothing
577 *
578 * Discussion:
579 */
580static int
581hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
582{
583	uma_slab_t slab;
584	int hval;
585	int i;
586
587	if (!newhash->uh_slab_hash)
588		return (0);
589
590	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
591		return (0);
592
593	/*
594	 * I need to investigate hash algorithms for resizing without a
595	 * full rehash.
596	 */
597
598	for (i = 0; i < oldhash->uh_hashsize; i++)
599		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
600			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
601			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
602			hval = UMA_HASH(newhash, slab->us_data);
603			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
604			    slab, us_hlink);
605		}
606
607	return (1);
608}
609
610/*
611 * Free the hash bucket to the appropriate backing store.
612 *
613 * Arguments:
614 *	slab_hash  The hash bucket we're freeing
615 *	hashsize   The number of entries in that hash bucket
616 *
617 * Returns:
618 *	Nothing
619 */
620static void
621hash_free(struct uma_hash *hash)
622{
623	if (hash->uh_slab_hash == NULL)
624		return;
625	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
626		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
627	else
628		free(hash->uh_slab_hash, M_UMAHASH);
629}
630
631/*
632 * Frees all outstanding items in a bucket
633 *
634 * Arguments:
635 *	zone   The zone to free to, must be unlocked.
636 *	bucket The free/alloc bucket with items, cpu queue must be locked.
637 *
638 * Returns:
639 *	Nothing
640 */
641
642static void
643bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
644{
645	int i;
646
647	if (bucket == NULL)
648		return;
649
650	if (zone->uz_fini)
651		for (i = 0; i < bucket->ub_cnt; i++)
652			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
653	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
654	bucket->ub_cnt = 0;
655}
656
657/*
658 * Drains the per cpu caches for a zone.
659 *
660 * NOTE: This may only be called while the zone is being turn down, and not
661 * during normal operation.  This is necessary in order that we do not have
662 * to migrate CPUs to drain the per-CPU caches.
663 *
664 * Arguments:
665 *	zone     The zone to drain, must be unlocked.
666 *
667 * Returns:
668 *	Nothing
669 */
670static void
671cache_drain(uma_zone_t zone)
672{
673	uma_cache_t cache;
674	int cpu;
675
676	/*
677	 * XXX: It is safe to not lock the per-CPU caches, because we're
678	 * tearing down the zone anyway.  I.e., there will be no further use
679	 * of the caches at this point.
680	 *
681	 * XXX: It would good to be able to assert that the zone is being
682	 * torn down to prevent improper use of cache_drain().
683	 *
684	 * XXX: We lock the zone before passing into bucket_cache_drain() as
685	 * it is used elsewhere.  Should the tear-down path be made special
686	 * there in some form?
687	 */
688	CPU_FOREACH(cpu) {
689		cache = &zone->uz_cpu[cpu];
690		bucket_drain(zone, cache->uc_allocbucket);
691		bucket_drain(zone, cache->uc_freebucket);
692		if (cache->uc_allocbucket != NULL)
693			bucket_free(zone, cache->uc_allocbucket, NULL);
694		if (cache->uc_freebucket != NULL)
695			bucket_free(zone, cache->uc_freebucket, NULL);
696		cache->uc_allocbucket = cache->uc_freebucket = NULL;
697	}
698	ZONE_LOCK(zone);
699	bucket_cache_drain(zone);
700	ZONE_UNLOCK(zone);
701}
702
703static void
704cache_shrink(uma_zone_t zone)
705{
706
707	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
708		return;
709
710	ZONE_LOCK(zone);
711	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
712	ZONE_UNLOCK(zone);
713}
714
715static void
716cache_drain_safe_cpu(uma_zone_t zone)
717{
718	uma_cache_t cache;
719	uma_bucket_t b1, b2;
720
721	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
722		return;
723
724	b1 = b2 = NULL;
725	ZONE_LOCK(zone);
726	critical_enter();
727	cache = &zone->uz_cpu[curcpu];
728	if (cache->uc_allocbucket) {
729		if (cache->uc_allocbucket->ub_cnt != 0)
730			LIST_INSERT_HEAD(&zone->uz_buckets,
731			    cache->uc_allocbucket, ub_link);
732		else
733			b1 = cache->uc_allocbucket;
734		cache->uc_allocbucket = NULL;
735	}
736	if (cache->uc_freebucket) {
737		if (cache->uc_freebucket->ub_cnt != 0)
738			LIST_INSERT_HEAD(&zone->uz_buckets,
739			    cache->uc_freebucket, ub_link);
740		else
741			b2 = cache->uc_freebucket;
742		cache->uc_freebucket = NULL;
743	}
744	critical_exit();
745	ZONE_UNLOCK(zone);
746	if (b1)
747		bucket_free(zone, b1, NULL);
748	if (b2)
749		bucket_free(zone, b2, NULL);
750}
751
752/*
753 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
754 * This is an expensive call because it needs to bind to all CPUs
755 * one by one and enter a critical section on each of them in order
756 * to safely access their cache buckets.
757 * Zone lock must not be held on call this function.
758 */
759static void
760cache_drain_safe(uma_zone_t zone)
761{
762	int cpu;
763
764	/*
765	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
766	 */
767	if (zone)
768		cache_shrink(zone);
769	else
770		zone_foreach(cache_shrink);
771
772	CPU_FOREACH(cpu) {
773		thread_lock(curthread);
774		sched_bind(curthread, cpu);
775		thread_unlock(curthread);
776
777		if (zone)
778			cache_drain_safe_cpu(zone);
779		else
780			zone_foreach(cache_drain_safe_cpu);
781	}
782	thread_lock(curthread);
783	sched_unbind(curthread);
784	thread_unlock(curthread);
785}
786
787/*
788 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
789 */
790static void
791bucket_cache_drain(uma_zone_t zone)
792{
793	uma_bucket_t bucket;
794
795	/*
796	 * Drain the bucket queues and free the buckets, we just keep two per
797	 * cpu (alloc/free).
798	 */
799	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
800		LIST_REMOVE(bucket, ub_link);
801		ZONE_UNLOCK(zone);
802		bucket_drain(zone, bucket);
803		bucket_free(zone, bucket, NULL);
804		ZONE_LOCK(zone);
805	}
806
807	/*
808	 * Shrink further bucket sizes.  Price of single zone lock collision
809	 * is probably lower then price of global cache drain.
810	 */
811	if (zone->uz_count > zone->uz_count_min)
812		zone->uz_count--;
813}
814
815static void
816keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
817{
818	uint8_t *mem;
819	int i;
820	uint8_t flags;
821
822	mem = slab->us_data;
823	flags = slab->us_flags;
824	i = start;
825	if (keg->uk_fini != NULL) {
826		for (i--; i > -1; i--)
827			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
828			    keg->uk_size);
829	}
830	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
831		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
832#ifdef UMA_DEBUG
833	printf("%s: Returning %d bytes.\n", keg->uk_name,
834	    PAGE_SIZE * keg->uk_ppera);
835#endif
836	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
837}
838
839/*
840 * Frees pages from a keg back to the system.  This is done on demand from
841 * the pageout daemon.
842 *
843 * Returns nothing.
844 */
845static void
846keg_drain(uma_keg_t keg)
847{
848	struct slabhead freeslabs = { 0 };
849	uma_slab_t slab, tmp;
850
851	/*
852	 * We don't want to take pages from statically allocated kegs at this
853	 * time
854	 */
855	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
856		return;
857
858#ifdef UMA_DEBUG
859	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
860#endif
861	KEG_LOCK(keg);
862	if (keg->uk_free == 0)
863		goto finished;
864
865	LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) {
866		/* We have nowhere to free these to. */
867		if (slab->us_flags & UMA_SLAB_BOOT)
868			continue;
869
870		LIST_REMOVE(slab, us_link);
871		keg->uk_pages -= keg->uk_ppera;
872		keg->uk_free -= keg->uk_ipers;
873
874		if (keg->uk_flags & UMA_ZONE_HASH)
875			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
876
877		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
878	}
879finished:
880	KEG_UNLOCK(keg);
881
882	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
883		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
884		keg_free_slab(keg, slab, keg->uk_ipers);
885	}
886}
887
888static void
889zone_drain_wait(uma_zone_t zone, int waitok)
890{
891
892	/*
893	 * Set draining to interlock with zone_dtor() so we can release our
894	 * locks as we go.  Only dtor() should do a WAITOK call since it
895	 * is the only call that knows the structure will still be available
896	 * when it wakes up.
897	 */
898	ZONE_LOCK(zone);
899	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
900		if (waitok == M_NOWAIT)
901			goto out;
902		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
903	}
904	zone->uz_flags |= UMA_ZFLAG_DRAINING;
905	bucket_cache_drain(zone);
906	ZONE_UNLOCK(zone);
907	/*
908	 * The DRAINING flag protects us from being freed while
909	 * we're running.  Normally the uma_rwlock would protect us but we
910	 * must be able to release and acquire the right lock for each keg.
911	 */
912	zone_foreach_keg(zone, &keg_drain);
913	ZONE_LOCK(zone);
914	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
915	wakeup(zone);
916out:
917	ZONE_UNLOCK(zone);
918}
919
920void
921zone_drain(uma_zone_t zone)
922{
923
924	zone_drain_wait(zone, M_NOWAIT);
925}
926
927/*
928 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
929 *
930 * Arguments:
931 *	wait  Shall we wait?
932 *
933 * Returns:
934 *	The slab that was allocated or NULL if there is no memory and the
935 *	caller specified M_NOWAIT.
936 */
937static uma_slab_t
938keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
939{
940	uma_alloc allocf;
941	uma_slab_t slab;
942	uint8_t *mem;
943	uint8_t flags;
944	int i;
945
946	mtx_assert(&keg->uk_lock, MA_OWNED);
947	slab = NULL;
948	mem = NULL;
949
950#ifdef UMA_DEBUG
951	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
952#endif
953	allocf = keg->uk_allocf;
954	KEG_UNLOCK(keg);
955
956	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
957		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
958		if (slab == NULL)
959			goto out;
960	}
961
962	/*
963	 * This reproduces the old vm_zone behavior of zero filling pages the
964	 * first time they are added to a zone.
965	 *
966	 * Malloced items are zeroed in uma_zalloc.
967	 */
968
969	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
970		wait |= M_ZERO;
971	else
972		wait &= ~M_ZERO;
973
974	if (keg->uk_flags & UMA_ZONE_NODUMP)
975		wait |= M_NODUMP;
976
977	/* zone is passed for legacy reasons. */
978	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
979	if (mem == NULL) {
980		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
981			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
982		slab = NULL;
983		goto out;
984	}
985
986	/* Point the slab into the allocated memory */
987	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
988		slab = (uma_slab_t )(mem + keg->uk_pgoff);
989
990	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
991		for (i = 0; i < keg->uk_ppera; i++)
992			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
993
994	slab->us_keg = keg;
995	slab->us_data = mem;
996	slab->us_freecount = keg->uk_ipers;
997	slab->us_flags = flags;
998	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
999#ifdef INVARIANTS
1000	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1001#endif
1002
1003	if (keg->uk_init != NULL) {
1004		for (i = 0; i < keg->uk_ipers; i++)
1005			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1006			    keg->uk_size, wait) != 0)
1007				break;
1008		if (i != keg->uk_ipers) {
1009			keg_free_slab(keg, slab, i);
1010			slab = NULL;
1011			goto out;
1012		}
1013	}
1014out:
1015	KEG_LOCK(keg);
1016
1017	if (slab != NULL) {
1018		if (keg->uk_flags & UMA_ZONE_HASH)
1019			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1020
1021		keg->uk_pages += keg->uk_ppera;
1022		keg->uk_free += keg->uk_ipers;
1023	}
1024
1025	return (slab);
1026}
1027
1028/*
1029 * This function is intended to be used early on in place of page_alloc() so
1030 * that we may use the boot time page cache to satisfy allocations before
1031 * the VM is ready.
1032 */
1033static void *
1034startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1035{
1036	uma_keg_t keg;
1037	uma_slab_t tmps;
1038	int pages, check_pages;
1039
1040	keg = zone_first_keg(zone);
1041	pages = howmany(bytes, PAGE_SIZE);
1042	check_pages = pages - 1;
1043	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1044
1045	/*
1046	 * Check our small startup cache to see if it has pages remaining.
1047	 */
1048	mtx_lock(&uma_boot_pages_mtx);
1049
1050	/* First check if we have enough room. */
1051	tmps = LIST_FIRST(&uma_boot_pages);
1052	while (tmps != NULL && check_pages-- > 0)
1053		tmps = LIST_NEXT(tmps, us_link);
1054	if (tmps != NULL) {
1055		/*
1056		 * It's ok to lose tmps references.  The last one will
1057		 * have tmps->us_data pointing to the start address of
1058		 * "pages" contiguous pages of memory.
1059		 */
1060		while (pages-- > 0) {
1061			tmps = LIST_FIRST(&uma_boot_pages);
1062			LIST_REMOVE(tmps, us_link);
1063		}
1064		mtx_unlock(&uma_boot_pages_mtx);
1065		*pflag = tmps->us_flags;
1066		return (tmps->us_data);
1067	}
1068	mtx_unlock(&uma_boot_pages_mtx);
1069	if (booted < UMA_STARTUP2)
1070		panic("UMA: Increase vm.boot_pages");
1071	/*
1072	 * Now that we've booted reset these users to their real allocator.
1073	 */
1074#ifdef UMA_MD_SMALL_ALLOC
1075	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1076#else
1077	keg->uk_allocf = page_alloc;
1078#endif
1079	return keg->uk_allocf(zone, bytes, pflag, wait);
1080}
1081
1082/*
1083 * Allocates a number of pages from the system
1084 *
1085 * Arguments:
1086 *	bytes  The number of bytes requested
1087 *	wait  Shall we wait?
1088 *
1089 * Returns:
1090 *	A pointer to the alloced memory or possibly
1091 *	NULL if M_NOWAIT is set.
1092 */
1093static void *
1094page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1095{
1096	void *p;	/* Returned page */
1097
1098	*pflag = UMA_SLAB_KMEM;
1099	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1100
1101	return (p);
1102}
1103
1104/*
1105 * Allocates a number of pages from within an object
1106 *
1107 * Arguments:
1108 *	bytes  The number of bytes requested
1109 *	wait   Shall we wait?
1110 *
1111 * Returns:
1112 *	A pointer to the alloced memory or possibly
1113 *	NULL if M_NOWAIT is set.
1114 */
1115static void *
1116noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
1117{
1118	TAILQ_HEAD(, vm_page) alloctail;
1119	u_long npages;
1120	vm_offset_t retkva, zkva;
1121	vm_page_t p, p_next;
1122	uma_keg_t keg;
1123
1124	TAILQ_INIT(&alloctail);
1125	keg = zone_first_keg(zone);
1126
1127	npages = howmany(bytes, PAGE_SIZE);
1128	while (npages > 0) {
1129		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1130		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1131		if (p != NULL) {
1132			/*
1133			 * Since the page does not belong to an object, its
1134			 * listq is unused.
1135			 */
1136			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1137			npages--;
1138			continue;
1139		}
1140		if (wait & M_WAITOK) {
1141			VM_WAIT;
1142			continue;
1143		}
1144
1145		/*
1146		 * Page allocation failed, free intermediate pages and
1147		 * exit.
1148		 */
1149		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1150			vm_page_unwire(p, PQ_NONE);
1151			vm_page_free(p);
1152		}
1153		return (NULL);
1154	}
1155	*flags = UMA_SLAB_PRIV;
1156	zkva = keg->uk_kva +
1157	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1158	retkva = zkva;
1159	TAILQ_FOREACH(p, &alloctail, listq) {
1160		pmap_qenter(zkva, &p, 1);
1161		zkva += PAGE_SIZE;
1162	}
1163
1164	return ((void *)retkva);
1165}
1166
1167/*
1168 * Frees a number of pages to the system
1169 *
1170 * Arguments:
1171 *	mem   A pointer to the memory to be freed
1172 *	size  The size of the memory being freed
1173 *	flags The original p->us_flags field
1174 *
1175 * Returns:
1176 *	Nothing
1177 */
1178static void
1179page_free(void *mem, vm_size_t size, uint8_t flags)
1180{
1181	struct vmem *vmem;
1182
1183	if (flags & UMA_SLAB_KMEM)
1184		vmem = kmem_arena;
1185	else if (flags & UMA_SLAB_KERNEL)
1186		vmem = kernel_arena;
1187	else
1188		panic("UMA: page_free used with invalid flags %d", flags);
1189
1190	kmem_free(vmem, (vm_offset_t)mem, size);
1191}
1192
1193/*
1194 * Zero fill initializer
1195 *
1196 * Arguments/Returns follow uma_init specifications
1197 */
1198static int
1199zero_init(void *mem, int size, int flags)
1200{
1201	bzero(mem, size);
1202	return (0);
1203}
1204
1205/*
1206 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1207 *
1208 * Arguments
1209 *	keg  The zone we should initialize
1210 *
1211 * Returns
1212 *	Nothing
1213 */
1214static void
1215keg_small_init(uma_keg_t keg)
1216{
1217	u_int rsize;
1218	u_int memused;
1219	u_int wastedspace;
1220	u_int shsize;
1221	u_int slabsize;
1222
1223	if (keg->uk_flags & UMA_ZONE_PCPU) {
1224		u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU;
1225
1226		slabsize = sizeof(struct pcpu);
1227		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1228		    PAGE_SIZE);
1229	} else {
1230		slabsize = UMA_SLAB_SIZE;
1231		keg->uk_ppera = 1;
1232	}
1233
1234	/*
1235	 * Calculate the size of each allocation (rsize) according to
1236	 * alignment.  If the requested size is smaller than we have
1237	 * allocation bits for we round it up.
1238	 */
1239	rsize = keg->uk_size;
1240	if (rsize < slabsize / SLAB_SETSIZE)
1241		rsize = slabsize / SLAB_SETSIZE;
1242	if (rsize & keg->uk_align)
1243		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1244	keg->uk_rsize = rsize;
1245
1246	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1247	    keg->uk_rsize < sizeof(struct pcpu),
1248	    ("%s: size %u too large", __func__, keg->uk_rsize));
1249
1250	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1251		shsize = 0;
1252	else
1253		shsize = sizeof(struct uma_slab);
1254
1255	keg->uk_ipers = (slabsize - shsize) / rsize;
1256	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1257	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1258
1259	memused = keg->uk_ipers * rsize + shsize;
1260	wastedspace = slabsize - memused;
1261
1262	/*
1263	 * We can't do OFFPAGE if we're internal or if we've been
1264	 * asked to not go to the VM for buckets.  If we do this we
1265	 * may end up going to the VM  for slabs which we do not
1266	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1267	 * of UMA_ZONE_VM, which clearly forbids it.
1268	 */
1269	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1270	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1271		return;
1272
1273	/*
1274	 * See if using an OFFPAGE slab will limit our waste.  Only do
1275	 * this if it permits more items per-slab.
1276	 *
1277	 * XXX We could try growing slabsize to limit max waste as well.
1278	 * Historically this was not done because the VM could not
1279	 * efficiently handle contiguous allocations.
1280	 */
1281	if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
1282	    (keg->uk_ipers < (slabsize / keg->uk_rsize))) {
1283		keg->uk_ipers = slabsize / keg->uk_rsize;
1284		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1285		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1286#ifdef UMA_DEBUG
1287		printf("UMA decided we need offpage slab headers for "
1288		    "keg: %s, calculated wastedspace = %d, "
1289		    "maximum wasted space allowed = %d, "
1290		    "calculated ipers = %d, "
1291		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1292		    slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1293		    slabsize - keg->uk_ipers * keg->uk_rsize);
1294#endif
1295		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1296	}
1297
1298	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1299	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1300		keg->uk_flags |= UMA_ZONE_HASH;
1301}
1302
1303/*
1304 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1305 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1306 * more complicated.
1307 *
1308 * Arguments
1309 *	keg  The keg we should initialize
1310 *
1311 * Returns
1312 *	Nothing
1313 */
1314static void
1315keg_large_init(uma_keg_t keg)
1316{
1317	u_int shsize;
1318
1319	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1320	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1321	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1322	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1323	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1324
1325	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1326	keg->uk_ipers = 1;
1327	keg->uk_rsize = keg->uk_size;
1328
1329	/* We can't do OFFPAGE if we're internal, bail out here. */
1330	if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1331		return;
1332
1333	/* Check whether we have enough space to not do OFFPAGE. */
1334	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1335		shsize = sizeof(struct uma_slab);
1336		if (shsize & UMA_ALIGN_PTR)
1337			shsize = (shsize & ~UMA_ALIGN_PTR) +
1338			    (UMA_ALIGN_PTR + 1);
1339
1340		if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize)
1341			keg->uk_flags |= UMA_ZONE_OFFPAGE;
1342	}
1343
1344	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1345	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1346		keg->uk_flags |= UMA_ZONE_HASH;
1347}
1348
1349static void
1350keg_cachespread_init(uma_keg_t keg)
1351{
1352	int alignsize;
1353	int trailer;
1354	int pages;
1355	int rsize;
1356
1357	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1358	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1359
1360	alignsize = keg->uk_align + 1;
1361	rsize = keg->uk_size;
1362	/*
1363	 * We want one item to start on every align boundary in a page.  To
1364	 * do this we will span pages.  We will also extend the item by the
1365	 * size of align if it is an even multiple of align.  Otherwise, it
1366	 * would fall on the same boundary every time.
1367	 */
1368	if (rsize & keg->uk_align)
1369		rsize = (rsize & ~keg->uk_align) + alignsize;
1370	if ((rsize & alignsize) == 0)
1371		rsize += alignsize;
1372	trailer = rsize - keg->uk_size;
1373	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1374	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1375	keg->uk_rsize = rsize;
1376	keg->uk_ppera = pages;
1377	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1378	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1379	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1380	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1381	    keg->uk_ipers));
1382}
1383
1384/*
1385 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1386 * the keg onto the global keg list.
1387 *
1388 * Arguments/Returns follow uma_ctor specifications
1389 *	udata  Actually uma_kctor_args
1390 */
1391static int
1392keg_ctor(void *mem, int size, void *udata, int flags)
1393{
1394	struct uma_kctor_args *arg = udata;
1395	uma_keg_t keg = mem;
1396	uma_zone_t zone;
1397
1398	bzero(keg, size);
1399	keg->uk_size = arg->size;
1400	keg->uk_init = arg->uminit;
1401	keg->uk_fini = arg->fini;
1402	keg->uk_align = arg->align;
1403	keg->uk_free = 0;
1404	keg->uk_reserve = 0;
1405	keg->uk_pages = 0;
1406	keg->uk_flags = arg->flags;
1407	keg->uk_allocf = page_alloc;
1408	keg->uk_freef = page_free;
1409	keg->uk_slabzone = NULL;
1410
1411	/*
1412	 * The master zone is passed to us at keg-creation time.
1413	 */
1414	zone = arg->zone;
1415	keg->uk_name = zone->uz_name;
1416
1417	if (arg->flags & UMA_ZONE_VM)
1418		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1419
1420	if (arg->flags & UMA_ZONE_ZINIT)
1421		keg->uk_init = zero_init;
1422
1423	if (arg->flags & UMA_ZONE_MALLOC)
1424		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1425
1426	if (arg->flags & UMA_ZONE_PCPU)
1427#ifdef SMP
1428		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1429#else
1430		keg->uk_flags &= ~UMA_ZONE_PCPU;
1431#endif
1432
1433	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1434		keg_cachespread_init(keg);
1435	} else {
1436		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1437			keg_large_init(keg);
1438		else
1439			keg_small_init(keg);
1440	}
1441
1442	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1443		keg->uk_slabzone = slabzone;
1444
1445	/*
1446	 * If we haven't booted yet we need allocations to go through the
1447	 * startup cache until the vm is ready.
1448	 */
1449	if (keg->uk_ppera == 1) {
1450#ifdef UMA_MD_SMALL_ALLOC
1451		keg->uk_allocf = uma_small_alloc;
1452		keg->uk_freef = uma_small_free;
1453
1454		if (booted < UMA_STARTUP)
1455			keg->uk_allocf = startup_alloc;
1456#else
1457		if (booted < UMA_STARTUP2)
1458			keg->uk_allocf = startup_alloc;
1459#endif
1460	} else if (booted < UMA_STARTUP2 &&
1461	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1462		keg->uk_allocf = startup_alloc;
1463
1464	/*
1465	 * Initialize keg's lock
1466	 */
1467	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1468
1469	/*
1470	 * If we're putting the slab header in the actual page we need to
1471	 * figure out where in each page it goes.  This calculates a right
1472	 * justified offset into the memory on an ALIGN_PTR boundary.
1473	 */
1474	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1475		u_int totsize;
1476
1477		/* Size of the slab struct and free list */
1478		totsize = sizeof(struct uma_slab);
1479
1480		if (totsize & UMA_ALIGN_PTR)
1481			totsize = (totsize & ~UMA_ALIGN_PTR) +
1482			    (UMA_ALIGN_PTR + 1);
1483		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1484
1485		/*
1486		 * The only way the following is possible is if with our
1487		 * UMA_ALIGN_PTR adjustments we are now bigger than
1488		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1489		 * mathematically possible for all cases, so we make
1490		 * sure here anyway.
1491		 */
1492		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1493		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1494			printf("zone %s ipers %d rsize %d size %d\n",
1495			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1496			    keg->uk_size);
1497			panic("UMA slab won't fit.");
1498		}
1499	}
1500
1501	if (keg->uk_flags & UMA_ZONE_HASH)
1502		hash_alloc(&keg->uk_hash);
1503
1504#ifdef UMA_DEBUG
1505	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1506	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1507	    keg->uk_ipers, keg->uk_ppera,
1508	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
1509	    keg->uk_free);
1510#endif
1511
1512	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1513
1514	rw_wlock(&uma_rwlock);
1515	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1516	rw_wunlock(&uma_rwlock);
1517	return (0);
1518}
1519
1520/*
1521 * Zone header ctor.  This initializes all fields, locks, etc.
1522 *
1523 * Arguments/Returns follow uma_ctor specifications
1524 *	udata  Actually uma_zctor_args
1525 */
1526static int
1527zone_ctor(void *mem, int size, void *udata, int flags)
1528{
1529	struct uma_zctor_args *arg = udata;
1530	uma_zone_t zone = mem;
1531	uma_zone_t z;
1532	uma_keg_t keg;
1533
1534	bzero(zone, size);
1535	zone->uz_name = arg->name;
1536	zone->uz_ctor = arg->ctor;
1537	zone->uz_dtor = arg->dtor;
1538	zone->uz_slab = zone_fetch_slab;
1539	zone->uz_init = NULL;
1540	zone->uz_fini = NULL;
1541	zone->uz_allocs = 0;
1542	zone->uz_frees = 0;
1543	zone->uz_fails = 0;
1544	zone->uz_sleeps = 0;
1545	zone->uz_count = 0;
1546	zone->uz_count_min = 0;
1547	zone->uz_flags = 0;
1548	zone->uz_warning = NULL;
1549	timevalclear(&zone->uz_ratecheck);
1550	keg = arg->keg;
1551
1552	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1553
1554	/*
1555	 * This is a pure cache zone, no kegs.
1556	 */
1557	if (arg->import) {
1558		if (arg->flags & UMA_ZONE_VM)
1559			arg->flags |= UMA_ZFLAG_CACHEONLY;
1560		zone->uz_flags = arg->flags;
1561		zone->uz_size = arg->size;
1562		zone->uz_import = arg->import;
1563		zone->uz_release = arg->release;
1564		zone->uz_arg = arg->arg;
1565		zone->uz_lockptr = &zone->uz_lock;
1566		rw_wlock(&uma_rwlock);
1567		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1568		rw_wunlock(&uma_rwlock);
1569		goto out;
1570	}
1571
1572	/*
1573	 * Use the regular zone/keg/slab allocator.
1574	 */
1575	zone->uz_import = (uma_import)zone_import;
1576	zone->uz_release = (uma_release)zone_release;
1577	zone->uz_arg = zone;
1578
1579	if (arg->flags & UMA_ZONE_SECONDARY) {
1580		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1581		zone->uz_init = arg->uminit;
1582		zone->uz_fini = arg->fini;
1583		zone->uz_lockptr = &keg->uk_lock;
1584		zone->uz_flags |= UMA_ZONE_SECONDARY;
1585		rw_wlock(&uma_rwlock);
1586		ZONE_LOCK(zone);
1587		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1588			if (LIST_NEXT(z, uz_link) == NULL) {
1589				LIST_INSERT_AFTER(z, zone, uz_link);
1590				break;
1591			}
1592		}
1593		ZONE_UNLOCK(zone);
1594		rw_wunlock(&uma_rwlock);
1595	} else if (keg == NULL) {
1596		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1597		    arg->align, arg->flags)) == NULL)
1598			return (ENOMEM);
1599	} else {
1600		struct uma_kctor_args karg;
1601		int error;
1602
1603		/* We should only be here from uma_startup() */
1604		karg.size = arg->size;
1605		karg.uminit = arg->uminit;
1606		karg.fini = arg->fini;
1607		karg.align = arg->align;
1608		karg.flags = arg->flags;
1609		karg.zone = zone;
1610		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1611		    flags);
1612		if (error)
1613			return (error);
1614	}
1615
1616	/*
1617	 * Link in the first keg.
1618	 */
1619	zone->uz_klink.kl_keg = keg;
1620	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1621	zone->uz_lockptr = &keg->uk_lock;
1622	zone->uz_size = keg->uk_size;
1623	zone->uz_flags |= (keg->uk_flags &
1624	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1625
1626	/*
1627	 * Some internal zones don't have room allocated for the per cpu
1628	 * caches.  If we're internal, bail out here.
1629	 */
1630	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1631		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1632		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1633		return (0);
1634	}
1635
1636out:
1637	if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
1638		zone->uz_count = bucket_select(zone->uz_size);
1639	else
1640		zone->uz_count = BUCKET_MAX;
1641	zone->uz_count_min = zone->uz_count;
1642
1643	return (0);
1644}
1645
1646/*
1647 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1648 * table and removes the keg from the global list.
1649 *
1650 * Arguments/Returns follow uma_dtor specifications
1651 *	udata  unused
1652 */
1653static void
1654keg_dtor(void *arg, int size, void *udata)
1655{
1656	uma_keg_t keg;
1657
1658	keg = (uma_keg_t)arg;
1659	KEG_LOCK(keg);
1660	if (keg->uk_free != 0) {
1661		printf("Freed UMA keg (%s) was not empty (%d items). "
1662		    " Lost %d pages of memory.\n",
1663		    keg->uk_name ? keg->uk_name : "",
1664		    keg->uk_free, keg->uk_pages);
1665	}
1666	KEG_UNLOCK(keg);
1667
1668	hash_free(&keg->uk_hash);
1669
1670	KEG_LOCK_FINI(keg);
1671}
1672
1673/*
1674 * Zone header dtor.
1675 *
1676 * Arguments/Returns follow uma_dtor specifications
1677 *	udata  unused
1678 */
1679static void
1680zone_dtor(void *arg, int size, void *udata)
1681{
1682	uma_klink_t klink;
1683	uma_zone_t zone;
1684	uma_keg_t keg;
1685
1686	zone = (uma_zone_t)arg;
1687	keg = zone_first_keg(zone);
1688
1689	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1690		cache_drain(zone);
1691
1692	rw_wlock(&uma_rwlock);
1693	LIST_REMOVE(zone, uz_link);
1694	rw_wunlock(&uma_rwlock);
1695	/*
1696	 * XXX there are some races here where
1697	 * the zone can be drained but zone lock
1698	 * released and then refilled before we
1699	 * remove it... we dont care for now
1700	 */
1701	zone_drain_wait(zone, M_WAITOK);
1702	/*
1703	 * Unlink all of our kegs.
1704	 */
1705	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1706		klink->kl_keg = NULL;
1707		LIST_REMOVE(klink, kl_link);
1708		if (klink == &zone->uz_klink)
1709			continue;
1710		free(klink, M_TEMP);
1711	}
1712	/*
1713	 * We only destroy kegs from non secondary zones.
1714	 */
1715	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1716		rw_wlock(&uma_rwlock);
1717		LIST_REMOVE(keg, uk_link);
1718		rw_wunlock(&uma_rwlock);
1719		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1720	}
1721	ZONE_LOCK_FINI(zone);
1722}
1723
1724/*
1725 * Traverses every zone in the system and calls a callback
1726 *
1727 * Arguments:
1728 *	zfunc  A pointer to a function which accepts a zone
1729 *		as an argument.
1730 *
1731 * Returns:
1732 *	Nothing
1733 */
1734static void
1735zone_foreach(void (*zfunc)(uma_zone_t))
1736{
1737	uma_keg_t keg;
1738	uma_zone_t zone;
1739
1740	rw_rlock(&uma_rwlock);
1741	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1742		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1743			zfunc(zone);
1744	}
1745	rw_runlock(&uma_rwlock);
1746}
1747
1748/* Public functions */
1749/* See uma.h */
1750void
1751uma_startup(void *bootmem, int boot_pages)
1752{
1753	struct uma_zctor_args args;
1754	uma_slab_t slab;
1755	int i;
1756
1757#ifdef UMA_DEBUG
1758	printf("Creating uma keg headers zone and keg.\n");
1759#endif
1760	rw_init(&uma_rwlock, "UMA lock");
1761
1762	/* "manually" create the initial zone */
1763	memset(&args, 0, sizeof(args));
1764	args.name = "UMA Kegs";
1765	args.size = sizeof(struct uma_keg);
1766	args.ctor = keg_ctor;
1767	args.dtor = keg_dtor;
1768	args.uminit = zero_init;
1769	args.fini = NULL;
1770	args.keg = &masterkeg;
1771	args.align = 32 - 1;
1772	args.flags = UMA_ZFLAG_INTERNAL;
1773	/* The initial zone has no Per cpu queues so it's smaller */
1774	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1775
1776#ifdef UMA_DEBUG
1777	printf("Filling boot free list.\n");
1778#endif
1779	for (i = 0; i < boot_pages; i++) {
1780		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1781		slab->us_data = (uint8_t *)slab;
1782		slab->us_flags = UMA_SLAB_BOOT;
1783		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1784	}
1785	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1786
1787#ifdef UMA_DEBUG
1788	printf("Creating uma zone headers zone and keg.\n");
1789#endif
1790	args.name = "UMA Zones";
1791	args.size = sizeof(struct uma_zone) +
1792	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1793	args.ctor = zone_ctor;
1794	args.dtor = zone_dtor;
1795	args.uminit = zero_init;
1796	args.fini = NULL;
1797	args.keg = NULL;
1798	args.align = 32 - 1;
1799	args.flags = UMA_ZFLAG_INTERNAL;
1800	/* The initial zone has no Per cpu queues so it's smaller */
1801	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1802
1803#ifdef UMA_DEBUG
1804	printf("Creating slab and hash zones.\n");
1805#endif
1806
1807	/* Now make a zone for slab headers */
1808	slabzone = uma_zcreate("UMA Slabs",
1809				sizeof(struct uma_slab),
1810				NULL, NULL, NULL, NULL,
1811				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1812
1813	hashzone = uma_zcreate("UMA Hash",
1814	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1815	    NULL, NULL, NULL, NULL,
1816	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1817
1818	bucket_init();
1819
1820	booted = UMA_STARTUP;
1821
1822#ifdef UMA_DEBUG
1823	printf("UMA startup complete.\n");
1824#endif
1825}
1826
1827/* see uma.h */
1828void
1829uma_startup2(void)
1830{
1831	booted = UMA_STARTUP2;
1832	bucket_enable();
1833	sx_init(&uma_drain_lock, "umadrain");
1834#ifdef UMA_DEBUG
1835	printf("UMA startup2 complete.\n");
1836#endif
1837}
1838
1839/*
1840 * Initialize our callout handle
1841 *
1842 */
1843
1844static void
1845uma_startup3(void)
1846{
1847#ifdef UMA_DEBUG
1848	printf("Starting callout.\n");
1849#endif
1850	callout_init(&uma_callout, 1);
1851	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1852#ifdef UMA_DEBUG
1853	printf("UMA startup3 complete.\n");
1854#endif
1855}
1856
1857static uma_keg_t
1858uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1859		int align, uint32_t flags)
1860{
1861	struct uma_kctor_args args;
1862
1863	args.size = size;
1864	args.uminit = uminit;
1865	args.fini = fini;
1866	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1867	args.flags = flags;
1868	args.zone = zone;
1869	return (zone_alloc_item(kegs, &args, M_WAITOK));
1870}
1871
1872/* See uma.h */
1873void
1874uma_set_align(int align)
1875{
1876
1877	if (align != UMA_ALIGN_CACHE)
1878		uma_align_cache = align;
1879}
1880
1881/* See uma.h */
1882uma_zone_t
1883uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1884		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1885
1886{
1887	struct uma_zctor_args args;
1888	uma_zone_t res;
1889	bool locked;
1890
1891	/* This stuff is essential for the zone ctor */
1892	memset(&args, 0, sizeof(args));
1893	args.name = name;
1894	args.size = size;
1895	args.ctor = ctor;
1896	args.dtor = dtor;
1897	args.uminit = uminit;
1898	args.fini = fini;
1899#ifdef  INVARIANTS
1900	/*
1901	 * If a zone is being created with an empty constructor and
1902	 * destructor, pass UMA constructor/destructor which checks for
1903	 * memory use after free.
1904	 */
1905	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) &&
1906	    ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) {
1907		args.ctor = trash_ctor;
1908		args.dtor = trash_dtor;
1909		args.uminit = trash_init;
1910		args.fini = trash_fini;
1911	}
1912#endif
1913	args.align = align;
1914	args.flags = flags;
1915	args.keg = NULL;
1916
1917	if (booted < UMA_STARTUP2) {
1918		locked = false;
1919	} else {
1920		sx_slock(&uma_drain_lock);
1921		locked = true;
1922	}
1923	res = zone_alloc_item(zones, &args, M_WAITOK);
1924	if (locked)
1925		sx_sunlock(&uma_drain_lock);
1926	return (res);
1927}
1928
1929/* See uma.h */
1930uma_zone_t
1931uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1932		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1933{
1934	struct uma_zctor_args args;
1935	uma_keg_t keg;
1936	uma_zone_t res;
1937	bool locked;
1938
1939	keg = zone_first_keg(master);
1940	memset(&args, 0, sizeof(args));
1941	args.name = name;
1942	args.size = keg->uk_size;
1943	args.ctor = ctor;
1944	args.dtor = dtor;
1945	args.uminit = zinit;
1946	args.fini = zfini;
1947	args.align = keg->uk_align;
1948	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1949	args.keg = keg;
1950
1951	if (booted < UMA_STARTUP2) {
1952		locked = false;
1953	} else {
1954		sx_slock(&uma_drain_lock);
1955		locked = true;
1956	}
1957	/* XXX Attaches only one keg of potentially many. */
1958	res = zone_alloc_item(zones, &args, M_WAITOK);
1959	if (locked)
1960		sx_sunlock(&uma_drain_lock);
1961	return (res);
1962}
1963
1964/* See uma.h */
1965uma_zone_t
1966uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1967		    uma_init zinit, uma_fini zfini, uma_import zimport,
1968		    uma_release zrelease, void *arg, int flags)
1969{
1970	struct uma_zctor_args args;
1971
1972	memset(&args, 0, sizeof(args));
1973	args.name = name;
1974	args.size = size;
1975	args.ctor = ctor;
1976	args.dtor = dtor;
1977	args.uminit = zinit;
1978	args.fini = zfini;
1979	args.import = zimport;
1980	args.release = zrelease;
1981	args.arg = arg;
1982	args.align = 0;
1983	args.flags = flags;
1984
1985	return (zone_alloc_item(zones, &args, M_WAITOK));
1986}
1987
1988static void
1989zone_lock_pair(uma_zone_t a, uma_zone_t b)
1990{
1991	if (a < b) {
1992		ZONE_LOCK(a);
1993		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
1994	} else {
1995		ZONE_LOCK(b);
1996		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
1997	}
1998}
1999
2000static void
2001zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2002{
2003
2004	ZONE_UNLOCK(a);
2005	ZONE_UNLOCK(b);
2006}
2007
2008int
2009uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2010{
2011	uma_klink_t klink;
2012	uma_klink_t kl;
2013	int error;
2014
2015	error = 0;
2016	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2017
2018	zone_lock_pair(zone, master);
2019	/*
2020	 * zone must use vtoslab() to resolve objects and must already be
2021	 * a secondary.
2022	 */
2023	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2024	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2025		error = EINVAL;
2026		goto out;
2027	}
2028	/*
2029	 * The new master must also use vtoslab().
2030	 */
2031	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2032		error = EINVAL;
2033		goto out;
2034	}
2035
2036	/*
2037	 * The underlying object must be the same size.  rsize
2038	 * may be different.
2039	 */
2040	if (master->uz_size != zone->uz_size) {
2041		error = E2BIG;
2042		goto out;
2043	}
2044	/*
2045	 * Put it at the end of the list.
2046	 */
2047	klink->kl_keg = zone_first_keg(master);
2048	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2049		if (LIST_NEXT(kl, kl_link) == NULL) {
2050			LIST_INSERT_AFTER(kl, klink, kl_link);
2051			break;
2052		}
2053	}
2054	klink = NULL;
2055	zone->uz_flags |= UMA_ZFLAG_MULTI;
2056	zone->uz_slab = zone_fetch_slab_multi;
2057
2058out:
2059	zone_unlock_pair(zone, master);
2060	if (klink != NULL)
2061		free(klink, M_TEMP);
2062
2063	return (error);
2064}
2065
2066
2067/* See uma.h */
2068void
2069uma_zdestroy(uma_zone_t zone)
2070{
2071
2072	sx_slock(&uma_drain_lock);
2073	zone_free_item(zones, zone, NULL, SKIP_NONE);
2074	sx_sunlock(&uma_drain_lock);
2075}
2076
2077/* See uma.h */
2078void *
2079uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2080{
2081	void *item;
2082	uma_cache_t cache;
2083	uma_bucket_t bucket;
2084	int lockfail;
2085	int cpu;
2086
2087	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2088	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2089
2090	/* This is the fast path allocation */
2091#ifdef UMA_DEBUG_ALLOC_1
2092	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2093#endif
2094	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2095	    zone->uz_name, flags);
2096
2097	if (flags & M_WAITOK) {
2098		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2099		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2100	}
2101	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2102	    ("uma_zalloc_arg: called with spinlock or critical section held"));
2103
2104#ifdef DEBUG_MEMGUARD
2105	if (memguard_cmp_zone(zone)) {
2106		item = memguard_alloc(zone->uz_size, flags);
2107		if (item != NULL) {
2108			if (zone->uz_init != NULL &&
2109			    zone->uz_init(item, zone->uz_size, flags) != 0)
2110				return (NULL);
2111			if (zone->uz_ctor != NULL &&
2112			    zone->uz_ctor(item, zone->uz_size, udata,
2113			    flags) != 0) {
2114			    	zone->uz_fini(item, zone->uz_size);
2115				return (NULL);
2116			}
2117			return (item);
2118		}
2119		/* This is unfortunate but should not be fatal. */
2120	}
2121#endif
2122	/*
2123	 * If possible, allocate from the per-CPU cache.  There are two
2124	 * requirements for safe access to the per-CPU cache: (1) the thread
2125	 * accessing the cache must not be preempted or yield during access,
2126	 * and (2) the thread must not migrate CPUs without switching which
2127	 * cache it accesses.  We rely on a critical section to prevent
2128	 * preemption and migration.  We release the critical section in
2129	 * order to acquire the zone mutex if we are unable to allocate from
2130	 * the current cache; when we re-acquire the critical section, we
2131	 * must detect and handle migration if it has occurred.
2132	 */
2133	critical_enter();
2134	cpu = curcpu;
2135	cache = &zone->uz_cpu[cpu];
2136
2137zalloc_start:
2138	bucket = cache->uc_allocbucket;
2139	if (bucket != NULL && bucket->ub_cnt > 0) {
2140		bucket->ub_cnt--;
2141		item = bucket->ub_bucket[bucket->ub_cnt];
2142#ifdef INVARIANTS
2143		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2144#endif
2145		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2146		cache->uc_allocs++;
2147		critical_exit();
2148		if (zone->uz_ctor != NULL &&
2149		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2150			atomic_add_long(&zone->uz_fails, 1);
2151			zone_free_item(zone, item, udata, SKIP_DTOR);
2152			return (NULL);
2153		}
2154#ifdef INVARIANTS
2155		uma_dbg_alloc(zone, NULL, item);
2156#endif
2157		if (flags & M_ZERO)
2158			uma_zero_item(item, zone);
2159		return (item);
2160	}
2161
2162	/*
2163	 * We have run out of items in our alloc bucket.
2164	 * See if we can switch with our free bucket.
2165	 */
2166	bucket = cache->uc_freebucket;
2167	if (bucket != NULL && bucket->ub_cnt > 0) {
2168#ifdef UMA_DEBUG_ALLOC
2169		printf("uma_zalloc: Swapping empty with alloc.\n");
2170#endif
2171		cache->uc_freebucket = cache->uc_allocbucket;
2172		cache->uc_allocbucket = bucket;
2173		goto zalloc_start;
2174	}
2175
2176	/*
2177	 * Discard any empty allocation bucket while we hold no locks.
2178	 */
2179	bucket = cache->uc_allocbucket;
2180	cache->uc_allocbucket = NULL;
2181	critical_exit();
2182	if (bucket != NULL)
2183		bucket_free(zone, bucket, udata);
2184
2185	/* Short-circuit for zones without buckets and low memory. */
2186	if (zone->uz_count == 0 || bucketdisable)
2187		goto zalloc_item;
2188
2189	/*
2190	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2191	 * we must go back to the zone.  This requires the zone lock, so we
2192	 * must drop the critical section, then re-acquire it when we go back
2193	 * to the cache.  Since the critical section is released, we may be
2194	 * preempted or migrate.  As such, make sure not to maintain any
2195	 * thread-local state specific to the cache from prior to releasing
2196	 * the critical section.
2197	 */
2198	lockfail = 0;
2199	if (ZONE_TRYLOCK(zone) == 0) {
2200		/* Record contention to size the buckets. */
2201		ZONE_LOCK(zone);
2202		lockfail = 1;
2203	}
2204	critical_enter();
2205	cpu = curcpu;
2206	cache = &zone->uz_cpu[cpu];
2207
2208	/*
2209	 * Since we have locked the zone we may as well send back our stats.
2210	 */
2211	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2212	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2213	cache->uc_allocs = 0;
2214	cache->uc_frees = 0;
2215
2216	/* See if we lost the race to fill the cache. */
2217	if (cache->uc_allocbucket != NULL) {
2218		ZONE_UNLOCK(zone);
2219		goto zalloc_start;
2220	}
2221
2222	/*
2223	 * Check the zone's cache of buckets.
2224	 */
2225	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2226		KASSERT(bucket->ub_cnt != 0,
2227		    ("uma_zalloc_arg: Returning an empty bucket."));
2228
2229		LIST_REMOVE(bucket, ub_link);
2230		cache->uc_allocbucket = bucket;
2231		ZONE_UNLOCK(zone);
2232		goto zalloc_start;
2233	}
2234	/* We are no longer associated with this CPU. */
2235	critical_exit();
2236
2237	/*
2238	 * We bump the uz count when the cache size is insufficient to
2239	 * handle the working set.
2240	 */
2241	if (lockfail && zone->uz_count < BUCKET_MAX)
2242		zone->uz_count++;
2243	ZONE_UNLOCK(zone);
2244
2245	/*
2246	 * Now lets just fill a bucket and put it on the free list.  If that
2247	 * works we'll restart the allocation from the beginning and it
2248	 * will use the just filled bucket.
2249	 */
2250	bucket = zone_alloc_bucket(zone, udata, flags);
2251	if (bucket != NULL) {
2252		ZONE_LOCK(zone);
2253		critical_enter();
2254		cpu = curcpu;
2255		cache = &zone->uz_cpu[cpu];
2256		/*
2257		 * See if we lost the race or were migrated.  Cache the
2258		 * initialized bucket to make this less likely or claim
2259		 * the memory directly.
2260		 */
2261		if (cache->uc_allocbucket == NULL)
2262			cache->uc_allocbucket = bucket;
2263		else
2264			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2265		ZONE_UNLOCK(zone);
2266		goto zalloc_start;
2267	}
2268
2269	/*
2270	 * We may not be able to get a bucket so return an actual item.
2271	 */
2272#ifdef UMA_DEBUG
2273	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2274#endif
2275
2276zalloc_item:
2277	item = zone_alloc_item(zone, udata, flags);
2278
2279	return (item);
2280}
2281
2282static uma_slab_t
2283keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2284{
2285	uma_slab_t slab;
2286	int reserve;
2287
2288	mtx_assert(&keg->uk_lock, MA_OWNED);
2289	slab = NULL;
2290	reserve = 0;
2291	if ((flags & M_USE_RESERVE) == 0)
2292		reserve = keg->uk_reserve;
2293
2294	for (;;) {
2295		/*
2296		 * Find a slab with some space.  Prefer slabs that are partially
2297		 * used over those that are totally full.  This helps to reduce
2298		 * fragmentation.
2299		 */
2300		if (keg->uk_free > reserve) {
2301			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2302				slab = LIST_FIRST(&keg->uk_part_slab);
2303			} else {
2304				slab = LIST_FIRST(&keg->uk_free_slab);
2305				LIST_REMOVE(slab, us_link);
2306				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2307				    us_link);
2308			}
2309			MPASS(slab->us_keg == keg);
2310			return (slab);
2311		}
2312
2313		/*
2314		 * M_NOVM means don't ask at all!
2315		 */
2316		if (flags & M_NOVM)
2317			break;
2318
2319		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2320			keg->uk_flags |= UMA_ZFLAG_FULL;
2321			/*
2322			 * If this is not a multi-zone, set the FULL bit.
2323			 * Otherwise slab_multi() takes care of it.
2324			 */
2325			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2326				zone->uz_flags |= UMA_ZFLAG_FULL;
2327				zone_log_warning(zone);
2328				zone_maxaction(zone);
2329			}
2330			if (flags & M_NOWAIT)
2331				break;
2332			zone->uz_sleeps++;
2333			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2334			continue;
2335		}
2336		slab = keg_alloc_slab(keg, zone, flags);
2337		/*
2338		 * If we got a slab here it's safe to mark it partially used
2339		 * and return.  We assume that the caller is going to remove
2340		 * at least one item.
2341		 */
2342		if (slab) {
2343			MPASS(slab->us_keg == keg);
2344			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2345			return (slab);
2346		}
2347		/*
2348		 * We might not have been able to get a slab but another cpu
2349		 * could have while we were unlocked.  Check again before we
2350		 * fail.
2351		 */
2352		flags |= M_NOVM;
2353	}
2354	return (slab);
2355}
2356
2357static uma_slab_t
2358zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2359{
2360	uma_slab_t slab;
2361
2362	if (keg == NULL) {
2363		keg = zone_first_keg(zone);
2364		KEG_LOCK(keg);
2365	}
2366
2367	for (;;) {
2368		slab = keg_fetch_slab(keg, zone, flags);
2369		if (slab)
2370			return (slab);
2371		if (flags & (M_NOWAIT | M_NOVM))
2372			break;
2373	}
2374	KEG_UNLOCK(keg);
2375	return (NULL);
2376}
2377
2378/*
2379 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2380 * with the keg locked.  On NULL no lock is held.
2381 *
2382 * The last pointer is used to seed the search.  It is not required.
2383 */
2384static uma_slab_t
2385zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2386{
2387	uma_klink_t klink;
2388	uma_slab_t slab;
2389	uma_keg_t keg;
2390	int flags;
2391	int empty;
2392	int full;
2393
2394	/*
2395	 * Don't wait on the first pass.  This will skip limit tests
2396	 * as well.  We don't want to block if we can find a provider
2397	 * without blocking.
2398	 */
2399	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2400	/*
2401	 * Use the last slab allocated as a hint for where to start
2402	 * the search.
2403	 */
2404	if (last != NULL) {
2405		slab = keg_fetch_slab(last, zone, flags);
2406		if (slab)
2407			return (slab);
2408		KEG_UNLOCK(last);
2409	}
2410	/*
2411	 * Loop until we have a slab incase of transient failures
2412	 * while M_WAITOK is specified.  I'm not sure this is 100%
2413	 * required but we've done it for so long now.
2414	 */
2415	for (;;) {
2416		empty = 0;
2417		full = 0;
2418		/*
2419		 * Search the available kegs for slabs.  Be careful to hold the
2420		 * correct lock while calling into the keg layer.
2421		 */
2422		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2423			keg = klink->kl_keg;
2424			KEG_LOCK(keg);
2425			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2426				slab = keg_fetch_slab(keg, zone, flags);
2427				if (slab)
2428					return (slab);
2429			}
2430			if (keg->uk_flags & UMA_ZFLAG_FULL)
2431				full++;
2432			else
2433				empty++;
2434			KEG_UNLOCK(keg);
2435		}
2436		if (rflags & (M_NOWAIT | M_NOVM))
2437			break;
2438		flags = rflags;
2439		/*
2440		 * All kegs are full.  XXX We can't atomically check all kegs
2441		 * and sleep so just sleep for a short period and retry.
2442		 */
2443		if (full && !empty) {
2444			ZONE_LOCK(zone);
2445			zone->uz_flags |= UMA_ZFLAG_FULL;
2446			zone->uz_sleeps++;
2447			zone_log_warning(zone);
2448			zone_maxaction(zone);
2449			msleep(zone, zone->uz_lockptr, PVM,
2450			    "zonelimit", hz/100);
2451			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2452			ZONE_UNLOCK(zone);
2453			continue;
2454		}
2455	}
2456	return (NULL);
2457}
2458
2459static void *
2460slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2461{
2462	void *item;
2463	uint8_t freei;
2464
2465	MPASS(keg == slab->us_keg);
2466	mtx_assert(&keg->uk_lock, MA_OWNED);
2467
2468	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2469	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2470	item = slab->us_data + (keg->uk_rsize * freei);
2471	slab->us_freecount--;
2472	keg->uk_free--;
2473
2474	/* Move this slab to the full list */
2475	if (slab->us_freecount == 0) {
2476		LIST_REMOVE(slab, us_link);
2477		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2478	}
2479
2480	return (item);
2481}
2482
2483static int
2484zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2485{
2486	uma_slab_t slab;
2487	uma_keg_t keg;
2488	int i;
2489
2490	slab = NULL;
2491	keg = NULL;
2492	/* Try to keep the buckets totally full */
2493	for (i = 0; i < max; ) {
2494		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2495			break;
2496		keg = slab->us_keg;
2497		while (slab->us_freecount && i < max) {
2498			bucket[i++] = slab_alloc_item(keg, slab);
2499			if (keg->uk_free <= keg->uk_reserve)
2500				break;
2501		}
2502		/* Don't grab more than one slab at a time. */
2503		flags &= ~M_WAITOK;
2504		flags |= M_NOWAIT;
2505	}
2506	if (slab != NULL)
2507		KEG_UNLOCK(keg);
2508
2509	return i;
2510}
2511
2512static uma_bucket_t
2513zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2514{
2515	uma_bucket_t bucket;
2516	int max;
2517
2518	/* Don't wait for buckets, preserve caller's NOVM setting. */
2519	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2520	if (bucket == NULL)
2521		return (NULL);
2522
2523	max = MIN(bucket->ub_entries, zone->uz_count);
2524	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2525	    max, flags);
2526
2527	/*
2528	 * Initialize the memory if necessary.
2529	 */
2530	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2531		int i;
2532
2533		for (i = 0; i < bucket->ub_cnt; i++)
2534			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2535			    flags) != 0)
2536				break;
2537		/*
2538		 * If we couldn't initialize the whole bucket, put the
2539		 * rest back onto the freelist.
2540		 */
2541		if (i != bucket->ub_cnt) {
2542			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2543			    bucket->ub_cnt - i);
2544#ifdef INVARIANTS
2545			bzero(&bucket->ub_bucket[i],
2546			    sizeof(void *) * (bucket->ub_cnt - i));
2547#endif
2548			bucket->ub_cnt = i;
2549		}
2550	}
2551
2552	if (bucket->ub_cnt == 0) {
2553		bucket_free(zone, bucket, udata);
2554		atomic_add_long(&zone->uz_fails, 1);
2555		return (NULL);
2556	}
2557
2558	return (bucket);
2559}
2560
2561/*
2562 * Allocates a single item from a zone.
2563 *
2564 * Arguments
2565 *	zone   The zone to alloc for.
2566 *	udata  The data to be passed to the constructor.
2567 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2568 *
2569 * Returns
2570 *	NULL if there is no memory and M_NOWAIT is set
2571 *	An item if successful
2572 */
2573
2574static void *
2575zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2576{
2577	void *item;
2578
2579	item = NULL;
2580
2581#ifdef UMA_DEBUG_ALLOC
2582	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2583#endif
2584	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2585		goto fail;
2586	atomic_add_long(&zone->uz_allocs, 1);
2587
2588	/*
2589	 * We have to call both the zone's init (not the keg's init)
2590	 * and the zone's ctor.  This is because the item is going from
2591	 * a keg slab directly to the user, and the user is expecting it
2592	 * to be both zone-init'd as well as zone-ctor'd.
2593	 */
2594	if (zone->uz_init != NULL) {
2595		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2596			zone_free_item(zone, item, udata, SKIP_FINI);
2597			goto fail;
2598		}
2599	}
2600	if (zone->uz_ctor != NULL) {
2601		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2602			zone_free_item(zone, item, udata, SKIP_DTOR);
2603			goto fail;
2604		}
2605	}
2606#ifdef INVARIANTS
2607	uma_dbg_alloc(zone, NULL, item);
2608#endif
2609	if (flags & M_ZERO)
2610		uma_zero_item(item, zone);
2611
2612	return (item);
2613
2614fail:
2615	atomic_add_long(&zone->uz_fails, 1);
2616	return (NULL);
2617}
2618
2619/* See uma.h */
2620void
2621uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2622{
2623	uma_cache_t cache;
2624	uma_bucket_t bucket;
2625	int lockfail;
2626	int cpu;
2627
2628	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2629	random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2630
2631#ifdef UMA_DEBUG_ALLOC_1
2632	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2633#endif
2634	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2635	    zone->uz_name);
2636
2637	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2638	    ("uma_zfree_arg: called with spinlock or critical section held"));
2639
2640        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2641        if (item == NULL)
2642                return;
2643#ifdef DEBUG_MEMGUARD
2644	if (is_memguard_addr(item)) {
2645		if (zone->uz_dtor != NULL)
2646			zone->uz_dtor(item, zone->uz_size, udata);
2647		if (zone->uz_fini != NULL)
2648			zone->uz_fini(item, zone->uz_size);
2649		memguard_free(item);
2650		return;
2651	}
2652#endif
2653#ifdef INVARIANTS
2654	if (zone->uz_flags & UMA_ZONE_MALLOC)
2655		uma_dbg_free(zone, udata, item);
2656	else
2657		uma_dbg_free(zone, NULL, item);
2658#endif
2659	if (zone->uz_dtor != NULL)
2660		zone->uz_dtor(item, zone->uz_size, udata);
2661
2662	/*
2663	 * The race here is acceptable.  If we miss it we'll just have to wait
2664	 * a little longer for the limits to be reset.
2665	 */
2666	if (zone->uz_flags & UMA_ZFLAG_FULL)
2667		goto zfree_item;
2668
2669	/*
2670	 * If possible, free to the per-CPU cache.  There are two
2671	 * requirements for safe access to the per-CPU cache: (1) the thread
2672	 * accessing the cache must not be preempted or yield during access,
2673	 * and (2) the thread must not migrate CPUs without switching which
2674	 * cache it accesses.  We rely on a critical section to prevent
2675	 * preemption and migration.  We release the critical section in
2676	 * order to acquire the zone mutex if we are unable to free to the
2677	 * current cache; when we re-acquire the critical section, we must
2678	 * detect and handle migration if it has occurred.
2679	 */
2680zfree_restart:
2681	critical_enter();
2682	cpu = curcpu;
2683	cache = &zone->uz_cpu[cpu];
2684
2685zfree_start:
2686	/*
2687	 * Try to free into the allocbucket first to give LIFO ordering
2688	 * for cache-hot datastructures.  Spill over into the freebucket
2689	 * if necessary.  Alloc will swap them if one runs dry.
2690	 */
2691	bucket = cache->uc_allocbucket;
2692	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2693		bucket = cache->uc_freebucket;
2694	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2695		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2696		    ("uma_zfree: Freeing to non free bucket index."));
2697		bucket->ub_bucket[bucket->ub_cnt] = item;
2698		bucket->ub_cnt++;
2699		cache->uc_frees++;
2700		critical_exit();
2701		return;
2702	}
2703
2704	/*
2705	 * We must go back the zone, which requires acquiring the zone lock,
2706	 * which in turn means we must release and re-acquire the critical
2707	 * section.  Since the critical section is released, we may be
2708	 * preempted or migrate.  As such, make sure not to maintain any
2709	 * thread-local state specific to the cache from prior to releasing
2710	 * the critical section.
2711	 */
2712	critical_exit();
2713	if (zone->uz_count == 0 || bucketdisable)
2714		goto zfree_item;
2715
2716	lockfail = 0;
2717	if (ZONE_TRYLOCK(zone) == 0) {
2718		/* Record contention to size the buckets. */
2719		ZONE_LOCK(zone);
2720		lockfail = 1;
2721	}
2722	critical_enter();
2723	cpu = curcpu;
2724	cache = &zone->uz_cpu[cpu];
2725
2726	/*
2727	 * Since we have locked the zone we may as well send back our stats.
2728	 */
2729	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2730	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2731	cache->uc_allocs = 0;
2732	cache->uc_frees = 0;
2733
2734	bucket = cache->uc_freebucket;
2735	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2736		ZONE_UNLOCK(zone);
2737		goto zfree_start;
2738	}
2739	cache->uc_freebucket = NULL;
2740	/* We are no longer associated with this CPU. */
2741	critical_exit();
2742
2743	/* Can we throw this on the zone full list? */
2744	if (bucket != NULL) {
2745#ifdef UMA_DEBUG_ALLOC
2746		printf("uma_zfree: Putting old bucket on the free list.\n");
2747#endif
2748		/* ub_cnt is pointing to the last free item */
2749		KASSERT(bucket->ub_cnt != 0,
2750		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2751		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2752	}
2753
2754	/*
2755	 * We bump the uz count when the cache size is insufficient to
2756	 * handle the working set.
2757	 */
2758	if (lockfail && zone->uz_count < BUCKET_MAX)
2759		zone->uz_count++;
2760	ZONE_UNLOCK(zone);
2761
2762#ifdef UMA_DEBUG_ALLOC
2763	printf("uma_zfree: Allocating new free bucket.\n");
2764#endif
2765	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2766	if (bucket) {
2767		critical_enter();
2768		cpu = curcpu;
2769		cache = &zone->uz_cpu[cpu];
2770		if (cache->uc_freebucket == NULL) {
2771			cache->uc_freebucket = bucket;
2772			goto zfree_start;
2773		}
2774		/*
2775		 * We lost the race, start over.  We have to drop our
2776		 * critical section to free the bucket.
2777		 */
2778		critical_exit();
2779		bucket_free(zone, bucket, udata);
2780		goto zfree_restart;
2781	}
2782
2783	/*
2784	 * If nothing else caught this, we'll just do an internal free.
2785	 */
2786zfree_item:
2787	zone_free_item(zone, item, udata, SKIP_DTOR);
2788
2789	return;
2790}
2791
2792static void
2793slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2794{
2795	uint8_t freei;
2796
2797	mtx_assert(&keg->uk_lock, MA_OWNED);
2798	MPASS(keg == slab->us_keg);
2799
2800	/* Do we need to remove from any lists? */
2801	if (slab->us_freecount+1 == keg->uk_ipers) {
2802		LIST_REMOVE(slab, us_link);
2803		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2804	} else if (slab->us_freecount == 0) {
2805		LIST_REMOVE(slab, us_link);
2806		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2807	}
2808
2809	/* Slab management. */
2810	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2811	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2812	slab->us_freecount++;
2813
2814	/* Keg statistics. */
2815	keg->uk_free++;
2816}
2817
2818static void
2819zone_release(uma_zone_t zone, void **bucket, int cnt)
2820{
2821	void *item;
2822	uma_slab_t slab;
2823	uma_keg_t keg;
2824	uint8_t *mem;
2825	int clearfull;
2826	int i;
2827
2828	clearfull = 0;
2829	keg = zone_first_keg(zone);
2830	KEG_LOCK(keg);
2831	for (i = 0; i < cnt; i++) {
2832		item = bucket[i];
2833		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2834			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2835			if (zone->uz_flags & UMA_ZONE_HASH) {
2836				slab = hash_sfind(&keg->uk_hash, mem);
2837			} else {
2838				mem += keg->uk_pgoff;
2839				slab = (uma_slab_t)mem;
2840			}
2841		} else {
2842			slab = vtoslab((vm_offset_t)item);
2843			if (slab->us_keg != keg) {
2844				KEG_UNLOCK(keg);
2845				keg = slab->us_keg;
2846				KEG_LOCK(keg);
2847			}
2848		}
2849		slab_free_item(keg, slab, item);
2850		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2851			if (keg->uk_pages < keg->uk_maxpages) {
2852				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2853				clearfull = 1;
2854			}
2855
2856			/*
2857			 * We can handle one more allocation. Since we're
2858			 * clearing ZFLAG_FULL, wake up all procs blocked
2859			 * on pages. This should be uncommon, so keeping this
2860			 * simple for now (rather than adding count of blocked
2861			 * threads etc).
2862			 */
2863			wakeup(keg);
2864		}
2865	}
2866	KEG_UNLOCK(keg);
2867	if (clearfull) {
2868		ZONE_LOCK(zone);
2869		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2870		wakeup(zone);
2871		ZONE_UNLOCK(zone);
2872	}
2873
2874}
2875
2876/*
2877 * Frees a single item to any zone.
2878 *
2879 * Arguments:
2880 *	zone   The zone to free to
2881 *	item   The item we're freeing
2882 *	udata  User supplied data for the dtor
2883 *	skip   Skip dtors and finis
2884 */
2885static void
2886zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2887{
2888
2889#ifdef INVARIANTS
2890	if (skip == SKIP_NONE) {
2891		if (zone->uz_flags & UMA_ZONE_MALLOC)
2892			uma_dbg_free(zone, udata, item);
2893		else
2894			uma_dbg_free(zone, NULL, item);
2895	}
2896#endif
2897	if (skip < SKIP_DTOR && zone->uz_dtor)
2898		zone->uz_dtor(item, zone->uz_size, udata);
2899
2900	if (skip < SKIP_FINI && zone->uz_fini)
2901		zone->uz_fini(item, zone->uz_size);
2902
2903	atomic_add_long(&zone->uz_frees, 1);
2904	zone->uz_release(zone->uz_arg, &item, 1);
2905}
2906
2907/* See uma.h */
2908int
2909uma_zone_set_max(uma_zone_t zone, int nitems)
2910{
2911	uma_keg_t keg;
2912
2913	keg = zone_first_keg(zone);
2914	if (keg == NULL)
2915		return (0);
2916	KEG_LOCK(keg);
2917	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2918	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2919		keg->uk_maxpages += keg->uk_ppera;
2920	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2921	KEG_UNLOCK(keg);
2922
2923	return (nitems);
2924}
2925
2926/* See uma.h */
2927int
2928uma_zone_get_max(uma_zone_t zone)
2929{
2930	int nitems;
2931	uma_keg_t keg;
2932
2933	keg = zone_first_keg(zone);
2934	if (keg == NULL)
2935		return (0);
2936	KEG_LOCK(keg);
2937	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2938	KEG_UNLOCK(keg);
2939
2940	return (nitems);
2941}
2942
2943/* See uma.h */
2944void
2945uma_zone_set_warning(uma_zone_t zone, const char *warning)
2946{
2947
2948	ZONE_LOCK(zone);
2949	zone->uz_warning = warning;
2950	ZONE_UNLOCK(zone);
2951}
2952
2953/* See uma.h */
2954void
2955uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
2956{
2957
2958	ZONE_LOCK(zone);
2959	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
2960	ZONE_UNLOCK(zone);
2961}
2962
2963/* See uma.h */
2964int
2965uma_zone_get_cur(uma_zone_t zone)
2966{
2967	int64_t nitems;
2968	u_int i;
2969
2970	ZONE_LOCK(zone);
2971	nitems = zone->uz_allocs - zone->uz_frees;
2972	CPU_FOREACH(i) {
2973		/*
2974		 * See the comment in sysctl_vm_zone_stats() regarding the
2975		 * safety of accessing the per-cpu caches. With the zone lock
2976		 * held, it is safe, but can potentially result in stale data.
2977		 */
2978		nitems += zone->uz_cpu[i].uc_allocs -
2979		    zone->uz_cpu[i].uc_frees;
2980	}
2981	ZONE_UNLOCK(zone);
2982
2983	return (nitems < 0 ? 0 : nitems);
2984}
2985
2986/* See uma.h */
2987void
2988uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2989{
2990	uma_keg_t keg;
2991
2992	keg = zone_first_keg(zone);
2993	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
2994	KEG_LOCK(keg);
2995	KASSERT(keg->uk_pages == 0,
2996	    ("uma_zone_set_init on non-empty keg"));
2997	keg->uk_init = uminit;
2998	KEG_UNLOCK(keg);
2999}
3000
3001/* See uma.h */
3002void
3003uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3004{
3005	uma_keg_t keg;
3006
3007	keg = zone_first_keg(zone);
3008	KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
3009	KEG_LOCK(keg);
3010	KASSERT(keg->uk_pages == 0,
3011	    ("uma_zone_set_fini on non-empty keg"));
3012	keg->uk_fini = fini;
3013	KEG_UNLOCK(keg);
3014}
3015
3016/* See uma.h */
3017void
3018uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3019{
3020
3021	ZONE_LOCK(zone);
3022	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3023	    ("uma_zone_set_zinit on non-empty keg"));
3024	zone->uz_init = zinit;
3025	ZONE_UNLOCK(zone);
3026}
3027
3028/* See uma.h */
3029void
3030uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3031{
3032
3033	ZONE_LOCK(zone);
3034	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3035	    ("uma_zone_set_zfini on non-empty keg"));
3036	zone->uz_fini = zfini;
3037	ZONE_UNLOCK(zone);
3038}
3039
3040/* See uma.h */
3041/* XXX uk_freef is not actually used with the zone locked */
3042void
3043uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3044{
3045	uma_keg_t keg;
3046
3047	keg = zone_first_keg(zone);
3048	KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
3049	KEG_LOCK(keg);
3050	keg->uk_freef = freef;
3051	KEG_UNLOCK(keg);
3052}
3053
3054/* See uma.h */
3055/* XXX uk_allocf is not actually used with the zone locked */
3056void
3057uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3058{
3059	uma_keg_t keg;
3060
3061	keg = zone_first_keg(zone);
3062	KEG_LOCK(keg);
3063	keg->uk_allocf = allocf;
3064	KEG_UNLOCK(keg);
3065}
3066
3067/* See uma.h */
3068void
3069uma_zone_reserve(uma_zone_t zone, int items)
3070{
3071	uma_keg_t keg;
3072
3073	keg = zone_first_keg(zone);
3074	if (keg == NULL)
3075		return;
3076	KEG_LOCK(keg);
3077	keg->uk_reserve = items;
3078	KEG_UNLOCK(keg);
3079
3080	return;
3081}
3082
3083/* See uma.h */
3084int
3085uma_zone_reserve_kva(uma_zone_t zone, int count)
3086{
3087	uma_keg_t keg;
3088	vm_offset_t kva;
3089	u_int pages;
3090
3091	keg = zone_first_keg(zone);
3092	if (keg == NULL)
3093		return (0);
3094	pages = count / keg->uk_ipers;
3095
3096	if (pages * keg->uk_ipers < count)
3097		pages++;
3098	pages *= keg->uk_ppera;
3099
3100#ifdef UMA_MD_SMALL_ALLOC
3101	if (keg->uk_ppera > 1) {
3102#else
3103	if (1) {
3104#endif
3105		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
3106		if (kva == 0)
3107			return (0);
3108	} else
3109		kva = 0;
3110	KEG_LOCK(keg);
3111	keg->uk_kva = kva;
3112	keg->uk_offset = 0;
3113	keg->uk_maxpages = pages;
3114#ifdef UMA_MD_SMALL_ALLOC
3115	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3116#else
3117	keg->uk_allocf = noobj_alloc;
3118#endif
3119	keg->uk_flags |= UMA_ZONE_NOFREE;
3120	KEG_UNLOCK(keg);
3121
3122	return (1);
3123}
3124
3125/* See uma.h */
3126void
3127uma_prealloc(uma_zone_t zone, int items)
3128{
3129	int slabs;
3130	uma_slab_t slab;
3131	uma_keg_t keg;
3132
3133	keg = zone_first_keg(zone);
3134	if (keg == NULL)
3135		return;
3136	KEG_LOCK(keg);
3137	slabs = items / keg->uk_ipers;
3138	if (slabs * keg->uk_ipers < items)
3139		slabs++;
3140	while (slabs > 0) {
3141		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3142		if (slab == NULL)
3143			break;
3144		MPASS(slab->us_keg == keg);
3145		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3146		slabs--;
3147	}
3148	KEG_UNLOCK(keg);
3149}
3150
3151/* See uma.h */
3152static void
3153uma_reclaim_locked(bool kmem_danger)
3154{
3155
3156#ifdef UMA_DEBUG
3157	printf("UMA: vm asked us to release pages!\n");
3158#endif
3159	sx_assert(&uma_drain_lock, SA_XLOCKED);
3160	bucket_enable();
3161	zone_foreach(zone_drain);
3162	if (vm_page_count_min() || kmem_danger) {
3163		cache_drain_safe(NULL);
3164		zone_foreach(zone_drain);
3165	}
3166	/*
3167	 * Some slabs may have been freed but this zone will be visited early
3168	 * we visit again so that we can free pages that are empty once other
3169	 * zones are drained.  We have to do the same for buckets.
3170	 */
3171	zone_drain(slabzone);
3172	bucket_zone_drain();
3173}
3174
3175void
3176uma_reclaim(void)
3177{
3178
3179	sx_xlock(&uma_drain_lock);
3180	uma_reclaim_locked(false);
3181	sx_xunlock(&uma_drain_lock);
3182}
3183
3184static int uma_reclaim_needed;
3185
3186void
3187uma_reclaim_wakeup(void)
3188{
3189
3190	uma_reclaim_needed = 1;
3191	wakeup(&uma_reclaim_needed);
3192}
3193
3194void
3195uma_reclaim_worker(void *arg __unused)
3196{
3197
3198	sx_xlock(&uma_drain_lock);
3199	for (;;) {
3200		sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM,
3201		    "umarcl", 0);
3202		if (uma_reclaim_needed) {
3203			uma_reclaim_needed = 0;
3204			sx_xunlock(&uma_drain_lock);
3205			EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
3206			sx_xlock(&uma_drain_lock);
3207			uma_reclaim_locked(true);
3208		}
3209	}
3210}
3211
3212/* See uma.h */
3213int
3214uma_zone_exhausted(uma_zone_t zone)
3215{
3216	int full;
3217
3218	ZONE_LOCK(zone);
3219	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3220	ZONE_UNLOCK(zone);
3221	return (full);
3222}
3223
3224int
3225uma_zone_exhausted_nolock(uma_zone_t zone)
3226{
3227	return (zone->uz_flags & UMA_ZFLAG_FULL);
3228}
3229
3230void *
3231uma_large_malloc(vm_size_t size, int wait)
3232{
3233	void *mem;
3234	uma_slab_t slab;
3235	uint8_t flags;
3236
3237	slab = zone_alloc_item(slabzone, NULL, wait);
3238	if (slab == NULL)
3239		return (NULL);
3240	mem = page_alloc(NULL, size, &flags, wait);
3241	if (mem) {
3242		vsetslab((vm_offset_t)mem, slab);
3243		slab->us_data = mem;
3244		slab->us_flags = flags | UMA_SLAB_MALLOC;
3245		slab->us_size = size;
3246	} else {
3247		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3248	}
3249
3250	return (mem);
3251}
3252
3253void
3254uma_large_free(uma_slab_t slab)
3255{
3256
3257	page_free(slab->us_data, slab->us_size, slab->us_flags);
3258	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3259}
3260
3261static void
3262uma_zero_item(void *item, uma_zone_t zone)
3263{
3264	int i;
3265
3266	if (zone->uz_flags & UMA_ZONE_PCPU) {
3267		CPU_FOREACH(i)
3268			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3269	} else
3270		bzero(item, zone->uz_size);
3271}
3272
3273void
3274uma_print_stats(void)
3275{
3276	zone_foreach(uma_print_zone);
3277}
3278
3279static void
3280slab_print(uma_slab_t slab)
3281{
3282	printf("slab: keg %p, data %p, freecount %d\n",
3283		slab->us_keg, slab->us_data, slab->us_freecount);
3284}
3285
3286static void
3287cache_print(uma_cache_t cache)
3288{
3289	printf("alloc: %p(%d), free: %p(%d)\n",
3290		cache->uc_allocbucket,
3291		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3292		cache->uc_freebucket,
3293		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3294}
3295
3296static void
3297uma_print_keg(uma_keg_t keg)
3298{
3299	uma_slab_t slab;
3300
3301	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3302	    "out %d free %d limit %d\n",
3303	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3304	    keg->uk_ipers, keg->uk_ppera,
3305	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
3306	    keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3307	printf("Part slabs:\n");
3308	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3309		slab_print(slab);
3310	printf("Free slabs:\n");
3311	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3312		slab_print(slab);
3313	printf("Full slabs:\n");
3314	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3315		slab_print(slab);
3316}
3317
3318void
3319uma_print_zone(uma_zone_t zone)
3320{
3321	uma_cache_t cache;
3322	uma_klink_t kl;
3323	int i;
3324
3325	printf("zone: %s(%p) size %d flags %#x\n",
3326	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3327	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3328		uma_print_keg(kl->kl_keg);
3329	CPU_FOREACH(i) {
3330		cache = &zone->uz_cpu[i];
3331		printf("CPU %d Cache:\n", i);
3332		cache_print(cache);
3333	}
3334}
3335
3336#ifdef DDB
3337/*
3338 * Generate statistics across both the zone and its per-cpu cache's.  Return
3339 * desired statistics if the pointer is non-NULL for that statistic.
3340 *
3341 * Note: does not update the zone statistics, as it can't safely clear the
3342 * per-CPU cache statistic.
3343 *
3344 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3345 * safe from off-CPU; we should modify the caches to track this information
3346 * directly so that we don't have to.
3347 */
3348static void
3349uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3350    uint64_t *freesp, uint64_t *sleepsp)
3351{
3352	uma_cache_t cache;
3353	uint64_t allocs, frees, sleeps;
3354	int cachefree, cpu;
3355
3356	allocs = frees = sleeps = 0;
3357	cachefree = 0;
3358	CPU_FOREACH(cpu) {
3359		cache = &z->uz_cpu[cpu];
3360		if (cache->uc_allocbucket != NULL)
3361			cachefree += cache->uc_allocbucket->ub_cnt;
3362		if (cache->uc_freebucket != NULL)
3363			cachefree += cache->uc_freebucket->ub_cnt;
3364		allocs += cache->uc_allocs;
3365		frees += cache->uc_frees;
3366	}
3367	allocs += z->uz_allocs;
3368	frees += z->uz_frees;
3369	sleeps += z->uz_sleeps;
3370	if (cachefreep != NULL)
3371		*cachefreep = cachefree;
3372	if (allocsp != NULL)
3373		*allocsp = allocs;
3374	if (freesp != NULL)
3375		*freesp = frees;
3376	if (sleepsp != NULL)
3377		*sleepsp = sleeps;
3378}
3379#endif /* DDB */
3380
3381static int
3382sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3383{
3384	uma_keg_t kz;
3385	uma_zone_t z;
3386	int count;
3387
3388	count = 0;
3389	rw_rlock(&uma_rwlock);
3390	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3391		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3392			count++;
3393	}
3394	rw_runlock(&uma_rwlock);
3395	return (sysctl_handle_int(oidp, &count, 0, req));
3396}
3397
3398static int
3399sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3400{
3401	struct uma_stream_header ush;
3402	struct uma_type_header uth;
3403	struct uma_percpu_stat ups;
3404	uma_bucket_t bucket;
3405	struct sbuf sbuf;
3406	uma_cache_t cache;
3407	uma_klink_t kl;
3408	uma_keg_t kz;
3409	uma_zone_t z;
3410	uma_keg_t k;
3411	int count, error, i;
3412
3413	error = sysctl_wire_old_buffer(req, 0);
3414	if (error != 0)
3415		return (error);
3416	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3417	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
3418
3419	count = 0;
3420	rw_rlock(&uma_rwlock);
3421	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3422		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3423			count++;
3424	}
3425
3426	/*
3427	 * Insert stream header.
3428	 */
3429	bzero(&ush, sizeof(ush));
3430	ush.ush_version = UMA_STREAM_VERSION;
3431	ush.ush_maxcpus = (mp_maxid + 1);
3432	ush.ush_count = count;
3433	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3434
3435	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3436		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3437			bzero(&uth, sizeof(uth));
3438			ZONE_LOCK(z);
3439			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3440			uth.uth_align = kz->uk_align;
3441			uth.uth_size = kz->uk_size;
3442			uth.uth_rsize = kz->uk_rsize;
3443			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3444				k = kl->kl_keg;
3445				uth.uth_maxpages += k->uk_maxpages;
3446				uth.uth_pages += k->uk_pages;
3447				uth.uth_keg_free += k->uk_free;
3448				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3449				    * k->uk_ipers;
3450			}
3451
3452			/*
3453			 * A zone is secondary is it is not the first entry
3454			 * on the keg's zone list.
3455			 */
3456			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3457			    (LIST_FIRST(&kz->uk_zones) != z))
3458				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3459
3460			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3461				uth.uth_zone_free += bucket->ub_cnt;
3462			uth.uth_allocs = z->uz_allocs;
3463			uth.uth_frees = z->uz_frees;
3464			uth.uth_fails = z->uz_fails;
3465			uth.uth_sleeps = z->uz_sleeps;
3466			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3467			/*
3468			 * While it is not normally safe to access the cache
3469			 * bucket pointers while not on the CPU that owns the
3470			 * cache, we only allow the pointers to be exchanged
3471			 * without the zone lock held, not invalidated, so
3472			 * accept the possible race associated with bucket
3473			 * exchange during monitoring.
3474			 */
3475			for (i = 0; i < (mp_maxid + 1); i++) {
3476				bzero(&ups, sizeof(ups));
3477				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3478					goto skip;
3479				if (CPU_ABSENT(i))
3480					goto skip;
3481				cache = &z->uz_cpu[i];
3482				if (cache->uc_allocbucket != NULL)
3483					ups.ups_cache_free +=
3484					    cache->uc_allocbucket->ub_cnt;
3485				if (cache->uc_freebucket != NULL)
3486					ups.ups_cache_free +=
3487					    cache->uc_freebucket->ub_cnt;
3488				ups.ups_allocs = cache->uc_allocs;
3489				ups.ups_frees = cache->uc_frees;
3490skip:
3491				(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3492			}
3493			ZONE_UNLOCK(z);
3494		}
3495	}
3496	rw_runlock(&uma_rwlock);
3497	error = sbuf_finish(&sbuf);
3498	sbuf_delete(&sbuf);
3499	return (error);
3500}
3501
3502int
3503sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3504{
3505	uma_zone_t zone = *(uma_zone_t *)arg1;
3506	int error, max;
3507
3508	max = uma_zone_get_max(zone);
3509	error = sysctl_handle_int(oidp, &max, 0, req);
3510	if (error || !req->newptr)
3511		return (error);
3512
3513	uma_zone_set_max(zone, max);
3514
3515	return (0);
3516}
3517
3518int
3519sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3520{
3521	uma_zone_t zone = *(uma_zone_t *)arg1;
3522	int cur;
3523
3524	cur = uma_zone_get_cur(zone);
3525	return (sysctl_handle_int(oidp, &cur, 0, req));
3526}
3527
3528#ifdef INVARIANTS
3529static uma_slab_t
3530uma_dbg_getslab(uma_zone_t zone, void *item)
3531{
3532	uma_slab_t slab;
3533	uma_keg_t keg;
3534	uint8_t *mem;
3535
3536	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
3537	if (zone->uz_flags & UMA_ZONE_VTOSLAB) {
3538		slab = vtoslab((vm_offset_t)mem);
3539	} else {
3540		/*
3541		 * It is safe to return the slab here even though the
3542		 * zone is unlocked because the item's allocation state
3543		 * essentially holds a reference.
3544		 */
3545		ZONE_LOCK(zone);
3546		keg = LIST_FIRST(&zone->uz_kegs)->kl_keg;
3547		if (keg->uk_flags & UMA_ZONE_HASH)
3548			slab = hash_sfind(&keg->uk_hash, mem);
3549		else
3550			slab = (uma_slab_t)(mem + keg->uk_pgoff);
3551		ZONE_UNLOCK(zone);
3552	}
3553
3554	return (slab);
3555}
3556
3557/*
3558 * Set up the slab's freei data such that uma_dbg_free can function.
3559 *
3560 */
3561static void
3562uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
3563{
3564	uma_keg_t keg;
3565	int freei;
3566
3567	if (zone_first_keg(zone) == NULL)
3568		return;
3569	if (slab == NULL) {
3570		slab = uma_dbg_getslab(zone, item);
3571		if (slab == NULL)
3572			panic("uma: item %p did not belong to zone %s\n",
3573			    item, zone->uz_name);
3574	}
3575	keg = slab->us_keg;
3576	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3577
3578	if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3579		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
3580		    item, zone, zone->uz_name, slab, freei);
3581	BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3582
3583	return;
3584}
3585
3586/*
3587 * Verifies freed addresses.  Checks for alignment, valid slab membership
3588 * and duplicate frees.
3589 *
3590 */
3591static void
3592uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
3593{
3594	uma_keg_t keg;
3595	int freei;
3596
3597	if (zone_first_keg(zone) == NULL)
3598		return;
3599	if (slab == NULL) {
3600		slab = uma_dbg_getslab(zone, item);
3601		if (slab == NULL)
3602			panic("uma: Freed item %p did not belong to zone %s\n",
3603			    item, zone->uz_name);
3604	}
3605	keg = slab->us_keg;
3606	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3607
3608	if (freei >= keg->uk_ipers)
3609		panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
3610		    item, zone, zone->uz_name, slab, freei);
3611
3612	if (((freei * keg->uk_rsize) + slab->us_data) != item)
3613		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
3614		    item, zone, zone->uz_name, slab, freei);
3615
3616	if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3617		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
3618		    item, zone, zone->uz_name, slab, freei);
3619
3620	BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3621}
3622#endif /* INVARIANTS */
3623
3624#ifdef DDB
3625DB_SHOW_COMMAND(uma, db_show_uma)
3626{
3627	uint64_t allocs, frees, sleeps;
3628	uma_bucket_t bucket;
3629	uma_keg_t kz;
3630	uma_zone_t z;
3631	int cachefree;
3632
3633	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3634	    "Free", "Requests", "Sleeps", "Bucket");
3635	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3636		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3637			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3638				allocs = z->uz_allocs;
3639				frees = z->uz_frees;
3640				sleeps = z->uz_sleeps;
3641				cachefree = 0;
3642			} else
3643				uma_zone_sumstat(z, &cachefree, &allocs,
3644				    &frees, &sleeps);
3645			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3646			    (LIST_FIRST(&kz->uk_zones) != z)))
3647				cachefree += kz->uk_free;
3648			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3649				cachefree += bucket->ub_cnt;
3650			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3651			    z->uz_name, (uintmax_t)kz->uk_size,
3652			    (intmax_t)(allocs - frees), cachefree,
3653			    (uintmax_t)allocs, sleeps, z->uz_count);
3654			if (db_pager_quit)
3655				return;
3656		}
3657	}
3658}
3659
3660DB_SHOW_COMMAND(umacache, db_show_umacache)
3661{
3662	uint64_t allocs, frees;
3663	uma_bucket_t bucket;
3664	uma_zone_t z;
3665	int cachefree;
3666
3667	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3668	    "Requests", "Bucket");
3669	LIST_FOREACH(z, &uma_cachezones, uz_link) {
3670		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3671		LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3672			cachefree += bucket->ub_cnt;
3673		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3674		    z->uz_name, (uintmax_t)z->uz_size,
3675		    (intmax_t)(allocs - frees), cachefree,
3676		    (uintmax_t)allocs, z->uz_count);
3677		if (db_pager_quit)
3678			return;
3679	}
3680}
3681#endif	/* DDB */
3682