memguard.c revision 325036
1/*-
2 * Copyright (c) 2005, Bosko Milekic <bmilekic@FreeBSD.org>.
3 * Copyright (c) 2010 Isilon Systems, Inc. (http://www.isilon.com/)
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/11/sys/vm/memguard.c 325036 2017-10-27 14:22:56Z markj $");
30
31/*
32 * MemGuard is a simple replacement allocator for debugging only
33 * which provides ElectricFence-style memory barrier protection on
34 * objects being allocated, and is used to detect tampering-after-free
35 * scenarios.
36 *
37 * See the memguard(9) man page for more information on using MemGuard.
38 */
39
40#include "opt_vm.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/types.h>
46#include <sys/queue.h>
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/malloc.h>
50#include <sys/sysctl.h>
51#include <sys/vmem.h>
52
53#include <vm/vm.h>
54#include <vm/uma.h>
55#include <vm/vm_param.h>
56#include <vm/vm_page.h>
57#include <vm/vm_map.h>
58#include <vm/vm_object.h>
59#include <vm/vm_kern.h>
60#include <vm/vm_extern.h>
61#include <vm/uma_int.h>
62#include <vm/memguard.h>
63
64static SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW, NULL, "MemGuard data");
65/*
66 * The vm_memguard_divisor variable controls how much of kmem_map should be
67 * reserved for MemGuard.
68 */
69static u_int vm_memguard_divisor;
70SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
71    &vm_memguard_divisor,
72    0, "(kmem_size/memguard_divisor) == memguard submap size");
73
74/*
75 * Short description (ks_shortdesc) of memory type to monitor.
76 */
77static char vm_memguard_desc[128] = "";
78static struct malloc_type *vm_memguard_mtype = NULL;
79TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
80static int
81memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
82{
83	char desc[sizeof(vm_memguard_desc)];
84	int error;
85
86	strlcpy(desc, vm_memguard_desc, sizeof(desc));
87	error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
88	if (error != 0 || req->newptr == NULL)
89		return (error);
90
91	mtx_lock(&malloc_mtx);
92	/* If mtp is NULL, it will be initialized in memguard_cmp() */
93	vm_memguard_mtype = malloc_desc2type(desc);
94	strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
95	mtx_unlock(&malloc_mtx);
96	return (error);
97}
98SYSCTL_PROC(_vm_memguard, OID_AUTO, desc,
99    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
100    memguard_sysctl_desc, "A", "Short description of memory type to monitor");
101
102static vm_offset_t memguard_cursor;
103static vm_offset_t memguard_base;
104static vm_size_t memguard_mapsize;
105static vm_size_t memguard_physlimit;
106static u_long memguard_wasted;
107static u_long memguard_wrap;
108static u_long memguard_succ;
109static u_long memguard_fail_kva;
110static u_long memguard_fail_pgs;
111
112SYSCTL_ULONG(_vm_memguard, OID_AUTO, cursor, CTLFLAG_RD,
113    &memguard_cursor, 0, "MemGuard cursor");
114SYSCTL_ULONG(_vm_memguard, OID_AUTO, mapsize, CTLFLAG_RD,
115    &memguard_mapsize, 0, "MemGuard private arena size");
116SYSCTL_ULONG(_vm_memguard, OID_AUTO, phys_limit, CTLFLAG_RD,
117    &memguard_physlimit, 0, "Limit on MemGuard memory consumption");
118SYSCTL_ULONG(_vm_memguard, OID_AUTO, wasted, CTLFLAG_RD,
119    &memguard_wasted, 0, "Excess memory used through page promotion");
120SYSCTL_ULONG(_vm_memguard, OID_AUTO, wrapcnt, CTLFLAG_RD,
121    &memguard_wrap, 0, "MemGuard cursor wrap count");
122SYSCTL_ULONG(_vm_memguard, OID_AUTO, numalloc, CTLFLAG_RD,
123    &memguard_succ, 0, "Count of successful MemGuard allocations");
124SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_kva, CTLFLAG_RD,
125    &memguard_fail_kva, 0, "MemGuard failures due to lack of KVA");
126SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_pgs, CTLFLAG_RD,
127    &memguard_fail_pgs, 0, "MemGuard failures due to lack of pages");
128
129#define MG_GUARD_AROUND		0x001
130#define MG_GUARD_ALLLARGE	0x002
131#define MG_GUARD_NOFREE		0x004
132static int memguard_options = MG_GUARD_AROUND;
133SYSCTL_INT(_vm_memguard, OID_AUTO, options, CTLFLAG_RWTUN,
134    &memguard_options, 0,
135    "MemGuard options:\n"
136    "\t0x001 - add guard pages around each allocation\n"
137    "\t0x002 - always use MemGuard for allocations over a page\n"
138    "\t0x004 - guard uma(9) zones with UMA_ZONE_NOFREE flag");
139
140static u_int memguard_minsize;
141static u_long memguard_minsize_reject;
142SYSCTL_UINT(_vm_memguard, OID_AUTO, minsize, CTLFLAG_RW,
143    &memguard_minsize, 0, "Minimum size for page promotion");
144SYSCTL_ULONG(_vm_memguard, OID_AUTO, minsize_reject, CTLFLAG_RD,
145    &memguard_minsize_reject, 0, "# times rejected for size");
146
147static u_int memguard_frequency;
148static u_long memguard_frequency_hits;
149SYSCTL_UINT(_vm_memguard, OID_AUTO, frequency, CTLFLAG_RWTUN,
150    &memguard_frequency, 0, "Times in 100000 that MemGuard will randomly run");
151SYSCTL_ULONG(_vm_memguard, OID_AUTO, frequency_hits, CTLFLAG_RD,
152    &memguard_frequency_hits, 0, "# times MemGuard randomly chose");
153
154
155/*
156 * Return a fudged value to be used for vm_kmem_size for allocating
157 * the kmem_map.  The memguard memory will be a submap.
158 */
159unsigned long
160memguard_fudge(unsigned long km_size, const struct vm_map *parent_map)
161{
162	u_long mem_pgs, parent_size;
163
164	vm_memguard_divisor = 10;
165	/* CTFLAG_RDTUN doesn't work during the early boot process. */
166	TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
167
168	parent_size = vm_map_max(parent_map) - vm_map_min(parent_map) +
169	    PAGE_SIZE;
170	/* Pick a conservative value if provided value sucks. */
171	if ((vm_memguard_divisor <= 0) ||
172	    ((parent_size / vm_memguard_divisor) == 0))
173		vm_memguard_divisor = 10;
174	/*
175	 * Limit consumption of physical pages to
176	 * 1/vm_memguard_divisor of system memory.  If the KVA is
177	 * smaller than this then the KVA limit comes into play first.
178	 * This prevents memguard's page promotions from completely
179	 * using up memory, since most malloc(9) calls are sub-page.
180	 */
181	mem_pgs = vm_cnt.v_page_count;
182	memguard_physlimit = (mem_pgs / vm_memguard_divisor) * PAGE_SIZE;
183	/*
184	 * We want as much KVA as we can take safely.  Use at most our
185	 * allotted fraction of the parent map's size.  Limit this to
186	 * twice the physical memory to avoid using too much memory as
187	 * pagetable pages (size must be multiple of PAGE_SIZE).
188	 */
189	memguard_mapsize = round_page(parent_size / vm_memguard_divisor);
190	if (memguard_mapsize / (2 * PAGE_SIZE) > mem_pgs)
191		memguard_mapsize = mem_pgs * 2 * PAGE_SIZE;
192	if (km_size + memguard_mapsize > parent_size)
193		memguard_mapsize = 0;
194	return (km_size + memguard_mapsize);
195}
196
197/*
198 * Initialize the MemGuard mock allocator.  All objects from MemGuard come
199 * out of a single VM map (contiguous chunk of address space).
200 */
201void
202memguard_init(vmem_t *parent)
203{
204	vm_offset_t base;
205
206	vmem_alloc(parent, memguard_mapsize, M_BESTFIT | M_WAITOK, &base);
207	vmem_init(memguard_arena, "memguard arena", base, memguard_mapsize,
208	    PAGE_SIZE, 0, M_WAITOK);
209	memguard_cursor = base;
210	memguard_base = base;
211
212	printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
213	printf("\tMEMGUARD map base: 0x%lx\n", (u_long)base);
214	printf("\tMEMGUARD map size: %jd KBytes\n",
215	    (uintmax_t)memguard_mapsize >> 10);
216}
217
218/*
219 * Run things that can't be done as early as memguard_init().
220 */
221static void
222memguard_sysinit(void)
223{
224	struct sysctl_oid_list *parent;
225
226	parent = SYSCTL_STATIC_CHILDREN(_vm_memguard);
227
228	SYSCTL_ADD_UAUTO(NULL, parent, OID_AUTO, "mapstart", CTLFLAG_RD,
229	    &memguard_base, "MemGuard KVA base");
230	SYSCTL_ADD_UAUTO(NULL, parent, OID_AUTO, "maplimit", CTLFLAG_RD,
231	    &memguard_mapsize, "MemGuard KVA size");
232#if 0
233	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapused", CTLFLAG_RD,
234	    &memguard_map->size, "MemGuard KVA used");
235#endif
236}
237SYSINIT(memguard, SI_SUB_KLD, SI_ORDER_ANY, memguard_sysinit, NULL);
238
239/*
240 * v2sizep() converts a virtual address of the first page allocated for
241 * an item to a pointer to u_long recording the size of the original
242 * allocation request.
243 *
244 * This routine is very similar to those defined by UMA in uma_int.h.
245 * The difference is that this routine stores the originally allocated
246 * size in one of the page's fields that is unused when the page is
247 * wired rather than the object field, which is used.
248 */
249static u_long *
250v2sizep(vm_offset_t va)
251{
252	vm_paddr_t pa;
253	struct vm_page *p;
254
255	pa = pmap_kextract(va);
256	if (pa == 0)
257		panic("MemGuard detected double-free of %p", (void *)va);
258	p = PHYS_TO_VM_PAGE(pa);
259	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
260	    ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
261	return (&p->plinks.memguard.p);
262}
263
264static u_long *
265v2sizev(vm_offset_t va)
266{
267	vm_paddr_t pa;
268	struct vm_page *p;
269
270	pa = pmap_kextract(va);
271	if (pa == 0)
272		panic("MemGuard detected double-free of %p", (void *)va);
273	p = PHYS_TO_VM_PAGE(pa);
274	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
275	    ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
276	return (&p->plinks.memguard.v);
277}
278
279/*
280 * Allocate a single object of specified size with specified flags
281 * (either M_WAITOK or M_NOWAIT).
282 */
283void *
284memguard_alloc(unsigned long req_size, int flags)
285{
286	vm_offset_t addr, origaddr;
287	u_long size_p, size_v;
288	int do_guard, rv;
289
290	size_p = round_page(req_size);
291	if (size_p == 0)
292		return (NULL);
293	/*
294	 * To ensure there are holes on both sides of the allocation,
295	 * request 2 extra pages of KVA.  We will only actually add a
296	 * vm_map_entry and get pages for the original request.  Save
297	 * the value of memguard_options so we have a consistent
298	 * value.
299	 */
300	size_v = size_p;
301	do_guard = (memguard_options & MG_GUARD_AROUND) != 0;
302	if (do_guard)
303		size_v += 2 * PAGE_SIZE;
304
305	/*
306	 * When we pass our memory limit, reject sub-page allocations.
307	 * Page-size and larger allocations will use the same amount
308	 * of physical memory whether we allocate or hand off to
309	 * uma_large_alloc(), so keep those.
310	 */
311	if (vmem_size(memguard_arena, VMEM_ALLOC) >= memguard_physlimit &&
312	    req_size < PAGE_SIZE) {
313		addr = (vm_offset_t)NULL;
314		memguard_fail_pgs++;
315		goto out;
316	}
317	/*
318	 * Keep a moving cursor so we don't recycle KVA as long as
319	 * possible.  It's not perfect, since we don't know in what
320	 * order previous allocations will be free'd, but it's simple
321	 * and fast, and requires O(1) additional storage if guard
322	 * pages are not used.
323	 *
324	 * XXX This scheme will lead to greater fragmentation of the
325	 * map, unless vm_map_findspace() is tweaked.
326	 */
327	for (;;) {
328		if (vmem_xalloc(memguard_arena, size_v, 0, 0, 0,
329		    memguard_cursor, VMEM_ADDR_MAX,
330		    M_BESTFIT | M_NOWAIT, &origaddr) == 0)
331			break;
332		/*
333		 * The map has no space.  This may be due to
334		 * fragmentation, or because the cursor is near the
335		 * end of the map.
336		 */
337		if (memguard_cursor == memguard_base) {
338			memguard_fail_kva++;
339			addr = (vm_offset_t)NULL;
340			goto out;
341		}
342		memguard_wrap++;
343		memguard_cursor = memguard_base;
344	}
345	addr = origaddr;
346	if (do_guard)
347		addr += PAGE_SIZE;
348	rv = kmem_back(kmem_object, addr, size_p, flags);
349	if (rv != KERN_SUCCESS) {
350		vmem_xfree(memguard_arena, origaddr, size_v);
351		memguard_fail_pgs++;
352		addr = (vm_offset_t)NULL;
353		goto out;
354	}
355	memguard_cursor = addr + size_v;
356	*v2sizep(trunc_page(addr)) = req_size;
357	*v2sizev(trunc_page(addr)) = size_v;
358	memguard_succ++;
359	if (req_size < PAGE_SIZE) {
360		memguard_wasted += (PAGE_SIZE - req_size);
361		if (do_guard) {
362			/*
363			 * Align the request to 16 bytes, and return
364			 * an address near the end of the page, to
365			 * better detect array overrun.
366			 */
367			req_size = roundup2(req_size, 16);
368			addr += (PAGE_SIZE - req_size);
369		}
370	}
371out:
372	return ((void *)addr);
373}
374
375int
376is_memguard_addr(void *addr)
377{
378	vm_offset_t a = (vm_offset_t)(uintptr_t)addr;
379
380	return (a >= memguard_base && a < memguard_base + memguard_mapsize);
381}
382
383/*
384 * Free specified single object.
385 */
386void
387memguard_free(void *ptr)
388{
389	vm_offset_t addr;
390	u_long req_size, size, sizev;
391	char *temp;
392	int i;
393
394	addr = trunc_page((uintptr_t)ptr);
395	req_size = *v2sizep(addr);
396	sizev = *v2sizev(addr);
397	size = round_page(req_size);
398
399	/*
400	 * Page should not be guarded right now, so force a write.
401	 * The purpose of this is to increase the likelihood of
402	 * catching a double-free, but not necessarily a
403	 * tamper-after-free (the second thread freeing might not
404	 * write before freeing, so this forces it to and,
405	 * subsequently, trigger a fault).
406	 */
407	temp = ptr;
408	for (i = 0; i < size; i += PAGE_SIZE)
409		temp[i] = 'M';
410
411	/*
412	 * This requires carnal knowledge of the implementation of
413	 * kmem_free(), but since we've already replaced kmem_malloc()
414	 * above, it's not really any worse.  We want to use the
415	 * vm_map lock to serialize updates to memguard_wasted, since
416	 * we had the lock at increment.
417	 */
418	kmem_unback(kmem_object, addr, size);
419	if (sizev > size)
420		addr -= PAGE_SIZE;
421	vmem_xfree(memguard_arena, addr, sizev);
422	if (req_size < PAGE_SIZE)
423		memguard_wasted -= (PAGE_SIZE - req_size);
424}
425
426/*
427 * Re-allocate an allocation that was originally guarded.
428 */
429void *
430memguard_realloc(void *addr, unsigned long size, struct malloc_type *mtp,
431    int flags)
432{
433	void *newaddr;
434	u_long old_size;
435
436	/*
437	 * Allocate the new block.  Force the allocation to be guarded
438	 * as the original may have been guarded through random
439	 * chance, and that should be preserved.
440	 */
441	if ((newaddr = memguard_alloc(size, flags)) == NULL)
442		return (NULL);
443
444	/* Copy over original contents. */
445	old_size = *v2sizep(trunc_page((uintptr_t)addr));
446	bcopy(addr, newaddr, min(size, old_size));
447	memguard_free(addr);
448	return (newaddr);
449}
450
451static int
452memguard_cmp(unsigned long size)
453{
454
455	if (size < memguard_minsize) {
456		memguard_minsize_reject++;
457		return (0);
458	}
459	if ((memguard_options & MG_GUARD_ALLLARGE) != 0 && size >= PAGE_SIZE)
460		return (1);
461	if (memguard_frequency > 0 &&
462	    (random() % 100000) < memguard_frequency) {
463		memguard_frequency_hits++;
464		return (1);
465	}
466
467	return (0);
468}
469
470int
471memguard_cmp_mtp(struct malloc_type *mtp, unsigned long size)
472{
473
474	if (memguard_cmp(size))
475		return(1);
476
477#if 1
478	/*
479	 * The safest way of comparsion is to always compare short description
480	 * string of memory type, but it is also the slowest way.
481	 */
482	return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
483#else
484	/*
485	 * If we compare pointers, there are two possible problems:
486	 * 1. Memory type was unloaded and new memory type was allocated at the
487	 *    same address.
488	 * 2. Memory type was unloaded and loaded again, but allocated at a
489	 *    different address.
490	 */
491	if (vm_memguard_mtype != NULL)
492		return (mtp == vm_memguard_mtype);
493	if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
494		vm_memguard_mtype = mtp;
495		return (1);
496	}
497	return (0);
498#endif
499}
500
501int
502memguard_cmp_zone(uma_zone_t zone)
503{
504
505	if ((memguard_options & MG_GUARD_NOFREE) == 0 &&
506	    zone->uz_flags & UMA_ZONE_NOFREE)
507		return (0);
508
509	if (memguard_cmp(zone->uz_size))
510		return (1);
511
512	/*
513	 * The safest way of comparsion is to always compare zone name,
514	 * but it is also the slowest way.
515	 */
516	return (strcmp(zone->uz_name, vm_memguard_desc) == 0);
517}
518