memguard.c revision 211194
1/*-
2 * Copyright (c) 2005, Bosko Milekic <bmilekic@FreeBSD.org>.
3 * Copyright (c) 2010 Isilon Systems, Inc. (http://www.isilon.com/)
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/vm/memguard.c 211194 2010-08-11 22:10:37Z mdf $");
30
31/*
32 * MemGuard is a simple replacement allocator for debugging only
33 * which provides ElectricFence-style memory barrier protection on
34 * objects being allocated, and is used to detect tampering-after-free
35 * scenarios.
36 *
37 * See the memguard(9) man page for more information on using MemGuard.
38 */
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/types.h>
44#include <sys/queue.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/malloc.h>
48#include <sys/sysctl.h>
49
50#include <vm/vm.h>
51#include <vm/uma.h>
52#include <vm/vm_param.h>
53#include <vm/vm_page.h>
54#include <vm/vm_map.h>
55#include <vm/vm_object.h>
56#include <vm/vm_extern.h>
57#include <vm/memguard.h>
58
59SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW, NULL, "MemGuard data");
60/*
61 * The vm_memguard_divisor variable controls how much of kmem_map should be
62 * reserved for MemGuard.
63 */
64static u_int vm_memguard_divisor;
65SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RDTUN,
66    &vm_memguard_divisor,
67    0, "(kmem_size/memguard_divisor) == memguard submap size");
68
69/*
70 * Short description (ks_shortdesc) of memory type to monitor.
71 */
72static char vm_memguard_desc[128] = "";
73static struct malloc_type *vm_memguard_mtype = NULL;
74TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
75static int
76memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
77{
78	char desc[sizeof(vm_memguard_desc)];
79	int error;
80
81	strlcpy(desc, vm_memguard_desc, sizeof(desc));
82	error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
83	if (error != 0 || req->newptr == NULL)
84		return (error);
85
86	mtx_lock(&malloc_mtx);
87	/*
88	 * If mtp is NULL, it will be initialized in memguard_cmp().
89	 */
90	vm_memguard_mtype = malloc_desc2type(desc);
91	strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
92	mtx_unlock(&malloc_mtx);
93	return (error);
94}
95SYSCTL_PROC(_vm_memguard, OID_AUTO, desc,
96    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
97    memguard_sysctl_desc, "A", "Short description of memory type to monitor");
98
99static vm_map_t memguard_map = NULL;
100static vm_offset_t memguard_cursor;
101static vm_size_t memguard_mapsize;
102static vm_size_t memguard_physlimit;
103static u_long memguard_wasted;
104static u_long memguard_wrap;
105static u_long memguard_succ;
106static u_long memguard_fail_kva;
107static u_long memguard_fail_pgs;
108
109SYSCTL_ULONG(_vm_memguard, OID_AUTO, cursor, CTLFLAG_RD,
110    &memguard_cursor, 0, "MemGuard cursor");
111SYSCTL_ULONG(_vm_memguard, OID_AUTO, mapsize, CTLFLAG_RD,
112    &memguard_mapsize, 0, "MemGuard private vm_map size");
113SYSCTL_ULONG(_vm_memguard, OID_AUTO, phys_limit, CTLFLAG_RD,
114    &memguard_physlimit, 0, "Limit on MemGuard memory consumption");
115SYSCTL_ULONG(_vm_memguard, OID_AUTO, wasted, CTLFLAG_RD,
116    &memguard_wasted, 0, "Excess memory used through page promotion");
117SYSCTL_ULONG(_vm_memguard, OID_AUTO, wrapcnt, CTLFLAG_RD,
118    &memguard_wrap, 0, "MemGuard cursor wrap count");
119SYSCTL_ULONG(_vm_memguard, OID_AUTO, numalloc, CTLFLAG_RD,
120    &memguard_succ, 0, "Count of successful MemGuard allocations");
121SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_kva, CTLFLAG_RD,
122    &memguard_fail_kva, 0, "MemGuard failures due to lack of KVA");
123SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_pgs, CTLFLAG_RD,
124    &memguard_fail_pgs, 0, "MemGuard failures due to lack of pages");
125
126#define MG_GUARD	0x001
127#define MG_ALLLARGE	0x002
128static int memguard_options = MG_GUARD;
129TUNABLE_INT("vm.memguard.options", &memguard_options);
130SYSCTL_INT(_vm_memguard, OID_AUTO, options, CTLFLAG_RW,
131    &memguard_options, 0,
132    "MemGuard options:\n"
133    "\t0x001 - add guard pages around each allocation\n"
134    "\t0x002 - always use MemGuard for allocations over a page");
135
136static u_int memguard_minsize;
137static u_long memguard_minsize_reject;
138SYSCTL_UINT(_vm_memguard, OID_AUTO, minsize, CTLFLAG_RW,
139    &memguard_minsize, 0, "Minimum size for page promotion");
140SYSCTL_ULONG(_vm_memguard, OID_AUTO, minsize_reject, CTLFLAG_RD,
141    &memguard_minsize_reject, 0, "# times rejected for size");
142
143static u_int memguard_frequency;
144static u_long memguard_frequency_hits;
145TUNABLE_INT("vm.memguard.frequency", &memguard_frequency);
146SYSCTL_UINT(_vm_memguard, OID_AUTO, frequency, CTLFLAG_RW,
147    &memguard_frequency, 0, "Times in 100000 that MemGuard will randomly run");
148SYSCTL_ULONG(_vm_memguard, OID_AUTO, frequency_hits, CTLFLAG_RD,
149    &memguard_frequency_hits, 0, "# times MemGuard randomly chose");
150
151
152/*
153 * Return a fudged value to be used for vm_kmem_size for allocating
154 * the kmem_map.  The memguard memory will be a submap.
155 */
156unsigned long
157memguard_fudge(unsigned long km_size, unsigned long km_max)
158{
159	u_long mem_pgs = cnt.v_page_count;
160
161	vm_memguard_divisor = 10;
162	TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
163
164	/* Pick a conservative value if provided value sucks. */
165	if ((vm_memguard_divisor <= 0) ||
166	    ((km_size / vm_memguard_divisor) == 0))
167		vm_memguard_divisor = 10;
168	/*
169	 * Limit consumption of physical pages to
170	 * 1/vm_memguard_divisor of system memory.  If the KVA is
171	 * smaller than this then the KVA limit comes into play first.
172	 * This prevents memguard's page promotions from completely
173	 * using up memory, since most malloc(9) calls are sub-page.
174	 */
175	memguard_physlimit = (mem_pgs / vm_memguard_divisor) * PAGE_SIZE;
176	/*
177	 * We want as much KVA as we can take safely.  Use at most our
178	 * allotted fraction of kmem_max.  Limit this to twice the
179	 * physical memory to avoid using too much memory as pagetable
180	 * pages.
181	 */
182	memguard_mapsize = km_max / vm_memguard_divisor;
183	/* size must be multiple of PAGE_SIZE */
184	memguard_mapsize = round_page(memguard_mapsize);
185	if (memguard_mapsize / (2 * PAGE_SIZE) > mem_pgs)
186		memguard_mapsize = mem_pgs * 2 * PAGE_SIZE;
187	if (km_size + memguard_mapsize > km_max)
188		return (km_max);
189	return (km_size + memguard_mapsize);
190}
191
192/*
193 * Initialize the MemGuard mock allocator.  All objects from MemGuard come
194 * out of a single VM map (contiguous chunk of address space).
195 */
196void
197memguard_init(vm_map_t parent_map)
198{
199	vm_offset_t base, limit;
200
201	memguard_map = kmem_suballoc(parent_map, &base, &limit,
202	    memguard_mapsize, FALSE);
203	memguard_map->system_map = 1;
204	KASSERT(memguard_mapsize == limit - base,
205	    ("Expected %lu, got %lu", (u_long)memguard_mapsize,
206	     (u_long)(limit - base)));
207	memguard_cursor = base;
208
209	printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
210	printf("\tMEMGUARD map base: 0x%lx\n", (u_long)base);
211	printf("\tMEMGUARD map limit: 0x%lx\n", (u_long)limit);
212	printf("\tMEMGUARD map size: %jd KBytes\n",
213	    (uintmax_t)memguard_mapsize >> 10);
214}
215
216/*
217 * Run things that can't be done as early as memguard_init().
218 */
219static void
220memguard_sysinit(void)
221{
222	struct sysctl_oid_list *parent;
223
224	parent = SYSCTL_STATIC_CHILDREN(_vm_memguard);
225
226	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapstart", CTLFLAG_RD,
227	    &memguard_map->min_offset, "MemGuard KVA base");
228	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "maplimit", CTLFLAG_RD,
229	    &memguard_map->max_offset, "MemGuard KVA end");
230	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapused", CTLFLAG_RD,
231	    &memguard_map->size, "MemGuard KVA used");
232}
233SYSINIT(memguard, SI_SUB_KLD, SI_ORDER_ANY, memguard_sysinit, NULL);
234
235/*
236 * v2sizep() converts a virtual address of the first page allocated for
237 * an item to a pointer to u_long recording the size of the original
238 * allocation request.
239 *
240 * This routine is very similar to those defined by UMA in uma_int.h.
241 * The difference is that this routine stores the originally allocated
242 * size in one of the page's fields that is unused when the page is
243 * wired rather than the object field, which is used.
244 */
245static u_long *
246v2sizep(vm_offset_t va)
247{
248	struct vm_page *p;
249
250	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
251	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
252	    ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
253	return ((u_long *)&p->pageq.tqe_next);
254}
255
256/*
257 * Allocate a single object of specified size with specified flags
258 * (either M_WAITOK or M_NOWAIT).
259 */
260void *
261memguard_alloc(unsigned long req_size, int flags)
262{
263	vm_offset_t addr;
264	u_long size_p, size_v;
265	int do_guard, rv;
266
267	size_p = round_page(req_size);
268	if (size_p == 0)
269		return (NULL);
270	/*
271	 * To ensure there are holes on both sides of the allocation,
272	 * request 2 extra pages of KVA.  We will only actually add a
273	 * vm_map_entry and get pages for the original request.  Save
274	 * the value of memguard_options so we have a consistent
275	 * value.
276	 */
277	size_v = size_p;
278	do_guard = (memguard_options & MG_GUARD) != 0;
279	if (do_guard)
280		size_v += 2 * PAGE_SIZE;
281
282	vm_map_lock(memguard_map);
283	/*
284	 * When we pass our memory limit, reject sub-page allocations.
285	 * Page-size and larger allocations will use the same amount
286	 * of physical memory whether we allocate or hand off to
287	 * uma_large_alloc(), so keep those.
288	 */
289	if (memguard_map->size >= memguard_physlimit &&
290	    req_size < PAGE_SIZE) {
291		addr = (vm_offset_t)NULL;
292		memguard_fail_pgs++;
293		goto out;
294	}
295	/*
296	 * Keep a moving cursor so we don't recycle KVA as long as
297	 * possible.  It's not perfect, since we don't know in what
298	 * order previous allocations will be free'd, but it's simple
299	 * and fast, and requires O(1) additional storage if guard
300	 * pages are not used.
301	 *
302	 * XXX This scheme will lead to greater fragmentation of the
303	 * map, unless vm_map_findspace() is tweaked.
304	 */
305	for (;;) {
306		rv = vm_map_findspace(memguard_map, memguard_cursor,
307		    size_v, &addr);
308		if (rv == KERN_SUCCESS)
309			break;
310		/*
311		 * The map has no space.  This may be due to
312		 * fragmentation, or because the cursor is near the
313		 * end of the map.
314		 */
315		if (memguard_cursor == vm_map_min(memguard_map)) {
316			memguard_fail_kva++;
317			addr = (vm_offset_t)NULL;
318			goto out;
319		}
320		memguard_wrap++;
321		memguard_cursor = vm_map_min(memguard_map);
322	}
323	if (do_guard)
324		addr += PAGE_SIZE;
325	rv = kmem_back(memguard_map, addr, size_p, flags);
326	if (rv != KERN_SUCCESS) {
327		memguard_fail_pgs++;
328		addr = (vm_offset_t)NULL;
329		goto out;
330	}
331	memguard_cursor = addr + size_p;
332	*v2sizep(trunc_page(addr)) = req_size;
333	memguard_succ++;
334	if (req_size < PAGE_SIZE) {
335		memguard_wasted += (PAGE_SIZE - req_size);
336		if (do_guard) {
337			/*
338			 * Align the request to 16 bytes, and return
339			 * an address near the end of the page, to
340			 * better detect array overrun.
341			 */
342			req_size = roundup2(req_size, 16);
343			addr += (PAGE_SIZE - req_size);
344		}
345	}
346out:
347	vm_map_unlock(memguard_map);
348	return ((void *)addr);
349}
350
351int
352is_memguard_addr(void *addr)
353{
354	vm_offset_t a = (vm_offset_t)(uintptr_t)addr;
355
356	return (a >= memguard_map->min_offset && a < memguard_map->max_offset);
357}
358
359/*
360 * Free specified single object.
361 */
362void
363memguard_free(void *ptr)
364{
365	vm_offset_t addr;
366	u_long req_size, size;
367	char *temp;
368	int i;
369
370	addr = trunc_page((uintptr_t)ptr);
371	req_size = *v2sizep(addr);
372	size = round_page(req_size);
373
374	/*
375	 * Page should not be guarded right now, so force a write.
376	 * The purpose of this is to increase the likelihood of
377	 * catching a double-free, but not necessarily a
378	 * tamper-after-free (the second thread freeing might not
379	 * write before freeing, so this forces it to and,
380	 * subsequently, trigger a fault).
381	 */
382	temp = ptr;
383	for (i = 0; i < size; i += PAGE_SIZE)
384		temp[i] = 'M';
385
386	/*
387	 * This requires carnal knowledge of the implementation of
388	 * kmem_free(), but since we've already replaced kmem_malloc()
389	 * above, it's not really any worse.  We want to use the
390	 * vm_map lock to serialize updates to memguard_wasted, since
391	 * we had the lock at increment.
392	 */
393	vm_map_lock(memguard_map);
394	if (req_size < PAGE_SIZE)
395		memguard_wasted -= (PAGE_SIZE - req_size);
396	(void)vm_map_delete(memguard_map, addr, addr + size);
397	vm_map_unlock(memguard_map);
398}
399
400int
401memguard_cmp(struct malloc_type *mtp, unsigned long size)
402{
403
404	if (size < memguard_minsize) {
405		memguard_minsize_reject++;
406		return (0);
407	}
408	if ((memguard_options & MG_ALLLARGE) != 0 && size >= PAGE_SIZE)
409		return (1);
410	if (memguard_frequency > 0 &&
411	    (random() % 100000) < memguard_frequency) {
412		memguard_frequency_hits++;
413		return (1);
414	}
415#if 1
416	/*
417	 * The safest way of comparsion is to always compare short description
418	 * string of memory type, but it is also the slowest way.
419	 */
420	return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
421#else
422	/*
423	 * If we compare pointers, there are two possible problems:
424	 * 1. Memory type was unloaded and new memory type was allocated at the
425	 *    same address.
426	 * 2. Memory type was unloaded and loaded again, but allocated at a
427	 *    different address.
428	 */
429	if (vm_memguard_mtype != NULL)
430		return (mtp == vm_memguard_mtype);
431	if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
432		vm_memguard_mtype = mtp;
433		return (1);
434	}
435	return (0);
436#endif
437}
438