memguard.c revision 178935
1/*
2 * Copyright (c) 2005,
3 *     Bosko Milekic <bmilekic@FreeBSD.org>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/vm/memguard.c 178935 2008-05-10 23:39:27Z alc $");
29
30/*
31 * MemGuard is a simple replacement allocator for debugging only
32 * which provides ElectricFence-style memory barrier protection on
33 * objects being allocated, and is used to detect tampering-after-free
34 * scenarios.
35 *
36 * See the memguard(9) man page for more information on using MemGuard.
37 */
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/types.h>
43#include <sys/queue.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/malloc.h>
47#include <sys/sysctl.h>
48
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_page.h>
52#include <vm/vm_map.h>
53#include <vm/vm_extern.h>
54#include <vm/memguard.h>
55
56/*
57 * The maximum number of pages allowed per allocation.  If you're using
58 * MemGuard to override very large items (> MAX_PAGES_PER_ITEM in size),
59 * you need to increase MAX_PAGES_PER_ITEM.
60 */
61#define	MAX_PAGES_PER_ITEM	64
62
63SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW, NULL, "MemGuard data");
64/*
65 * The vm_memguard_divisor variable controls how much of kmem_map should be
66 * reserved for MemGuard.
67 */
68u_int vm_memguard_divisor;
69SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RD, &vm_memguard_divisor,
70    0, "(kmem_size/memguard_divisor) == memguard submap size");
71
72/*
73 * Short description (ks_shortdesc) of memory type to monitor.
74 */
75static char vm_memguard_desc[128] = "";
76static struct malloc_type *vm_memguard_mtype = NULL;
77TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
78static int
79memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
80{
81	struct malloc_type_internal *mtip;
82	struct malloc_type_stats *mtsp;
83	struct malloc_type *mtp;
84	char desc[128];
85	long bytes;
86	int error, i;
87
88	strlcpy(desc, vm_memguard_desc, sizeof(desc));
89	error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
90	if (error != 0 || req->newptr == NULL)
91		return (error);
92
93	/*
94	 * We can change memory type when no memory has been allocated for it
95	 * or when there is no such memory type yet (ie. it will be loaded with
96	 * kernel module).
97	 */
98	bytes = 0;
99	mtx_lock(&malloc_mtx);
100	mtp = malloc_desc2type(desc);
101	if (mtp != NULL) {
102		mtip = mtp->ks_handle;
103		for (i = 0; i < MAXCPU; i++) {
104			mtsp = &mtip->mti_stats[i];
105			bytes += mtsp->mts_memalloced;
106			bytes -= mtsp->mts_memfreed;
107		}
108	}
109	if (bytes > 0)
110		error = EBUSY;
111	else {
112		/*
113		 * If mtp is NULL, it will be initialized in memguard_cmp().
114		 */
115		vm_memguard_mtype = mtp;
116		strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
117	}
118	mtx_unlock(&malloc_mtx);
119	return (error);
120}
121SYSCTL_PROC(_vm_memguard, OID_AUTO, desc, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
122    memguard_sysctl_desc, "A", "Short description of memory type to monitor");
123
124/*
125 * Global MemGuard data.
126 */
127static vm_map_t memguard_map;
128static unsigned long memguard_mapsize;
129static unsigned long memguard_mapused;
130struct memguard_entry {
131	STAILQ_ENTRY(memguard_entry) entries;
132	void *ptr;
133};
134static struct memguard_fifo {
135	struct memguard_entry *stqh_first;
136	struct memguard_entry **stqh_last;
137	int index;
138} memguard_fifo_pool[MAX_PAGES_PER_ITEM];
139
140/*
141 * Local prototypes.
142 */
143static void memguard_guard(void *addr, int numpgs);
144static void memguard_unguard(void *addr, int numpgs);
145static struct memguard_fifo *vtomgfifo(vm_offset_t va);
146static void vsetmgfifo(vm_offset_t va, struct memguard_fifo *mgfifo);
147static void vclrmgfifo(vm_offset_t va);
148
149/*
150 * Local macros.  MemGuard data is global, so replace these with whatever
151 * your system uses to protect global data (if it is kernel-level
152 * parallelized).  This is for porting among BSDs.
153 */
154#define	MEMGUARD_CRIT_SECTION_DECLARE	static struct mtx memguard_mtx
155#define	MEMGUARD_CRIT_SECTION_INIT				\
156	mtx_init(&memguard_mtx, "MemGuard mtx", NULL, MTX_DEF)
157#define	MEMGUARD_CRIT_SECTION_ENTER	mtx_lock(&memguard_mtx)
158#define	MEMGUARD_CRIT_SECTION_EXIT	mtx_unlock(&memguard_mtx)
159MEMGUARD_CRIT_SECTION_DECLARE;
160
161/*
162 * Initialize the MemGuard mock allocator.  All objects from MemGuard come
163 * out of a single VM map (contiguous chunk of address space).
164 */
165void
166memguard_init(vm_map_t parent_map, unsigned long size)
167{
168	char *base, *limit;
169	int i;
170
171	/* size must be multiple of PAGE_SIZE */
172	size /= PAGE_SIZE;
173	size++;
174	size *= PAGE_SIZE;
175
176	memguard_map = kmem_suballoc(parent_map, (vm_offset_t *)&base,
177	    (vm_offset_t *)&limit, (vm_size_t)size, FALSE);
178	memguard_map->system_map = 1;
179	memguard_mapsize = size;
180	memguard_mapused = 0;
181
182	MEMGUARD_CRIT_SECTION_INIT;
183	MEMGUARD_CRIT_SECTION_ENTER;
184	for (i = 0; i < MAX_PAGES_PER_ITEM; i++) {
185		STAILQ_INIT(&memguard_fifo_pool[i]);
186		memguard_fifo_pool[i].index = i;
187	}
188	MEMGUARD_CRIT_SECTION_EXIT;
189
190	printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
191	printf("\tMEMGUARD map base: %p\n", base);
192	printf("\tMEMGUARD map limit: %p\n", limit);
193	printf("\tMEMGUARD map size: %ld (Bytes)\n", size);
194}
195
196/*
197 * Allocate a single object of specified size with specified flags (either
198 * M_WAITOK or M_NOWAIT).
199 */
200void *
201memguard_alloc(unsigned long size, int flags)
202{
203	void *obj;
204	struct memguard_entry *e = NULL;
205	int numpgs;
206
207	numpgs = size / PAGE_SIZE;
208	if ((size % PAGE_SIZE) != 0)
209		numpgs++;
210	if (numpgs > MAX_PAGES_PER_ITEM)
211		panic("MEMGUARD: You must increase MAX_PAGES_PER_ITEM " \
212		    "in memguard.c (requested: %d pages)", numpgs);
213	if (numpgs == 0)
214		return NULL;
215
216	/*
217	 * If we haven't exhausted the memguard_map yet, allocate from
218	 * it and grab a new page, even if we have recycled pages in our
219	 * FIFO.  This is because we wish to allow recycled pages to live
220	 * guarded in the FIFO for as long as possible in order to catch
221	 * even very late tamper-after-frees, even though it means that
222	 * we end up wasting more memory, this is only a DEBUGGING allocator
223	 * after all.
224	 */
225	MEMGUARD_CRIT_SECTION_ENTER;
226	if (memguard_mapused >= memguard_mapsize) {
227		e = STAILQ_FIRST(&memguard_fifo_pool[numpgs - 1]);
228		if (e != NULL) {
229			STAILQ_REMOVE(&memguard_fifo_pool[numpgs - 1], e,
230			    memguard_entry, entries);
231			MEMGUARD_CRIT_SECTION_EXIT;
232			obj = e->ptr;
233			free(e, M_TEMP);
234			memguard_unguard(obj, numpgs);
235			if (flags & M_ZERO)
236				bzero(obj, PAGE_SIZE * numpgs);
237			return obj;
238		}
239		MEMGUARD_CRIT_SECTION_EXIT;
240		if (flags & M_WAITOK)
241			panic("MEMGUARD: Failed with M_WAITOK: " \
242			    "memguard_map too small");
243		return NULL;
244	}
245	memguard_mapused += (PAGE_SIZE * numpgs);
246	MEMGUARD_CRIT_SECTION_EXIT;
247
248	obj = (void *)kmem_malloc(memguard_map, PAGE_SIZE * numpgs, flags);
249	if (obj != NULL) {
250		vsetmgfifo((vm_offset_t)obj, &memguard_fifo_pool[numpgs - 1]);
251		if (flags & M_ZERO)
252			bzero(obj, PAGE_SIZE * numpgs);
253	} else {
254		MEMGUARD_CRIT_SECTION_ENTER;
255		memguard_mapused -= (PAGE_SIZE * numpgs);
256		MEMGUARD_CRIT_SECTION_EXIT;
257	}
258	return obj;
259}
260
261/*
262 * Free specified single object.
263 */
264void
265memguard_free(void *addr)
266{
267	struct memguard_entry *e;
268	struct memguard_fifo *mgfifo;
269	int idx;
270	int *temp;
271
272	addr = (void *)trunc_page((unsigned long)addr);
273
274	/*
275	 * Page should not be guarded by now, so force a write.
276	 * The purpose of this is to increase the likelihood of catching a
277	 * double-free, but not necessarily a tamper-after-free (the second
278	 * thread freeing might not write before freeing, so this forces it
279	 * to and, subsequently, trigger a fault).
280	 */
281	temp = (int *)((unsigned long)addr + (PAGE_SIZE/2)); 	/* in page */
282	*temp = 0xd34dc0d3;
283
284	mgfifo = vtomgfifo((vm_offset_t)addr);
285	idx = mgfifo->index;
286	memguard_guard(addr, idx + 1);
287	e = malloc(sizeof(struct memguard_entry), M_TEMP, M_NOWAIT);
288	if (e == NULL) {
289		MEMGUARD_CRIT_SECTION_ENTER;
290		memguard_mapused -= (PAGE_SIZE * (idx + 1));
291		MEMGUARD_CRIT_SECTION_EXIT;
292		memguard_unguard(addr, idx + 1);	/* just in case */
293		vclrmgfifo((vm_offset_t)addr);
294		kmem_free(memguard_map, (vm_offset_t)addr,
295		    PAGE_SIZE * (idx + 1));
296		return;
297	}
298	e->ptr = addr;
299	MEMGUARD_CRIT_SECTION_ENTER;
300	STAILQ_INSERT_TAIL(mgfifo, e, entries);
301	MEMGUARD_CRIT_SECTION_EXIT;
302}
303
304int
305memguard_cmp(struct malloc_type *mtp)
306{
307
308#if 1
309	/*
310	 * The safest way of comparsion is to always compare short description
311	 * string of memory type, but it is also the slowest way.
312	 */
313	return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
314#else
315	/*
316	 * If we compare pointers, there are two possible problems:
317	 * 1. Memory type was unloaded and new memory type was allocated at the
318	 *    same address.
319	 * 2. Memory type was unloaded and loaded again, but allocated at a
320	 *    different address.
321	 */
322	if (vm_memguard_mtype != NULL)
323		return (mtp == vm_memguard_mtype);
324	if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
325		vm_memguard_mtype = mtp;
326		return (1);
327	}
328	return (0);
329#endif
330}
331
332/*
333 * Guard a page containing specified object (make it read-only so that
334 * future writes to it fail).
335 */
336static void
337memguard_guard(void *addr, int numpgs)
338{
339	void *a = (void *)trunc_page((unsigned long)addr);
340	if (vm_map_protect(memguard_map, (vm_offset_t)a,
341	    (vm_offset_t)((unsigned long)a + (PAGE_SIZE * numpgs)),
342	    VM_PROT_READ, FALSE) != KERN_SUCCESS)
343		panic("MEMGUARD: Unable to guard page!");
344}
345
346/*
347 * Unguard a page containing specified object (make it read-and-write to
348 * allow full data access).
349 */
350static void
351memguard_unguard(void *addr, int numpgs)
352{
353	void *a = (void *)trunc_page((unsigned long)addr);
354	if (vm_map_protect(memguard_map, (vm_offset_t)a,
355	    (vm_offset_t)((unsigned long)a + (PAGE_SIZE * numpgs)),
356	    VM_PROT_DEFAULT, FALSE) != KERN_SUCCESS)
357		panic("MEMGUARD: Unable to unguard page!");
358}
359
360/*
361 * vtomgfifo() converts a virtual address of the first page allocated for
362 * an item to a memguard_fifo_pool reference for the corresponding item's
363 * size.
364 *
365 * vsetmgfifo() sets a reference in an underlying page for the specified
366 * virtual address to an appropriate memguard_fifo_pool.
367 *
368 * These routines are very similar to those defined by UMA in uma_int.h.
369 * The difference is that these routines store the mgfifo in one of the
370 * page's fields that is unused when the page is wired rather than the
371 * object field, which is used.
372 */
373static struct memguard_fifo *
374vtomgfifo(vm_offset_t va)
375{
376	vm_page_t p;
377	struct memguard_fifo *mgfifo;
378
379	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
380	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
381	    ("MEMGUARD: Expected wired page in vtomgfifo!"));
382	mgfifo = (struct memguard_fifo *)p->pageq.tqe_next;
383	return mgfifo;
384}
385
386static void
387vsetmgfifo(vm_offset_t va, struct memguard_fifo *mgfifo)
388{
389	vm_page_t p;
390
391	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
392	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
393	    ("MEMGUARD: Expected wired page in vsetmgfifo!"));
394	p->pageq.tqe_next = (vm_page_t)mgfifo;
395}
396
397static void vclrmgfifo(vm_offset_t va)
398{
399	vm_page_t p;
400
401	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
402	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
403	    ("MEMGUARD: Expected wired page in vclrmgfifo!"));
404	p->pageq.tqe_next = NULL;
405}
406