ffs_alloc.c revision 331722
1/*-
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * Copyright (c) 1982, 1986, 1989, 1993
33 *	The Regents of the University of California.  All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 *    notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 *    notice, this list of conditions and the following disclaimer in the
42 *    documentation and/or other materials provided with the distribution.
43 * 4. Neither the name of the University nor the names of its contributors
44 *    may be used to endorse or promote products derived from this software
45 *    without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: stable/11/sys/ufs/ffs/ffs_alloc.c 331722 2018-03-29 02:50:57Z eadler $");
64
65#include "opt_quota.h"
66
67#include <sys/param.h>
68#include <sys/capsicum.h>
69#include <sys/systm.h>
70#include <sys/bio.h>
71#include <sys/buf.h>
72#include <sys/conf.h>
73#include <sys/fcntl.h>
74#include <sys/file.h>
75#include <sys/filedesc.h>
76#include <sys/priv.h>
77#include <sys/proc.h>
78#include <sys/vnode.h>
79#include <sys/mount.h>
80#include <sys/kernel.h>
81#include <sys/syscallsubr.h>
82#include <sys/sysctl.h>
83#include <sys/syslog.h>
84#include <sys/taskqueue.h>
85
86#include <security/audit/audit.h>
87
88#include <geom/geom.h>
89
90#include <ufs/ufs/dir.h>
91#include <ufs/ufs/extattr.h>
92#include <ufs/ufs/quota.h>
93#include <ufs/ufs/inode.h>
94#include <ufs/ufs/ufs_extern.h>
95#include <ufs/ufs/ufsmount.h>
96
97#include <ufs/ffs/fs.h>
98#include <ufs/ffs/ffs_extern.h>
99#include <ufs/ffs/softdep.h>
100
101typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
102				  int size, int rsize);
103
104static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
105static ufs2_daddr_t
106	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
107static void	ffs_blkfree_cg(struct ufsmount *, struct fs *,
108		    struct vnode *, ufs2_daddr_t, long, ino_t,
109		    struct workhead *);
110static void	ffs_blkfree_trim_completed(struct bio *);
111static void	ffs_blkfree_trim_task(void *ctx, int pending __unused);
112#ifdef INVARIANTS
113static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
114#endif
115static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
116static ino_t	ffs_dirpref(struct inode *);
117static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
118		    int, int);
119static ufs2_daddr_t	ffs_hashalloc
120		(struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
121static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
122		    int);
123static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
124static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
125static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
126
127/*
128 * Allocate a block in the filesystem.
129 *
130 * The size of the requested block is given, which must be some
131 * multiple of fs_fsize and <= fs_bsize.
132 * A preference may be optionally specified. If a preference is given
133 * the following hierarchy is used to allocate a block:
134 *   1) allocate the requested block.
135 *   2) allocate a rotationally optimal block in the same cylinder.
136 *   3) allocate a block in the same cylinder group.
137 *   4) quadradically rehash into other cylinder groups, until an
138 *      available block is located.
139 * If no block preference is given the following hierarchy is used
140 * to allocate a block:
141 *   1) allocate a block in the cylinder group that contains the
142 *      inode for the file.
143 *   2) quadradically rehash into other cylinder groups, until an
144 *      available block is located.
145 */
146int
147ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
148	struct inode *ip;
149	ufs2_daddr_t lbn, bpref;
150	int size, flags;
151	struct ucred *cred;
152	ufs2_daddr_t *bnp;
153{
154	struct fs *fs;
155	struct ufsmount *ump;
156	ufs2_daddr_t bno;
157	u_int cg, reclaimed;
158	static struct timeval lastfail;
159	static int curfail;
160	int64_t delta;
161#ifdef QUOTA
162	int error;
163#endif
164
165	*bnp = 0;
166	ump = ITOUMP(ip);
167	fs = ump->um_fs;
168	mtx_assert(UFS_MTX(ump), MA_OWNED);
169#ifdef INVARIANTS
170	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
171		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
172		    devtoname(ump->um_dev), (long)fs->fs_bsize, size,
173		    fs->fs_fsmnt);
174		panic("ffs_alloc: bad size");
175	}
176	if (cred == NOCRED)
177		panic("ffs_alloc: missing credential");
178#endif /* INVARIANTS */
179	reclaimed = 0;
180retry:
181#ifdef QUOTA
182	UFS_UNLOCK(ump);
183	error = chkdq(ip, btodb(size), cred, 0);
184	if (error)
185		return (error);
186	UFS_LOCK(ump);
187#endif
188	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
189		goto nospace;
190	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
191	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
192		goto nospace;
193	if (bpref >= fs->fs_size)
194		bpref = 0;
195	if (bpref == 0)
196		cg = ino_to_cg(fs, ip->i_number);
197	else
198		cg = dtog(fs, bpref);
199	bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
200	if (bno > 0) {
201		delta = btodb(size);
202		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
203		if (flags & IO_EXT)
204			ip->i_flag |= IN_CHANGE;
205		else
206			ip->i_flag |= IN_CHANGE | IN_UPDATE;
207		*bnp = bno;
208		return (0);
209	}
210nospace:
211#ifdef QUOTA
212	UFS_UNLOCK(ump);
213	/*
214	 * Restore user's disk quota because allocation failed.
215	 */
216	(void) chkdq(ip, -btodb(size), cred, FORCE);
217	UFS_LOCK(ump);
218#endif
219	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
220		reclaimed = 1;
221		softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
222		goto retry;
223	}
224	UFS_UNLOCK(ump);
225	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
226		ffs_fserr(fs, ip->i_number, "filesystem full");
227		uprintf("\n%s: write failed, filesystem is full\n",
228		    fs->fs_fsmnt);
229	}
230	return (ENOSPC);
231}
232
233/*
234 * Reallocate a fragment to a bigger size
235 *
236 * The number and size of the old block is given, and a preference
237 * and new size is also specified. The allocator attempts to extend
238 * the original block. Failing that, the regular block allocator is
239 * invoked to get an appropriate block.
240 */
241int
242ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
243	struct inode *ip;
244	ufs2_daddr_t lbprev;
245	ufs2_daddr_t bprev;
246	ufs2_daddr_t bpref;
247	int osize, nsize, flags;
248	struct ucred *cred;
249	struct buf **bpp;
250{
251	struct vnode *vp;
252	struct fs *fs;
253	struct buf *bp;
254	struct ufsmount *ump;
255	u_int cg, request, reclaimed;
256	int error, gbflags;
257	ufs2_daddr_t bno;
258	static struct timeval lastfail;
259	static int curfail;
260	int64_t delta;
261
262	vp = ITOV(ip);
263	ump = ITOUMP(ip);
264	fs = ump->um_fs;
265	bp = NULL;
266	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
267
268	mtx_assert(UFS_MTX(ump), MA_OWNED);
269#ifdef INVARIANTS
270	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
271		panic("ffs_realloccg: allocation on suspended filesystem");
272	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
273	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
274		printf(
275		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
276		    devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
277		    nsize, fs->fs_fsmnt);
278		panic("ffs_realloccg: bad size");
279	}
280	if (cred == NOCRED)
281		panic("ffs_realloccg: missing credential");
282#endif /* INVARIANTS */
283	reclaimed = 0;
284retry:
285	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
286	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
287		goto nospace;
288	}
289	if (bprev == 0) {
290		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
291		    devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
292		    fs->fs_fsmnt);
293		panic("ffs_realloccg: bad bprev");
294	}
295	UFS_UNLOCK(ump);
296	/*
297	 * Allocate the extra space in the buffer.
298	 */
299	error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
300	if (error) {
301		brelse(bp);
302		return (error);
303	}
304
305	if (bp->b_blkno == bp->b_lblkno) {
306		if (lbprev >= NDADDR)
307			panic("ffs_realloccg: lbprev out of range");
308		bp->b_blkno = fsbtodb(fs, bprev);
309	}
310
311#ifdef QUOTA
312	error = chkdq(ip, btodb(nsize - osize), cred, 0);
313	if (error) {
314		brelse(bp);
315		return (error);
316	}
317#endif
318	/*
319	 * Check for extension in the existing location.
320	 */
321	*bpp = NULL;
322	cg = dtog(fs, bprev);
323	UFS_LOCK(ump);
324	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
325	if (bno) {
326		if (bp->b_blkno != fsbtodb(fs, bno))
327			panic("ffs_realloccg: bad blockno");
328		delta = btodb(nsize - osize);
329		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
330		if (flags & IO_EXT)
331			ip->i_flag |= IN_CHANGE;
332		else
333			ip->i_flag |= IN_CHANGE | IN_UPDATE;
334		allocbuf(bp, nsize);
335		bp->b_flags |= B_DONE;
336		vfs_bio_bzero_buf(bp, osize, nsize - osize);
337		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
338			vfs_bio_set_valid(bp, osize, nsize - osize);
339		*bpp = bp;
340		return (0);
341	}
342	/*
343	 * Allocate a new disk location.
344	 */
345	if (bpref >= fs->fs_size)
346		bpref = 0;
347	switch ((int)fs->fs_optim) {
348	case FS_OPTSPACE:
349		/*
350		 * Allocate an exact sized fragment. Although this makes
351		 * best use of space, we will waste time relocating it if
352		 * the file continues to grow. If the fragmentation is
353		 * less than half of the minimum free reserve, we choose
354		 * to begin optimizing for time.
355		 */
356		request = nsize;
357		if (fs->fs_minfree <= 5 ||
358		    fs->fs_cstotal.cs_nffree >
359		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
360			break;
361		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
362			fs->fs_fsmnt);
363		fs->fs_optim = FS_OPTTIME;
364		break;
365	case FS_OPTTIME:
366		/*
367		 * At this point we have discovered a file that is trying to
368		 * grow a small fragment to a larger fragment. To save time,
369		 * we allocate a full sized block, then free the unused portion.
370		 * If the file continues to grow, the `ffs_fragextend' call
371		 * above will be able to grow it in place without further
372		 * copying. If aberrant programs cause disk fragmentation to
373		 * grow within 2% of the free reserve, we choose to begin
374		 * optimizing for space.
375		 */
376		request = fs->fs_bsize;
377		if (fs->fs_cstotal.cs_nffree <
378		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
379			break;
380		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
381			fs->fs_fsmnt);
382		fs->fs_optim = FS_OPTSPACE;
383		break;
384	default:
385		printf("dev = %s, optim = %ld, fs = %s\n",
386		    devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
387		panic("ffs_realloccg: bad optim");
388		/* NOTREACHED */
389	}
390	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
391	if (bno > 0) {
392		bp->b_blkno = fsbtodb(fs, bno);
393		if (!DOINGSOFTDEP(vp))
394			ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
395			    ip->i_number, vp->v_type, NULL);
396		delta = btodb(nsize - osize);
397		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
398		if (flags & IO_EXT)
399			ip->i_flag |= IN_CHANGE;
400		else
401			ip->i_flag |= IN_CHANGE | IN_UPDATE;
402		allocbuf(bp, nsize);
403		bp->b_flags |= B_DONE;
404		vfs_bio_bzero_buf(bp, osize, nsize - osize);
405		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
406			vfs_bio_set_valid(bp, osize, nsize - osize);
407		*bpp = bp;
408		return (0);
409	}
410#ifdef QUOTA
411	UFS_UNLOCK(ump);
412	/*
413	 * Restore user's disk quota because allocation failed.
414	 */
415	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
416	UFS_LOCK(ump);
417#endif
418nospace:
419	/*
420	 * no space available
421	 */
422	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
423		reclaimed = 1;
424		UFS_UNLOCK(ump);
425		if (bp) {
426			brelse(bp);
427			bp = NULL;
428		}
429		UFS_LOCK(ump);
430		softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
431		goto retry;
432	}
433	UFS_UNLOCK(ump);
434	if (bp)
435		brelse(bp);
436	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
437		ffs_fserr(fs, ip->i_number, "filesystem full");
438		uprintf("\n%s: write failed, filesystem is full\n",
439		    fs->fs_fsmnt);
440	}
441	return (ENOSPC);
442}
443
444/*
445 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
446 *
447 * The vnode and an array of buffer pointers for a range of sequential
448 * logical blocks to be made contiguous is given. The allocator attempts
449 * to find a range of sequential blocks starting as close as possible
450 * from the end of the allocation for the logical block immediately
451 * preceding the current range. If successful, the physical block numbers
452 * in the buffer pointers and in the inode are changed to reflect the new
453 * allocation. If unsuccessful, the allocation is left unchanged. The
454 * success in doing the reallocation is returned. Note that the error
455 * return is not reflected back to the user. Rather the previous block
456 * allocation will be used.
457 */
458
459SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
460
461static int doasyncfree = 1;
462SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
463"do not force synchronous writes when blocks are reallocated");
464
465static int doreallocblks = 1;
466SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
467"enable block reallocation");
468
469static int maxclustersearch = 10;
470SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
4710, "max number of cylinder group to search for contigous blocks");
472
473#ifdef DEBUG
474static volatile int prtrealloc = 0;
475#endif
476
477int
478ffs_reallocblks(ap)
479	struct vop_reallocblks_args /* {
480		struct vnode *a_vp;
481		struct cluster_save *a_buflist;
482	} */ *ap;
483{
484	struct ufsmount *ump;
485
486	/*
487	 * If the underlying device can do deletes, then skip reallocating
488	 * the blocks of this file into contiguous sequences. Devices that
489	 * benefit from BIO_DELETE also benefit from not moving the data.
490	 * These devices are flash and therefore work less well with this
491	 * optimization. Also skip if reallocblks has been disabled globally.
492	 */
493	ump = ap->a_vp->v_mount->mnt_data;
494	if (ump->um_candelete || doreallocblks == 0)
495		return (ENOSPC);
496
497	/*
498	 * We can't wait in softdep prealloc as it may fsync and recurse
499	 * here.  Instead we simply fail to reallocate blocks if this
500	 * rare condition arises.
501	 */
502	if (DOINGSOFTDEP(ap->a_vp))
503		if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
504			return (ENOSPC);
505	if (ump->um_fstype == UFS1)
506		return (ffs_reallocblks_ufs1(ap));
507	return (ffs_reallocblks_ufs2(ap));
508}
509
510static int
511ffs_reallocblks_ufs1(ap)
512	struct vop_reallocblks_args /* {
513		struct vnode *a_vp;
514		struct cluster_save *a_buflist;
515	} */ *ap;
516{
517	struct fs *fs;
518	struct inode *ip;
519	struct vnode *vp;
520	struct buf *sbp, *ebp;
521	ufs1_daddr_t *bap, *sbap, *ebap;
522	struct cluster_save *buflist;
523	struct ufsmount *ump;
524	ufs_lbn_t start_lbn, end_lbn;
525	ufs1_daddr_t soff, newblk, blkno;
526	ufs2_daddr_t pref;
527	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
528	int i, cg, len, start_lvl, end_lvl, ssize;
529
530	vp = ap->a_vp;
531	ip = VTOI(vp);
532	ump = ITOUMP(ip);
533	fs = ump->um_fs;
534	/*
535	 * If we are not tracking block clusters or if we have less than 4%
536	 * free blocks left, then do not attempt to cluster. Running with
537	 * less than 5% free block reserve is not recommended and those that
538	 * choose to do so do not expect to have good file layout.
539	 */
540	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
541		return (ENOSPC);
542	buflist = ap->a_buflist;
543	len = buflist->bs_nchildren;
544	start_lbn = buflist->bs_children[0]->b_lblkno;
545	end_lbn = start_lbn + len - 1;
546#ifdef INVARIANTS
547	for (i = 0; i < len; i++)
548		if (!ffs_checkblk(ip,
549		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
550			panic("ffs_reallocblks: unallocated block 1");
551	for (i = 1; i < len; i++)
552		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
553			panic("ffs_reallocblks: non-logical cluster");
554	blkno = buflist->bs_children[0]->b_blkno;
555	ssize = fsbtodb(fs, fs->fs_frag);
556	for (i = 1; i < len - 1; i++)
557		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
558			panic("ffs_reallocblks: non-physical cluster %d", i);
559#endif
560	/*
561	 * If the cluster crosses the boundary for the first indirect
562	 * block, leave space for the indirect block. Indirect blocks
563	 * are initially laid out in a position after the last direct
564	 * block. Block reallocation would usually destroy locality by
565	 * moving the indirect block out of the way to make room for
566	 * data blocks if we didn't compensate here. We should also do
567	 * this for other indirect block boundaries, but it is only
568	 * important for the first one.
569	 */
570	if (start_lbn < NDADDR && end_lbn >= NDADDR)
571		return (ENOSPC);
572	/*
573	 * If the latest allocation is in a new cylinder group, assume that
574	 * the filesystem has decided to move and do not force it back to
575	 * the previous cylinder group.
576	 */
577	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
578	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
579		return (ENOSPC);
580	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
581	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
582		return (ENOSPC);
583	/*
584	 * Get the starting offset and block map for the first block.
585	 */
586	if (start_lvl == 0) {
587		sbap = &ip->i_din1->di_db[0];
588		soff = start_lbn;
589	} else {
590		idp = &start_ap[start_lvl - 1];
591		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
592			brelse(sbp);
593			return (ENOSPC);
594		}
595		sbap = (ufs1_daddr_t *)sbp->b_data;
596		soff = idp->in_off;
597	}
598	/*
599	 * If the block range spans two block maps, get the second map.
600	 */
601	ebap = NULL;
602	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
603		ssize = len;
604	} else {
605#ifdef INVARIANTS
606		if (start_lvl > 0 &&
607		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
608			panic("ffs_reallocblk: start == end");
609#endif
610		ssize = len - (idp->in_off + 1);
611		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
612			goto fail;
613		ebap = (ufs1_daddr_t *)ebp->b_data;
614	}
615	/*
616	 * Find the preferred location for the cluster. If we have not
617	 * previously failed at this endeavor, then follow our standard
618	 * preference calculation. If we have failed at it, then pick up
619	 * where we last ended our search.
620	 */
621	UFS_LOCK(ump);
622	if (ip->i_nextclustercg == -1)
623		pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
624	else
625		pref = cgdata(fs, ip->i_nextclustercg);
626	/*
627	 * Search the block map looking for an allocation of the desired size.
628	 * To avoid wasting too much time, we limit the number of cylinder
629	 * groups that we will search.
630	 */
631	cg = dtog(fs, pref);
632	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
633		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
634			break;
635		cg += 1;
636		if (cg >= fs->fs_ncg)
637			cg = 0;
638	}
639	/*
640	 * If we have failed in our search, record where we gave up for
641	 * next time. Otherwise, fall back to our usual search citerion.
642	 */
643	if (newblk == 0) {
644		ip->i_nextclustercg = cg;
645		UFS_UNLOCK(ump);
646		goto fail;
647	}
648	ip->i_nextclustercg = -1;
649	/*
650	 * We have found a new contiguous block.
651	 *
652	 * First we have to replace the old block pointers with the new
653	 * block pointers in the inode and indirect blocks associated
654	 * with the file.
655	 */
656#ifdef DEBUG
657	if (prtrealloc)
658		printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
659		    (uintmax_t)ip->i_number,
660		    (intmax_t)start_lbn, (intmax_t)end_lbn);
661#endif
662	blkno = newblk;
663	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
664		if (i == ssize) {
665			bap = ebap;
666			soff = -i;
667		}
668#ifdef INVARIANTS
669		if (!ffs_checkblk(ip,
670		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
671			panic("ffs_reallocblks: unallocated block 2");
672		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
673			panic("ffs_reallocblks: alloc mismatch");
674#endif
675#ifdef DEBUG
676		if (prtrealloc)
677			printf(" %d,", *bap);
678#endif
679		if (DOINGSOFTDEP(vp)) {
680			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
681				softdep_setup_allocdirect(ip, start_lbn + i,
682				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
683				    buflist->bs_children[i]);
684			else
685				softdep_setup_allocindir_page(ip, start_lbn + i,
686				    i < ssize ? sbp : ebp, soff + i, blkno,
687				    *bap, buflist->bs_children[i]);
688		}
689		*bap++ = blkno;
690	}
691	/*
692	 * Next we must write out the modified inode and indirect blocks.
693	 * For strict correctness, the writes should be synchronous since
694	 * the old block values may have been written to disk. In practise
695	 * they are almost never written, but if we are concerned about
696	 * strict correctness, the `doasyncfree' flag should be set to zero.
697	 *
698	 * The test on `doasyncfree' should be changed to test a flag
699	 * that shows whether the associated buffers and inodes have
700	 * been written. The flag should be set when the cluster is
701	 * started and cleared whenever the buffer or inode is flushed.
702	 * We can then check below to see if it is set, and do the
703	 * synchronous write only when it has been cleared.
704	 */
705	if (sbap != &ip->i_din1->di_db[0]) {
706		if (doasyncfree)
707			bdwrite(sbp);
708		else
709			bwrite(sbp);
710	} else {
711		ip->i_flag |= IN_CHANGE | IN_UPDATE;
712		if (!doasyncfree)
713			ffs_update(vp, 1);
714	}
715	if (ssize < len) {
716		if (doasyncfree)
717			bdwrite(ebp);
718		else
719			bwrite(ebp);
720	}
721	/*
722	 * Last, free the old blocks and assign the new blocks to the buffers.
723	 */
724#ifdef DEBUG
725	if (prtrealloc)
726		printf("\n\tnew:");
727#endif
728	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
729		if (!DOINGSOFTDEP(vp))
730			ffs_blkfree(ump, fs, ump->um_devvp,
731			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
732			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
733		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
734#ifdef INVARIANTS
735		if (!ffs_checkblk(ip,
736		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
737			panic("ffs_reallocblks: unallocated block 3");
738#endif
739#ifdef DEBUG
740		if (prtrealloc)
741			printf(" %d,", blkno);
742#endif
743	}
744#ifdef DEBUG
745	if (prtrealloc) {
746		prtrealloc--;
747		printf("\n");
748	}
749#endif
750	return (0);
751
752fail:
753	if (ssize < len)
754		brelse(ebp);
755	if (sbap != &ip->i_din1->di_db[0])
756		brelse(sbp);
757	return (ENOSPC);
758}
759
760static int
761ffs_reallocblks_ufs2(ap)
762	struct vop_reallocblks_args /* {
763		struct vnode *a_vp;
764		struct cluster_save *a_buflist;
765	} */ *ap;
766{
767	struct fs *fs;
768	struct inode *ip;
769	struct vnode *vp;
770	struct buf *sbp, *ebp;
771	ufs2_daddr_t *bap, *sbap, *ebap;
772	struct cluster_save *buflist;
773	struct ufsmount *ump;
774	ufs_lbn_t start_lbn, end_lbn;
775	ufs2_daddr_t soff, newblk, blkno, pref;
776	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
777	int i, cg, len, start_lvl, end_lvl, ssize;
778
779	vp = ap->a_vp;
780	ip = VTOI(vp);
781	ump = ITOUMP(ip);
782	fs = ump->um_fs;
783	/*
784	 * If we are not tracking block clusters or if we have less than 4%
785	 * free blocks left, then do not attempt to cluster. Running with
786	 * less than 5% free block reserve is not recommended and those that
787	 * choose to do so do not expect to have good file layout.
788	 */
789	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
790		return (ENOSPC);
791	buflist = ap->a_buflist;
792	len = buflist->bs_nchildren;
793	start_lbn = buflist->bs_children[0]->b_lblkno;
794	end_lbn = start_lbn + len - 1;
795#ifdef INVARIANTS
796	for (i = 0; i < len; i++)
797		if (!ffs_checkblk(ip,
798		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
799			panic("ffs_reallocblks: unallocated block 1");
800	for (i = 1; i < len; i++)
801		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
802			panic("ffs_reallocblks: non-logical cluster");
803	blkno = buflist->bs_children[0]->b_blkno;
804	ssize = fsbtodb(fs, fs->fs_frag);
805	for (i = 1; i < len - 1; i++)
806		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
807			panic("ffs_reallocblks: non-physical cluster %d", i);
808#endif
809	/*
810	 * If the cluster crosses the boundary for the first indirect
811	 * block, do not move anything in it. Indirect blocks are
812	 * usually initially laid out in a position between the data
813	 * blocks. Block reallocation would usually destroy locality by
814	 * moving the indirect block out of the way to make room for
815	 * data blocks if we didn't compensate here. We should also do
816	 * this for other indirect block boundaries, but it is only
817	 * important for the first one.
818	 */
819	if (start_lbn < NDADDR && end_lbn >= NDADDR)
820		return (ENOSPC);
821	/*
822	 * If the latest allocation is in a new cylinder group, assume that
823	 * the filesystem has decided to move and do not force it back to
824	 * the previous cylinder group.
825	 */
826	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
827	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
828		return (ENOSPC);
829	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
830	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
831		return (ENOSPC);
832	/*
833	 * Get the starting offset and block map for the first block.
834	 */
835	if (start_lvl == 0) {
836		sbap = &ip->i_din2->di_db[0];
837		soff = start_lbn;
838	} else {
839		idp = &start_ap[start_lvl - 1];
840		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
841			brelse(sbp);
842			return (ENOSPC);
843		}
844		sbap = (ufs2_daddr_t *)sbp->b_data;
845		soff = idp->in_off;
846	}
847	/*
848	 * If the block range spans two block maps, get the second map.
849	 */
850	ebap = NULL;
851	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
852		ssize = len;
853	} else {
854#ifdef INVARIANTS
855		if (start_lvl > 0 &&
856		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
857			panic("ffs_reallocblk: start == end");
858#endif
859		ssize = len - (idp->in_off + 1);
860		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
861			goto fail;
862		ebap = (ufs2_daddr_t *)ebp->b_data;
863	}
864	/*
865	 * Find the preferred location for the cluster. If we have not
866	 * previously failed at this endeavor, then follow our standard
867	 * preference calculation. If we have failed at it, then pick up
868	 * where we last ended our search.
869	 */
870	UFS_LOCK(ump);
871	if (ip->i_nextclustercg == -1)
872		pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
873	else
874		pref = cgdata(fs, ip->i_nextclustercg);
875	/*
876	 * Search the block map looking for an allocation of the desired size.
877	 * To avoid wasting too much time, we limit the number of cylinder
878	 * groups that we will search.
879	 */
880	cg = dtog(fs, pref);
881	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
882		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
883			break;
884		cg += 1;
885		if (cg >= fs->fs_ncg)
886			cg = 0;
887	}
888	/*
889	 * If we have failed in our search, record where we gave up for
890	 * next time. Otherwise, fall back to our usual search citerion.
891	 */
892	if (newblk == 0) {
893		ip->i_nextclustercg = cg;
894		UFS_UNLOCK(ump);
895		goto fail;
896	}
897	ip->i_nextclustercg = -1;
898	/*
899	 * We have found a new contiguous block.
900	 *
901	 * First we have to replace the old block pointers with the new
902	 * block pointers in the inode and indirect blocks associated
903	 * with the file.
904	 */
905#ifdef DEBUG
906	if (prtrealloc)
907		printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
908		    (intmax_t)start_lbn, (intmax_t)end_lbn);
909#endif
910	blkno = newblk;
911	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
912		if (i == ssize) {
913			bap = ebap;
914			soff = -i;
915		}
916#ifdef INVARIANTS
917		if (!ffs_checkblk(ip,
918		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
919			panic("ffs_reallocblks: unallocated block 2");
920		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
921			panic("ffs_reallocblks: alloc mismatch");
922#endif
923#ifdef DEBUG
924		if (prtrealloc)
925			printf(" %jd,", (intmax_t)*bap);
926#endif
927		if (DOINGSOFTDEP(vp)) {
928			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
929				softdep_setup_allocdirect(ip, start_lbn + i,
930				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
931				    buflist->bs_children[i]);
932			else
933				softdep_setup_allocindir_page(ip, start_lbn + i,
934				    i < ssize ? sbp : ebp, soff + i, blkno,
935				    *bap, buflist->bs_children[i]);
936		}
937		*bap++ = blkno;
938	}
939	/*
940	 * Next we must write out the modified inode and indirect blocks.
941	 * For strict correctness, the writes should be synchronous since
942	 * the old block values may have been written to disk. In practise
943	 * they are almost never written, but if we are concerned about
944	 * strict correctness, the `doasyncfree' flag should be set to zero.
945	 *
946	 * The test on `doasyncfree' should be changed to test a flag
947	 * that shows whether the associated buffers and inodes have
948	 * been written. The flag should be set when the cluster is
949	 * started and cleared whenever the buffer or inode is flushed.
950	 * We can then check below to see if it is set, and do the
951	 * synchronous write only when it has been cleared.
952	 */
953	if (sbap != &ip->i_din2->di_db[0]) {
954		if (doasyncfree)
955			bdwrite(sbp);
956		else
957			bwrite(sbp);
958	} else {
959		ip->i_flag |= IN_CHANGE | IN_UPDATE;
960		if (!doasyncfree)
961			ffs_update(vp, 1);
962	}
963	if (ssize < len) {
964		if (doasyncfree)
965			bdwrite(ebp);
966		else
967			bwrite(ebp);
968	}
969	/*
970	 * Last, free the old blocks and assign the new blocks to the buffers.
971	 */
972#ifdef DEBUG
973	if (prtrealloc)
974		printf("\n\tnew:");
975#endif
976	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
977		if (!DOINGSOFTDEP(vp))
978			ffs_blkfree(ump, fs, ump->um_devvp,
979			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
980			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
981		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
982#ifdef INVARIANTS
983		if (!ffs_checkblk(ip,
984		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
985			panic("ffs_reallocblks: unallocated block 3");
986#endif
987#ifdef DEBUG
988		if (prtrealloc)
989			printf(" %jd,", (intmax_t)blkno);
990#endif
991	}
992#ifdef DEBUG
993	if (prtrealloc) {
994		prtrealloc--;
995		printf("\n");
996	}
997#endif
998	return (0);
999
1000fail:
1001	if (ssize < len)
1002		brelse(ebp);
1003	if (sbap != &ip->i_din2->di_db[0])
1004		brelse(sbp);
1005	return (ENOSPC);
1006}
1007
1008/*
1009 * Allocate an inode in the filesystem.
1010 *
1011 * If allocating a directory, use ffs_dirpref to select the inode.
1012 * If allocating in a directory, the following hierarchy is followed:
1013 *   1) allocate the preferred inode.
1014 *   2) allocate an inode in the same cylinder group.
1015 *   3) quadradically rehash into other cylinder groups, until an
1016 *      available inode is located.
1017 * If no inode preference is given the following hierarchy is used
1018 * to allocate an inode:
1019 *   1) allocate an inode in cylinder group 0.
1020 *   2) quadradically rehash into other cylinder groups, until an
1021 *      available inode is located.
1022 */
1023int
1024ffs_valloc(pvp, mode, cred, vpp)
1025	struct vnode *pvp;
1026	int mode;
1027	struct ucred *cred;
1028	struct vnode **vpp;
1029{
1030	struct inode *pip;
1031	struct fs *fs;
1032	struct inode *ip;
1033	struct timespec ts;
1034	struct ufsmount *ump;
1035	ino_t ino, ipref;
1036	u_int cg;
1037	int error, error1, reclaimed;
1038	static struct timeval lastfail;
1039	static int curfail;
1040
1041	*vpp = NULL;
1042	pip = VTOI(pvp);
1043	ump = ITOUMP(pip);
1044	fs = ump->um_fs;
1045
1046	UFS_LOCK(ump);
1047	reclaimed = 0;
1048retry:
1049	if (fs->fs_cstotal.cs_nifree == 0)
1050		goto noinodes;
1051
1052	if ((mode & IFMT) == IFDIR)
1053		ipref = ffs_dirpref(pip);
1054	else
1055		ipref = pip->i_number;
1056	if (ipref >= fs->fs_ncg * fs->fs_ipg)
1057		ipref = 0;
1058	cg = ino_to_cg(fs, ipref);
1059	/*
1060	 * Track number of dirs created one after another
1061	 * in a same cg without intervening by files.
1062	 */
1063	if ((mode & IFMT) == IFDIR) {
1064		if (fs->fs_contigdirs[cg] < 255)
1065			fs->fs_contigdirs[cg]++;
1066	} else {
1067		if (fs->fs_contigdirs[cg] > 0)
1068			fs->fs_contigdirs[cg]--;
1069	}
1070	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1071					(allocfcn_t *)ffs_nodealloccg);
1072	if (ino == 0)
1073		goto noinodes;
1074	error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
1075	if (error) {
1076		error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1077		    FFSV_FORCEINSMQ);
1078		ffs_vfree(pvp, ino, mode);
1079		if (error1 == 0) {
1080			ip = VTOI(*vpp);
1081			if (ip->i_mode)
1082				goto dup_alloc;
1083			ip->i_flag |= IN_MODIFIED;
1084			vput(*vpp);
1085		}
1086		return (error);
1087	}
1088	ip = VTOI(*vpp);
1089	if (ip->i_mode) {
1090dup_alloc:
1091		printf("mode = 0%o, inum = %ju, fs = %s\n",
1092		    ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1093		panic("ffs_valloc: dup alloc");
1094	}
1095	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
1096		printf("free inode %s/%lu had %ld blocks\n",
1097		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1098		DIP_SET(ip, i_blocks, 0);
1099	}
1100	ip->i_flags = 0;
1101	DIP_SET(ip, i_flags, 0);
1102	/*
1103	 * Set up a new generation number for this inode.
1104	 */
1105	while (ip->i_gen == 0 || ++ip->i_gen == 0)
1106		ip->i_gen = arc4random();
1107	DIP_SET(ip, i_gen, ip->i_gen);
1108	if (fs->fs_magic == FS_UFS2_MAGIC) {
1109		vfs_timestamp(&ts);
1110		ip->i_din2->di_birthtime = ts.tv_sec;
1111		ip->i_din2->di_birthnsec = ts.tv_nsec;
1112	}
1113	ufs_prepare_reclaim(*vpp);
1114	ip->i_flag = 0;
1115	(*vpp)->v_vflag = 0;
1116	(*vpp)->v_type = VNON;
1117	if (fs->fs_magic == FS_UFS2_MAGIC) {
1118		(*vpp)->v_op = &ffs_vnodeops2;
1119		ip->i_flag |= IN_UFS2;
1120	} else {
1121		(*vpp)->v_op = &ffs_vnodeops1;
1122	}
1123	return (0);
1124noinodes:
1125	if (reclaimed == 0) {
1126		reclaimed = 1;
1127		softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1128		goto retry;
1129	}
1130	UFS_UNLOCK(ump);
1131	if (ppsratecheck(&lastfail, &curfail, 1)) {
1132		ffs_fserr(fs, pip->i_number, "out of inodes");
1133		uprintf("\n%s: create/symlink failed, no inodes free\n",
1134		    fs->fs_fsmnt);
1135	}
1136	return (ENOSPC);
1137}
1138
1139/*
1140 * Find a cylinder group to place a directory.
1141 *
1142 * The policy implemented by this algorithm is to allocate a
1143 * directory inode in the same cylinder group as its parent
1144 * directory, but also to reserve space for its files inodes
1145 * and data. Restrict the number of directories which may be
1146 * allocated one after another in the same cylinder group
1147 * without intervening allocation of files.
1148 *
1149 * If we allocate a first level directory then force allocation
1150 * in another cylinder group.
1151 */
1152static ino_t
1153ffs_dirpref(pip)
1154	struct inode *pip;
1155{
1156	struct fs *fs;
1157	int cg, prefcg, dirsize, cgsize;
1158	u_int avgifree, avgbfree, avgndir, curdirsize;
1159	u_int minifree, minbfree, maxndir;
1160	u_int mincg, minndir;
1161	u_int maxcontigdirs;
1162
1163	mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
1164	fs = ITOFS(pip);
1165
1166	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1167	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1168	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1169
1170	/*
1171	 * Force allocation in another cg if creating a first level dir.
1172	 */
1173	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1174	if (ITOV(pip)->v_vflag & VV_ROOT) {
1175		prefcg = arc4random() % fs->fs_ncg;
1176		mincg = prefcg;
1177		minndir = fs->fs_ipg;
1178		for (cg = prefcg; cg < fs->fs_ncg; cg++)
1179			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1180			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1181			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1182				mincg = cg;
1183				minndir = fs->fs_cs(fs, cg).cs_ndir;
1184			}
1185		for (cg = 0; cg < prefcg; cg++)
1186			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1187			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1188			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1189				mincg = cg;
1190				minndir = fs->fs_cs(fs, cg).cs_ndir;
1191			}
1192		return ((ino_t)(fs->fs_ipg * mincg));
1193	}
1194
1195	/*
1196	 * Count various limits which used for
1197	 * optimal allocation of a directory inode.
1198	 */
1199	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1200	minifree = avgifree - avgifree / 4;
1201	if (minifree < 1)
1202		minifree = 1;
1203	minbfree = avgbfree - avgbfree / 4;
1204	if (minbfree < 1)
1205		minbfree = 1;
1206	cgsize = fs->fs_fsize * fs->fs_fpg;
1207	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1208	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1209	if (dirsize < curdirsize)
1210		dirsize = curdirsize;
1211	if (dirsize <= 0)
1212		maxcontigdirs = 0;		/* dirsize overflowed */
1213	else
1214		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1215	if (fs->fs_avgfpdir > 0)
1216		maxcontigdirs = min(maxcontigdirs,
1217				    fs->fs_ipg / fs->fs_avgfpdir);
1218	if (maxcontigdirs == 0)
1219		maxcontigdirs = 1;
1220
1221	/*
1222	 * Limit number of dirs in one cg and reserve space for
1223	 * regular files, but only if we have no deficit in
1224	 * inodes or space.
1225	 *
1226	 * We are trying to find a suitable cylinder group nearby
1227	 * our preferred cylinder group to place a new directory.
1228	 * We scan from our preferred cylinder group forward looking
1229	 * for a cylinder group that meets our criterion. If we get
1230	 * to the final cylinder group and do not find anything,
1231	 * we start scanning forwards from the beginning of the
1232	 * filesystem. While it might seem sensible to start scanning
1233	 * backwards or even to alternate looking forward and backward,
1234	 * this approach fails badly when the filesystem is nearly full.
1235	 * Specifically, we first search all the areas that have no space
1236	 * and finally try the one preceding that. We repeat this on
1237	 * every request and in the case of the final block end up
1238	 * searching the entire filesystem. By jumping to the front
1239	 * of the filesystem, our future forward searches always look
1240	 * in new cylinder groups so finds every possible block after
1241	 * one pass over the filesystem.
1242	 */
1243	prefcg = ino_to_cg(fs, pip->i_number);
1244	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1245		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1246		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1247		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1248			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1249				return ((ino_t)(fs->fs_ipg * cg));
1250		}
1251	for (cg = 0; cg < prefcg; cg++)
1252		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1253		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1254		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1255			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1256				return ((ino_t)(fs->fs_ipg * cg));
1257		}
1258	/*
1259	 * This is a backstop when we have deficit in space.
1260	 */
1261	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1262		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1263			return ((ino_t)(fs->fs_ipg * cg));
1264	for (cg = 0; cg < prefcg; cg++)
1265		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1266			break;
1267	return ((ino_t)(fs->fs_ipg * cg));
1268}
1269
1270/*
1271 * Select the desired position for the next block in a file.  The file is
1272 * logically divided into sections. The first section is composed of the
1273 * direct blocks and the next fs_maxbpg blocks. Each additional section
1274 * contains fs_maxbpg blocks.
1275 *
1276 * If no blocks have been allocated in the first section, the policy is to
1277 * request a block in the same cylinder group as the inode that describes
1278 * the file. The first indirect is allocated immediately following the last
1279 * direct block and the data blocks for the first indirect immediately
1280 * follow it.
1281 *
1282 * If no blocks have been allocated in any other section, the indirect
1283 * block(s) are allocated in the same cylinder group as its inode in an
1284 * area reserved immediately following the inode blocks. The policy for
1285 * the data blocks is to place them in a cylinder group with a greater than
1286 * average number of free blocks. An appropriate cylinder group is found
1287 * by using a rotor that sweeps the cylinder groups. When a new group of
1288 * blocks is needed, the sweep begins in the cylinder group following the
1289 * cylinder group from which the previous allocation was made. The sweep
1290 * continues until a cylinder group with greater than the average number
1291 * of free blocks is found. If the allocation is for the first block in an
1292 * indirect block or the previous block is a hole, then the information on
1293 * the previous allocation is unavailable; here a best guess is made based
1294 * on the logical block number being allocated.
1295 *
1296 * If a section is already partially allocated, the policy is to
1297 * allocate blocks contiguously within the section if possible.
1298 */
1299ufs2_daddr_t
1300ffs_blkpref_ufs1(ip, lbn, indx, bap)
1301	struct inode *ip;
1302	ufs_lbn_t lbn;
1303	int indx;
1304	ufs1_daddr_t *bap;
1305{
1306	struct fs *fs;
1307	u_int cg, inocg;
1308	u_int avgbfree, startcg;
1309	ufs2_daddr_t pref;
1310
1311	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1312	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1313	fs = ITOFS(ip);
1314	/*
1315	 * Allocation of indirect blocks is indicated by passing negative
1316	 * values in indx: -1 for single indirect, -2 for double indirect,
1317	 * -3 for triple indirect. As noted below, we attempt to allocate
1318	 * the first indirect inline with the file data. For all later
1319	 * indirect blocks, the data is often allocated in other cylinder
1320	 * groups. However to speed random file access and to speed up
1321	 * fsck, the filesystem reserves the first fs_metaspace blocks
1322	 * (typically half of fs_minfree) of the data area of each cylinder
1323	 * group to hold these later indirect blocks.
1324	 */
1325	inocg = ino_to_cg(fs, ip->i_number);
1326	if (indx < 0) {
1327		/*
1328		 * Our preference for indirect blocks is the zone at the
1329		 * beginning of the inode's cylinder group data area that
1330		 * we try to reserve for indirect blocks.
1331		 */
1332		pref = cgmeta(fs, inocg);
1333		/*
1334		 * If we are allocating the first indirect block, try to
1335		 * place it immediately following the last direct block.
1336		 */
1337		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1338		    ip->i_din1->di_db[NDADDR - 1] != 0)
1339			pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
1340		return (pref);
1341	}
1342	/*
1343	 * If we are allocating the first data block in the first indirect
1344	 * block and the indirect has been allocated in the data block area,
1345	 * try to place it immediately following the indirect block.
1346	 */
1347	if (lbn == NDADDR) {
1348		pref = ip->i_din1->di_ib[0];
1349		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1350		    pref < cgbase(fs, inocg + 1))
1351			return (pref + fs->fs_frag);
1352	}
1353	/*
1354	 * If we are at the beginning of a file, or we have already allocated
1355	 * the maximum number of blocks per cylinder group, or we do not
1356	 * have a block allocated immediately preceding us, then we need
1357	 * to decide where to start allocating new blocks.
1358	 */
1359	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1360		/*
1361		 * If we are allocating a directory data block, we want
1362		 * to place it in the metadata area.
1363		 */
1364		if ((ip->i_mode & IFMT) == IFDIR)
1365			return (cgmeta(fs, inocg));
1366		/*
1367		 * Until we fill all the direct and all the first indirect's
1368		 * blocks, we try to allocate in the data area of the inode's
1369		 * cylinder group.
1370		 */
1371		if (lbn < NDADDR + NINDIR(fs))
1372			return (cgdata(fs, inocg));
1373		/*
1374		 * Find a cylinder with greater than average number of
1375		 * unused data blocks.
1376		 */
1377		if (indx == 0 || bap[indx - 1] == 0)
1378			startcg = inocg + lbn / fs->fs_maxbpg;
1379		else
1380			startcg = dtog(fs, bap[indx - 1]) + 1;
1381		startcg %= fs->fs_ncg;
1382		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1383		for (cg = startcg; cg < fs->fs_ncg; cg++)
1384			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1385				fs->fs_cgrotor = cg;
1386				return (cgdata(fs, cg));
1387			}
1388		for (cg = 0; cg <= startcg; cg++)
1389			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1390				fs->fs_cgrotor = cg;
1391				return (cgdata(fs, cg));
1392			}
1393		return (0);
1394	}
1395	/*
1396	 * Otherwise, we just always try to lay things out contiguously.
1397	 */
1398	return (bap[indx - 1] + fs->fs_frag);
1399}
1400
1401/*
1402 * Same as above, but for UFS2
1403 */
1404ufs2_daddr_t
1405ffs_blkpref_ufs2(ip, lbn, indx, bap)
1406	struct inode *ip;
1407	ufs_lbn_t lbn;
1408	int indx;
1409	ufs2_daddr_t *bap;
1410{
1411	struct fs *fs;
1412	u_int cg, inocg;
1413	u_int avgbfree, startcg;
1414	ufs2_daddr_t pref;
1415
1416	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1417	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1418	fs = ITOFS(ip);
1419	/*
1420	 * Allocation of indirect blocks is indicated by passing negative
1421	 * values in indx: -1 for single indirect, -2 for double indirect,
1422	 * -3 for triple indirect. As noted below, we attempt to allocate
1423	 * the first indirect inline with the file data. For all later
1424	 * indirect blocks, the data is often allocated in other cylinder
1425	 * groups. However to speed random file access and to speed up
1426	 * fsck, the filesystem reserves the first fs_metaspace blocks
1427	 * (typically half of fs_minfree) of the data area of each cylinder
1428	 * group to hold these later indirect blocks.
1429	 */
1430	inocg = ino_to_cg(fs, ip->i_number);
1431	if (indx < 0) {
1432		/*
1433		 * Our preference for indirect blocks is the zone at the
1434		 * beginning of the inode's cylinder group data area that
1435		 * we try to reserve for indirect blocks.
1436		 */
1437		pref = cgmeta(fs, inocg);
1438		/*
1439		 * If we are allocating the first indirect block, try to
1440		 * place it immediately following the last direct block.
1441		 */
1442		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1443		    ip->i_din2->di_db[NDADDR - 1] != 0)
1444			pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
1445		return (pref);
1446	}
1447	/*
1448	 * If we are allocating the first data block in the first indirect
1449	 * block and the indirect has been allocated in the data block area,
1450	 * try to place it immediately following the indirect block.
1451	 */
1452	if (lbn == NDADDR) {
1453		pref = ip->i_din2->di_ib[0];
1454		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1455		    pref < cgbase(fs, inocg + 1))
1456			return (pref + fs->fs_frag);
1457	}
1458	/*
1459	 * If we are at the beginning of a file, or we have already allocated
1460	 * the maximum number of blocks per cylinder group, or we do not
1461	 * have a block allocated immediately preceding us, then we need
1462	 * to decide where to start allocating new blocks.
1463	 */
1464	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1465		/*
1466		 * If we are allocating a directory data block, we want
1467		 * to place it in the metadata area.
1468		 */
1469		if ((ip->i_mode & IFMT) == IFDIR)
1470			return (cgmeta(fs, inocg));
1471		/*
1472		 * Until we fill all the direct and all the first indirect's
1473		 * blocks, we try to allocate in the data area of the inode's
1474		 * cylinder group.
1475		 */
1476		if (lbn < NDADDR + NINDIR(fs))
1477			return (cgdata(fs, inocg));
1478		/*
1479		 * Find a cylinder with greater than average number of
1480		 * unused data blocks.
1481		 */
1482		if (indx == 0 || bap[indx - 1] == 0)
1483			startcg = inocg + lbn / fs->fs_maxbpg;
1484		else
1485			startcg = dtog(fs, bap[indx - 1]) + 1;
1486		startcg %= fs->fs_ncg;
1487		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1488		for (cg = startcg; cg < fs->fs_ncg; cg++)
1489			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1490				fs->fs_cgrotor = cg;
1491				return (cgdata(fs, cg));
1492			}
1493		for (cg = 0; cg <= startcg; cg++)
1494			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1495				fs->fs_cgrotor = cg;
1496				return (cgdata(fs, cg));
1497			}
1498		return (0);
1499	}
1500	/*
1501	 * Otherwise, we just always try to lay things out contiguously.
1502	 */
1503	return (bap[indx - 1] + fs->fs_frag);
1504}
1505
1506/*
1507 * Implement the cylinder overflow algorithm.
1508 *
1509 * The policy implemented by this algorithm is:
1510 *   1) allocate the block in its requested cylinder group.
1511 *   2) quadradically rehash on the cylinder group number.
1512 *   3) brute force search for a free block.
1513 *
1514 * Must be called with the UFS lock held.  Will release the lock on success
1515 * and return with it held on failure.
1516 */
1517/*VARARGS5*/
1518static ufs2_daddr_t
1519ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
1520	struct inode *ip;
1521	u_int cg;
1522	ufs2_daddr_t pref;
1523	int size;	/* Search size for data blocks, mode for inodes */
1524	int rsize;	/* Real allocated size. */
1525	allocfcn_t *allocator;
1526{
1527	struct fs *fs;
1528	ufs2_daddr_t result;
1529	u_int i, icg = cg;
1530
1531	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1532#ifdef INVARIANTS
1533	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1534		panic("ffs_hashalloc: allocation on suspended filesystem");
1535#endif
1536	fs = ITOFS(ip);
1537	/*
1538	 * 1: preferred cylinder group
1539	 */
1540	result = (*allocator)(ip, cg, pref, size, rsize);
1541	if (result)
1542		return (result);
1543	/*
1544	 * 2: quadratic rehash
1545	 */
1546	for (i = 1; i < fs->fs_ncg; i *= 2) {
1547		cg += i;
1548		if (cg >= fs->fs_ncg)
1549			cg -= fs->fs_ncg;
1550		result = (*allocator)(ip, cg, 0, size, rsize);
1551		if (result)
1552			return (result);
1553	}
1554	/*
1555	 * 3: brute force search
1556	 * Note that we start at i == 2, since 0 was checked initially,
1557	 * and 1 is always checked in the quadratic rehash.
1558	 */
1559	cg = (icg + 2) % fs->fs_ncg;
1560	for (i = 2; i < fs->fs_ncg; i++) {
1561		result = (*allocator)(ip, cg, 0, size, rsize);
1562		if (result)
1563			return (result);
1564		cg++;
1565		if (cg == fs->fs_ncg)
1566			cg = 0;
1567	}
1568	return (0);
1569}
1570
1571/*
1572 * Determine whether a fragment can be extended.
1573 *
1574 * Check to see if the necessary fragments are available, and
1575 * if they are, allocate them.
1576 */
1577static ufs2_daddr_t
1578ffs_fragextend(ip, cg, bprev, osize, nsize)
1579	struct inode *ip;
1580	u_int cg;
1581	ufs2_daddr_t bprev;
1582	int osize, nsize;
1583{
1584	struct fs *fs;
1585	struct cg *cgp;
1586	struct buf *bp;
1587	struct ufsmount *ump;
1588	int nffree;
1589	long bno;
1590	int frags, bbase;
1591	int i, error;
1592	u_int8_t *blksfree;
1593
1594	ump = ITOUMP(ip);
1595	fs = ump->um_fs;
1596	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1597		return (0);
1598	frags = numfrags(fs, nsize);
1599	bbase = fragnum(fs, bprev);
1600	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1601		/* cannot extend across a block boundary */
1602		return (0);
1603	}
1604	UFS_UNLOCK(ump);
1605	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1606	    (int)fs->fs_cgsize, NOCRED, &bp);
1607	if (error)
1608		goto fail;
1609	cgp = (struct cg *)bp->b_data;
1610	if (!cg_chkmagic(cgp))
1611		goto fail;
1612	bp->b_xflags |= BX_BKGRDWRITE;
1613	cgp->cg_old_time = cgp->cg_time = time_second;
1614	bno = dtogd(fs, bprev);
1615	blksfree = cg_blksfree(cgp);
1616	for (i = numfrags(fs, osize); i < frags; i++)
1617		if (isclr(blksfree, bno + i))
1618			goto fail;
1619	/*
1620	 * the current fragment can be extended
1621	 * deduct the count on fragment being extended into
1622	 * increase the count on the remaining fragment (if any)
1623	 * allocate the extended piece
1624	 */
1625	for (i = frags; i < fs->fs_frag - bbase; i++)
1626		if (isclr(blksfree, bno + i))
1627			break;
1628	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1629	if (i != frags)
1630		cgp->cg_frsum[i - frags]++;
1631	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1632		clrbit(blksfree, bno + i);
1633		cgp->cg_cs.cs_nffree--;
1634		nffree++;
1635	}
1636	UFS_LOCK(ump);
1637	fs->fs_cstotal.cs_nffree -= nffree;
1638	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1639	fs->fs_fmod = 1;
1640	ACTIVECLEAR(fs, cg);
1641	UFS_UNLOCK(ump);
1642	if (DOINGSOFTDEP(ITOV(ip)))
1643		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1644		    frags, numfrags(fs, osize));
1645	bdwrite(bp);
1646	return (bprev);
1647
1648fail:
1649	brelse(bp);
1650	UFS_LOCK(ump);
1651	return (0);
1652
1653}
1654
1655/*
1656 * Determine whether a block can be allocated.
1657 *
1658 * Check to see if a block of the appropriate size is available,
1659 * and if it is, allocate it.
1660 */
1661static ufs2_daddr_t
1662ffs_alloccg(ip, cg, bpref, size, rsize)
1663	struct inode *ip;
1664	u_int cg;
1665	ufs2_daddr_t bpref;
1666	int size;
1667	int rsize;
1668{
1669	struct fs *fs;
1670	struct cg *cgp;
1671	struct buf *bp;
1672	struct ufsmount *ump;
1673	ufs1_daddr_t bno;
1674	ufs2_daddr_t blkno;
1675	int i, allocsiz, error, frags;
1676	u_int8_t *blksfree;
1677
1678	ump = ITOUMP(ip);
1679	fs = ump->um_fs;
1680	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1681		return (0);
1682	UFS_UNLOCK(ump);
1683	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1684	    (int)fs->fs_cgsize, NOCRED, &bp);
1685	if (error)
1686		goto fail;
1687	cgp = (struct cg *)bp->b_data;
1688	if (!cg_chkmagic(cgp) ||
1689	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1690		goto fail;
1691	bp->b_xflags |= BX_BKGRDWRITE;
1692	cgp->cg_old_time = cgp->cg_time = time_second;
1693	if (size == fs->fs_bsize) {
1694		UFS_LOCK(ump);
1695		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1696		ACTIVECLEAR(fs, cg);
1697		UFS_UNLOCK(ump);
1698		bdwrite(bp);
1699		return (blkno);
1700	}
1701	/*
1702	 * check to see if any fragments are already available
1703	 * allocsiz is the size which will be allocated, hacking
1704	 * it down to a smaller size if necessary
1705	 */
1706	blksfree = cg_blksfree(cgp);
1707	frags = numfrags(fs, size);
1708	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1709		if (cgp->cg_frsum[allocsiz] != 0)
1710			break;
1711	if (allocsiz == fs->fs_frag) {
1712		/*
1713		 * no fragments were available, so a block will be
1714		 * allocated, and hacked up
1715		 */
1716		if (cgp->cg_cs.cs_nbfree == 0)
1717			goto fail;
1718		UFS_LOCK(ump);
1719		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1720		ACTIVECLEAR(fs, cg);
1721		UFS_UNLOCK(ump);
1722		bdwrite(bp);
1723		return (blkno);
1724	}
1725	KASSERT(size == rsize,
1726	    ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1727	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1728	if (bno < 0)
1729		goto fail;
1730	for (i = 0; i < frags; i++)
1731		clrbit(blksfree, bno + i);
1732	cgp->cg_cs.cs_nffree -= frags;
1733	cgp->cg_frsum[allocsiz]--;
1734	if (frags != allocsiz)
1735		cgp->cg_frsum[allocsiz - frags]++;
1736	UFS_LOCK(ump);
1737	fs->fs_cstotal.cs_nffree -= frags;
1738	fs->fs_cs(fs, cg).cs_nffree -= frags;
1739	fs->fs_fmod = 1;
1740	blkno = cgbase(fs, cg) + bno;
1741	ACTIVECLEAR(fs, cg);
1742	UFS_UNLOCK(ump);
1743	if (DOINGSOFTDEP(ITOV(ip)))
1744		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1745	bdwrite(bp);
1746	return (blkno);
1747
1748fail:
1749	brelse(bp);
1750	UFS_LOCK(ump);
1751	return (0);
1752}
1753
1754/*
1755 * Allocate a block in a cylinder group.
1756 *
1757 * This algorithm implements the following policy:
1758 *   1) allocate the requested block.
1759 *   2) allocate a rotationally optimal block in the same cylinder.
1760 *   3) allocate the next available block on the block rotor for the
1761 *      specified cylinder group.
1762 * Note that this routine only allocates fs_bsize blocks; these
1763 * blocks may be fragmented by the routine that allocates them.
1764 */
1765static ufs2_daddr_t
1766ffs_alloccgblk(ip, bp, bpref, size)
1767	struct inode *ip;
1768	struct buf *bp;
1769	ufs2_daddr_t bpref;
1770	int size;
1771{
1772	struct fs *fs;
1773	struct cg *cgp;
1774	struct ufsmount *ump;
1775	ufs1_daddr_t bno;
1776	ufs2_daddr_t blkno;
1777	u_int8_t *blksfree;
1778	int i, cgbpref;
1779
1780	ump = ITOUMP(ip);
1781	fs = ump->um_fs;
1782	mtx_assert(UFS_MTX(ump), MA_OWNED);
1783	cgp = (struct cg *)bp->b_data;
1784	blksfree = cg_blksfree(cgp);
1785	if (bpref == 0) {
1786		bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1787	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1788		/* map bpref to correct zone in this cg */
1789		if (bpref < cgdata(fs, cgbpref))
1790			bpref = cgmeta(fs, cgp->cg_cgx);
1791		else
1792			bpref = cgdata(fs, cgp->cg_cgx);
1793	}
1794	/*
1795	 * if the requested block is available, use it
1796	 */
1797	bno = dtogd(fs, blknum(fs, bpref));
1798	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1799		goto gotit;
1800	/*
1801	 * Take the next available block in this cylinder group.
1802	 */
1803	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1804	if (bno < 0)
1805		return (0);
1806	/* Update cg_rotor only if allocated from the data zone */
1807	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1808		cgp->cg_rotor = bno;
1809gotit:
1810	blkno = fragstoblks(fs, bno);
1811	ffs_clrblock(fs, blksfree, (long)blkno);
1812	ffs_clusteracct(fs, cgp, blkno, -1);
1813	cgp->cg_cs.cs_nbfree--;
1814	fs->fs_cstotal.cs_nbfree--;
1815	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1816	fs->fs_fmod = 1;
1817	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1818	/*
1819	 * If the caller didn't want the whole block free the frags here.
1820	 */
1821	size = numfrags(fs, size);
1822	if (size != fs->fs_frag) {
1823		bno = dtogd(fs, blkno);
1824		for (i = size; i < fs->fs_frag; i++)
1825			setbit(blksfree, bno + i);
1826		i = fs->fs_frag - size;
1827		cgp->cg_cs.cs_nffree += i;
1828		fs->fs_cstotal.cs_nffree += i;
1829		fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1830		fs->fs_fmod = 1;
1831		cgp->cg_frsum[i]++;
1832	}
1833	/* XXX Fixme. */
1834	UFS_UNLOCK(ump);
1835	if (DOINGSOFTDEP(ITOV(ip)))
1836		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno,
1837		    size, 0);
1838	UFS_LOCK(ump);
1839	return (blkno);
1840}
1841
1842/*
1843 * Determine whether a cluster can be allocated.
1844 *
1845 * We do not currently check for optimal rotational layout if there
1846 * are multiple choices in the same cylinder group. Instead we just
1847 * take the first one that we find following bpref.
1848 */
1849static ufs2_daddr_t
1850ffs_clusteralloc(ip, cg, bpref, len)
1851	struct inode *ip;
1852	u_int cg;
1853	ufs2_daddr_t bpref;
1854	int len;
1855{
1856	struct fs *fs;
1857	struct cg *cgp;
1858	struct buf *bp;
1859	struct ufsmount *ump;
1860	int i, run, bit, map, got;
1861	ufs2_daddr_t bno;
1862	u_char *mapp;
1863	int32_t *lp;
1864	u_int8_t *blksfree;
1865
1866	ump = ITOUMP(ip);
1867	fs = ump->um_fs;
1868	if (fs->fs_maxcluster[cg] < len)
1869		return (0);
1870	UFS_UNLOCK(ump);
1871	if (bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1872	    NOCRED, &bp))
1873		goto fail_lock;
1874	cgp = (struct cg *)bp->b_data;
1875	if (!cg_chkmagic(cgp))
1876		goto fail_lock;
1877	bp->b_xflags |= BX_BKGRDWRITE;
1878	/*
1879	 * Check to see if a cluster of the needed size (or bigger) is
1880	 * available in this cylinder group.
1881	 */
1882	lp = &cg_clustersum(cgp)[len];
1883	for (i = len; i <= fs->fs_contigsumsize; i++)
1884		if (*lp++ > 0)
1885			break;
1886	if (i > fs->fs_contigsumsize) {
1887		/*
1888		 * This is the first time looking for a cluster in this
1889		 * cylinder group. Update the cluster summary information
1890		 * to reflect the true maximum sized cluster so that
1891		 * future cluster allocation requests can avoid reading
1892		 * the cylinder group map only to find no clusters.
1893		 */
1894		lp = &cg_clustersum(cgp)[len - 1];
1895		for (i = len - 1; i > 0; i--)
1896			if (*lp-- > 0)
1897				break;
1898		UFS_LOCK(ump);
1899		fs->fs_maxcluster[cg] = i;
1900		goto fail;
1901	}
1902	/*
1903	 * Search the cluster map to find a big enough cluster.
1904	 * We take the first one that we find, even if it is larger
1905	 * than we need as we prefer to get one close to the previous
1906	 * block allocation. We do not search before the current
1907	 * preference point as we do not want to allocate a block
1908	 * that is allocated before the previous one (as we will
1909	 * then have to wait for another pass of the elevator
1910	 * algorithm before it will be read). We prefer to fail and
1911	 * be recalled to try an allocation in the next cylinder group.
1912	 */
1913	if (dtog(fs, bpref) != cg)
1914		bpref = cgdata(fs, cg);
1915	else
1916		bpref = blknum(fs, bpref);
1917	bpref = fragstoblks(fs, dtogd(fs, bpref));
1918	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1919	map = *mapp++;
1920	bit = 1 << (bpref % NBBY);
1921	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1922		if ((map & bit) == 0) {
1923			run = 0;
1924		} else {
1925			run++;
1926			if (run == len)
1927				break;
1928		}
1929		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1930			bit <<= 1;
1931		} else {
1932			map = *mapp++;
1933			bit = 1;
1934		}
1935	}
1936	if (got >= cgp->cg_nclusterblks)
1937		goto fail_lock;
1938	/*
1939	 * Allocate the cluster that we have found.
1940	 */
1941	blksfree = cg_blksfree(cgp);
1942	for (i = 1; i <= len; i++)
1943		if (!ffs_isblock(fs, blksfree, got - run + i))
1944			panic("ffs_clusteralloc: map mismatch");
1945	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
1946	if (dtog(fs, bno) != cg)
1947		panic("ffs_clusteralloc: allocated out of group");
1948	len = blkstofrags(fs, len);
1949	UFS_LOCK(ump);
1950	for (i = 0; i < len; i += fs->fs_frag)
1951		if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
1952			panic("ffs_clusteralloc: lost block");
1953	ACTIVECLEAR(fs, cg);
1954	UFS_UNLOCK(ump);
1955	bdwrite(bp);
1956	return (bno);
1957
1958fail_lock:
1959	UFS_LOCK(ump);
1960fail:
1961	brelse(bp);
1962	return (0);
1963}
1964
1965static inline struct buf *
1966getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
1967{
1968	struct fs *fs;
1969
1970	fs = ITOFS(ip);
1971	return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
1972	    cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
1973	    gbflags));
1974}
1975
1976/*
1977 * Synchronous inode initialization is needed only when barrier writes do not
1978 * work as advertised, and will impose a heavy cost on file creation in a newly
1979 * created filesystem.
1980 */
1981static int doasyncinodeinit = 1;
1982SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
1983    &doasyncinodeinit, 0,
1984    "Perform inode block initialization using asynchronous writes");
1985
1986/*
1987 * Determine whether an inode can be allocated.
1988 *
1989 * Check to see if an inode is available, and if it is,
1990 * allocate it using the following policy:
1991 *   1) allocate the requested inode.
1992 *   2) allocate the next available inode after the requested
1993 *      inode in the specified cylinder group.
1994 */
1995static ufs2_daddr_t
1996ffs_nodealloccg(ip, cg, ipref, mode, unused)
1997	struct inode *ip;
1998	u_int cg;
1999	ufs2_daddr_t ipref;
2000	int mode;
2001	int unused;
2002{
2003	struct fs *fs;
2004	struct cg *cgp;
2005	struct buf *bp, *ibp;
2006	struct ufsmount *ump;
2007	u_int8_t *inosused, *loc;
2008	struct ufs2_dinode *dp2;
2009	int error, start, len, i;
2010	u_int32_t old_initediblk;
2011
2012	ump = ITOUMP(ip);
2013	fs = ump->um_fs;
2014check_nifree:
2015	if (fs->fs_cs(fs, cg).cs_nifree == 0)
2016		return (0);
2017	UFS_UNLOCK(ump);
2018	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
2019		(int)fs->fs_cgsize, NOCRED, &bp);
2020	if (error) {
2021		brelse(bp);
2022		UFS_LOCK(ump);
2023		return (0);
2024	}
2025	cgp = (struct cg *)bp->b_data;
2026restart:
2027	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
2028		brelse(bp);
2029		UFS_LOCK(ump);
2030		return (0);
2031	}
2032	bp->b_xflags |= BX_BKGRDWRITE;
2033	inosused = cg_inosused(cgp);
2034	if (ipref) {
2035		ipref %= fs->fs_ipg;
2036		if (isclr(inosused, ipref))
2037			goto gotit;
2038	}
2039	start = cgp->cg_irotor / NBBY;
2040	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2041	loc = memcchr(&inosused[start], 0xff, len);
2042	if (loc == NULL) {
2043		len = start + 1;
2044		start = 0;
2045		loc = memcchr(&inosused[start], 0xff, len);
2046		if (loc == NULL) {
2047			printf("cg = %d, irotor = %ld, fs = %s\n",
2048			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2049			panic("ffs_nodealloccg: map corrupted");
2050			/* NOTREACHED */
2051		}
2052	}
2053	ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2054gotit:
2055	/*
2056	 * Check to see if we need to initialize more inodes.
2057	 */
2058	if (fs->fs_magic == FS_UFS2_MAGIC &&
2059	    ipref + INOPB(fs) > cgp->cg_initediblk &&
2060	    cgp->cg_initediblk < cgp->cg_niblk) {
2061		old_initediblk = cgp->cg_initediblk;
2062
2063		/*
2064		 * Free the cylinder group lock before writing the
2065		 * initialized inode block.  Entering the
2066		 * babarrierwrite() with the cylinder group lock
2067		 * causes lock order violation between the lock and
2068		 * snaplk.
2069		 *
2070		 * Another thread can decide to initialize the same
2071		 * inode block, but whichever thread first gets the
2072		 * cylinder group lock after writing the newly
2073		 * allocated inode block will update it and the other
2074		 * will realize that it has lost and leave the
2075		 * cylinder group unchanged.
2076		 */
2077		ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2078		brelse(bp);
2079		if (ibp == NULL) {
2080			/*
2081			 * The inode block buffer is already owned by
2082			 * another thread, which must initialize it.
2083			 * Wait on the buffer to allow another thread
2084			 * to finish the updates, with dropped cg
2085			 * buffer lock, then retry.
2086			 */
2087			ibp = getinobuf(ip, cg, old_initediblk, 0);
2088			brelse(ibp);
2089			UFS_LOCK(ump);
2090			goto check_nifree;
2091		}
2092		bzero(ibp->b_data, (int)fs->fs_bsize);
2093		dp2 = (struct ufs2_dinode *)(ibp->b_data);
2094		for (i = 0; i < INOPB(fs); i++) {
2095			while (dp2->di_gen == 0)
2096				dp2->di_gen = arc4random();
2097			dp2++;
2098		}
2099
2100		/*
2101		 * Rather than adding a soft updates dependency to ensure
2102		 * that the new inode block is written before it is claimed
2103		 * by the cylinder group map, we just do a barrier write
2104		 * here. The barrier write will ensure that the inode block
2105		 * gets written before the updated cylinder group map can be
2106		 * written. The barrier write should only slow down bulk
2107		 * loading of newly created filesystems.
2108		 */
2109		if (doasyncinodeinit)
2110			babarrierwrite(ibp);
2111		else
2112			bwrite(ibp);
2113
2114		/*
2115		 * After the inode block is written, try to update the
2116		 * cg initediblk pointer.  If another thread beat us
2117		 * to it, then leave it unchanged as the other thread
2118		 * has already set it correctly.
2119		 */
2120		error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
2121		    (int)fs->fs_cgsize, NOCRED, &bp);
2122		UFS_LOCK(ump);
2123		ACTIVECLEAR(fs, cg);
2124		UFS_UNLOCK(ump);
2125		if (error != 0) {
2126			brelse(bp);
2127			return (error);
2128		}
2129		cgp = (struct cg *)bp->b_data;
2130		if (cgp->cg_initediblk == old_initediblk)
2131			cgp->cg_initediblk += INOPB(fs);
2132		goto restart;
2133	}
2134	cgp->cg_old_time = cgp->cg_time = time_second;
2135	cgp->cg_irotor = ipref;
2136	UFS_LOCK(ump);
2137	ACTIVECLEAR(fs, cg);
2138	setbit(inosused, ipref);
2139	cgp->cg_cs.cs_nifree--;
2140	fs->fs_cstotal.cs_nifree--;
2141	fs->fs_cs(fs, cg).cs_nifree--;
2142	fs->fs_fmod = 1;
2143	if ((mode & IFMT) == IFDIR) {
2144		cgp->cg_cs.cs_ndir++;
2145		fs->fs_cstotal.cs_ndir++;
2146		fs->fs_cs(fs, cg).cs_ndir++;
2147	}
2148	UFS_UNLOCK(ump);
2149	if (DOINGSOFTDEP(ITOV(ip)))
2150		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2151	bdwrite(bp);
2152	return ((ino_t)(cg * fs->fs_ipg + ipref));
2153}
2154
2155/*
2156 * Free a block or fragment.
2157 *
2158 * The specified block or fragment is placed back in the
2159 * free map. If a fragment is deallocated, a possible
2160 * block reassembly is checked.
2161 */
2162static void
2163ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
2164	struct ufsmount *ump;
2165	struct fs *fs;
2166	struct vnode *devvp;
2167	ufs2_daddr_t bno;
2168	long size;
2169	ino_t inum;
2170	struct workhead *dephd;
2171{
2172	struct mount *mp;
2173	struct cg *cgp;
2174	struct buf *bp;
2175	ufs1_daddr_t fragno, cgbno;
2176	ufs2_daddr_t cgblkno;
2177	int i, blk, frags, bbase;
2178	u_int cg;
2179	u_int8_t *blksfree;
2180	struct cdev *dev;
2181
2182	cg = dtog(fs, bno);
2183	if (devvp->v_type == VREG) {
2184		/* devvp is a snapshot */
2185		MPASS(devvp->v_mount->mnt_data == ump);
2186		dev = ump->um_devvp->v_rdev;
2187		cgblkno = fragstoblks(fs, cgtod(fs, cg));
2188	} else if (devvp->v_type == VCHR) {
2189		/* devvp is a normal disk device */
2190		dev = devvp->v_rdev;
2191		cgblkno = fsbtodb(fs, cgtod(fs, cg));
2192		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
2193	} else
2194		return;
2195#ifdef INVARIANTS
2196	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2197	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2198		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2199		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2200		    size, fs->fs_fsmnt);
2201		panic("ffs_blkfree_cg: bad size");
2202	}
2203#endif
2204	if ((u_int)bno >= fs->fs_size) {
2205		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2206		    (u_long)inum);
2207		ffs_fserr(fs, inum, "bad block");
2208		return;
2209	}
2210	if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2211		brelse(bp);
2212		return;
2213	}
2214	cgp = (struct cg *)bp->b_data;
2215	if (!cg_chkmagic(cgp)) {
2216		brelse(bp);
2217		return;
2218	}
2219	bp->b_xflags |= BX_BKGRDWRITE;
2220	cgp->cg_old_time = cgp->cg_time = time_second;
2221	cgbno = dtogd(fs, bno);
2222	blksfree = cg_blksfree(cgp);
2223	UFS_LOCK(ump);
2224	if (size == fs->fs_bsize) {
2225		fragno = fragstoblks(fs, cgbno);
2226		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2227			if (devvp->v_type == VREG) {
2228				UFS_UNLOCK(ump);
2229				/* devvp is a snapshot */
2230				brelse(bp);
2231				return;
2232			}
2233			printf("dev = %s, block = %jd, fs = %s\n",
2234			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2235			panic("ffs_blkfree_cg: freeing free block");
2236		}
2237		ffs_setblock(fs, blksfree, fragno);
2238		ffs_clusteracct(fs, cgp, fragno, 1);
2239		cgp->cg_cs.cs_nbfree++;
2240		fs->fs_cstotal.cs_nbfree++;
2241		fs->fs_cs(fs, cg).cs_nbfree++;
2242	} else {
2243		bbase = cgbno - fragnum(fs, cgbno);
2244		/*
2245		 * decrement the counts associated with the old frags
2246		 */
2247		blk = blkmap(fs, blksfree, bbase);
2248		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2249		/*
2250		 * deallocate the fragment
2251		 */
2252		frags = numfrags(fs, size);
2253		for (i = 0; i < frags; i++) {
2254			if (isset(blksfree, cgbno + i)) {
2255				printf("dev = %s, block = %jd, fs = %s\n",
2256				    devtoname(dev), (intmax_t)(bno + i),
2257				    fs->fs_fsmnt);
2258				panic("ffs_blkfree_cg: freeing free frag");
2259			}
2260			setbit(blksfree, cgbno + i);
2261		}
2262		cgp->cg_cs.cs_nffree += i;
2263		fs->fs_cstotal.cs_nffree += i;
2264		fs->fs_cs(fs, cg).cs_nffree += i;
2265		/*
2266		 * add back in counts associated with the new frags
2267		 */
2268		blk = blkmap(fs, blksfree, bbase);
2269		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2270		/*
2271		 * if a complete block has been reassembled, account for it
2272		 */
2273		fragno = fragstoblks(fs, bbase);
2274		if (ffs_isblock(fs, blksfree, fragno)) {
2275			cgp->cg_cs.cs_nffree -= fs->fs_frag;
2276			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2277			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2278			ffs_clusteracct(fs, cgp, fragno, 1);
2279			cgp->cg_cs.cs_nbfree++;
2280			fs->fs_cstotal.cs_nbfree++;
2281			fs->fs_cs(fs, cg).cs_nbfree++;
2282		}
2283	}
2284	fs->fs_fmod = 1;
2285	ACTIVECLEAR(fs, cg);
2286	UFS_UNLOCK(ump);
2287	mp = UFSTOVFS(ump);
2288	if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2289		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2290		    numfrags(fs, size), dephd);
2291	bdwrite(bp);
2292}
2293
2294struct ffs_blkfree_trim_params {
2295	struct task task;
2296	struct ufsmount *ump;
2297	struct vnode *devvp;
2298	ufs2_daddr_t bno;
2299	long size;
2300	ino_t inum;
2301	struct workhead *pdephd;
2302	struct workhead dephd;
2303};
2304
2305static void
2306ffs_blkfree_trim_task(ctx, pending)
2307	void *ctx;
2308	int pending;
2309{
2310	struct ffs_blkfree_trim_params *tp;
2311
2312	tp = ctx;
2313	ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size,
2314	    tp->inum, tp->pdephd);
2315	vn_finished_secondary_write(UFSTOVFS(tp->ump));
2316	atomic_add_int(&tp->ump->um_trim_inflight, -1);
2317	free(tp, M_TEMP);
2318}
2319
2320static void
2321ffs_blkfree_trim_completed(bip)
2322	struct bio *bip;
2323{
2324	struct ffs_blkfree_trim_params *tp;
2325
2326	tp = bip->bio_caller2;
2327	g_destroy_bio(bip);
2328	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2329	taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2330}
2331
2332void
2333ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd)
2334	struct ufsmount *ump;
2335	struct fs *fs;
2336	struct vnode *devvp;
2337	ufs2_daddr_t bno;
2338	long size;
2339	ino_t inum;
2340	enum vtype vtype;
2341	struct workhead *dephd;
2342{
2343	struct mount *mp;
2344	struct bio *bip;
2345	struct ffs_blkfree_trim_params *tp;
2346
2347	/*
2348	 * Check to see if a snapshot wants to claim the block.
2349	 * Check that devvp is a normal disk device, not a snapshot,
2350	 * it has a snapshot(s) associated with it, and one of the
2351	 * snapshots wants to claim the block.
2352	 */
2353	if (devvp->v_type == VCHR &&
2354	    (devvp->v_vflag & VV_COPYONWRITE) &&
2355	    ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2356		return;
2357	}
2358	/*
2359	 * Nothing to delay if TRIM is disabled, or the operation is
2360	 * performed on the snapshot.
2361	 */
2362	if (!ump->um_candelete || devvp->v_type == VREG) {
2363		ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2364		return;
2365	}
2366
2367	/*
2368	 * Postpone the set of the free bit in the cg bitmap until the
2369	 * BIO_DELETE is completed.  Otherwise, due to disk queue
2370	 * reordering, TRIM might be issued after we reuse the block
2371	 * and write some new data into it.
2372	 */
2373	atomic_add_int(&ump->um_trim_inflight, 1);
2374	tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
2375	tp->ump = ump;
2376	tp->devvp = devvp;
2377	tp->bno = bno;
2378	tp->size = size;
2379	tp->inum = inum;
2380	if (dephd != NULL) {
2381		LIST_INIT(&tp->dephd);
2382		LIST_SWAP(dephd, &tp->dephd, worklist, wk_list);
2383		tp->pdephd = &tp->dephd;
2384	} else
2385		tp->pdephd = NULL;
2386
2387	bip = g_alloc_bio();
2388	bip->bio_cmd = BIO_DELETE;
2389	bip->bio_offset = dbtob(fsbtodb(fs, bno));
2390	bip->bio_done = ffs_blkfree_trim_completed;
2391	bip->bio_length = size;
2392	bip->bio_caller2 = tp;
2393
2394	mp = UFSTOVFS(ump);
2395	vn_start_secondary_write(NULL, &mp, 0);
2396	g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private);
2397}
2398
2399#ifdef INVARIANTS
2400/*
2401 * Verify allocation of a block or fragment. Returns true if block or
2402 * fragment is allocated, false if it is free.
2403 */
2404static int
2405ffs_checkblk(ip, bno, size)
2406	struct inode *ip;
2407	ufs2_daddr_t bno;
2408	long size;
2409{
2410	struct fs *fs;
2411	struct cg *cgp;
2412	struct buf *bp;
2413	ufs1_daddr_t cgbno;
2414	int i, error, frags, free;
2415	u_int8_t *blksfree;
2416
2417	fs = ITOFS(ip);
2418	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2419		printf("bsize = %ld, size = %ld, fs = %s\n",
2420		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
2421		panic("ffs_checkblk: bad size");
2422	}
2423	if ((u_int)bno >= fs->fs_size)
2424		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2425	error = bread(ITODEVVP(ip), fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
2426		(int)fs->fs_cgsize, NOCRED, &bp);
2427	if (error)
2428		panic("ffs_checkblk: cg bread failed");
2429	cgp = (struct cg *)bp->b_data;
2430	if (!cg_chkmagic(cgp))
2431		panic("ffs_checkblk: cg magic mismatch");
2432	bp->b_xflags |= BX_BKGRDWRITE;
2433	blksfree = cg_blksfree(cgp);
2434	cgbno = dtogd(fs, bno);
2435	if (size == fs->fs_bsize) {
2436		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2437	} else {
2438		frags = numfrags(fs, size);
2439		for (free = 0, i = 0; i < frags; i++)
2440			if (isset(blksfree, cgbno + i))
2441				free++;
2442		if (free != 0 && free != frags)
2443			panic("ffs_checkblk: partially free fragment");
2444	}
2445	brelse(bp);
2446	return (!free);
2447}
2448#endif /* INVARIANTS */
2449
2450/*
2451 * Free an inode.
2452 */
2453int
2454ffs_vfree(pvp, ino, mode)
2455	struct vnode *pvp;
2456	ino_t ino;
2457	int mode;
2458{
2459	struct ufsmount *ump;
2460	struct inode *ip;
2461
2462	if (DOINGSOFTDEP(pvp)) {
2463		softdep_freefile(pvp, ino, mode);
2464		return (0);
2465	}
2466	ip = VTOI(pvp);
2467	ump = VFSTOUFS(pvp->v_mount);
2468	return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
2469}
2470
2471/*
2472 * Do the actual free operation.
2473 * The specified inode is placed back in the free map.
2474 */
2475int
2476ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
2477	struct ufsmount *ump;
2478	struct fs *fs;
2479	struct vnode *devvp;
2480	ino_t ino;
2481	int mode;
2482	struct workhead *wkhd;
2483{
2484	struct cg *cgp;
2485	struct buf *bp;
2486	ufs2_daddr_t cgbno;
2487	int error;
2488	u_int cg;
2489	u_int8_t *inosused;
2490	struct cdev *dev;
2491
2492	cg = ino_to_cg(fs, ino);
2493	if (devvp->v_type == VREG) {
2494		/* devvp is a snapshot */
2495		MPASS(devvp->v_mount->mnt_data == ump);
2496		dev = ump->um_devvp->v_rdev;
2497		cgbno = fragstoblks(fs, cgtod(fs, cg));
2498	} else if (devvp->v_type == VCHR) {
2499		/* devvp is a normal disk device */
2500		dev = devvp->v_rdev;
2501		cgbno = fsbtodb(fs, cgtod(fs, cg));
2502	} else {
2503		bp = NULL;
2504		return (0);
2505	}
2506	if (ino >= fs->fs_ipg * fs->fs_ncg)
2507		panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2508		    devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2509	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
2510		brelse(bp);
2511		return (error);
2512	}
2513	cgp = (struct cg *)bp->b_data;
2514	if (!cg_chkmagic(cgp)) {
2515		brelse(bp);
2516		return (0);
2517	}
2518	bp->b_xflags |= BX_BKGRDWRITE;
2519	cgp->cg_old_time = cgp->cg_time = time_second;
2520	inosused = cg_inosused(cgp);
2521	ino %= fs->fs_ipg;
2522	if (isclr(inosused, ino)) {
2523		printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2524		    (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
2525		if (fs->fs_ronly == 0)
2526			panic("ffs_freefile: freeing free inode");
2527	}
2528	clrbit(inosused, ino);
2529	if (ino < cgp->cg_irotor)
2530		cgp->cg_irotor = ino;
2531	cgp->cg_cs.cs_nifree++;
2532	UFS_LOCK(ump);
2533	fs->fs_cstotal.cs_nifree++;
2534	fs->fs_cs(fs, cg).cs_nifree++;
2535	if ((mode & IFMT) == IFDIR) {
2536		cgp->cg_cs.cs_ndir--;
2537		fs->fs_cstotal.cs_ndir--;
2538		fs->fs_cs(fs, cg).cs_ndir--;
2539	}
2540	fs->fs_fmod = 1;
2541	ACTIVECLEAR(fs, cg);
2542	UFS_UNLOCK(ump);
2543	if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2544		softdep_setup_inofree(UFSTOVFS(ump), bp,
2545		    ino + cg * fs->fs_ipg, wkhd);
2546	bdwrite(bp);
2547	return (0);
2548}
2549
2550/*
2551 * Check to see if a file is free.
2552 */
2553int
2554ffs_checkfreefile(fs, devvp, ino)
2555	struct fs *fs;
2556	struct vnode *devvp;
2557	ino_t ino;
2558{
2559	struct cg *cgp;
2560	struct buf *bp;
2561	ufs2_daddr_t cgbno;
2562	int ret;
2563	u_int cg;
2564	u_int8_t *inosused;
2565
2566	cg = ino_to_cg(fs, ino);
2567	if (devvp->v_type == VREG) {
2568		/* devvp is a snapshot */
2569		cgbno = fragstoblks(fs, cgtod(fs, cg));
2570	} else if (devvp->v_type == VCHR) {
2571		/* devvp is a normal disk device */
2572		cgbno = fsbtodb(fs, cgtod(fs, cg));
2573	} else {
2574		return (1);
2575	}
2576	if (ino >= fs->fs_ipg * fs->fs_ncg)
2577		return (1);
2578	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2579		brelse(bp);
2580		return (1);
2581	}
2582	cgp = (struct cg *)bp->b_data;
2583	if (!cg_chkmagic(cgp)) {
2584		brelse(bp);
2585		return (1);
2586	}
2587	inosused = cg_inosused(cgp);
2588	ino %= fs->fs_ipg;
2589	ret = isclr(inosused, ino);
2590	brelse(bp);
2591	return (ret);
2592}
2593
2594/*
2595 * Find a block of the specified size in the specified cylinder group.
2596 *
2597 * It is a panic if a request is made to find a block if none are
2598 * available.
2599 */
2600static ufs1_daddr_t
2601ffs_mapsearch(fs, cgp, bpref, allocsiz)
2602	struct fs *fs;
2603	struct cg *cgp;
2604	ufs2_daddr_t bpref;
2605	int allocsiz;
2606{
2607	ufs1_daddr_t bno;
2608	int start, len, loc, i;
2609	int blk, field, subfield, pos;
2610	u_int8_t *blksfree;
2611
2612	/*
2613	 * find the fragment by searching through the free block
2614	 * map for an appropriate bit pattern
2615	 */
2616	if (bpref)
2617		start = dtogd(fs, bpref) / NBBY;
2618	else
2619		start = cgp->cg_frotor / NBBY;
2620	blksfree = cg_blksfree(cgp);
2621	len = howmany(fs->fs_fpg, NBBY) - start;
2622	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2623		fragtbl[fs->fs_frag],
2624		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2625	if (loc == 0) {
2626		len = start + 1;
2627		start = 0;
2628		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2629			fragtbl[fs->fs_frag],
2630			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2631		if (loc == 0) {
2632			printf("start = %d, len = %d, fs = %s\n",
2633			    start, len, fs->fs_fsmnt);
2634			panic("ffs_alloccg: map corrupted");
2635			/* NOTREACHED */
2636		}
2637	}
2638	bno = (start + len - loc) * NBBY;
2639	cgp->cg_frotor = bno;
2640	/*
2641	 * found the byte in the map
2642	 * sift through the bits to find the selected frag
2643	 */
2644	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2645		blk = blkmap(fs, blksfree, bno);
2646		blk <<= 1;
2647		field = around[allocsiz];
2648		subfield = inside[allocsiz];
2649		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2650			if ((blk & field) == subfield)
2651				return (bno + pos);
2652			field <<= 1;
2653			subfield <<= 1;
2654		}
2655	}
2656	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2657	panic("ffs_alloccg: block not in map");
2658	return (-1);
2659}
2660
2661/*
2662 * Fserr prints the name of a filesystem with an error diagnostic.
2663 *
2664 * The form of the error message is:
2665 *	fs: error message
2666 */
2667void
2668ffs_fserr(fs, inum, cp)
2669	struct fs *fs;
2670	ino_t inum;
2671	char *cp;
2672{
2673	struct thread *td = curthread;	/* XXX */
2674	struct proc *p = td->td_proc;
2675
2676	log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
2677	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
2678	    fs->fs_fsmnt, cp);
2679}
2680
2681/*
2682 * This function provides the capability for the fsck program to
2683 * update an active filesystem. Fourteen operations are provided:
2684 *
2685 * adjrefcnt(inode, amt) - adjusts the reference count on the
2686 *	specified inode by the specified amount. Under normal
2687 *	operation the count should always go down. Decrementing
2688 *	the count to zero will cause the inode to be freed.
2689 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
2690 *	inode by the specified amount.
2691 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
2692 *	adjust the superblock summary.
2693 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2694 *	are marked as free. Inodes should never have to be marked
2695 *	as in use.
2696 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2697 *	are marked as free. Inodes should never have to be marked
2698 *	as in use.
2699 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2700 *	are marked as free. Blocks should never have to be marked
2701 *	as in use.
2702 * setflags(flags, set/clear) - the fs_flags field has the specified
2703 *	flags set (second parameter +1) or cleared (second parameter -1).
2704 * setcwd(dirinode) - set the current directory to dirinode in the
2705 *	filesystem associated with the snapshot.
2706 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
2707 *	in the current directory is oldvalue then change it to newvalue.
2708 * unlink(nameptr, oldvalue) - Verify that the inode number associated
2709 *	with nameptr in the current directory is oldvalue then unlink it.
2710 *
2711 * The following functions may only be used on a quiescent filesystem
2712 * by the soft updates journal. They are not safe to be run on an active
2713 * filesystem.
2714 *
2715 * setinode(inode, dip) - the specified disk inode is replaced with the
2716 *	contents pointed to by dip.
2717 * setbufoutput(fd, flags) - output associated with the specified file
2718 *	descriptor (which must reference the character device supporting
2719 *	the filesystem) switches from using physio to running through the
2720 *	buffer cache when flags is set to 1. The descriptor reverts to
2721 *	physio for output when flags is set to zero.
2722 */
2723
2724static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2725
2726SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2727	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2728
2729static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2730	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2731
2732static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
2733	sysctl_ffs_fsck, "Adjust number of directories");
2734
2735static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
2736	sysctl_ffs_fsck, "Adjust number of free blocks");
2737
2738static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
2739	sysctl_ffs_fsck, "Adjust number of free inodes");
2740
2741static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
2742	sysctl_ffs_fsck, "Adjust number of free frags");
2743
2744static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
2745	sysctl_ffs_fsck, "Adjust number of free clusters");
2746
2747static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2748	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2749
2750static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2751	sysctl_ffs_fsck, "Free Range of File Inodes");
2752
2753static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2754	sysctl_ffs_fsck, "Free Range of Blocks");
2755
2756static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2757	sysctl_ffs_fsck, "Change Filesystem Flags");
2758
2759static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
2760	sysctl_ffs_fsck, "Set Current Working Directory");
2761
2762static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
2763	sysctl_ffs_fsck, "Change Value of .. Entry");
2764
2765static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
2766	sysctl_ffs_fsck, "Unlink a Duplicate Name");
2767
2768static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
2769	sysctl_ffs_fsck, "Update an On-Disk Inode");
2770
2771static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
2772	sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
2773
2774#define DEBUG 1
2775#ifdef DEBUG
2776static int fsckcmds = 0;
2777SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2778#endif /* DEBUG */
2779
2780static int buffered_write(struct file *, struct uio *, struct ucred *,
2781	int, struct thread *);
2782
2783static int
2784sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2785{
2786	struct thread *td = curthread;
2787	struct fsck_cmd cmd;
2788	struct ufsmount *ump;
2789	struct vnode *vp, *dvp, *fdvp;
2790	struct inode *ip, *dp;
2791	struct mount *mp;
2792	struct fs *fs;
2793	ufs2_daddr_t blkno;
2794	long blkcnt, blksize;
2795	struct file *fp, *vfp;
2796	cap_rights_t rights;
2797	int filetype, error;
2798	static struct fileops *origops, bufferedops;
2799
2800	if (req->newlen > sizeof cmd)
2801		return (EBADRPC);
2802	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2803		return (error);
2804	if (cmd.version != FFS_CMD_VERSION)
2805		return (ERPCMISMATCH);
2806	if ((error = getvnode(td, cmd.handle,
2807	    cap_rights_init(&rights, CAP_FSCK), &fp)) != 0)
2808		return (error);
2809	vp = fp->f_data;
2810	if (vp->v_type != VREG && vp->v_type != VDIR) {
2811		fdrop(fp, td);
2812		return (EINVAL);
2813	}
2814	vn_start_write(vp, &mp, V_WAIT);
2815	if (mp == NULL ||
2816	    strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2817		vn_finished_write(mp);
2818		fdrop(fp, td);
2819		return (EINVAL);
2820	}
2821	ump = VFSTOUFS(mp);
2822	if ((mp->mnt_flag & MNT_RDONLY) &&
2823	    ump->um_fsckpid != td->td_proc->p_pid) {
2824		vn_finished_write(mp);
2825		fdrop(fp, td);
2826		return (EROFS);
2827	}
2828	fs = ump->um_fs;
2829	filetype = IFREG;
2830
2831	switch (oidp->oid_number) {
2832
2833	case FFS_SET_FLAGS:
2834#ifdef DEBUG
2835		if (fsckcmds)
2836			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2837			    cmd.size > 0 ? "set" : "clear");
2838#endif /* DEBUG */
2839		if (cmd.size > 0)
2840			fs->fs_flags |= (long)cmd.value;
2841		else
2842			fs->fs_flags &= ~(long)cmd.value;
2843		break;
2844
2845	case FFS_ADJ_REFCNT:
2846#ifdef DEBUG
2847		if (fsckcmds) {
2848			printf("%s: adjust inode %jd link count by %jd\n",
2849			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2850			    (intmax_t)cmd.size);
2851		}
2852#endif /* DEBUG */
2853		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2854			break;
2855		ip = VTOI(vp);
2856		ip->i_nlink += cmd.size;
2857		DIP_SET(ip, i_nlink, ip->i_nlink);
2858		ip->i_effnlink += cmd.size;
2859		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2860		error = ffs_update(vp, 1);
2861		if (DOINGSOFTDEP(vp))
2862			softdep_change_linkcnt(ip);
2863		vput(vp);
2864		break;
2865
2866	case FFS_ADJ_BLKCNT:
2867#ifdef DEBUG
2868		if (fsckcmds) {
2869			printf("%s: adjust inode %jd block count by %jd\n",
2870			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2871			    (intmax_t)cmd.size);
2872		}
2873#endif /* DEBUG */
2874		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2875			break;
2876		ip = VTOI(vp);
2877		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
2878		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2879		error = ffs_update(vp, 1);
2880		vput(vp);
2881		break;
2882
2883	case FFS_DIR_FREE:
2884		filetype = IFDIR;
2885		/* fall through */
2886
2887	case FFS_FILE_FREE:
2888#ifdef DEBUG
2889		if (fsckcmds) {
2890			if (cmd.size == 1)
2891				printf("%s: free %s inode %ju\n",
2892				    mp->mnt_stat.f_mntonname,
2893				    filetype == IFDIR ? "directory" : "file",
2894				    (uintmax_t)cmd.value);
2895			else
2896				printf("%s: free %s inodes %ju-%ju\n",
2897				    mp->mnt_stat.f_mntonname,
2898				    filetype == IFDIR ? "directory" : "file",
2899				    (uintmax_t)cmd.value,
2900				    (uintmax_t)(cmd.value + cmd.size - 1));
2901		}
2902#endif /* DEBUG */
2903		while (cmd.size > 0) {
2904			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
2905			    cmd.value, filetype, NULL)))
2906				break;
2907			cmd.size -= 1;
2908			cmd.value += 1;
2909		}
2910		break;
2911
2912	case FFS_BLK_FREE:
2913#ifdef DEBUG
2914		if (fsckcmds) {
2915			if (cmd.size == 1)
2916				printf("%s: free block %jd\n",
2917				    mp->mnt_stat.f_mntonname,
2918				    (intmax_t)cmd.value);
2919			else
2920				printf("%s: free blocks %jd-%jd\n",
2921				    mp->mnt_stat.f_mntonname,
2922				    (intmax_t)cmd.value,
2923				    (intmax_t)cmd.value + cmd.size - 1);
2924		}
2925#endif /* DEBUG */
2926		blkno = cmd.value;
2927		blkcnt = cmd.size;
2928		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2929		while (blkcnt > 0) {
2930			if (blksize > blkcnt)
2931				blksize = blkcnt;
2932			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
2933			    blksize * fs->fs_fsize, ROOTINO, VDIR, NULL);
2934			blkno += blksize;
2935			blkcnt -= blksize;
2936			blksize = fs->fs_frag;
2937		}
2938		break;
2939
2940	/*
2941	 * Adjust superblock summaries.  fsck(8) is expected to
2942	 * submit deltas when necessary.
2943	 */
2944	case FFS_ADJ_NDIR:
2945#ifdef DEBUG
2946		if (fsckcmds) {
2947			printf("%s: adjust number of directories by %jd\n",
2948			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2949		}
2950#endif /* DEBUG */
2951		fs->fs_cstotal.cs_ndir += cmd.value;
2952		break;
2953
2954	case FFS_ADJ_NBFREE:
2955#ifdef DEBUG
2956		if (fsckcmds) {
2957			printf("%s: adjust number of free blocks by %+jd\n",
2958			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2959		}
2960#endif /* DEBUG */
2961		fs->fs_cstotal.cs_nbfree += cmd.value;
2962		break;
2963
2964	case FFS_ADJ_NIFREE:
2965#ifdef DEBUG
2966		if (fsckcmds) {
2967			printf("%s: adjust number of free inodes by %+jd\n",
2968			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2969		}
2970#endif /* DEBUG */
2971		fs->fs_cstotal.cs_nifree += cmd.value;
2972		break;
2973
2974	case FFS_ADJ_NFFREE:
2975#ifdef DEBUG
2976		if (fsckcmds) {
2977			printf("%s: adjust number of free frags by %+jd\n",
2978			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2979		}
2980#endif /* DEBUG */
2981		fs->fs_cstotal.cs_nffree += cmd.value;
2982		break;
2983
2984	case FFS_ADJ_NUMCLUSTERS:
2985#ifdef DEBUG
2986		if (fsckcmds) {
2987			printf("%s: adjust number of free clusters by %+jd\n",
2988			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2989		}
2990#endif /* DEBUG */
2991		fs->fs_cstotal.cs_numclusters += cmd.value;
2992		break;
2993
2994	case FFS_SET_CWD:
2995#ifdef DEBUG
2996		if (fsckcmds) {
2997			printf("%s: set current directory to inode %jd\n",
2998			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2999		}
3000#endif /* DEBUG */
3001		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
3002			break;
3003		AUDIT_ARG_VNODE1(vp);
3004		if ((error = change_dir(vp, td)) != 0) {
3005			vput(vp);
3006			break;
3007		}
3008		VOP_UNLOCK(vp, 0);
3009		pwd_chdir(td, vp);
3010		break;
3011
3012	case FFS_SET_DOTDOT:
3013#ifdef DEBUG
3014		if (fsckcmds) {
3015			printf("%s: change .. in cwd from %jd to %jd\n",
3016			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3017			    (intmax_t)cmd.size);
3018		}
3019#endif /* DEBUG */
3020		/*
3021		 * First we have to get and lock the parent directory
3022		 * to which ".." points.
3023		 */
3024		error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3025		if (error)
3026			break;
3027		/*
3028		 * Now we get and lock the child directory containing "..".
3029		 */
3030		FILEDESC_SLOCK(td->td_proc->p_fd);
3031		dvp = td->td_proc->p_fd->fd_cdir;
3032		FILEDESC_SUNLOCK(td->td_proc->p_fd);
3033		if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
3034			vput(fdvp);
3035			break;
3036		}
3037		dp = VTOI(dvp);
3038		dp->i_offset = 12;	/* XXX mastertemplate.dot_reclen */
3039		error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3040		    DT_DIR, 0);
3041		cache_purge(fdvp);
3042		cache_purge(dvp);
3043		vput(dvp);
3044		vput(fdvp);
3045		break;
3046
3047	case FFS_UNLINK:
3048#ifdef DEBUG
3049		if (fsckcmds) {
3050			char buf[32];
3051
3052			if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3053				strncpy(buf, "Name_too_long", 32);
3054			printf("%s: unlink %s (inode %jd)\n",
3055			    mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3056		}
3057#endif /* DEBUG */
3058		/*
3059		 * kern_unlinkat will do its own start/finish writes and
3060		 * they do not nest, so drop ours here. Setting mp == NULL
3061		 * indicates that vn_finished_write is not needed down below.
3062		 */
3063		vn_finished_write(mp);
3064		mp = NULL;
3065		error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
3066		    UIO_USERSPACE, (ino_t)cmd.size);
3067		break;
3068
3069	case FFS_SET_INODE:
3070		if (ump->um_fsckpid != td->td_proc->p_pid) {
3071			error = EPERM;
3072			break;
3073		}
3074#ifdef DEBUG
3075		if (fsckcmds) {
3076			printf("%s: update inode %jd\n",
3077			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3078		}
3079#endif /* DEBUG */
3080		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3081			break;
3082		AUDIT_ARG_VNODE1(vp);
3083		ip = VTOI(vp);
3084		if (I_IS_UFS1(ip))
3085			error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
3086			    sizeof(struct ufs1_dinode));
3087		else
3088			error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
3089			    sizeof(struct ufs2_dinode));
3090		if (error) {
3091			vput(vp);
3092			break;
3093		}
3094		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3095		error = ffs_update(vp, 1);
3096		vput(vp);
3097		break;
3098
3099	case FFS_SET_BUFOUTPUT:
3100		if (ump->um_fsckpid != td->td_proc->p_pid) {
3101			error = EPERM;
3102			break;
3103		}
3104		if (ITOUMP(VTOI(vp)) != ump) {
3105			error = EINVAL;
3106			break;
3107		}
3108#ifdef DEBUG
3109		if (fsckcmds) {
3110			printf("%s: %s buffered output for descriptor %jd\n",
3111			    mp->mnt_stat.f_mntonname,
3112			    cmd.size == 1 ? "enable" : "disable",
3113			    (intmax_t)cmd.value);
3114		}
3115#endif /* DEBUG */
3116		if ((error = getvnode(td, cmd.value,
3117		    cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0)
3118			break;
3119		if (vfp->f_vnode->v_type != VCHR) {
3120			fdrop(vfp, td);
3121			error = EINVAL;
3122			break;
3123		}
3124		if (origops == NULL) {
3125			origops = vfp->f_ops;
3126			bcopy((void *)origops, (void *)&bufferedops,
3127			    sizeof(bufferedops));
3128			bufferedops.fo_write = buffered_write;
3129		}
3130		if (cmd.size == 1)
3131			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3132			    (uintptr_t)&bufferedops);
3133		else
3134			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3135			    (uintptr_t)origops);
3136		fdrop(vfp, td);
3137		break;
3138
3139	default:
3140#ifdef DEBUG
3141		if (fsckcmds) {
3142			printf("Invalid request %d from fsck\n",
3143			    oidp->oid_number);
3144		}
3145#endif /* DEBUG */
3146		error = EINVAL;
3147		break;
3148
3149	}
3150	fdrop(fp, td);
3151	vn_finished_write(mp);
3152	return (error);
3153}
3154
3155/*
3156 * Function to switch a descriptor to use the buffer cache to stage
3157 * its I/O. This is needed so that writes to the filesystem device
3158 * will give snapshots a chance to copy modified blocks for which it
3159 * needs to retain copies.
3160 */
3161static int
3162buffered_write(fp, uio, active_cred, flags, td)
3163	struct file *fp;
3164	struct uio *uio;
3165	struct ucred *active_cred;
3166	int flags;
3167	struct thread *td;
3168{
3169	struct vnode *devvp, *vp;
3170	struct inode *ip;
3171	struct buf *bp;
3172	struct fs *fs;
3173	struct filedesc *fdp;
3174	int error;
3175	daddr_t lbn;
3176
3177	/*
3178	 * The devvp is associated with the /dev filesystem. To discover
3179	 * the filesystem with which the device is associated, we depend
3180	 * on the application setting the current directory to a location
3181	 * within the filesystem being written. Yes, this is an ugly hack.
3182	 */
3183	devvp = fp->f_vnode;
3184	if (!vn_isdisk(devvp, NULL))
3185		return (EINVAL);
3186	fdp = td->td_proc->p_fd;
3187	FILEDESC_SLOCK(fdp);
3188	vp = fdp->fd_cdir;
3189	vref(vp);
3190	FILEDESC_SUNLOCK(fdp);
3191	vn_lock(vp, LK_SHARED | LK_RETRY);
3192	/*
3193	 * Check that the current directory vnode indeed belongs to
3194	 * UFS before trying to dereference UFS-specific v_data fields.
3195	 */
3196	if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
3197		vput(vp);
3198		return (EINVAL);
3199	}
3200	ip = VTOI(vp);
3201	if (ITODEVVP(ip) != devvp) {
3202		vput(vp);
3203		return (EINVAL);
3204	}
3205	fs = ITOFS(ip);
3206	vput(vp);
3207	foffset_lock_uio(fp, uio, flags);
3208	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
3209#ifdef DEBUG
3210	if (fsckcmds) {
3211		printf("%s: buffered write for block %jd\n",
3212		    fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
3213	}
3214#endif /* DEBUG */
3215	/*
3216	 * All I/O must be contained within a filesystem block, start on
3217	 * a fragment boundary, and be a multiple of fragments in length.
3218	 */
3219	if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
3220	    fragoff(fs, uio->uio_offset) != 0 ||
3221	    fragoff(fs, uio->uio_resid) != 0) {
3222		error = EINVAL;
3223		goto out;
3224	}
3225	lbn = numfrags(fs, uio->uio_offset);
3226	bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
3227	bp->b_flags |= B_RELBUF;
3228	if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
3229		brelse(bp);
3230		goto out;
3231	}
3232	error = bwrite(bp);
3233out:
3234	VOP_UNLOCK(devvp, 0);
3235	foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
3236	return (error);
3237}
3238