audit_bsm.c revision 195291
1/*
2 * Copyright (c) 1999-2009 Apple Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1.  Redistributions of source code must retain the above copyright
9 *     notice, this list of conditions and the following disclaimer.
10 * 2.  Redistributions in binary form must reproduce the above copyright
11 *     notice, this list of conditions and the following disclaimer in the
12 *     documentation and/or other materials provided with the distribution.
13 * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
14 *     its contributors may be used to endorse or promote products derived
15 *     from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
25 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
26 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/security/audit/audit_bsm.c 195291 2009-07-02 16:33:38Z rwatson $");
32
33#include <sys/param.h>
34#include <sys/vnode.h>
35#include <sys/ipc.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mutex.h>
39#include <sys/socket.h>
40#include <sys/extattr.h>
41#include <sys/fcntl.h>
42#include <sys/user.h>
43#include <sys/systm.h>
44
45#include <bsm/audit.h>
46#include <bsm/audit_internal.h>
47#include <bsm/audit_record.h>
48#include <bsm/audit_kevents.h>
49
50#include <security/audit/audit.h>
51#include <security/audit/audit_private.h>
52
53#include <netinet/in_systm.h>
54#include <netinet/in.h>
55#include <netinet/ip.h>
56
57MALLOC_DEFINE(M_AUDITBSM, "audit_bsm", "Audit BSM data");
58
59static void	audit_sys_auditon(struct audit_record *ar,
60		    struct au_record *rec);
61
62/*
63 * Initialize the BSM auditing subsystem.
64 */
65void
66kau_init(void)
67{
68
69	au_evclassmap_init();
70}
71
72/*
73 * This call reserves memory for the audit record.  Memory must be guaranteed
74 * before any auditable event can be generated.  The au_record structure
75 * maintains a reference to the memory allocated above and also the list of
76 * tokens associated with this record.
77 */
78static struct au_record *
79kau_open(void)
80{
81	struct au_record *rec;
82
83	rec = malloc(sizeof(*rec), M_AUDITBSM, M_WAITOK);
84	rec->data = NULL;
85	TAILQ_INIT(&rec->token_q);
86	rec->len = 0;
87	rec->used = 1;
88
89	return (rec);
90}
91
92/*
93 * Store the token with the record descriptor.
94 */
95static void
96kau_write(struct au_record *rec, struct au_token *tok)
97{
98
99	KASSERT(tok != NULL, ("kau_write: tok == NULL"));
100
101	TAILQ_INSERT_TAIL(&rec->token_q, tok, tokens);
102	rec->len += tok->len;
103}
104
105/*
106 * Close out the audit record by adding the header token, identifying any
107 * missing tokens.  Write out the tokens to the record memory.
108 */
109static void
110kau_close(struct au_record *rec, struct timespec *ctime, short event)
111{
112	u_char *dptr;
113	size_t tot_rec_size;
114	token_t *cur, *hdr, *trail;
115	struct timeval tm;
116	size_t hdrsize;
117	struct auditinfo_addr ak;
118	struct in6_addr *ap;
119
120	audit_get_kinfo(&ak);
121	hdrsize = 0;
122	switch (ak.ai_termid.at_type) {
123	case AU_IPv4:
124		hdrsize = (ak.ai_termid.at_addr[0] == INADDR_ANY) ?
125		    AUDIT_HEADER_SIZE : AUDIT_HEADER_EX_SIZE(&ak);
126		break;
127	case AU_IPv6:
128		ap = (struct in6_addr *)&ak.ai_termid.at_addr[0];
129		hdrsize = (IN6_IS_ADDR_UNSPECIFIED(ap)) ? AUDIT_HEADER_SIZE :
130		    AUDIT_HEADER_EX_SIZE(&ak);
131		break;
132	default:
133		panic("kau_close: invalid address family");
134	}
135	tot_rec_size = rec->len + hdrsize + AUDIT_TRAILER_SIZE;
136	rec->data = malloc(tot_rec_size, M_AUDITBSM, M_WAITOK | M_ZERO);
137
138	tm.tv_usec = ctime->tv_nsec / 1000;
139	tm.tv_sec = ctime->tv_sec;
140	if (hdrsize != AUDIT_HEADER_SIZE)
141		hdr = au_to_header32_ex_tm(tot_rec_size, event, 0, tm, &ak);
142	else
143		hdr = au_to_header32_tm(tot_rec_size, event, 0, tm);
144	TAILQ_INSERT_HEAD(&rec->token_q, hdr, tokens);
145
146	trail = au_to_trailer(tot_rec_size);
147	TAILQ_INSERT_TAIL(&rec->token_q, trail, tokens);
148
149	rec->len = tot_rec_size;
150	dptr = rec->data;
151	TAILQ_FOREACH(cur, &rec->token_q, tokens) {
152		memcpy(dptr, cur->t_data, cur->len);
153		dptr += cur->len;
154	}
155}
156
157/*
158 * Free a BSM audit record by releasing all the tokens and clearing the audit
159 * record information.
160 */
161void
162kau_free(struct au_record *rec)
163{
164	struct au_token *tok;
165
166	/* Free the token list. */
167	while ((tok = TAILQ_FIRST(&rec->token_q))) {
168		TAILQ_REMOVE(&rec->token_q, tok, tokens);
169		free(tok->t_data, M_AUDITBSM);
170		free(tok, M_AUDITBSM);
171	}
172
173	rec->used = 0;
174	rec->len = 0;
175	free(rec->data, M_AUDITBSM);
176	free(rec, M_AUDITBSM);
177}
178
179/*
180 * XXX: May want turn some (or all) of these macros into functions in order
181 * to reduce the generated code size.
182 *
183 * XXXAUDIT: These macros assume that 'kar', 'ar', 'rec', and 'tok' in the
184 * caller are OK with this.
185 */
186#define	UPATH1_TOKENS do {						\
187	if (ARG_IS_VALID(kar, ARG_UPATH1)) {				\
188		tok = au_to_path(ar->ar_arg_upath1);			\
189		kau_write(rec, tok);					\
190	}								\
191} while (0)
192
193#define	UPATH2_TOKENS do {						\
194	if (ARG_IS_VALID(kar, ARG_UPATH2)) {				\
195		tok = au_to_path(ar->ar_arg_upath2);			\
196		kau_write(rec, tok);					\
197	}								\
198} while (0)
199
200#define	VNODE1_TOKENS do {						\
201	if (ARG_IS_VALID(kar, ARG_VNODE1)) {				\
202		tok = au_to_attr32(&ar->ar_arg_vnode1);			\
203		kau_write(rec, tok);					\
204	}								\
205} while (0)
206
207#define	UPATH1_VNODE1_TOKENS do {					\
208	if (ARG_IS_VALID(kar, ARG_UPATH1)) {				\
209		UPATH1_TOKENS;						\
210	}								\
211	if (ARG_IS_VALID(kar, ARG_VNODE1)) {				\
212		tok = au_to_attr32(&ar->ar_arg_vnode1);			\
213		kau_write(rec, tok);					\
214	}								\
215} while (0)
216
217#define	VNODE2_TOKENS do {						\
218	if (ARG_IS_VALID(kar, ARG_VNODE2)) {				\
219		tok = au_to_attr32(&ar->ar_arg_vnode2);			\
220		kau_write(rec, tok);					\
221	}								\
222} while (0)
223
224#define	FD_VNODE1_TOKENS do {						\
225	if (ARG_IS_VALID(kar, ARG_VNODE1)) {				\
226		if (ARG_IS_VALID(kar, ARG_FD)) {			\
227			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);	\
228			kau_write(rec, tok);				\
229		}							\
230		tok = au_to_attr32(&ar->ar_arg_vnode1);			\
231		kau_write(rec, tok);					\
232	} else {							\
233		if (ARG_IS_VALID(kar, ARG_FD)) {			\
234			tok = au_to_arg32(1, "non-file: fd",		\
235			    ar->ar_arg_fd);				\
236			kau_write(rec, tok);				\
237		}							\
238	}								\
239} while (0)
240
241#define	PROCESS_PID_TOKENS(argn) do {					\
242	if ((ar->ar_arg_pid > 0) /* Reference a single process */	\
243	    && (ARG_IS_VALID(kar, ARG_PROCESS))) {			\
244		tok = au_to_process32_ex(ar->ar_arg_auid,		\
245		    ar->ar_arg_euid, ar->ar_arg_egid,			\
246		    ar->ar_arg_ruid, ar->ar_arg_rgid,			\
247		    ar->ar_arg_pid, ar->ar_arg_asid,			\
248		    &ar->ar_arg_termid_addr);				\
249		kau_write(rec, tok);					\
250	} else if (ARG_IS_VALID(kar, ARG_PID)) {			\
251		tok = au_to_arg32(argn, "process", ar->ar_arg_pid);	\
252		kau_write(rec, tok);					\
253	}								\
254} while (0)
255
256#define	EXTATTR_TOKENS(namespace_argnum) do {				\
257	if (ARG_IS_VALID(kar, ARG_VALUE)) {				\
258		switch (ar->ar_arg_value) {				\
259		case EXTATTR_NAMESPACE_USER:				\
260			tok = au_to_text(EXTATTR_NAMESPACE_USER_STRING);\
261			break;						\
262		case EXTATTR_NAMESPACE_SYSTEM:				\
263			tok = au_to_text(EXTATTR_NAMESPACE_SYSTEM_STRING);\
264			break;						\
265		default:						\
266			tok = au_to_arg32((namespace_argnum),		\
267			    "attrnamespace", ar->ar_arg_value);		\
268			break;						\
269		}							\
270		kau_write(rec, tok);					\
271	}								\
272	/* attrname is in the text field */				\
273	if (ARG_IS_VALID(kar, ARG_TEXT)) {				\
274		tok = au_to_text(ar->ar_arg_text);			\
275		kau_write(rec, tok);					\
276	}								\
277} while (0)
278
279/*
280 * Not all pointer arguments to system calls are of interest, but in some
281 * cases they reflect delegation of rights, such as mmap(2) followed by
282 * minherit(2) before execve(2), so do the best we can.
283 */
284#define	ADDR_TOKEN(argnum, argname) do {				\
285	if (ARG_IS_VALID(kar, ARG_ADDR)) {				\
286		if (sizeof(void *) == sizeof(uint32_t))			\
287			tok = au_to_arg32((argnum), (argname),		\
288			    (uint32_t)(uintptr_t)ar->ar_arg_addr);	\
289		else							\
290			tok = au_to_arg64((argnum), (argname),		\
291			    (uint64_t)(uintptr_t)ar->ar_arg_addr);	\
292		kau_write(rec, tok);					\
293	}								\
294} while (0)
295
296
297/*
298 * Implement auditing for the auditon() system call. The audit tokens that
299 * are generated depend on the command that was sent into the auditon()
300 * system call.
301 */
302static void
303audit_sys_auditon(struct audit_record *ar, struct au_record *rec)
304{
305	struct au_token *tok;
306
307	tok = au_to_arg32(3, "length", ar->ar_arg_len);
308	kau_write(rec, tok);
309	switch (ar->ar_arg_cmd) {
310	case A_OLDSETPOLICY:
311		if ((size_t)ar->ar_arg_len == sizeof(int64_t)) {
312			tok = au_to_arg64(2, "policy",
313			    ar->ar_arg_auditon.au_policy64);
314			kau_write(rec, tok);
315			break;
316		}
317		/* FALLTHROUGH */
318
319	case A_SETPOLICY:
320		tok = au_to_arg32(2, "policy", ar->ar_arg_auditon.au_policy);
321		kau_write(rec, tok);
322		break;
323
324	case A_SETKMASK:
325		tok = au_to_arg32(2, "setkmask:as_success",
326		    ar->ar_arg_auditon.au_mask.am_success);
327		kau_write(rec, tok);
328		tok = au_to_arg32(2, "setkmask:as_failure",
329		    ar->ar_arg_auditon.au_mask.am_failure);
330		kau_write(rec, tok);
331		break;
332
333	case A_OLDSETQCTRL:
334		if ((size_t)ar->ar_arg_len == sizeof(au_qctrl64_t)) {
335			tok = au_to_arg64(2, "setqctrl:aq_hiwater",
336			    ar->ar_arg_auditon.au_qctrl64.aq64_hiwater);
337			kau_write(rec, tok);
338			tok = au_to_arg64(2, "setqctrl:aq_lowater",
339			    ar->ar_arg_auditon.au_qctrl64.aq64_lowater);
340			kau_write(rec, tok);
341			tok = au_to_arg64(2, "setqctrl:aq_bufsz",
342			    ar->ar_arg_auditon.au_qctrl64.aq64_bufsz);
343			kau_write(rec, tok);
344			tok = au_to_arg64(2, "setqctrl:aq_delay",
345			    ar->ar_arg_auditon.au_qctrl64.aq64_delay);
346			kau_write(rec, tok);
347			tok = au_to_arg64(2, "setqctrl:aq_minfree",
348			    ar->ar_arg_auditon.au_qctrl64.aq64_minfree);
349			kau_write(rec, tok);
350			break;
351		}
352		/* FALLTHROUGH */
353
354	case A_SETQCTRL:
355		tok = au_to_arg32(2, "setqctrl:aq_hiwater",
356		    ar->ar_arg_auditon.au_qctrl.aq_hiwater);
357		kau_write(rec, tok);
358		tok = au_to_arg32(2, "setqctrl:aq_lowater",
359		    ar->ar_arg_auditon.au_qctrl.aq_lowater);
360		kau_write(rec, tok);
361		tok = au_to_arg32(2, "setqctrl:aq_bufsz",
362		    ar->ar_arg_auditon.au_qctrl.aq_bufsz);
363		kau_write(rec, tok);
364		tok = au_to_arg32(2, "setqctrl:aq_delay",
365		    ar->ar_arg_auditon.au_qctrl.aq_delay);
366		kau_write(rec, tok);
367		tok = au_to_arg32(2, "setqctrl:aq_minfree",
368		    ar->ar_arg_auditon.au_qctrl.aq_minfree);
369		kau_write(rec, tok);
370		break;
371
372	case A_SETUMASK:
373		tok = au_to_arg32(2, "setumask:as_success",
374		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_success);
375		kau_write(rec, tok);
376		tok = au_to_arg32(2, "setumask:as_failure",
377		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure);
378		kau_write(rec, tok);
379		break;
380
381	case A_SETSMASK:
382		tok = au_to_arg32(2, "setsmask:as_success",
383		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_success);
384		kau_write(rec, tok);
385		tok = au_to_arg32(2, "setsmask:as_failure",
386		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure);
387		kau_write(rec, tok);
388		break;
389
390	case A_OLDSETCOND:
391		if ((size_t)ar->ar_arg_len == sizeof(int64_t)) {
392			tok = au_to_arg64(2, "setcond",
393			    ar->ar_arg_auditon.au_cond64);
394			kau_write(rec, tok);
395			break;
396		}
397		/* FALLTHROUGH */
398
399	case A_SETCOND:
400		tok = au_to_arg32(2, "setcond", ar->ar_arg_auditon.au_cond);
401		kau_write(rec, tok);
402		break;
403
404	case A_SETCLASS:
405		kau_write(rec, tok);
406		tok = au_to_arg32(2, "setclass:ec_event",
407		    ar->ar_arg_auditon.au_evclass.ec_number);
408		kau_write(rec, tok);
409		tok = au_to_arg32(2, "setclass:ec_class",
410		    ar->ar_arg_auditon.au_evclass.ec_class);
411		kau_write(rec, tok);
412		break;
413
414	case A_SETPMASK:
415		tok = au_to_arg32(2, "setpmask:as_success",
416		    ar->ar_arg_auditon.au_aupinfo.ap_mask.am_success);
417		kau_write(rec, tok);
418		tok = au_to_arg32(2, "setpmask:as_failure",
419		    ar->ar_arg_auditon.au_aupinfo.ap_mask.am_failure);
420		kau_write(rec, tok);
421		break;
422
423	case A_SETFSIZE:
424		tok = au_to_arg32(2, "setfsize:filesize",
425		    ar->ar_arg_auditon.au_fstat.af_filesz);
426		kau_write(rec, tok);
427		break;
428
429	default:
430		break;
431	}
432}
433
434/*
435 * Convert an internal kernel audit record to a BSM record and return a
436 * success/failure indicator. The BSM record is passed as an out parameter to
437 * this function.
438 *
439 * Return conditions:
440 *   BSM_SUCCESS: The BSM record is valid
441 *   BSM_FAILURE: Failure; the BSM record is NULL.
442 *   BSM_NOAUDIT: The event is not auditable for BSM; the BSM record is NULL.
443 */
444int
445kaudit_to_bsm(struct kaudit_record *kar, struct au_record **pau)
446{
447	struct au_token *tok, *subj_tok;
448	struct au_record *rec;
449	au_tid_t tid;
450	struct audit_record *ar;
451	int ctr;
452
453	KASSERT(kar != NULL, ("kaudit_to_bsm: kar == NULL"));
454
455	*pau = NULL;
456	ar = &kar->k_ar;
457	rec = kau_open();
458
459	/*
460	 * Create the subject token.
461	 */
462	switch (ar->ar_subj_term_addr.at_type) {
463	case AU_IPv4:
464		tid.port = ar->ar_subj_term_addr.at_port;
465		tid.machine = ar->ar_subj_term_addr.at_addr[0];
466		subj_tok = au_to_subject32(ar->ar_subj_auid,  /* audit ID */
467		    ar->ar_subj_cred.cr_uid, /* eff uid */
468		    ar->ar_subj_egid,	/* eff group id */
469		    ar->ar_subj_ruid,	/* real uid */
470		    ar->ar_subj_rgid,	/* real group id */
471		    ar->ar_subj_pid,	/* process id */
472		    ar->ar_subj_asid,	/* session ID */
473		    &tid);
474		break;
475	case AU_IPv6:
476		subj_tok = au_to_subject32_ex(ar->ar_subj_auid,
477		    ar->ar_subj_cred.cr_uid,
478		    ar->ar_subj_egid,
479		    ar->ar_subj_ruid,
480		    ar->ar_subj_rgid,
481		    ar->ar_subj_pid,
482		    ar->ar_subj_asid,
483		    &ar->ar_subj_term_addr);
484		break;
485	default:
486		bzero(&tid, sizeof(tid));
487		subj_tok = au_to_subject32(ar->ar_subj_auid,
488		    ar->ar_subj_cred.cr_uid,
489		    ar->ar_subj_egid,
490		    ar->ar_subj_ruid,
491		    ar->ar_subj_rgid,
492		    ar->ar_subj_pid,
493		    ar->ar_subj_asid,
494		    &tid);
495	}
496
497	/*
498	 * The logic inside each case fills in the tokens required for the
499	 * event, except for the header, trailer, and return tokens.  The
500	 * header and trailer tokens are added by the kau_close() function.
501	 * The return token is added outside of the switch statement.
502	 */
503	switch(ar->ar_event) {
504	case AUE_ACCEPT:
505	case AUE_BIND:
506	case AUE_LISTEN:
507	case AUE_CONNECT:
508	case AUE_RECV:
509	case AUE_RECVFROM:
510	case AUE_RECVMSG:
511	case AUE_SEND:
512	case AUE_SENDFILE:
513	case AUE_SENDMSG:
514	case AUE_SENDTO:
515		/*
516		 * Socket-related events.
517		 */
518		if (ARG_IS_VALID(kar, ARG_FD)) {
519			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
520			kau_write(rec, tok);
521		}
522		if (ARG_IS_VALID(kar, ARG_SADDRINET)) {
523			tok = au_to_sock_inet((struct sockaddr_in *)
524			    &ar->ar_arg_sockaddr);
525			kau_write(rec, tok);
526		}
527		if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) {
528			tok = au_to_sock_unix((struct sockaddr_un *)
529			    &ar->ar_arg_sockaddr);
530			kau_write(rec, tok);
531			UPATH1_TOKENS;
532		}
533		/* XXX Need to handle ARG_SADDRINET6 */
534		break;
535
536	case AUE_SOCKET:
537	case AUE_SOCKETPAIR:
538		if (ARG_IS_VALID(kar, ARG_SOCKINFO)) {
539			tok = au_to_arg32(1, "domain",
540			    ar->ar_arg_sockinfo.so_domain);
541			kau_write(rec, tok);
542			tok = au_to_arg32(2, "type",
543			    ar->ar_arg_sockinfo.so_type);
544			kau_write(rec, tok);
545			tok = au_to_arg32(3, "protocol",
546			    ar->ar_arg_sockinfo.so_protocol);
547			kau_write(rec, tok);
548		}
549		break;
550
551	case AUE_SETSOCKOPT:
552	case AUE_SHUTDOWN:
553		if (ARG_IS_VALID(kar, ARG_FD)) {
554			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
555			kau_write(rec, tok);
556		}
557		break;
558
559	case AUE_ACCT:
560		if (ARG_IS_VALID(kar, ARG_UPATH1)) {
561			UPATH1_VNODE1_TOKENS;
562		} else {
563			tok = au_to_arg32(1, "accounting off", 0);
564			kau_write(rec, tok);
565		}
566		break;
567
568	case AUE_SETAUID:
569		if (ARG_IS_VALID(kar, ARG_AUID)) {
570			tok = au_to_arg32(2, "setauid", ar->ar_arg_auid);
571			kau_write(rec, tok);
572		}
573		break;
574
575	case AUE_SETAUDIT:
576		if (ARG_IS_VALID(kar, ARG_AUID) &&
577		    ARG_IS_VALID(kar, ARG_ASID) &&
578		    ARG_IS_VALID(kar, ARG_AMASK) &&
579		    ARG_IS_VALID(kar, ARG_TERMID)) {
580			tok = au_to_arg32(1, "setaudit:auid",
581			    ar->ar_arg_auid);
582			kau_write(rec, tok);
583			tok = au_to_arg32(1, "setaudit:port",
584			    ar->ar_arg_termid.port);
585			kau_write(rec, tok);
586			tok = au_to_arg32(1, "setaudit:machine",
587			    ar->ar_arg_termid.machine);
588			kau_write(rec, tok);
589			tok = au_to_arg32(1, "setaudit:as_success",
590			    ar->ar_arg_amask.am_success);
591			kau_write(rec, tok);
592			tok = au_to_arg32(1, "setaudit:as_failure",
593			    ar->ar_arg_amask.am_failure);
594			kau_write(rec, tok);
595			tok = au_to_arg32(1, "setaudit:asid",
596			    ar->ar_arg_asid);
597			kau_write(rec, tok);
598		}
599		break;
600
601	case AUE_SETAUDIT_ADDR:
602		if (ARG_IS_VALID(kar, ARG_AUID) &&
603		    ARG_IS_VALID(kar, ARG_ASID) &&
604		    ARG_IS_VALID(kar, ARG_AMASK) &&
605		    ARG_IS_VALID(kar, ARG_TERMID_ADDR)) {
606			tok = au_to_arg32(1, "setaudit_addr:auid",
607			    ar->ar_arg_auid);
608			kau_write(rec, tok);
609			tok = au_to_arg32(1, "setaudit_addr:as_success",
610			    ar->ar_arg_amask.am_success);
611			kau_write(rec, tok);
612			tok = au_to_arg32(1, "setaudit_addr:as_failure",
613			    ar->ar_arg_amask.am_failure);
614			kau_write(rec, tok);
615			tok = au_to_arg32(1, "setaudit_addr:asid",
616			    ar->ar_arg_asid);
617			kau_write(rec, tok);
618			tok = au_to_arg32(1, "setaudit_addr:type",
619			    ar->ar_arg_termid_addr.at_type);
620			kau_write(rec, tok);
621			tok = au_to_arg32(1, "setaudit_addr:port",
622			    ar->ar_arg_termid_addr.at_port);
623			kau_write(rec, tok);
624			if (ar->ar_arg_termid_addr.at_type == AU_IPv6)
625				tok = au_to_in_addr_ex((struct in6_addr *)
626				    &ar->ar_arg_termid_addr.at_addr[0]);
627			if (ar->ar_arg_termid_addr.at_type == AU_IPv4)
628				tok = au_to_in_addr((struct in_addr *)
629				    &ar->ar_arg_termid_addr.at_addr[0]);
630			kau_write(rec, tok);
631		}
632		break;
633
634	case AUE_AUDITON:
635		/*
636		 * For AUDITON commands without own event, audit the cmd.
637		 */
638		if (ARG_IS_VALID(kar, ARG_CMD)) {
639			tok = au_to_arg32(1, "cmd", ar->ar_arg_cmd);
640			kau_write(rec, tok);
641		}
642		/* FALLTHROUGH */
643
644	case AUE_AUDITON_GETCAR:
645	case AUE_AUDITON_GETCLASS:
646	case AUE_AUDITON_GETCOND:
647	case AUE_AUDITON_GETCWD:
648	case AUE_AUDITON_GETKMASK:
649	case AUE_AUDITON_GETSTAT:
650	case AUE_AUDITON_GPOLICY:
651	case AUE_AUDITON_GQCTRL:
652	case AUE_AUDITON_SETCLASS:
653	case AUE_AUDITON_SETCOND:
654	case AUE_AUDITON_SETKMASK:
655	case AUE_AUDITON_SETSMASK:
656	case AUE_AUDITON_SETSTAT:
657	case AUE_AUDITON_SETUMASK:
658	case AUE_AUDITON_SPOLICY:
659	case AUE_AUDITON_SQCTRL:
660		if (ARG_IS_VALID(kar, ARG_AUDITON))
661			audit_sys_auditon(ar, rec);
662		break;
663
664	case AUE_AUDITCTL:
665		UPATH1_VNODE1_TOKENS;
666		break;
667
668	case AUE_EXIT:
669		if (ARG_IS_VALID(kar, ARG_EXIT)) {
670			tok = au_to_exit(ar->ar_arg_exitretval,
671			    ar->ar_arg_exitstatus);
672			kau_write(rec, tok);
673		}
674		break;
675
676	case AUE_ADJTIME:
677	case AUE_CLOCK_SETTIME:
678	case AUE_AUDIT:
679	case AUE_DUP2:
680	case AUE_GETAUDIT:
681	case AUE_GETAUDIT_ADDR:
682	case AUE_GETAUID:
683	case AUE_GETCWD:
684	case AUE_GETFSSTAT:
685	case AUE_GETRESUID:
686	case AUE_GETRESGID:
687	case AUE_KQUEUE:
688	case AUE_MODLOAD:
689	case AUE_MODUNLOAD:
690	case AUE_MSGSYS:
691	case AUE_NTP_ADJTIME:
692	case AUE_PIPE:
693	case AUE_POSIX_OPENPT:
694	case AUE_PROFILE:
695	case AUE_RTPRIO:
696	case AUE_SEMSYS:
697	case AUE_SHMSYS:
698	case AUE_SETPGRP:
699	case AUE_SETRLIMIT:
700	case AUE_SETSID:
701	case AUE_SETTIMEOFDAY:
702	case AUE_SYSARCH:
703
704		/*
705		 * Header, subject, and return tokens added at end.
706		 */
707		break;
708
709	case AUE_MKFIFO:
710		if (ARG_IS_VALID(kar, ARG_MODE)) {
711			tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
712			kau_write(rec, tok);
713		}
714		/* FALLTHROUGH */
715
716	case AUE_CHDIR:
717	case AUE_CHROOT:
718	case AUE_GETATTRLIST:
719	case AUE_JAIL:
720	case AUE_LUTIMES:
721	case AUE_NFS_GETFH:
722	case AUE_LSTAT:
723	case AUE_PATHCONF:
724	case AUE_READLINK:
725	case AUE_REVOKE:
726	case AUE_RMDIR:
727	case AUE_SEARCHFS:
728	case AUE_SETATTRLIST:
729	case AUE_STAT:
730	case AUE_STATFS:
731	case AUE_SWAPON:
732	case AUE_SWAPOFF:
733	case AUE_TRUNCATE:
734	case AUE_UNDELETE:
735	case AUE_UNLINK:
736	case AUE_UTIMES:
737		UPATH1_VNODE1_TOKENS;
738		break;
739
740	case AUE_ACCESS:
741	case AUE_EACCESS:
742		UPATH1_VNODE1_TOKENS;
743		if (ARG_IS_VALID(kar, ARG_VALUE)) {
744			tok = au_to_arg32(2, "mode", ar->ar_arg_value);
745			kau_write(rec, tok);
746		}
747		break;
748
749	case AUE_FHSTATFS:
750	case AUE_FHOPEN:
751	case AUE_FHSTAT:
752		/* XXXRW: Need to audit vnode argument. */
753		break;
754
755	case AUE_CHFLAGS:
756	case AUE_LCHFLAGS:
757		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
758			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
759			kau_write(rec, tok);
760		}
761		UPATH1_VNODE1_TOKENS;
762		break;
763
764	case AUE_CHMOD:
765	case AUE_LCHMOD:
766		if (ARG_IS_VALID(kar, ARG_MODE)) {
767			tok = au_to_arg32(2, "new file mode",
768			    ar->ar_arg_mode);
769			kau_write(rec, tok);
770		}
771		UPATH1_VNODE1_TOKENS;
772		break;
773
774	case AUE_CHOWN:
775	case AUE_LCHOWN:
776		if (ARG_IS_VALID(kar, ARG_UID)) {
777			tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid);
778			kau_write(rec, tok);
779		}
780		if (ARG_IS_VALID(kar, ARG_GID)) {
781			tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid);
782			kau_write(rec, tok);
783		}
784		UPATH1_VNODE1_TOKENS;
785		break;
786
787	case AUE_EXCHANGEDATA:
788		UPATH1_VNODE1_TOKENS;
789		UPATH2_TOKENS;
790		break;
791
792	case AUE_CLOSE:
793		if (ARG_IS_VALID(kar, ARG_FD)) {
794			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
795			kau_write(rec, tok);
796		}
797		UPATH1_VNODE1_TOKENS;
798		break;
799
800	case AUE_CORE:
801		if (ARG_IS_VALID(kar, ARG_SIGNUM)) {
802			tok = au_to_arg32(1, "signal", ar->ar_arg_signum);
803			kau_write(rec, tok);
804		}
805		UPATH1_VNODE1_TOKENS;
806		break;
807
808	case AUE_EXTATTRCTL:
809		UPATH1_VNODE1_TOKENS;
810		if (ARG_IS_VALID(kar, ARG_CMD)) {
811			tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
812			kau_write(rec, tok);
813		}
814		/* extattrctl(2) filename parameter is in upath2/vnode2 */
815		UPATH2_TOKENS;
816		VNODE2_TOKENS;
817		EXTATTR_TOKENS(4);
818		break;
819
820	case AUE_EXTATTR_GET_FILE:
821	case AUE_EXTATTR_SET_FILE:
822	case AUE_EXTATTR_LIST_FILE:
823	case AUE_EXTATTR_DELETE_FILE:
824	case AUE_EXTATTR_GET_LINK:
825	case AUE_EXTATTR_SET_LINK:
826	case AUE_EXTATTR_LIST_LINK:
827	case AUE_EXTATTR_DELETE_LINK:
828		UPATH1_VNODE1_TOKENS;
829		EXTATTR_TOKENS(2);
830		break;
831
832	case AUE_EXTATTR_GET_FD:
833	case AUE_EXTATTR_SET_FD:
834	case AUE_EXTATTR_LIST_FD:
835	case AUE_EXTATTR_DELETE_FD:
836		if (ARG_IS_VALID(kar, ARG_FD)) {
837			tok = au_to_arg32(2, "fd", ar->ar_arg_fd);
838			kau_write(rec, tok);
839		}
840		EXTATTR_TOKENS(2);
841		break;
842
843	case AUE_FEXECVE:
844		if (ARG_IS_VALID(kar, ARG_FD)) {
845			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
846			kau_write(rec, tok);
847		}
848		/* FALLTHROUGH */
849
850	case AUE_EXECVE:
851	case AUE_MAC_EXECVE:
852		if (ARG_IS_VALID(kar, ARG_ARGV)) {
853			tok = au_to_exec_args(ar->ar_arg_argv,
854			    ar->ar_arg_argc);
855			kau_write(rec, tok);
856		}
857		if (ARG_IS_VALID(kar, ARG_ENVV)) {
858			tok = au_to_exec_env(ar->ar_arg_envv,
859			    ar->ar_arg_envc);
860			kau_write(rec, tok);
861		}
862		UPATH1_VNODE1_TOKENS;
863		break;
864
865	case AUE_FCHMOD:
866		if (ARG_IS_VALID(kar, ARG_MODE)) {
867			tok = au_to_arg32(2, "new file mode",
868			    ar->ar_arg_mode);
869			kau_write(rec, tok);
870		}
871		FD_VNODE1_TOKENS;
872		break;
873
874	/*
875	 * XXXRW: Some of these need to handle non-vnode cases as well.
876	 */
877	case AUE_FCHDIR:
878	case AUE_FPATHCONF:
879	case AUE_FSTAT:
880	case AUE_FSTATFS:
881	case AUE_FSYNC:
882	case AUE_FTRUNCATE:
883	case AUE_FUTIMES:
884	case AUE_GETDIRENTRIES:
885	case AUE_GETDIRENTRIESATTR:
886	case AUE_LSEEK:
887	case AUE_POLL:
888	case AUE_READ:
889	case AUE_READV:
890	case AUE_WRITE:
891	case AUE_WRITEV:
892		FD_VNODE1_TOKENS;
893		break;
894
895	case AUE_FCHOWN:
896		if (ARG_IS_VALID(kar, ARG_UID)) {
897			tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid);
898			kau_write(rec, tok);
899		}
900		if (ARG_IS_VALID(kar, ARG_GID)) {
901			tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid);
902			kau_write(rec, tok);
903		}
904		FD_VNODE1_TOKENS;
905		break;
906
907	case AUE_FCNTL:
908		if (ARG_IS_VALID(kar, ARG_CMD)) {
909			tok = au_to_arg32(2, "cmd",
910			    au_fcntl_cmd_to_bsm(ar->ar_arg_cmd));
911			kau_write(rec, tok);
912		}
913		if (ar->ar_arg_cmd == F_GETLK || ar->ar_arg_cmd == F_SETLK ||
914		    ar->ar_arg_cmd == F_SETLKW) {
915			FD_VNODE1_TOKENS;
916		}
917		break;
918
919	case AUE_FCHFLAGS:
920		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
921			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
922			kau_write(rec, tok);
923		}
924		FD_VNODE1_TOKENS;
925		break;
926
927	case AUE_FLOCK:
928		if (ARG_IS_VALID(kar, ARG_CMD)) {
929			tok = au_to_arg32(2, "operation", ar->ar_arg_cmd);
930			kau_write(rec, tok);
931		}
932		FD_VNODE1_TOKENS;
933		break;
934
935	case AUE_RFORK:
936		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
937			tok = au_to_arg32(1, "flags", ar->ar_arg_fflags);
938			kau_write(rec, tok);
939		}
940		/* FALLTHROUGH */
941
942	case AUE_FORK:
943	case AUE_VFORK:
944		if (ARG_IS_VALID(kar, ARG_PID)) {
945			tok = au_to_arg32(0, "child PID", ar->ar_arg_pid);
946			kau_write(rec, tok);
947		}
948		break;
949
950	case AUE_IOCTL:
951		if (ARG_IS_VALID(kar, ARG_CMD)) {
952			tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
953			kau_write(rec, tok);
954		}
955		if (ARG_IS_VALID(kar, ARG_VNODE1))
956			FD_VNODE1_TOKENS;
957		else {
958			if (ARG_IS_VALID(kar, ARG_SOCKINFO)) {
959				tok = kau_to_socket(&ar->ar_arg_sockinfo);
960				kau_write(rec, tok);
961			} else {
962				if (ARG_IS_VALID(kar, ARG_FD)) {
963					tok = au_to_arg32(1, "fd",
964					    ar->ar_arg_fd);
965					kau_write(rec, tok);
966				}
967			}
968		}
969		break;
970
971	case AUE_KILL:
972	case AUE_KILLPG:
973		if (ARG_IS_VALID(kar, ARG_SIGNUM)) {
974			tok = au_to_arg32(2, "signal", ar->ar_arg_signum);
975			kau_write(rec, tok);
976		}
977		PROCESS_PID_TOKENS(1);
978		break;
979
980	case AUE_KTRACE:
981		if (ARG_IS_VALID(kar, ARG_CMD)) {
982			tok = au_to_arg32(2, "ops", ar->ar_arg_cmd);
983			kau_write(rec, tok);
984		}
985		if (ARG_IS_VALID(kar, ARG_VALUE)) {
986			tok = au_to_arg32(3, "trpoints", ar->ar_arg_value);
987			kau_write(rec, tok);
988		}
989		PROCESS_PID_TOKENS(4);
990		UPATH1_VNODE1_TOKENS;
991		break;
992
993	case AUE_LINK:
994	case AUE_RENAME:
995		UPATH1_VNODE1_TOKENS;
996		UPATH2_TOKENS;
997		break;
998
999	case AUE_LOADSHFILE:
1000		ADDR_TOKEN(4, "base addr");
1001		UPATH1_VNODE1_TOKENS;
1002		break;
1003
1004	case AUE_MKDIR:
1005		if (ARG_IS_VALID(kar, ARG_MODE)) {
1006			tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
1007			kau_write(rec, tok);
1008		}
1009		UPATH1_VNODE1_TOKENS;
1010		break;
1011
1012	case AUE_MKNOD:
1013		if (ARG_IS_VALID(kar, ARG_MODE)) {
1014			tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
1015			kau_write(rec, tok);
1016		}
1017		if (ARG_IS_VALID(kar, ARG_DEV)) {
1018			tok = au_to_arg32(3, "dev", ar->ar_arg_dev);
1019			kau_write(rec, tok);
1020		}
1021		UPATH1_VNODE1_TOKENS;
1022		break;
1023
1024	case AUE_MMAP:
1025	case AUE_MUNMAP:
1026	case AUE_MPROTECT:
1027	case AUE_MLOCK:
1028	case AUE_MUNLOCK:
1029	case AUE_MINHERIT:
1030		ADDR_TOKEN(1, "addr");
1031		if (ARG_IS_VALID(kar, ARG_LEN)) {
1032			tok = au_to_arg32(2, "len", ar->ar_arg_len);
1033			kau_write(rec, tok);
1034		}
1035		if (ar->ar_event == AUE_MMAP)
1036			FD_VNODE1_TOKENS;
1037		if (ar->ar_event == AUE_MPROTECT) {
1038			if (ARG_IS_VALID(kar, ARG_VALUE)) {
1039				tok = au_to_arg32(3, "protection",
1040				    ar->ar_arg_value);
1041				kau_write(rec, tok);
1042			}
1043		}
1044		if (ar->ar_event == AUE_MINHERIT) {
1045			if (ARG_IS_VALID(kar, ARG_VALUE)) {
1046				tok = au_to_arg32(3, "inherit",
1047				    ar->ar_arg_value);
1048				kau_write(rec, tok);
1049			}
1050		}
1051		break;
1052
1053	case AUE_MOUNT:
1054	case AUE_NMOUNT:
1055		/* XXX Need to handle NFS mounts */
1056		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
1057			tok = au_to_arg32(3, "flags", ar->ar_arg_fflags);
1058			kau_write(rec, tok);
1059		}
1060		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1061			tok = au_to_text(ar->ar_arg_text);
1062			kau_write(rec, tok);
1063		}
1064		/* FALLTHROUGH */
1065
1066	case AUE_NFS_SVC:
1067		if (ARG_IS_VALID(kar, ARG_CMD)) {
1068			tok = au_to_arg32(1, "flags", ar->ar_arg_cmd);
1069			kau_write(rec, tok);
1070		}
1071		break;
1072
1073	case AUE_UMOUNT:
1074		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1075			tok = au_to_arg32(2, "flags", ar->ar_arg_value);
1076			kau_write(rec, tok);
1077		}
1078		UPATH1_VNODE1_TOKENS;
1079		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1080			tok = au_to_text(ar->ar_arg_text);
1081			kau_write(rec, tok);
1082		}
1083		break;
1084
1085	case AUE_MSGCTL:
1086		ar->ar_event = audit_msgctl_to_event(ar->ar_arg_svipc_cmd);
1087		/* Fall through */
1088
1089	case AUE_MSGRCV:
1090	case AUE_MSGSND:
1091		tok = au_to_arg32(1, "msg ID", ar->ar_arg_svipc_id);
1092		kau_write(rec, tok);
1093		if (ar->ar_errno != EINVAL) {
1094			tok = au_to_ipc(AT_IPC_MSG, ar->ar_arg_svipc_id);
1095			kau_write(rec, tok);
1096		}
1097		break;
1098
1099	case AUE_MSGGET:
1100		if (ar->ar_errno == 0) {
1101			if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1102				tok = au_to_ipc(AT_IPC_MSG,
1103				    ar->ar_arg_svipc_id);
1104				kau_write(rec, tok);
1105			}
1106		}
1107		break;
1108
1109	case AUE_RESETSHFILE:
1110		ADDR_TOKEN(1, "base addr");
1111		break;
1112
1113	case AUE_OPEN_RC:
1114	case AUE_OPEN_RTC:
1115	case AUE_OPEN_RWC:
1116	case AUE_OPEN_RWTC:
1117	case AUE_OPEN_WC:
1118	case AUE_OPEN_WTC:
1119	case AUE_CREAT:
1120		if (ARG_IS_VALID(kar, ARG_MODE)) {
1121			tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
1122			kau_write(rec, tok);
1123		}
1124		/* FALLTHROUGH */
1125
1126	case AUE_OPEN_R:
1127	case AUE_OPEN_RT:
1128	case AUE_OPEN_RW:
1129	case AUE_OPEN_RWT:
1130	case AUE_OPEN_W:
1131	case AUE_OPEN_WT:
1132		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
1133			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
1134			kau_write(rec, tok);
1135		}
1136		UPATH1_VNODE1_TOKENS;
1137		break;
1138
1139	case AUE_PTRACE:
1140		if (ARG_IS_VALID(kar, ARG_CMD)) {
1141			tok = au_to_arg32(1, "request", ar->ar_arg_cmd);
1142			kau_write(rec, tok);
1143		}
1144		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1145			tok = au_to_arg32(4, "data", ar->ar_arg_value);
1146			kau_write(rec, tok);
1147		}
1148		PROCESS_PID_TOKENS(2);
1149		break;
1150
1151	case AUE_QUOTACTL:
1152		if (ARG_IS_VALID(kar, ARG_CMD)) {
1153			tok = au_to_arg32(2, "command", ar->ar_arg_cmd);
1154			kau_write(rec, tok);
1155		}
1156		if (ARG_IS_VALID(kar, ARG_UID)) {
1157			tok = au_to_arg32(3, "uid", ar->ar_arg_uid);
1158			kau_write(rec, tok);
1159		}
1160		if (ARG_IS_VALID(kar, ARG_GID)) {
1161			tok = au_to_arg32(3, "gid", ar->ar_arg_gid);
1162			kau_write(rec, tok);
1163		}
1164		UPATH1_VNODE1_TOKENS;
1165		break;
1166
1167	case AUE_REBOOT:
1168		if (ARG_IS_VALID(kar, ARG_CMD)) {
1169			tok = au_to_arg32(1, "howto", ar->ar_arg_cmd);
1170			kau_write(rec, tok);
1171		}
1172		break;
1173
1174	case AUE_SEMCTL:
1175		ar->ar_event = audit_semctl_to_event(ar->ar_arg_svipc_cmd);
1176		/* Fall through */
1177
1178	case AUE_SEMOP:
1179		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1180			tok = au_to_arg32(1, "sem ID", ar->ar_arg_svipc_id);
1181			kau_write(rec, tok);
1182			if (ar->ar_errno != EINVAL) {
1183				tok = au_to_ipc(AT_IPC_SEM,
1184				    ar->ar_arg_svipc_id);
1185				kau_write(rec, tok);
1186			}
1187		}
1188		break;
1189
1190	case AUE_SEMGET:
1191		if (ar->ar_errno == 0) {
1192			if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1193				tok = au_to_ipc(AT_IPC_SEM,
1194				    ar->ar_arg_svipc_id);
1195				kau_write(rec, tok);
1196			}
1197		}
1198		break;
1199
1200	case AUE_SETEGID:
1201		if (ARG_IS_VALID(kar, ARG_EGID)) {
1202			tok = au_to_arg32(1, "egid", ar->ar_arg_egid);
1203			kau_write(rec, tok);
1204		}
1205		break;
1206
1207	case AUE_SETEUID:
1208		if (ARG_IS_VALID(kar, ARG_EUID)) {
1209			tok = au_to_arg32(1, "euid", ar->ar_arg_euid);
1210			kau_write(rec, tok);
1211		}
1212		break;
1213
1214	case AUE_SETREGID:
1215		if (ARG_IS_VALID(kar, ARG_RGID)) {
1216			tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid);
1217			kau_write(rec, tok);
1218		}
1219		if (ARG_IS_VALID(kar, ARG_EGID)) {
1220			tok = au_to_arg32(2, "egid", ar->ar_arg_egid);
1221			kau_write(rec, tok);
1222		}
1223		break;
1224
1225	case AUE_SETREUID:
1226		if (ARG_IS_VALID(kar, ARG_RUID)) {
1227			tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid);
1228			kau_write(rec, tok);
1229		}
1230		if (ARG_IS_VALID(kar, ARG_EUID)) {
1231			tok = au_to_arg32(2, "euid", ar->ar_arg_euid);
1232			kau_write(rec, tok);
1233		}
1234		break;
1235
1236	case AUE_SETRESGID:
1237		if (ARG_IS_VALID(kar, ARG_RGID)) {
1238			tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid);
1239			kau_write(rec, tok);
1240		}
1241		if (ARG_IS_VALID(kar, ARG_EGID)) {
1242			tok = au_to_arg32(2, "egid", ar->ar_arg_egid);
1243			kau_write(rec, tok);
1244		}
1245		if (ARG_IS_VALID(kar, ARG_SGID)) {
1246			tok = au_to_arg32(3, "sgid", ar->ar_arg_sgid);
1247			kau_write(rec, tok);
1248		}
1249		break;
1250
1251	case AUE_SETRESUID:
1252		if (ARG_IS_VALID(kar, ARG_RUID)) {
1253			tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid);
1254			kau_write(rec, tok);
1255		}
1256		if (ARG_IS_VALID(kar, ARG_EUID)) {
1257			tok = au_to_arg32(2, "euid", ar->ar_arg_euid);
1258			kau_write(rec, tok);
1259		}
1260		if (ARG_IS_VALID(kar, ARG_SUID)) {
1261			tok = au_to_arg32(3, "suid", ar->ar_arg_suid);
1262			kau_write(rec, tok);
1263		}
1264		break;
1265
1266	case AUE_SETGID:
1267		if (ARG_IS_VALID(kar, ARG_GID)) {
1268			tok = au_to_arg32(1, "gid", ar->ar_arg_gid);
1269			kau_write(rec, tok);
1270		}
1271		break;
1272
1273	case AUE_SETUID:
1274		if (ARG_IS_VALID(kar, ARG_UID)) {
1275			tok = au_to_arg32(1, "uid", ar->ar_arg_uid);
1276			kau_write(rec, tok);
1277		}
1278		break;
1279
1280	case AUE_SETGROUPS:
1281		if (ARG_IS_VALID(kar, ARG_GROUPSET)) {
1282			for(ctr = 0; ctr < ar->ar_arg_groups.gidset_size; ctr++)
1283			{
1284				tok = au_to_arg32(1, "setgroups",
1285				    ar->ar_arg_groups.gidset[ctr]);
1286				kau_write(rec, tok);
1287			}
1288		}
1289		break;
1290
1291	case AUE_SETLOGIN:
1292		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1293			tok = au_to_text(ar->ar_arg_text);
1294			kau_write(rec, tok);
1295		}
1296		break;
1297
1298	case AUE_SETPRIORITY:
1299		if (ARG_IS_VALID(kar, ARG_CMD)) {
1300			tok = au_to_arg32(1, "which", ar->ar_arg_cmd);
1301			kau_write(rec, tok);
1302		}
1303		if (ARG_IS_VALID(kar, ARG_UID)) {
1304			tok = au_to_arg32(2, "who", ar->ar_arg_uid);
1305			kau_write(rec, tok);
1306		}
1307		PROCESS_PID_TOKENS(2);
1308		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1309			tok = au_to_arg32(3, "priority", ar->ar_arg_value);
1310			kau_write(rec, tok);
1311		}
1312		break;
1313
1314	case AUE_SETPRIVEXEC:
1315		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1316			tok = au_to_arg32(1, "flag", ar->ar_arg_value);
1317			kau_write(rec, tok);
1318		}
1319		break;
1320
1321	/* AUE_SHMAT, AUE_SHMCTL, AUE_SHMDT and AUE_SHMGET are SysV IPC */
1322	case AUE_SHMAT:
1323		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1324			tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id);
1325			kau_write(rec, tok);
1326			/* XXXAUDIT: Does having the ipc token make sense? */
1327			tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
1328			kau_write(rec, tok);
1329		}
1330		if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
1331			tok = au_to_arg32(2, "shmaddr",
1332			    (int)(uintptr_t)ar->ar_arg_svipc_addr);
1333			kau_write(rec, tok);
1334		}
1335		if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
1336			tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
1337			kau_write(rec, tok);
1338		}
1339		break;
1340
1341	case AUE_SHMCTL:
1342		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1343			tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id);
1344			kau_write(rec, tok);
1345			/* XXXAUDIT: Does having the ipc token make sense? */
1346			tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
1347			kau_write(rec, tok);
1348		}
1349		switch (ar->ar_arg_svipc_cmd) {
1350		case IPC_STAT:
1351			ar->ar_event = AUE_SHMCTL_STAT;
1352			break;
1353		case IPC_RMID:
1354			ar->ar_event = AUE_SHMCTL_RMID;
1355			break;
1356		case IPC_SET:
1357			ar->ar_event = AUE_SHMCTL_SET;
1358			if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
1359				tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
1360				kau_write(rec, tok);
1361			}
1362			break;
1363		default:
1364			break;	/* We will audit a bad command */
1365		}
1366		break;
1367
1368	case AUE_SHMDT:
1369		if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
1370			tok = au_to_arg32(1, "shmaddr",
1371			    (int)(uintptr_t)ar->ar_arg_svipc_addr);
1372			kau_write(rec, tok);
1373		}
1374		break;
1375
1376	case AUE_SHMGET:
1377		/* This is unusual; the return value is in an argument token */
1378		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1379			tok = au_to_arg32(0, "shmid", ar->ar_arg_svipc_id);
1380			kau_write(rec, tok);
1381			tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
1382			kau_write(rec, tok);
1383		}
1384		if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
1385			tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
1386			kau_write(rec, tok);
1387		}
1388		break;
1389
1390	/* AUE_SHMOPEN, AUE_SHMUNLINK, AUE_SEMOPEN, AUE_SEMCLOSE
1391	 * and AUE_SEMUNLINK are Posix IPC */
1392	case AUE_SHMOPEN:
1393		if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
1394			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
1395			kau_write(rec, tok);
1396		}
1397		if (ARG_IS_VALID(kar, ARG_MODE)) {
1398			tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
1399			kau_write(rec, tok);
1400		}
1401		/* FALLTHROUGH */
1402
1403	case AUE_SHMUNLINK:
1404		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1405			tok = au_to_text(ar->ar_arg_text);
1406			kau_write(rec, tok);
1407		}
1408		if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) {
1409			struct ipc_perm perm;
1410
1411			perm.uid = ar->ar_arg_pipc_perm.pipc_uid;
1412			perm.gid = ar->ar_arg_pipc_perm.pipc_gid;
1413			perm.cuid = ar->ar_arg_pipc_perm.pipc_uid;
1414			perm.cgid = ar->ar_arg_pipc_perm.pipc_gid;
1415			perm.mode = ar->ar_arg_pipc_perm.pipc_mode;
1416			perm.seq = 0;
1417			perm.key = 0;
1418			tok = au_to_ipc_perm(&perm);
1419			kau_write(rec, tok);
1420		}
1421		break;
1422
1423	case AUE_SEMOPEN:
1424		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
1425			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
1426			kau_write(rec, tok);
1427		}
1428		if (ARG_IS_VALID(kar, ARG_MODE)) {
1429			tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
1430			kau_write(rec, tok);
1431		}
1432		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1433			tok = au_to_arg32(4, "value", ar->ar_arg_value);
1434			kau_write(rec, tok);
1435		}
1436		/* FALLTHROUGH */
1437
1438	case AUE_SEMUNLINK:
1439		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1440			tok = au_to_text(ar->ar_arg_text);
1441			kau_write(rec, tok);
1442		}
1443		if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) {
1444			struct ipc_perm perm;
1445
1446			perm.uid = ar->ar_arg_pipc_perm.pipc_uid;
1447			perm.gid = ar->ar_arg_pipc_perm.pipc_gid;
1448			perm.cuid = ar->ar_arg_pipc_perm.pipc_uid;
1449			perm.cgid = ar->ar_arg_pipc_perm.pipc_gid;
1450			perm.mode = ar->ar_arg_pipc_perm.pipc_mode;
1451			perm.seq = 0;
1452			perm.key = 0;
1453			tok = au_to_ipc_perm(&perm);
1454			kau_write(rec, tok);
1455		}
1456		break;
1457
1458	case AUE_SEMCLOSE:
1459		if (ARG_IS_VALID(kar, ARG_FD)) {
1460			tok = au_to_arg32(1, "sem", ar->ar_arg_fd);
1461			kau_write(rec, tok);
1462		}
1463		break;
1464
1465	case AUE_SYMLINK:
1466		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1467			tok = au_to_text(ar->ar_arg_text);
1468			kau_write(rec, tok);
1469		}
1470		UPATH1_VNODE1_TOKENS;
1471		break;
1472
1473	case AUE_SYSCTL:
1474	case AUE_SYSCTL_NONADMIN:
1475		if (ARG_IS_VALID(kar, ARG_CTLNAME | ARG_LEN)) {
1476			for (ctr = 0; ctr < ar->ar_arg_len; ctr++) {
1477				tok = au_to_arg32(1, "name",
1478				    ar->ar_arg_ctlname[ctr]);
1479				kau_write(rec, tok);
1480			}
1481		}
1482		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1483			tok = au_to_arg32(5, "newval", ar->ar_arg_value);
1484			kau_write(rec, tok);
1485		}
1486		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1487			tok = au_to_text(ar->ar_arg_text);
1488			kau_write(rec, tok);
1489		}
1490		break;
1491
1492	case AUE_UMASK:
1493		if (ARG_IS_VALID(kar, ARG_MASK)) {
1494			tok = au_to_arg32(1, "new mask", ar->ar_arg_mask);
1495			kau_write(rec, tok);
1496		}
1497		tok = au_to_arg32(0, "prev mask", ar->ar_retval);
1498		kau_write(rec, tok);
1499		break;
1500
1501	case AUE_WAIT4:
1502		PROCESS_PID_TOKENS(1);
1503		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1504			tok = au_to_arg32(3, "options", ar->ar_arg_value);
1505			kau_write(rec, tok);
1506		}
1507		break;
1508
1509	case AUE_NULL:
1510	default:
1511		printf("BSM conversion requested for unknown event %d\n",
1512		    ar->ar_event);
1513
1514		/*
1515		 * Write the subject token so it is properly freed here.
1516		 */
1517		kau_write(rec, subj_tok);
1518		kau_free(rec);
1519		return (BSM_NOAUDIT);
1520	}
1521
1522	kau_write(rec, subj_tok);
1523	tok = au_to_return32(au_errno_to_bsm(ar->ar_errno), ar->ar_retval);
1524	kau_write(rec, tok);  /* Every record gets a return token */
1525
1526	kau_close(rec, &ar->ar_endtime, ar->ar_event);
1527
1528	*pau = rec;
1529	return (BSM_SUCCESS);
1530}
1531
1532/*
1533 * Verify that a record is a valid BSM record. This verification is simple
1534 * now, but may be expanded on sometime in the future.  Return 1 if the
1535 * record is good, 0 otherwise.
1536 */
1537int
1538bsm_rec_verify(void *rec)
1539{
1540	char c = *(char *)rec;
1541
1542	/*
1543	 * Check the token ID of the first token; it has to be a header
1544	 * token.
1545	 *
1546	 * XXXAUDIT There needs to be a token structure to map a token.
1547	 * XXXAUDIT 'Shouldn't be simply looking at the first char.
1548	 */
1549	if ((c != AUT_HEADER32) && (c != AUT_HEADER32_EX) &&
1550	    (c != AUT_HEADER64) && (c != AUT_HEADER64_EX))
1551		return (0);
1552	return (1);
1553}
1554