audit_bsm.c revision 195280
1/*
2 * Copyright (c) 1999-2009 Apple Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1.  Redistributions of source code must retain the above copyright
9 *     notice, this list of conditions and the following disclaimer.
10 * 2.  Redistributions in binary form must reproduce the above copyright
11 *     notice, this list of conditions and the following disclaimer in the
12 *     documentation and/or other materials provided with the distribution.
13 * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
14 *     its contributors may be used to endorse or promote products derived
15 *     from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
25 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
26 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/security/audit/audit_bsm.c 195280 2009-07-02 09:15:30Z rwatson $");
32
33#include <sys/param.h>
34#include <sys/vnode.h>
35#include <sys/ipc.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mutex.h>
39#include <sys/socket.h>
40#include <sys/extattr.h>
41#include <sys/fcntl.h>
42#include <sys/user.h>
43#include <sys/systm.h>
44
45#include <bsm/audit.h>
46#include <bsm/audit_internal.h>
47#include <bsm/audit_record.h>
48#include <bsm/audit_kevents.h>
49
50#include <security/audit/audit.h>
51#include <security/audit/audit_private.h>
52
53#include <netinet/in_systm.h>
54#include <netinet/in.h>
55#include <netinet/ip.h>
56
57MALLOC_DEFINE(M_AUDITBSM, "audit_bsm", "Audit BSM data");
58
59static void	audit_sys_auditon(struct audit_record *ar,
60		    struct au_record *rec);
61
62/*
63 * Initialize the BSM auditing subsystem.
64 */
65void
66kau_init(void)
67{
68
69	au_evclassmap_init();
70}
71
72/*
73 * This call reserves memory for the audit record.  Memory must be guaranteed
74 * before any auditable event can be generated.  The au_record structure
75 * maintains a reference to the memory allocated above and also the list of
76 * tokens associated with this record.
77 */
78static struct au_record *
79kau_open(void)
80{
81	struct au_record *rec;
82
83	rec = malloc(sizeof(*rec), M_AUDITBSM, M_WAITOK);
84	rec->data = NULL;
85	TAILQ_INIT(&rec->token_q);
86	rec->len = 0;
87	rec->used = 1;
88
89	return (rec);
90}
91
92/*
93 * Store the token with the record descriptor.
94 */
95static void
96kau_write(struct au_record *rec, struct au_token *tok)
97{
98
99	KASSERT(tok != NULL, ("kau_write: tok == NULL"));
100
101	TAILQ_INSERT_TAIL(&rec->token_q, tok, tokens);
102	rec->len += tok->len;
103}
104
105/*
106 * Close out the audit record by adding the header token, identifying any
107 * missing tokens.  Write out the tokens to the record memory.
108 */
109static void
110kau_close(struct au_record *rec, struct timespec *ctime, short event)
111{
112	u_char *dptr;
113	size_t tot_rec_size;
114	token_t *cur, *hdr, *trail;
115	struct timeval tm;
116	size_t hdrsize;
117	struct auditinfo_addr ak;
118	struct in6_addr *ap;
119
120	audit_get_kinfo(&ak);
121	hdrsize = 0;
122	switch (ak.ai_termid.at_type) {
123	case AU_IPv4:
124		hdrsize = (ak.ai_termid.at_addr[0] == INADDR_ANY) ?
125		    AUDIT_HEADER_SIZE : AUDIT_HEADER_EX_SIZE(&ak);
126		break;
127	case AU_IPv6:
128		ap = (struct in6_addr *)&ak.ai_termid.at_addr[0];
129		hdrsize = (IN6_IS_ADDR_UNSPECIFIED(ap)) ? AUDIT_HEADER_SIZE :
130		    AUDIT_HEADER_EX_SIZE(&ak);
131		break;
132	default:
133		panic("kau_close: invalid address family");
134	}
135	tot_rec_size = rec->len + hdrsize + AUDIT_TRAILER_SIZE;
136	rec->data = malloc(tot_rec_size, M_AUDITBSM, M_WAITOK | M_ZERO);
137
138	tm.tv_usec = ctime->tv_nsec / 1000;
139	tm.tv_sec = ctime->tv_sec;
140	if (hdrsize != AUDIT_HEADER_SIZE)
141		hdr = au_to_header32_ex_tm(tot_rec_size, event, 0, tm, &ak);
142	else
143		hdr = au_to_header32_tm(tot_rec_size, event, 0, tm);
144	TAILQ_INSERT_HEAD(&rec->token_q, hdr, tokens);
145
146	trail = au_to_trailer(tot_rec_size);
147	TAILQ_INSERT_TAIL(&rec->token_q, trail, tokens);
148
149	rec->len = tot_rec_size;
150	dptr = rec->data;
151	TAILQ_FOREACH(cur, &rec->token_q, tokens) {
152		memcpy(dptr, cur->t_data, cur->len);
153		dptr += cur->len;
154	}
155}
156
157/*
158 * Free a BSM audit record by releasing all the tokens and clearing the audit
159 * record information.
160 */
161void
162kau_free(struct au_record *rec)
163{
164	struct au_token *tok;
165
166	/* Free the token list. */
167	while ((tok = TAILQ_FIRST(&rec->token_q))) {
168		TAILQ_REMOVE(&rec->token_q, tok, tokens);
169		free(tok->t_data, M_AUDITBSM);
170		free(tok, M_AUDITBSM);
171	}
172
173	rec->used = 0;
174	rec->len = 0;
175	free(rec->data, M_AUDITBSM);
176	free(rec, M_AUDITBSM);
177}
178
179/*
180 * XXX: May want turn some (or all) of these macros into functions in order
181 * to reduce the generated code size.
182 *
183 * XXXAUDIT: These macros assume that 'kar', 'ar', 'rec', and 'tok' in the
184 * caller are OK with this.
185 */
186#define	UPATH1_TOKENS do {						\
187	if (ARG_IS_VALID(kar, ARG_UPATH1)) {				\
188		tok = au_to_path(ar->ar_arg_upath1);			\
189		kau_write(rec, tok);					\
190	}								\
191} while (0)
192
193#define	UPATH2_TOKENS do {						\
194	if (ARG_IS_VALID(kar, ARG_UPATH2)) {				\
195		tok = au_to_path(ar->ar_arg_upath2);			\
196		kau_write(rec, tok);					\
197	}								\
198} while (0)
199
200#define	VNODE1_TOKENS do {						\
201	if (ARG_IS_VALID(kar, ARG_VNODE1)) {				\
202		tok = au_to_attr32(&ar->ar_arg_vnode1);			\
203		kau_write(rec, tok);					\
204	}								\
205} while (0)
206
207#define	UPATH1_VNODE1_TOKENS do {					\
208	if (ARG_IS_VALID(kar, ARG_UPATH1)) {				\
209		UPATH1_TOKENS;						\
210	}								\
211	if (ARG_IS_VALID(kar, ARG_VNODE1)) {				\
212		tok = au_to_attr32(&ar->ar_arg_vnode1);			\
213		kau_write(rec, tok);					\
214	}								\
215} while (0)
216
217#define	VNODE2_TOKENS do {						\
218	if (ARG_IS_VALID(kar, ARG_VNODE2)) {				\
219		tok = au_to_attr32(&ar->ar_arg_vnode2);			\
220		kau_write(rec, tok);					\
221	}								\
222} while (0)
223
224#define	FD_VNODE1_TOKENS do {						\
225	if (ARG_IS_VALID(kar, ARG_VNODE1)) {				\
226		if (ARG_IS_VALID(kar, ARG_FD)) {			\
227			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);	\
228			kau_write(rec, tok);				\
229		}							\
230		tok = au_to_attr32(&ar->ar_arg_vnode1);			\
231		kau_write(rec, tok);					\
232	} else {							\
233		if (ARG_IS_VALID(kar, ARG_FD)) {			\
234			tok = au_to_arg32(1, "non-file: fd",		\
235			    ar->ar_arg_fd);				\
236			kau_write(rec, tok);				\
237		}							\
238	}								\
239} while (0)
240
241#define	PROCESS_PID_TOKENS(argn) do {					\
242	if ((ar->ar_arg_pid > 0) /* Reference a single process */	\
243	    && (ARG_IS_VALID(kar, ARG_PROCESS))) {			\
244		tok = au_to_process32_ex(ar->ar_arg_auid,		\
245		    ar->ar_arg_euid, ar->ar_arg_egid,			\
246		    ar->ar_arg_ruid, ar->ar_arg_rgid,			\
247		    ar->ar_arg_pid, ar->ar_arg_asid,			\
248		    &ar->ar_arg_termid_addr);				\
249		kau_write(rec, tok);					\
250	} else if (ARG_IS_VALID(kar, ARG_PID)) {			\
251		tok = au_to_arg32(argn, "process", ar->ar_arg_pid);	\
252		kau_write(rec, tok);					\
253	}								\
254} while (0)
255
256#define	EXTATTR_TOKENS(namespace_argnum) do {				\
257	if (ARG_IS_VALID(kar, ARG_VALUE)) {				\
258		switch (ar->ar_arg_value) {				\
259		case EXTATTR_NAMESPACE_USER:				\
260			tok = au_to_text(EXTATTR_NAMESPACE_USER_STRING);\
261			break;						\
262		case EXTATTR_NAMESPACE_SYSTEM:				\
263			tok = au_to_text(EXTATTR_NAMESPACE_SYSTEM_STRING);\
264			break;						\
265		default:						\
266			tok = au_to_arg32((namespace_argnum),		\
267			    "attrnamespace", ar->ar_arg_value);		\
268			break;						\
269		}							\
270		kau_write(rec, tok);					\
271	}								\
272	/* attrname is in the text field */				\
273	if (ARG_IS_VALID(kar, ARG_TEXT)) {				\
274		tok = au_to_text(ar->ar_arg_text);			\
275		kau_write(rec, tok);					\
276	}								\
277} while (0)
278
279/*
280 * Not all pointer arguments to system calls are of interest, but in some
281 * cases they reflect delegation of rights, such as mmap(2) falled by
282 * minherit(2) before execve(2), so do the best we can.
283 */
284#define	ADDR_TOKEN(argnum, argname) do {				\
285	if (ARG_IS_VALID(kar, ARG_ADDR)) {				\
286		if (sizeof(void *) == sizeof(uint32_t))			\
287			tok = au_to_arg32((argnum), (argname),		\
288			    (uint32_t)(uintptr_t)ar->ar_arg_addr);	\
289		else							\
290			tok = au_to_arg64((argnum), (argname),		\
291			    (uint64_t)(uintptr_t)ar->ar_arg_addr);	\
292		kau_write(rec, tok);					\
293	}								\
294} while (0)
295
296
297/*
298 * Implement auditing for the auditon() system call. The audit tokens that
299 * are generated depend on the command that was sent into the auditon()
300 * system call.
301 */
302static void
303audit_sys_auditon(struct audit_record *ar, struct au_record *rec)
304{
305	struct au_token *tok;
306
307	tok = au_to_arg32(3, "length", ar->ar_arg_len);
308	kau_write(rec, tok);
309	switch (ar->ar_arg_cmd) {
310	case A_OLDSETPOLICY:
311		if ((size_t)ar->ar_arg_len == sizeof(int64_t)) {
312			tok = au_to_arg64(2, "policy",
313			    ar->ar_arg_auditon.au_policy64);
314			kau_write(rec, tok);
315			break;
316		}
317		/* FALLTHROUGH */
318
319	case A_SETPOLICY:
320		tok = au_to_arg32(2, "policy", ar->ar_arg_auditon.au_policy);
321		kau_write(rec, tok);
322		break;
323
324	case A_SETKMASK:
325		tok = au_to_arg32(2, "setkmask:as_success",
326		    ar->ar_arg_auditon.au_mask.am_success);
327		kau_write(rec, tok);
328		tok = au_to_arg32(2, "setkmask:as_failure",
329		    ar->ar_arg_auditon.au_mask.am_failure);
330		kau_write(rec, tok);
331		break;
332
333	case A_OLDSETQCTRL:
334		if ((size_t)ar->ar_arg_len == sizeof(au_qctrl64_t)) {
335			tok = au_to_arg64(2, "setqctrl:aq_hiwater",
336			    ar->ar_arg_auditon.au_qctrl64.aq64_hiwater);
337			kau_write(rec, tok);
338			tok = au_to_arg64(2, "setqctrl:aq_lowater",
339			    ar->ar_arg_auditon.au_qctrl64.aq64_lowater);
340			kau_write(rec, tok);
341			tok = au_to_arg64(2, "setqctrl:aq_bufsz",
342			    ar->ar_arg_auditon.au_qctrl64.aq64_bufsz);
343			kau_write(rec, tok);
344			tok = au_to_arg64(2, "setqctrl:aq_delay",
345			    ar->ar_arg_auditon.au_qctrl64.aq64_delay);
346			kau_write(rec, tok);
347			tok = au_to_arg64(2, "setqctrl:aq_minfree",
348			    ar->ar_arg_auditon.au_qctrl64.aq64_minfree);
349			kau_write(rec, tok);
350			break;
351		}
352		/* FALLTHROUGH */
353
354	case A_SETQCTRL:
355		tok = au_to_arg32(2, "setqctrl:aq_hiwater",
356		    ar->ar_arg_auditon.au_qctrl.aq_hiwater);
357		kau_write(rec, tok);
358		tok = au_to_arg32(2, "setqctrl:aq_lowater",
359		    ar->ar_arg_auditon.au_qctrl.aq_lowater);
360		kau_write(rec, tok);
361		tok = au_to_arg32(2, "setqctrl:aq_bufsz",
362		    ar->ar_arg_auditon.au_qctrl.aq_bufsz);
363		kau_write(rec, tok);
364		tok = au_to_arg32(2, "setqctrl:aq_delay",
365		    ar->ar_arg_auditon.au_qctrl.aq_delay);
366		kau_write(rec, tok);
367		tok = au_to_arg32(2, "setqctrl:aq_minfree",
368		    ar->ar_arg_auditon.au_qctrl.aq_minfree);
369		kau_write(rec, tok);
370		break;
371
372	case A_SETUMASK:
373		tok = au_to_arg32(2, "setumask:as_success",
374		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_success);
375		kau_write(rec, tok);
376		tok = au_to_arg32(2, "setumask:as_failure",
377		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure);
378		kau_write(rec, tok);
379		break;
380
381	case A_SETSMASK:
382		tok = au_to_arg32(2, "setsmask:as_success",
383		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_success);
384		kau_write(rec, tok);
385		tok = au_to_arg32(2, "setsmask:as_failure",
386		    ar->ar_arg_auditon.au_auinfo.ai_mask.am_failure);
387		kau_write(rec, tok);
388		break;
389
390	case A_OLDSETCOND:
391		if ((size_t)ar->ar_arg_len == sizeof(int64_t)) {
392			tok = au_to_arg64(2, "setcond",
393			    ar->ar_arg_auditon.au_cond64);
394			kau_write(rec, tok);
395			break;
396		}
397		/* FALLTHROUGH */
398
399	case A_SETCOND:
400		tok = au_to_arg32(2, "setcond", ar->ar_arg_auditon.au_cond);
401		kau_write(rec, tok);
402		break;
403
404	case A_SETCLASS:
405		kau_write(rec, tok);
406		tok = au_to_arg32(2, "setclass:ec_event",
407		    ar->ar_arg_auditon.au_evclass.ec_number);
408		kau_write(rec, tok);
409		tok = au_to_arg32(2, "setclass:ec_class",
410		    ar->ar_arg_auditon.au_evclass.ec_class);
411		kau_write(rec, tok);
412		break;
413
414	case A_SETPMASK:
415		tok = au_to_arg32(2, "setpmask:as_success",
416		    ar->ar_arg_auditon.au_aupinfo.ap_mask.am_success);
417		kau_write(rec, tok);
418		tok = au_to_arg32(2, "setpmask:as_failure",
419		    ar->ar_arg_auditon.au_aupinfo.ap_mask.am_failure);
420		kau_write(rec, tok);
421		break;
422
423	case A_SETFSIZE:
424		tok = au_to_arg32(2, "setfsize:filesize",
425		    ar->ar_arg_auditon.au_fstat.af_filesz);
426		kau_write(rec, tok);
427		break;
428
429	default:
430		break;
431	}
432}
433
434/*
435 * Convert an internal kernel audit record to a BSM record and return a
436 * success/failure indicator. The BSM record is passed as an out parameter to
437 * this function.
438 *
439 * Return conditions:
440 *   BSM_SUCCESS: The BSM record is valid
441 *   BSM_FAILURE: Failure; the BSM record is NULL.
442 *   BSM_NOAUDIT: The event is not auditable for BSM; the BSM record is NULL.
443 */
444int
445kaudit_to_bsm(struct kaudit_record *kar, struct au_record **pau)
446{
447	struct au_token *tok, *subj_tok;
448	struct au_record *rec;
449	au_tid_t tid;
450	struct audit_record *ar;
451	int ctr;
452
453	KASSERT(kar != NULL, ("kaudit_to_bsm: kar == NULL"));
454
455	*pau = NULL;
456	ar = &kar->k_ar;
457	rec = kau_open();
458
459	/*
460	 * Create the subject token.
461	 */
462	switch (ar->ar_subj_term_addr.at_type) {
463	case AU_IPv4:
464		tid.port = ar->ar_subj_term_addr.at_port;
465		tid.machine = ar->ar_subj_term_addr.at_addr[0];
466		subj_tok = au_to_subject32(ar->ar_subj_auid,  /* audit ID */
467		    ar->ar_subj_cred.cr_uid, /* eff uid */
468		    ar->ar_subj_egid,	/* eff group id */
469		    ar->ar_subj_ruid,	/* real uid */
470		    ar->ar_subj_rgid,	/* real group id */
471		    ar->ar_subj_pid,	/* process id */
472		    ar->ar_subj_asid,	/* session ID */
473		    &tid);
474		break;
475	case AU_IPv6:
476		subj_tok = au_to_subject32_ex(ar->ar_subj_auid,
477		    ar->ar_subj_cred.cr_uid,
478		    ar->ar_subj_egid,
479		    ar->ar_subj_ruid,
480		    ar->ar_subj_rgid,
481		    ar->ar_subj_pid,
482		    ar->ar_subj_asid,
483		    &ar->ar_subj_term_addr);
484		break;
485	default:
486		bzero(&tid, sizeof(tid));
487		subj_tok = au_to_subject32(ar->ar_subj_auid,
488		    ar->ar_subj_cred.cr_uid,
489		    ar->ar_subj_egid,
490		    ar->ar_subj_ruid,
491		    ar->ar_subj_rgid,
492		    ar->ar_subj_pid,
493		    ar->ar_subj_asid,
494		    &tid);
495	}
496
497	/*
498	 * The logic inside each case fills in the tokens required for the
499	 * event, except for the header, trailer, and return tokens.  The
500	 * header and trailer tokens are added by the kau_close() function.
501	 * The return token is added outside of the switch statement.
502	 */
503	switch(ar->ar_event) {
504	case AUE_ACCEPT:
505	case AUE_BIND:
506	case AUE_LISTEN:
507	case AUE_CONNECT:
508	case AUE_RECV:
509	case AUE_RECVFROM:
510	case AUE_RECVMSG:
511	case AUE_SEND:
512	case AUE_SENDFILE:
513	case AUE_SENDMSG:
514	case AUE_SENDTO:
515		/*
516		 * Socket-related events.
517		 */
518		if (ARG_IS_VALID(kar, ARG_FD)) {
519			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
520			kau_write(rec, tok);
521		}
522		if (ARG_IS_VALID(kar, ARG_SADDRINET)) {
523			tok = au_to_sock_inet((struct sockaddr_in *)
524			    &ar->ar_arg_sockaddr);
525			kau_write(rec, tok);
526		}
527		if (ARG_IS_VALID(kar, ARG_SADDRUNIX)) {
528			tok = au_to_sock_unix((struct sockaddr_un *)
529			    &ar->ar_arg_sockaddr);
530			kau_write(rec, tok);
531			UPATH1_TOKENS;
532		}
533		/* XXX Need to handle ARG_SADDRINET6 */
534		break;
535
536	case AUE_SOCKET:
537	case AUE_SOCKETPAIR:
538		if (ARG_IS_VALID(kar, ARG_SOCKINFO)) {
539			tok = au_to_arg32(1, "domain",
540			    ar->ar_arg_sockinfo.so_domain);
541			kau_write(rec, tok);
542			tok = au_to_arg32(2, "type",
543			    ar->ar_arg_sockinfo.so_type);
544			kau_write(rec, tok);
545			tok = au_to_arg32(3, "protocol",
546			    ar->ar_arg_sockinfo.so_protocol);
547			kau_write(rec, tok);
548		}
549		break;
550
551	case AUE_SETSOCKOPT:
552	case AUE_SHUTDOWN:
553		if (ARG_IS_VALID(kar, ARG_FD)) {
554			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
555			kau_write(rec, tok);
556		}
557		break;
558
559	case AUE_ACCT:
560		if (ARG_IS_VALID(kar, ARG_UPATH1)) {
561			UPATH1_VNODE1_TOKENS;
562		} else {
563			tok = au_to_arg32(1, "accounting off", 0);
564			kau_write(rec, tok);
565		}
566		break;
567
568	case AUE_SETAUID:
569		if (ARG_IS_VALID(kar, ARG_AUID)) {
570			tok = au_to_arg32(2, "setauid", ar->ar_arg_auid);
571			kau_write(rec, tok);
572		}
573		break;
574
575	case AUE_SETAUDIT:
576		if (ARG_IS_VALID(kar, ARG_AUID) &&
577		    ARG_IS_VALID(kar, ARG_ASID) &&
578		    ARG_IS_VALID(kar, ARG_AMASK) &&
579		    ARG_IS_VALID(kar, ARG_TERMID)) {
580			tok = au_to_arg32(1, "setaudit:auid",
581			    ar->ar_arg_auid);
582			kau_write(rec, tok);
583			tok = au_to_arg32(1, "setaudit:port",
584			    ar->ar_arg_termid.port);
585			kau_write(rec, tok);
586			tok = au_to_arg32(1, "setaudit:machine",
587			    ar->ar_arg_termid.machine);
588			kau_write(rec, tok);
589			tok = au_to_arg32(1, "setaudit:as_success",
590			    ar->ar_arg_amask.am_success);
591			kau_write(rec, tok);
592			tok = au_to_arg32(1, "setaudit:as_failure",
593			    ar->ar_arg_amask.am_failure);
594			kau_write(rec, tok);
595			tok = au_to_arg32(1, "setaudit:asid",
596			    ar->ar_arg_asid);
597			kau_write(rec, tok);
598		}
599		break;
600
601	case AUE_SETAUDIT_ADDR:
602		if (ARG_IS_VALID(kar, ARG_AUID) &&
603		    ARG_IS_VALID(kar, ARG_ASID) &&
604		    ARG_IS_VALID(kar, ARG_AMASK) &&
605		    ARG_IS_VALID(kar, ARG_TERMID_ADDR)) {
606			tok = au_to_arg32(1, "setaudit_addr:auid",
607			    ar->ar_arg_auid);
608			kau_write(rec, tok);
609			tok = au_to_arg32(1, "setaudit_addr:as_success",
610			    ar->ar_arg_amask.am_success);
611			kau_write(rec, tok);
612			tok = au_to_arg32(1, "setaudit_addr:as_failure",
613			    ar->ar_arg_amask.am_failure);
614			kau_write(rec, tok);
615			tok = au_to_arg32(1, "setaudit_addr:asid",
616			    ar->ar_arg_asid);
617			kau_write(rec, tok);
618			tok = au_to_arg32(1, "setaudit_addr:type",
619			    ar->ar_arg_termid_addr.at_type);
620			kau_write(rec, tok);
621			tok = au_to_arg32(1, "setaudit_addr:port",
622			    ar->ar_arg_termid_addr.at_port);
623			kau_write(rec, tok);
624			if (ar->ar_arg_termid_addr.at_type == AU_IPv6)
625				tok = au_to_in_addr_ex((struct in6_addr *)
626				    &ar->ar_arg_termid_addr.at_addr[0]);
627			if (ar->ar_arg_termid_addr.at_type == AU_IPv4)
628				tok = au_to_in_addr((struct in_addr *)
629				    &ar->ar_arg_termid_addr.at_addr[0]);
630			kau_write(rec, tok);
631		}
632		break;
633
634	case AUE_AUDITON:
635		/*
636		 * For AUDITON commands without own event, audit the cmd.
637		 */
638		if (ARG_IS_VALID(kar, ARG_CMD)) {
639			tok = au_to_arg32(1, "cmd", ar->ar_arg_cmd);
640			kau_write(rec, tok);
641		}
642		/* FALLTHROUGH */
643
644	case AUE_AUDITON_GETCAR:
645	case AUE_AUDITON_GETCLASS:
646	case AUE_AUDITON_GETCOND:
647	case AUE_AUDITON_GETCWD:
648	case AUE_AUDITON_GETKMASK:
649	case AUE_AUDITON_GETSTAT:
650	case AUE_AUDITON_GPOLICY:
651	case AUE_AUDITON_GQCTRL:
652	case AUE_AUDITON_SETCLASS:
653	case AUE_AUDITON_SETCOND:
654	case AUE_AUDITON_SETKMASK:
655	case AUE_AUDITON_SETSMASK:
656	case AUE_AUDITON_SETSTAT:
657	case AUE_AUDITON_SETUMASK:
658	case AUE_AUDITON_SPOLICY:
659	case AUE_AUDITON_SQCTRL:
660		if (ARG_IS_VALID(kar, ARG_AUDITON))
661			audit_sys_auditon(ar, rec);
662		break;
663
664	case AUE_AUDITCTL:
665		UPATH1_VNODE1_TOKENS;
666		break;
667
668	case AUE_EXIT:
669		if (ARG_IS_VALID(kar, ARG_EXIT)) {
670			tok = au_to_exit(ar->ar_arg_exitretval,
671			    ar->ar_arg_exitstatus);
672			kau_write(rec, tok);
673		}
674		break;
675
676	case AUE_ADJTIME:
677	case AUE_CLOCK_SETTIME:
678	case AUE_AUDIT:
679	case AUE_DUP2:
680	case AUE_GETAUDIT:
681	case AUE_GETAUDIT_ADDR:
682	case AUE_GETAUID:
683	case AUE_GETCWD:
684	case AUE_GETFSSTAT:
685	case AUE_GETRESUID:
686	case AUE_GETRESGID:
687	case AUE_KQUEUE:
688	case AUE_MODLOAD:
689	case AUE_MODUNLOAD:
690	case AUE_MSGSYS:
691	case AUE_NTP_ADJTIME:
692	case AUE_PIPE:
693	case AUE_PROFILE:
694	case AUE_RTPRIO:
695	case AUE_SEMSYS:
696	case AUE_SHMSYS:
697	case AUE_SETPGRP:
698	case AUE_SETRLIMIT:
699	case AUE_SETSID:
700	case AUE_SETTIMEOFDAY:
701	case AUE_SYSARCH:
702
703		/*
704		 * Header, subject, and return tokens added at end.
705		 */
706		break;
707
708	case AUE_MKFIFO:
709		if (ARG_IS_VALID(kar, ARG_MODE)) {
710			tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
711			kau_write(rec, tok);
712		}
713		/* FALLTHROUGH */
714
715	case AUE_CHDIR:
716	case AUE_CHROOT:
717	case AUE_GETATTRLIST:
718	case AUE_JAIL:
719	case AUE_LUTIMES:
720	case AUE_NFS_GETFH:
721	case AUE_LSTAT:
722	case AUE_PATHCONF:
723	case AUE_READLINK:
724	case AUE_REVOKE:
725	case AUE_RMDIR:
726	case AUE_SEARCHFS:
727	case AUE_SETATTRLIST:
728	case AUE_STAT:
729	case AUE_STATFS:
730	case AUE_SWAPON:
731	case AUE_SWAPOFF:
732	case AUE_TRUNCATE:
733	case AUE_UNDELETE:
734	case AUE_UNLINK:
735	case AUE_UTIMES:
736		UPATH1_VNODE1_TOKENS;
737		break;
738
739	case AUE_ACCESS:
740	case AUE_EACCESS:
741		UPATH1_VNODE1_TOKENS;
742		if (ARG_IS_VALID(kar, ARG_VALUE)) {
743			tok = au_to_arg32(2, "mode", ar->ar_arg_value);
744			kau_write(rec, tok);
745		}
746		break;
747
748	case AUE_FHSTATFS:
749	case AUE_FHOPEN:
750	case AUE_FHSTAT:
751		/* XXXRW: Need to audit vnode argument. */
752		break;
753
754	case AUE_CHFLAGS:
755	case AUE_LCHFLAGS:
756		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
757			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
758			kau_write(rec, tok);
759		}
760		UPATH1_VNODE1_TOKENS;
761		break;
762
763	case AUE_CHMOD:
764	case AUE_LCHMOD:
765		if (ARG_IS_VALID(kar, ARG_MODE)) {
766			tok = au_to_arg32(2, "new file mode",
767			    ar->ar_arg_mode);
768			kau_write(rec, tok);
769		}
770		UPATH1_VNODE1_TOKENS;
771		break;
772
773	case AUE_CHOWN:
774	case AUE_LCHOWN:
775		if (ARG_IS_VALID(kar, ARG_UID)) {
776			tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid);
777			kau_write(rec, tok);
778		}
779		if (ARG_IS_VALID(kar, ARG_GID)) {
780			tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid);
781			kau_write(rec, tok);
782		}
783		UPATH1_VNODE1_TOKENS;
784		break;
785
786	case AUE_EXCHANGEDATA:
787		UPATH1_VNODE1_TOKENS;
788		UPATH2_TOKENS;
789		break;
790
791	case AUE_CLOSE:
792		if (ARG_IS_VALID(kar, ARG_FD)) {
793			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
794			kau_write(rec, tok);
795		}
796		UPATH1_VNODE1_TOKENS;
797		break;
798
799	case AUE_CORE:
800		if (ARG_IS_VALID(kar, ARG_SIGNUM)) {
801			tok = au_to_arg32(1, "signal", ar->ar_arg_signum);
802			kau_write(rec, tok);
803		}
804		UPATH1_VNODE1_TOKENS;
805		break;
806
807	case AUE_EXTATTRCTL:
808		UPATH1_VNODE1_TOKENS;
809		if (ARG_IS_VALID(kar, ARG_CMD)) {
810			tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
811			kau_write(rec, tok);
812		}
813		/* extattrctl(2) filename parameter is in upath2/vnode2 */
814		UPATH2_TOKENS;
815		VNODE2_TOKENS;
816		EXTATTR_TOKENS(4);
817		break;
818
819	case AUE_EXTATTR_GET_FILE:
820	case AUE_EXTATTR_SET_FILE:
821	case AUE_EXTATTR_LIST_FILE:
822	case AUE_EXTATTR_DELETE_FILE:
823	case AUE_EXTATTR_GET_LINK:
824	case AUE_EXTATTR_SET_LINK:
825	case AUE_EXTATTR_LIST_LINK:
826	case AUE_EXTATTR_DELETE_LINK:
827		UPATH1_VNODE1_TOKENS;
828		EXTATTR_TOKENS(2);
829		break;
830
831	case AUE_EXTATTR_GET_FD:
832	case AUE_EXTATTR_SET_FD:
833	case AUE_EXTATTR_LIST_FD:
834	case AUE_EXTATTR_DELETE_FD:
835		if (ARG_IS_VALID(kar, ARG_FD)) {
836			tok = au_to_arg32(2, "fd", ar->ar_arg_fd);
837			kau_write(rec, tok);
838		}
839		EXTATTR_TOKENS(2);
840		break;
841
842	case AUE_FEXECVE:
843		if (ARG_IS_VALID(kar, ARG_FD)) {
844			tok = au_to_arg32(1, "fd", ar->ar_arg_fd);
845			kau_write(rec, tok);
846		}
847		/* FALLTHROUGH */
848
849	case AUE_EXECVE:
850	case AUE_MAC_EXECVE:
851		if (ARG_IS_VALID(kar, ARG_ARGV)) {
852			tok = au_to_exec_args(ar->ar_arg_argv,
853			    ar->ar_arg_argc);
854			kau_write(rec, tok);
855		}
856		if (ARG_IS_VALID(kar, ARG_ENVV)) {
857			tok = au_to_exec_env(ar->ar_arg_envv,
858			    ar->ar_arg_envc);
859			kau_write(rec, tok);
860		}
861		UPATH1_VNODE1_TOKENS;
862		break;
863
864	case AUE_FCHMOD:
865		if (ARG_IS_VALID(kar, ARG_MODE)) {
866			tok = au_to_arg32(2, "new file mode",
867			    ar->ar_arg_mode);
868			kau_write(rec, tok);
869		}
870		FD_VNODE1_TOKENS;
871		break;
872
873	/*
874	 * XXXRW: Some of these need to handle non-vnode cases as well.
875	 */
876	case AUE_FCHDIR:
877	case AUE_FPATHCONF:
878	case AUE_FSTAT:
879	case AUE_FSTATFS:
880	case AUE_FSYNC:
881	case AUE_FTRUNCATE:
882	case AUE_FUTIMES:
883	case AUE_GETDIRENTRIES:
884	case AUE_GETDIRENTRIESATTR:
885	case AUE_LSEEK:
886	case AUE_POLL:
887	case AUE_READ:
888	case AUE_READV:
889	case AUE_WRITE:
890	case AUE_WRITEV:
891		FD_VNODE1_TOKENS;
892		break;
893
894	case AUE_FCHOWN:
895		if (ARG_IS_VALID(kar, ARG_UID)) {
896			tok = au_to_arg32(2, "new file uid", ar->ar_arg_uid);
897			kau_write(rec, tok);
898		}
899		if (ARG_IS_VALID(kar, ARG_GID)) {
900			tok = au_to_arg32(3, "new file gid", ar->ar_arg_gid);
901			kau_write(rec, tok);
902		}
903		FD_VNODE1_TOKENS;
904		break;
905
906	case AUE_FCNTL:
907		if (ARG_IS_VALID(kar, ARG_CMD)) {
908			tok = au_to_arg32(2, "cmd",
909			    au_fcntl_cmd_to_bsm(ar->ar_arg_cmd));
910			kau_write(rec, tok);
911		}
912		if (ar->ar_arg_cmd == F_GETLK || ar->ar_arg_cmd == F_SETLK ||
913		    ar->ar_arg_cmd == F_SETLKW) {
914			FD_VNODE1_TOKENS;
915		}
916		break;
917
918	case AUE_FCHFLAGS:
919		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
920			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
921			kau_write(rec, tok);
922		}
923		FD_VNODE1_TOKENS;
924		break;
925
926	case AUE_FLOCK:
927		if (ARG_IS_VALID(kar, ARG_CMD)) {
928			tok = au_to_arg32(2, "operation", ar->ar_arg_cmd);
929			kau_write(rec, tok);
930		}
931		FD_VNODE1_TOKENS;
932		break;
933
934	case AUE_RFORK:
935		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
936			tok = au_to_arg32(1, "flags", ar->ar_arg_fflags);
937			kau_write(rec, tok);
938		}
939		/* FALLTHROUGH */
940
941	case AUE_FORK:
942	case AUE_VFORK:
943		if (ARG_IS_VALID(kar, ARG_PID)) {
944			tok = au_to_arg32(0, "child PID", ar->ar_arg_pid);
945			kau_write(rec, tok);
946		}
947		break;
948
949	case AUE_IOCTL:
950		if (ARG_IS_VALID(kar, ARG_CMD)) {
951			tok = au_to_arg32(2, "cmd", ar->ar_arg_cmd);
952			kau_write(rec, tok);
953		}
954		if (ARG_IS_VALID(kar, ARG_VNODE1))
955			FD_VNODE1_TOKENS;
956		else {
957			if (ARG_IS_VALID(kar, ARG_SOCKINFO)) {
958				tok = kau_to_socket(&ar->ar_arg_sockinfo);
959				kau_write(rec, tok);
960			} else {
961				if (ARG_IS_VALID(kar, ARG_FD)) {
962					tok = au_to_arg32(1, "fd",
963					    ar->ar_arg_fd);
964					kau_write(rec, tok);
965				}
966			}
967		}
968		break;
969
970	case AUE_KILL:
971	case AUE_KILLPG:
972		if (ARG_IS_VALID(kar, ARG_SIGNUM)) {
973			tok = au_to_arg32(2, "signal", ar->ar_arg_signum);
974			kau_write(rec, tok);
975		}
976		PROCESS_PID_TOKENS(1);
977		break;
978
979	case AUE_KTRACE:
980		if (ARG_IS_VALID(kar, ARG_CMD)) {
981			tok = au_to_arg32(2, "ops", ar->ar_arg_cmd);
982			kau_write(rec, tok);
983		}
984		if (ARG_IS_VALID(kar, ARG_VALUE)) {
985			tok = au_to_arg32(3, "trpoints", ar->ar_arg_value);
986			kau_write(rec, tok);
987		}
988		PROCESS_PID_TOKENS(4);
989		UPATH1_VNODE1_TOKENS;
990		break;
991
992	case AUE_LINK:
993	case AUE_RENAME:
994		UPATH1_VNODE1_TOKENS;
995		UPATH2_TOKENS;
996		break;
997
998	case AUE_LOADSHFILE:
999		ADDR_TOKEN(4, "base addr");
1000		UPATH1_VNODE1_TOKENS;
1001		break;
1002
1003	case AUE_MKDIR:
1004		if (ARG_IS_VALID(kar, ARG_MODE)) {
1005			tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
1006			kau_write(rec, tok);
1007		}
1008		UPATH1_VNODE1_TOKENS;
1009		break;
1010
1011	case AUE_MKNOD:
1012		if (ARG_IS_VALID(kar, ARG_MODE)) {
1013			tok = au_to_arg32(2, "mode", ar->ar_arg_mode);
1014			kau_write(rec, tok);
1015		}
1016		if (ARG_IS_VALID(kar, ARG_DEV)) {
1017			tok = au_to_arg32(3, "dev", ar->ar_arg_dev);
1018			kau_write(rec, tok);
1019		}
1020		UPATH1_VNODE1_TOKENS;
1021		break;
1022
1023	case AUE_MMAP:
1024	case AUE_MUNMAP:
1025	case AUE_MPROTECT:
1026	case AUE_MLOCK:
1027	case AUE_MUNLOCK:
1028	case AUE_MINHERIT:
1029		ADDR_TOKEN(1, "addr");
1030		if (ARG_IS_VALID(kar, ARG_LEN)) {
1031			tok = au_to_arg32(2, "len", ar->ar_arg_len);
1032			kau_write(rec, tok);
1033		}
1034		if (ar->ar_event == AUE_MMAP)
1035			FD_VNODE1_TOKENS;
1036		if (ar->ar_event == AUE_MPROTECT) {
1037			if (ARG_IS_VALID(kar, ARG_VALUE)) {
1038				tok = au_to_arg32(3, "protection",
1039				    ar->ar_arg_value);
1040				kau_write(rec, tok);
1041			}
1042		}
1043		if (ar->ar_event == AUE_MINHERIT) {
1044			if (ARG_IS_VALID(kar, ARG_VALUE)) {
1045				tok = au_to_arg32(3, "inherit",
1046				    ar->ar_arg_value);
1047				kau_write(rec, tok);
1048			}
1049		}
1050		break;
1051
1052	case AUE_MOUNT:
1053	case AUE_NMOUNT:
1054		/* XXX Need to handle NFS mounts */
1055		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
1056			tok = au_to_arg32(3, "flags", ar->ar_arg_fflags);
1057			kau_write(rec, tok);
1058		}
1059		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1060			tok = au_to_text(ar->ar_arg_text);
1061			kau_write(rec, tok);
1062		}
1063		/* FALLTHROUGH */
1064
1065	case AUE_NFS_SVC:
1066		if (ARG_IS_VALID(kar, ARG_CMD)) {
1067			tok = au_to_arg32(1, "flags", ar->ar_arg_cmd);
1068			kau_write(rec, tok);
1069		}
1070		break;
1071
1072	case AUE_UMOUNT:
1073		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1074			tok = au_to_arg32(2, "flags", ar->ar_arg_value);
1075			kau_write(rec, tok);
1076		}
1077		UPATH1_VNODE1_TOKENS;
1078		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1079			tok = au_to_text(ar->ar_arg_text);
1080			kau_write(rec, tok);
1081		}
1082		break;
1083
1084	case AUE_MSGCTL:
1085		ar->ar_event = audit_msgctl_to_event(ar->ar_arg_svipc_cmd);
1086		/* Fall through */
1087
1088	case AUE_MSGRCV:
1089	case AUE_MSGSND:
1090		tok = au_to_arg32(1, "msg ID", ar->ar_arg_svipc_id);
1091		kau_write(rec, tok);
1092		if (ar->ar_errno != EINVAL) {
1093			tok = au_to_ipc(AT_IPC_MSG, ar->ar_arg_svipc_id);
1094			kau_write(rec, tok);
1095		}
1096		break;
1097
1098	case AUE_MSGGET:
1099		if (ar->ar_errno == 0) {
1100			if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1101				tok = au_to_ipc(AT_IPC_MSG,
1102				    ar->ar_arg_svipc_id);
1103				kau_write(rec, tok);
1104			}
1105		}
1106		break;
1107
1108	case AUE_RESETSHFILE:
1109		ADDR_TOKEN(1, "base addr");
1110		break;
1111
1112	case AUE_OPEN_RC:
1113	case AUE_OPEN_RTC:
1114	case AUE_OPEN_RWC:
1115	case AUE_OPEN_RWTC:
1116	case AUE_OPEN_WC:
1117	case AUE_OPEN_WTC:
1118	case AUE_CREAT:
1119		if (ARG_IS_VALID(kar, ARG_MODE)) {
1120			tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
1121			kau_write(rec, tok);
1122		}
1123		/* FALLTHROUGH */
1124
1125	case AUE_OPEN_R:
1126	case AUE_OPEN_RT:
1127	case AUE_OPEN_RW:
1128	case AUE_OPEN_RWT:
1129	case AUE_OPEN_W:
1130	case AUE_OPEN_WT:
1131		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
1132			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
1133			kau_write(rec, tok);
1134		}
1135		UPATH1_VNODE1_TOKENS;
1136		break;
1137
1138	case AUE_PTRACE:
1139		if (ARG_IS_VALID(kar, ARG_CMD)) {
1140			tok = au_to_arg32(1, "request", ar->ar_arg_cmd);
1141			kau_write(rec, tok);
1142		}
1143		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1144			tok = au_to_arg32(4, "data", ar->ar_arg_value);
1145			kau_write(rec, tok);
1146		}
1147		PROCESS_PID_TOKENS(2);
1148		break;
1149
1150	case AUE_QUOTACTL:
1151		if (ARG_IS_VALID(kar, ARG_CMD)) {
1152			tok = au_to_arg32(2, "command", ar->ar_arg_cmd);
1153			kau_write(rec, tok);
1154		}
1155		if (ARG_IS_VALID(kar, ARG_UID)) {
1156			tok = au_to_arg32(3, "uid", ar->ar_arg_uid);
1157			kau_write(rec, tok);
1158		}
1159		if (ARG_IS_VALID(kar, ARG_GID)) {
1160			tok = au_to_arg32(3, "gid", ar->ar_arg_gid);
1161			kau_write(rec, tok);
1162		}
1163		UPATH1_VNODE1_TOKENS;
1164		break;
1165
1166	case AUE_REBOOT:
1167		if (ARG_IS_VALID(kar, ARG_CMD)) {
1168			tok = au_to_arg32(1, "howto", ar->ar_arg_cmd);
1169			kau_write(rec, tok);
1170		}
1171		break;
1172
1173	case AUE_SEMCTL:
1174		ar->ar_event = audit_semctl_to_event(ar->ar_arg_svipc_cmd);
1175		/* Fall through */
1176
1177	case AUE_SEMOP:
1178		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1179			tok = au_to_arg32(1, "sem ID", ar->ar_arg_svipc_id);
1180			kau_write(rec, tok);
1181			if (ar->ar_errno != EINVAL) {
1182				tok = au_to_ipc(AT_IPC_SEM,
1183				    ar->ar_arg_svipc_id);
1184				kau_write(rec, tok);
1185			}
1186		}
1187		break;
1188
1189	case AUE_SEMGET:
1190		if (ar->ar_errno == 0) {
1191			if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1192				tok = au_to_ipc(AT_IPC_SEM,
1193				    ar->ar_arg_svipc_id);
1194				kau_write(rec, tok);
1195			}
1196		}
1197		break;
1198
1199	case AUE_SETEGID:
1200		if (ARG_IS_VALID(kar, ARG_EGID)) {
1201			tok = au_to_arg32(1, "egid", ar->ar_arg_egid);
1202			kau_write(rec, tok);
1203		}
1204		break;
1205
1206	case AUE_SETEUID:
1207		if (ARG_IS_VALID(kar, ARG_EUID)) {
1208			tok = au_to_arg32(1, "euid", ar->ar_arg_euid);
1209			kau_write(rec, tok);
1210		}
1211		break;
1212
1213	case AUE_SETREGID:
1214		if (ARG_IS_VALID(kar, ARG_RGID)) {
1215			tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid);
1216			kau_write(rec, tok);
1217		}
1218		if (ARG_IS_VALID(kar, ARG_EGID)) {
1219			tok = au_to_arg32(2, "egid", ar->ar_arg_egid);
1220			kau_write(rec, tok);
1221		}
1222		break;
1223
1224	case AUE_SETREUID:
1225		if (ARG_IS_VALID(kar, ARG_RUID)) {
1226			tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid);
1227			kau_write(rec, tok);
1228		}
1229		if (ARG_IS_VALID(kar, ARG_EUID)) {
1230			tok = au_to_arg32(2, "euid", ar->ar_arg_euid);
1231			kau_write(rec, tok);
1232		}
1233		break;
1234
1235	case AUE_SETRESGID:
1236		if (ARG_IS_VALID(kar, ARG_RGID)) {
1237			tok = au_to_arg32(1, "rgid", ar->ar_arg_rgid);
1238			kau_write(rec, tok);
1239		}
1240		if (ARG_IS_VALID(kar, ARG_EGID)) {
1241			tok = au_to_arg32(2, "egid", ar->ar_arg_egid);
1242			kau_write(rec, tok);
1243		}
1244		if (ARG_IS_VALID(kar, ARG_SGID)) {
1245			tok = au_to_arg32(3, "sgid", ar->ar_arg_sgid);
1246			kau_write(rec, tok);
1247		}
1248		break;
1249
1250	case AUE_SETRESUID:
1251		if (ARG_IS_VALID(kar, ARG_RUID)) {
1252			tok = au_to_arg32(1, "ruid", ar->ar_arg_ruid);
1253			kau_write(rec, tok);
1254		}
1255		if (ARG_IS_VALID(kar, ARG_EUID)) {
1256			tok = au_to_arg32(2, "euid", ar->ar_arg_euid);
1257			kau_write(rec, tok);
1258		}
1259		if (ARG_IS_VALID(kar, ARG_SUID)) {
1260			tok = au_to_arg32(3, "suid", ar->ar_arg_suid);
1261			kau_write(rec, tok);
1262		}
1263		break;
1264
1265	case AUE_SETGID:
1266		if (ARG_IS_VALID(kar, ARG_GID)) {
1267			tok = au_to_arg32(1, "gid", ar->ar_arg_gid);
1268			kau_write(rec, tok);
1269		}
1270		break;
1271
1272	case AUE_SETUID:
1273		if (ARG_IS_VALID(kar, ARG_UID)) {
1274			tok = au_to_arg32(1, "uid", ar->ar_arg_uid);
1275			kau_write(rec, tok);
1276		}
1277		break;
1278
1279	case AUE_SETGROUPS:
1280		if (ARG_IS_VALID(kar, ARG_GROUPSET)) {
1281			for(ctr = 0; ctr < ar->ar_arg_groups.gidset_size; ctr++)
1282			{
1283				tok = au_to_arg32(1, "setgroups",
1284				    ar->ar_arg_groups.gidset[ctr]);
1285				kau_write(rec, tok);
1286			}
1287		}
1288		break;
1289
1290	case AUE_SETLOGIN:
1291		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1292			tok = au_to_text(ar->ar_arg_text);
1293			kau_write(rec, tok);
1294		}
1295		break;
1296
1297	case AUE_SETPRIORITY:
1298		if (ARG_IS_VALID(kar, ARG_CMD)) {
1299			tok = au_to_arg32(1, "which", ar->ar_arg_cmd);
1300			kau_write(rec, tok);
1301		}
1302		if (ARG_IS_VALID(kar, ARG_UID)) {
1303			tok = au_to_arg32(2, "who", ar->ar_arg_uid);
1304			kau_write(rec, tok);
1305		}
1306		PROCESS_PID_TOKENS(2);
1307		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1308			tok = au_to_arg32(3, "priority", ar->ar_arg_value);
1309			kau_write(rec, tok);
1310		}
1311		break;
1312
1313	case AUE_SETPRIVEXEC:
1314		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1315			tok = au_to_arg32(1, "flag", ar->ar_arg_value);
1316			kau_write(rec, tok);
1317		}
1318		break;
1319
1320	/* AUE_SHMAT, AUE_SHMCTL, AUE_SHMDT and AUE_SHMGET are SysV IPC */
1321	case AUE_SHMAT:
1322		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1323			tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id);
1324			kau_write(rec, tok);
1325			/* XXXAUDIT: Does having the ipc token make sense? */
1326			tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
1327			kau_write(rec, tok);
1328		}
1329		if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
1330			tok = au_to_arg32(2, "shmaddr",
1331			    (int)(uintptr_t)ar->ar_arg_svipc_addr);
1332			kau_write(rec, tok);
1333		}
1334		if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
1335			tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
1336			kau_write(rec, tok);
1337		}
1338		break;
1339
1340	case AUE_SHMCTL:
1341		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1342			tok = au_to_arg32(1, "shmid", ar->ar_arg_svipc_id);
1343			kau_write(rec, tok);
1344			/* XXXAUDIT: Does having the ipc token make sense? */
1345			tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
1346			kau_write(rec, tok);
1347		}
1348		switch (ar->ar_arg_svipc_cmd) {
1349		case IPC_STAT:
1350			ar->ar_event = AUE_SHMCTL_STAT;
1351			break;
1352		case IPC_RMID:
1353			ar->ar_event = AUE_SHMCTL_RMID;
1354			break;
1355		case IPC_SET:
1356			ar->ar_event = AUE_SHMCTL_SET;
1357			if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
1358				tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
1359				kau_write(rec, tok);
1360			}
1361			break;
1362		default:
1363			break;	/* We will audit a bad command */
1364		}
1365		break;
1366
1367	case AUE_SHMDT:
1368		if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
1369			tok = au_to_arg32(1, "shmaddr",
1370			    (int)(uintptr_t)ar->ar_arg_svipc_addr);
1371			kau_write(rec, tok);
1372		}
1373		break;
1374
1375	case AUE_SHMGET:
1376		/* This is unusual; the return value is in an argument token */
1377		if (ARG_IS_VALID(kar, ARG_SVIPC_ID)) {
1378			tok = au_to_arg32(0, "shmid", ar->ar_arg_svipc_id);
1379			kau_write(rec, tok);
1380			tok = au_to_ipc(AT_IPC_SHM, ar->ar_arg_svipc_id);
1381			kau_write(rec, tok);
1382		}
1383		if (ARG_IS_VALID(kar, ARG_SVIPC_PERM)) {
1384			tok = au_to_ipc_perm(&ar->ar_arg_svipc_perm);
1385			kau_write(rec, tok);
1386		}
1387		break;
1388
1389	/* AUE_SHMOPEN, AUE_SHMUNLINK, AUE_SEMOPEN, AUE_SEMCLOSE
1390	 * and AUE_SEMUNLINK are Posix IPC */
1391	case AUE_SHMOPEN:
1392		if (ARG_IS_VALID(kar, ARG_SVIPC_ADDR)) {
1393			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
1394			kau_write(rec, tok);
1395		}
1396		if (ARG_IS_VALID(kar, ARG_MODE)) {
1397			tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
1398			kau_write(rec, tok);
1399		}
1400		/* FALLTHROUGH */
1401
1402	case AUE_SHMUNLINK:
1403		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1404			tok = au_to_text(ar->ar_arg_text);
1405			kau_write(rec, tok);
1406		}
1407		if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) {
1408			struct ipc_perm perm;
1409
1410			perm.uid = ar->ar_arg_pipc_perm.pipc_uid;
1411			perm.gid = ar->ar_arg_pipc_perm.pipc_gid;
1412			perm.cuid = ar->ar_arg_pipc_perm.pipc_uid;
1413			perm.cgid = ar->ar_arg_pipc_perm.pipc_gid;
1414			perm.mode = ar->ar_arg_pipc_perm.pipc_mode;
1415			perm.seq = 0;
1416			perm.key = 0;
1417			tok = au_to_ipc_perm(&perm);
1418			kau_write(rec, tok);
1419		}
1420		break;
1421
1422	case AUE_SEMOPEN:
1423		if (ARG_IS_VALID(kar, ARG_FFLAGS)) {
1424			tok = au_to_arg32(2, "flags", ar->ar_arg_fflags);
1425			kau_write(rec, tok);
1426		}
1427		if (ARG_IS_VALID(kar, ARG_MODE)) {
1428			tok = au_to_arg32(3, "mode", ar->ar_arg_mode);
1429			kau_write(rec, tok);
1430		}
1431		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1432			tok = au_to_arg32(4, "value", ar->ar_arg_value);
1433			kau_write(rec, tok);
1434		}
1435		/* FALLTHROUGH */
1436
1437	case AUE_SEMUNLINK:
1438		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1439			tok = au_to_text(ar->ar_arg_text);
1440			kau_write(rec, tok);
1441		}
1442		if (ARG_IS_VALID(kar, ARG_POSIX_IPC_PERM)) {
1443			struct ipc_perm perm;
1444
1445			perm.uid = ar->ar_arg_pipc_perm.pipc_uid;
1446			perm.gid = ar->ar_arg_pipc_perm.pipc_gid;
1447			perm.cuid = ar->ar_arg_pipc_perm.pipc_uid;
1448			perm.cgid = ar->ar_arg_pipc_perm.pipc_gid;
1449			perm.mode = ar->ar_arg_pipc_perm.pipc_mode;
1450			perm.seq = 0;
1451			perm.key = 0;
1452			tok = au_to_ipc_perm(&perm);
1453			kau_write(rec, tok);
1454		}
1455		break;
1456
1457	case AUE_SEMCLOSE:
1458		if (ARG_IS_VALID(kar, ARG_FD)) {
1459			tok = au_to_arg32(1, "sem", ar->ar_arg_fd);
1460			kau_write(rec, tok);
1461		}
1462		break;
1463
1464	case AUE_SYMLINK:
1465		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1466			tok = au_to_text(ar->ar_arg_text);
1467			kau_write(rec, tok);
1468		}
1469		UPATH1_VNODE1_TOKENS;
1470		break;
1471
1472	case AUE_SYSCTL:
1473	case AUE_SYSCTL_NONADMIN:
1474		if (ARG_IS_VALID(kar, ARG_CTLNAME | ARG_LEN)) {
1475			for (ctr = 0; ctr < ar->ar_arg_len; ctr++) {
1476				tok = au_to_arg32(1, "name",
1477				    ar->ar_arg_ctlname[ctr]);
1478				kau_write(rec, tok);
1479			}
1480		}
1481		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1482			tok = au_to_arg32(5, "newval", ar->ar_arg_value);
1483			kau_write(rec, tok);
1484		}
1485		if (ARG_IS_VALID(kar, ARG_TEXT)) {
1486			tok = au_to_text(ar->ar_arg_text);
1487			kau_write(rec, tok);
1488		}
1489		break;
1490
1491	case AUE_UMASK:
1492		if (ARG_IS_VALID(kar, ARG_MASK)) {
1493			tok = au_to_arg32(1, "new mask", ar->ar_arg_mask);
1494			kau_write(rec, tok);
1495		}
1496		tok = au_to_arg32(0, "prev mask", ar->ar_retval);
1497		kau_write(rec, tok);
1498		break;
1499
1500	case AUE_WAIT4:
1501		PROCESS_PID_TOKENS(1);
1502		if (ARG_IS_VALID(kar, ARG_VALUE)) {
1503			tok = au_to_arg32(3, "options", ar->ar_arg_value);
1504			kau_write(rec, tok);
1505		}
1506		break;
1507
1508	case AUE_NULL:
1509	default:
1510		printf("BSM conversion requested for unknown event %d\n",
1511		    ar->ar_event);
1512
1513		/*
1514		 * Write the subject token so it is properly freed here.
1515		 */
1516		kau_write(rec, subj_tok);
1517		kau_free(rec);
1518		return (BSM_NOAUDIT);
1519	}
1520
1521	kau_write(rec, subj_tok);
1522	tok = au_to_return32(au_errno_to_bsm(ar->ar_errno), ar->ar_retval);
1523	kau_write(rec, tok);  /* Every record gets a return token */
1524
1525	kau_close(rec, &ar->ar_endtime, ar->ar_event);
1526
1527	*pau = rec;
1528	return (BSM_SUCCESS);
1529}
1530
1531/*
1532 * Verify that a record is a valid BSM record. This verification is simple
1533 * now, but may be expanded on sometime in the future.  Return 1 if the
1534 * record is good, 0 otherwise.
1535 */
1536int
1537bsm_rec_verify(void *rec)
1538{
1539	char c = *(char *)rec;
1540
1541	/*
1542	 * Check the token ID of the first token; it has to be a header
1543	 * token.
1544	 *
1545	 * XXXAUDIT There needs to be a token structure to map a token.
1546	 * XXXAUDIT 'Shouldn't be simply looking at the first char.
1547	 */
1548	if ((c != AUT_HEADER32) && (c != AUT_HEADER32_EX) &&
1549	    (c != AUT_HEADER64) && (c != AUT_HEADER64_EX))
1550		return (0);
1551	return (1);
1552}
1553