ib_verbs.h revision 331784
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses.  You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 *     Redistribution and use in source and binary forms, with or
17 *     without modification, are permitted provided that the following
18 *     conditions are met:
19 *
20 *      - Redistributions of source code must retain the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer.
23 *
24 *      - Redistributions in binary form must reproduce the above
25 *        copyright notice, this list of conditions and the following
26 *        disclaimer in the documentation and/or other materials
27 *        provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 *
38 * $FreeBSD: stable/11/sys/ofed/include/rdma/ib_verbs.h 331784 2018-03-30 18:36:44Z hselasky $
39 */
40
41#if !defined(IB_VERBS_H)
42#define IB_VERBS_H
43
44#include <linux/types.h>
45#include <linux/device.h>
46#include <linux/mm.h>
47#include <linux/dma-mapping.h>
48#include <linux/kref.h>
49#include <linux/list.h>
50#include <linux/rwsem.h>
51#include <linux/scatterlist.h>
52#include <linux/workqueue.h>
53#include <linux/socket.h>
54#include <linux/if_ether.h>
55#include <net/ipv6.h>
56#include <net/ip.h>
57#include <linux/string.h>
58#include <linux/slab.h>
59#include <linux/rcupdate.h>
60#include <linux/netdevice.h>
61#include <netinet/ip.h>
62
63#include <asm/atomic.h>
64#include <asm/uaccess.h>
65
66struct ifla_vf_info;
67struct ifla_vf_stats;
68
69extern struct workqueue_struct *ib_wq;
70extern struct workqueue_struct *ib_comp_wq;
71
72union ib_gid {
73	u8	raw[16];
74	struct {
75		__be64	subnet_prefix;
76		__be64	interface_id;
77	} global;
78};
79
80extern union ib_gid zgid;
81
82enum ib_gid_type {
83	/* If link layer is Ethernet, this is RoCE V1 */
84	IB_GID_TYPE_IB        = 0,
85	IB_GID_TYPE_ROCE      = 0,
86	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
87	IB_GID_TYPE_SIZE
88};
89
90#define ROCE_V2_UDP_DPORT      4791
91struct ib_gid_attr {
92	enum ib_gid_type	gid_type;
93	struct net_device	*ndev;
94};
95
96enum rdma_node_type {
97	/* IB values map to NodeInfo:NodeType. */
98	RDMA_NODE_IB_CA 	= 1,
99	RDMA_NODE_IB_SWITCH,
100	RDMA_NODE_IB_ROUTER,
101	RDMA_NODE_RNIC,
102	RDMA_NODE_USNIC,
103	RDMA_NODE_USNIC_UDP,
104};
105
106enum {
107	/* set the local administered indication */
108	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
109};
110
111enum rdma_transport_type {
112	RDMA_TRANSPORT_IB,
113	RDMA_TRANSPORT_IWARP,
114	RDMA_TRANSPORT_USNIC,
115	RDMA_TRANSPORT_USNIC_UDP
116};
117
118enum rdma_protocol_type {
119	RDMA_PROTOCOL_IB,
120	RDMA_PROTOCOL_IBOE,
121	RDMA_PROTOCOL_IWARP,
122	RDMA_PROTOCOL_USNIC_UDP
123};
124
125__attribute_const__ enum rdma_transport_type
126rdma_node_get_transport(enum rdma_node_type node_type);
127
128enum rdma_network_type {
129	RDMA_NETWORK_IB,
130	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
131	RDMA_NETWORK_IPV4,
132	RDMA_NETWORK_IPV6
133};
134
135static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
136{
137	if (network_type == RDMA_NETWORK_IPV4 ||
138	    network_type == RDMA_NETWORK_IPV6)
139		return IB_GID_TYPE_ROCE_UDP_ENCAP;
140
141	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
142	return IB_GID_TYPE_IB;
143}
144
145static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
146							    union ib_gid *gid)
147{
148	if (gid_type == IB_GID_TYPE_IB)
149		return RDMA_NETWORK_IB;
150
151	if (ipv6_addr_v4mapped((struct in6_addr *)gid))
152		return RDMA_NETWORK_IPV4;
153	else
154		return RDMA_NETWORK_IPV6;
155}
156
157enum rdma_link_layer {
158	IB_LINK_LAYER_UNSPECIFIED,
159	IB_LINK_LAYER_INFINIBAND,
160	IB_LINK_LAYER_ETHERNET,
161};
162
163enum ib_device_cap_flags {
164	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
165	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
166	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
167	IB_DEVICE_RAW_MULTI			= (1 << 3),
168	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
169	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
170	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
171	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
172	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
173	IB_DEVICE_INIT_TYPE			= (1 << 9),
174	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
175	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
176	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
177	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
178	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
179
180	/*
181	 * This device supports a per-device lkey or stag that can be
182	 * used without performing a memory registration for the local
183	 * memory.  Note that ULPs should never check this flag, but
184	 * instead of use the local_dma_lkey flag in the ib_pd structure,
185	 * which will always contain a usable lkey.
186	 */
187	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
188	IB_DEVICE_RESERVED /* old SEND_W_INV */	= (1 << 16),
189	IB_DEVICE_MEM_WINDOW			= (1 << 17),
190	/*
191	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
192	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
193	 * messages and can verify the validity of checksum for
194	 * incoming messages.  Setting this flag implies that the
195	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
196	 */
197	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
198	IB_DEVICE_UD_TSO			= (1 << 19),
199	IB_DEVICE_XRC				= (1 << 20),
200
201	/*
202	 * This device supports the IB "base memory management extension",
203	 * which includes support for fast registrations (IB_WR_REG_MR,
204	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
205	 * also be set by any iWarp device which must support FRs to comply
206	 * to the iWarp verbs spec.  iWarp devices also support the
207	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
208	 * stag.
209	 */
210	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
211	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
212	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
213	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
214	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
215	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
216	/*
217	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
218	 * support execution of WQEs that involve synchronization
219	 * of I/O operations with single completion queue managed
220	 * by hardware.
221	 */
222	IB_DEVICE_CROSS_CHANNEL		= (1 << 27),
223	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
224	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
225	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
226	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
227	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
228	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
229};
230
231enum ib_signature_prot_cap {
232	IB_PROT_T10DIF_TYPE_1 = 1,
233	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
234	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
235};
236
237enum ib_signature_guard_cap {
238	IB_GUARD_T10DIF_CRC	= 1,
239	IB_GUARD_T10DIF_CSUM	= 1 << 1,
240};
241
242enum ib_atomic_cap {
243	IB_ATOMIC_NONE,
244	IB_ATOMIC_HCA,
245	IB_ATOMIC_GLOB
246};
247
248enum ib_odp_general_cap_bits {
249	IB_ODP_SUPPORT = 1 << 0,
250};
251
252enum ib_odp_transport_cap_bits {
253	IB_ODP_SUPPORT_SEND	= 1 << 0,
254	IB_ODP_SUPPORT_RECV	= 1 << 1,
255	IB_ODP_SUPPORT_WRITE	= 1 << 2,
256	IB_ODP_SUPPORT_READ	= 1 << 3,
257	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
258};
259
260struct ib_odp_caps {
261	uint64_t general_caps;
262	struct {
263		uint32_t  rc_odp_caps;
264		uint32_t  uc_odp_caps;
265		uint32_t  ud_odp_caps;
266	} per_transport_caps;
267};
268
269struct ib_rss_caps {
270	/* Corresponding bit will be set if qp type from
271	 * 'enum ib_qp_type' is supported, e.g.
272	 * supported_qpts |= 1 << IB_QPT_UD
273	 */
274	u32 supported_qpts;
275	u32 max_rwq_indirection_tables;
276	u32 max_rwq_indirection_table_size;
277};
278
279enum ib_cq_creation_flags {
280	IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
281	IB_CQ_FLAGS_IGNORE_OVERRUN	   = 1 << 1,
282};
283
284struct ib_cq_init_attr {
285	unsigned int	cqe;
286	int		comp_vector;
287	u32		flags;
288};
289
290struct ib_device_attr {
291	u64			fw_ver;
292	__be64			sys_image_guid;
293	u64			max_mr_size;
294	u64			page_size_cap;
295	u32			vendor_id;
296	u32			vendor_part_id;
297	u32			hw_ver;
298	int			max_qp;
299	int			max_qp_wr;
300	u64			device_cap_flags;
301	int			max_sge;
302	int			max_sge_rd;
303	int			max_cq;
304	int			max_cqe;
305	int			max_mr;
306	int			max_pd;
307	int			max_qp_rd_atom;
308	int			max_ee_rd_atom;
309	int			max_res_rd_atom;
310	int			max_qp_init_rd_atom;
311	int			max_ee_init_rd_atom;
312	enum ib_atomic_cap	atomic_cap;
313	enum ib_atomic_cap	masked_atomic_cap;
314	int			max_ee;
315	int			max_rdd;
316	int			max_mw;
317	int			max_raw_ipv6_qp;
318	int			max_raw_ethy_qp;
319	int			max_mcast_grp;
320	int			max_mcast_qp_attach;
321	int			max_total_mcast_qp_attach;
322	int			max_ah;
323	int			max_fmr;
324	int			max_map_per_fmr;
325	int			max_srq;
326	int			max_srq_wr;
327	int			max_srq_sge;
328	unsigned int		max_fast_reg_page_list_len;
329	u16			max_pkeys;
330	u8			local_ca_ack_delay;
331	int			sig_prot_cap;
332	int			sig_guard_cap;
333	struct ib_odp_caps	odp_caps;
334	uint64_t		timestamp_mask;
335	uint64_t		hca_core_clock; /* in KHZ */
336	struct ib_rss_caps	rss_caps;
337	u32			max_wq_type_rq;
338};
339
340enum ib_mtu {
341	IB_MTU_256  = 1,
342	IB_MTU_512  = 2,
343	IB_MTU_1024 = 3,
344	IB_MTU_2048 = 4,
345	IB_MTU_4096 = 5
346};
347
348static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
349{
350	switch (mtu) {
351	case IB_MTU_256:  return  256;
352	case IB_MTU_512:  return  512;
353	case IB_MTU_1024: return 1024;
354	case IB_MTU_2048: return 2048;
355	case IB_MTU_4096: return 4096;
356	default: 	  return -1;
357	}
358}
359
360enum ib_port_state {
361	IB_PORT_NOP		= 0,
362	IB_PORT_DOWN		= 1,
363	IB_PORT_INIT		= 2,
364	IB_PORT_ARMED		= 3,
365	IB_PORT_ACTIVE		= 4,
366	IB_PORT_ACTIVE_DEFER	= 5,
367	IB_PORT_DUMMY		= -1,	/* force enum signed */
368};
369
370enum ib_port_cap_flags {
371	IB_PORT_SM				= 1 <<  1,
372	IB_PORT_NOTICE_SUP			= 1 <<  2,
373	IB_PORT_TRAP_SUP			= 1 <<  3,
374	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
375	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
376	IB_PORT_SL_MAP_SUP			= 1 <<  6,
377	IB_PORT_MKEY_NVRAM			= 1 <<  7,
378	IB_PORT_PKEY_NVRAM			= 1 <<  8,
379	IB_PORT_LED_INFO_SUP			= 1 <<  9,
380	IB_PORT_SM_DISABLED			= 1 << 10,
381	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
382	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
383	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
384	IB_PORT_CM_SUP				= 1 << 16,
385	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
386	IB_PORT_REINIT_SUP			= 1 << 18,
387	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
388	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
389	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
390	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
391	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
392	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
393	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
394	IB_PORT_IP_BASED_GIDS			= 1 << 26,
395};
396
397enum ib_port_width {
398	IB_WIDTH_1X	= 1,
399	IB_WIDTH_4X	= 2,
400	IB_WIDTH_8X	= 4,
401	IB_WIDTH_12X	= 8
402};
403
404static inline int ib_width_enum_to_int(enum ib_port_width width)
405{
406	switch (width) {
407	case IB_WIDTH_1X:  return  1;
408	case IB_WIDTH_4X:  return  4;
409	case IB_WIDTH_8X:  return  8;
410	case IB_WIDTH_12X: return 12;
411	default: 	  return -1;
412	}
413}
414
415enum ib_port_speed {
416	IB_SPEED_SDR	= 1,
417	IB_SPEED_DDR	= 2,
418	IB_SPEED_QDR	= 4,
419	IB_SPEED_FDR10	= 8,
420	IB_SPEED_FDR	= 16,
421	IB_SPEED_EDR	= 32
422};
423
424/**
425 * struct rdma_hw_stats
426 * @timestamp - Used by the core code to track when the last update was
427 * @lifespan - Used by the core code to determine how old the counters
428 *   should be before being updated again.  Stored in jiffies, defaults
429 *   to 10 milliseconds, drivers can override the default be specifying
430 *   their own value during their allocation routine.
431 * @name - Array of pointers to static names used for the counters in
432 *   directory.
433 * @num_counters - How many hardware counters there are.  If name is
434 *   shorter than this number, a kernel oops will result.  Driver authors
435 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
436 *   in their code to prevent this.
437 * @value - Array of u64 counters that are accessed by the sysfs code and
438 *   filled in by the drivers get_stats routine
439 */
440struct rdma_hw_stats {
441	unsigned long	timestamp;
442	unsigned long	lifespan;
443	const char * const *names;
444	int		num_counters;
445	u64		value[];
446};
447
448#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
449/**
450 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
451 *   for drivers.
452 * @names - Array of static const char *
453 * @num_counters - How many elements in array
454 * @lifespan - How many milliseconds between updates
455 */
456static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
457		const char * const *names, int num_counters,
458		unsigned long lifespan)
459{
460	struct rdma_hw_stats *stats;
461
462	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
463			GFP_KERNEL);
464	if (!stats)
465		return NULL;
466	stats->names = names;
467	stats->num_counters = num_counters;
468	stats->lifespan = msecs_to_jiffies(lifespan);
469
470	return stats;
471}
472
473
474/* Define bits for the various functionality this port needs to be supported by
475 * the core.
476 */
477/* Management                           0x00000FFF */
478#define RDMA_CORE_CAP_IB_MAD            0x00000001
479#define RDMA_CORE_CAP_IB_SMI            0x00000002
480#define RDMA_CORE_CAP_IB_CM             0x00000004
481#define RDMA_CORE_CAP_IW_CM             0x00000008
482#define RDMA_CORE_CAP_IB_SA             0x00000010
483#define RDMA_CORE_CAP_OPA_MAD           0x00000020
484
485/* Address format                       0x000FF000 */
486#define RDMA_CORE_CAP_AF_IB             0x00001000
487#define RDMA_CORE_CAP_ETH_AH            0x00002000
488
489/* Protocol                             0xFFF00000 */
490#define RDMA_CORE_CAP_PROT_IB           0x00100000
491#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
492#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
493#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
494
495#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
496					| RDMA_CORE_CAP_IB_MAD \
497					| RDMA_CORE_CAP_IB_SMI \
498					| RDMA_CORE_CAP_IB_CM  \
499					| RDMA_CORE_CAP_IB_SA  \
500					| RDMA_CORE_CAP_AF_IB)
501#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
502					| RDMA_CORE_CAP_IB_MAD  \
503					| RDMA_CORE_CAP_IB_CM   \
504					| RDMA_CORE_CAP_AF_IB   \
505					| RDMA_CORE_CAP_ETH_AH)
506#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
507					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
508					| RDMA_CORE_CAP_IB_MAD  \
509					| RDMA_CORE_CAP_IB_CM   \
510					| RDMA_CORE_CAP_AF_IB   \
511					| RDMA_CORE_CAP_ETH_AH)
512#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
513					| RDMA_CORE_CAP_IW_CM)
514#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
515					| RDMA_CORE_CAP_OPA_MAD)
516
517struct ib_port_attr {
518	u64			subnet_prefix;
519	enum ib_port_state	state;
520	enum ib_mtu		max_mtu;
521	enum ib_mtu		active_mtu;
522	int			gid_tbl_len;
523	u32			port_cap_flags;
524	u32			max_msg_sz;
525	u32			bad_pkey_cntr;
526	u32			qkey_viol_cntr;
527	u16			pkey_tbl_len;
528	u16			lid;
529	u16			sm_lid;
530	u8			lmc;
531	u8			max_vl_num;
532	u8			sm_sl;
533	u8			subnet_timeout;
534	u8			init_type_reply;
535	u8			active_width;
536	u8			active_speed;
537	u8                      phys_state;
538	bool			grh_required;
539};
540
541enum ib_device_modify_flags {
542	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
543	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
544};
545
546#define IB_DEVICE_NODE_DESC_MAX 64
547
548struct ib_device_modify {
549	u64	sys_image_guid;
550	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
551};
552
553enum ib_port_modify_flags {
554	IB_PORT_SHUTDOWN		= 1,
555	IB_PORT_INIT_TYPE		= (1<<2),
556	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
557};
558
559struct ib_port_modify {
560	u32	set_port_cap_mask;
561	u32	clr_port_cap_mask;
562	u8	init_type;
563};
564
565enum ib_event_type {
566	IB_EVENT_CQ_ERR,
567	IB_EVENT_QP_FATAL,
568	IB_EVENT_QP_REQ_ERR,
569	IB_EVENT_QP_ACCESS_ERR,
570	IB_EVENT_COMM_EST,
571	IB_EVENT_SQ_DRAINED,
572	IB_EVENT_PATH_MIG,
573	IB_EVENT_PATH_MIG_ERR,
574	IB_EVENT_DEVICE_FATAL,
575	IB_EVENT_PORT_ACTIVE,
576	IB_EVENT_PORT_ERR,
577	IB_EVENT_LID_CHANGE,
578	IB_EVENT_PKEY_CHANGE,
579	IB_EVENT_SM_CHANGE,
580	IB_EVENT_SRQ_ERR,
581	IB_EVENT_SRQ_LIMIT_REACHED,
582	IB_EVENT_QP_LAST_WQE_REACHED,
583	IB_EVENT_CLIENT_REREGISTER,
584	IB_EVENT_GID_CHANGE,
585	IB_EVENT_WQ_FATAL,
586};
587
588const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
589
590struct ib_event {
591	struct ib_device	*device;
592	union {
593		struct ib_cq	*cq;
594		struct ib_qp	*qp;
595		struct ib_srq	*srq;
596		struct ib_wq	*wq;
597		u8		port_num;
598	} element;
599	enum ib_event_type	event;
600};
601
602struct ib_event_handler {
603	struct ib_device *device;
604	void            (*handler)(struct ib_event_handler *, struct ib_event *);
605	struct list_head  list;
606};
607
608#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
609	do {							\
610		(_ptr)->device  = _device;			\
611		(_ptr)->handler = _handler;			\
612		INIT_LIST_HEAD(&(_ptr)->list);			\
613	} while (0)
614
615struct ib_global_route {
616	union ib_gid	dgid;
617	u32		flow_label;
618	u8		sgid_index;
619	u8		hop_limit;
620	u8		traffic_class;
621};
622
623struct ib_grh {
624	__be32		version_tclass_flow;
625	__be16		paylen;
626	u8		next_hdr;
627	u8		hop_limit;
628	union ib_gid	sgid;
629	union ib_gid	dgid;
630};
631
632union rdma_network_hdr {
633	struct ib_grh ibgrh;
634	struct {
635		/* The IB spec states that if it's IPv4, the header
636		 * is located in the last 20 bytes of the header.
637		 */
638		u8		reserved[20];
639		struct ip	roce4grh;
640	};
641};
642
643enum {
644	IB_MULTICAST_QPN = 0xffffff
645};
646
647#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
648#define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
649
650enum ib_ah_flags {
651	IB_AH_GRH	= 1
652};
653
654enum ib_rate {
655	IB_RATE_PORT_CURRENT = 0,
656	IB_RATE_2_5_GBPS = 2,
657	IB_RATE_5_GBPS   = 5,
658	IB_RATE_10_GBPS  = 3,
659	IB_RATE_20_GBPS  = 6,
660	IB_RATE_30_GBPS  = 4,
661	IB_RATE_40_GBPS  = 7,
662	IB_RATE_60_GBPS  = 8,
663	IB_RATE_80_GBPS  = 9,
664	IB_RATE_120_GBPS = 10,
665	IB_RATE_14_GBPS  = 11,
666	IB_RATE_56_GBPS  = 12,
667	IB_RATE_112_GBPS = 13,
668	IB_RATE_168_GBPS = 14,
669	IB_RATE_25_GBPS  = 15,
670	IB_RATE_100_GBPS = 16,
671	IB_RATE_200_GBPS = 17,
672	IB_RATE_300_GBPS = 18
673};
674
675/**
676 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
677 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
678 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
679 * @rate: rate to convert.
680 */
681__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
682
683/**
684 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
685 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
686 * @rate: rate to convert.
687 */
688__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
689
690
691/**
692 * enum ib_mr_type - memory region type
693 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
694 *                            normal registration
695 * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
696 *                            signature operations (data-integrity
697 *                            capable regions)
698 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
699 *                            register any arbitrary sg lists (without
700 *                            the normal mr constraints - see
701 *                            ib_map_mr_sg)
702 */
703enum ib_mr_type {
704	IB_MR_TYPE_MEM_REG,
705	IB_MR_TYPE_SIGNATURE,
706	IB_MR_TYPE_SG_GAPS,
707};
708
709/**
710 * Signature types
711 * IB_SIG_TYPE_NONE: Unprotected.
712 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
713 */
714enum ib_signature_type {
715	IB_SIG_TYPE_NONE,
716	IB_SIG_TYPE_T10_DIF,
717};
718
719/**
720 * Signature T10-DIF block-guard types
721 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
722 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
723 */
724enum ib_t10_dif_bg_type {
725	IB_T10DIF_CRC,
726	IB_T10DIF_CSUM
727};
728
729/**
730 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
731 *     domain.
732 * @bg_type: T10-DIF block guard type (CRC|CSUM)
733 * @pi_interval: protection information interval.
734 * @bg: seed of guard computation.
735 * @app_tag: application tag of guard block
736 * @ref_tag: initial guard block reference tag.
737 * @ref_remap: Indicate wethear the reftag increments each block
738 * @app_escape: Indicate to skip block check if apptag=0xffff
739 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
740 * @apptag_check_mask: check bitmask of application tag.
741 */
742struct ib_t10_dif_domain {
743	enum ib_t10_dif_bg_type bg_type;
744	u16			pi_interval;
745	u16			bg;
746	u16			app_tag;
747	u32			ref_tag;
748	bool			ref_remap;
749	bool			app_escape;
750	bool			ref_escape;
751	u16			apptag_check_mask;
752};
753
754/**
755 * struct ib_sig_domain - Parameters for signature domain
756 * @sig_type: specific signauture type
757 * @sig: union of all signature domain attributes that may
758 *     be used to set domain layout.
759 */
760struct ib_sig_domain {
761	enum ib_signature_type sig_type;
762	union {
763		struct ib_t10_dif_domain dif;
764	} sig;
765};
766
767/**
768 * struct ib_sig_attrs - Parameters for signature handover operation
769 * @check_mask: bitmask for signature byte check (8 bytes)
770 * @mem: memory domain layout desciptor.
771 * @wire: wire domain layout desciptor.
772 */
773struct ib_sig_attrs {
774	u8			check_mask;
775	struct ib_sig_domain	mem;
776	struct ib_sig_domain	wire;
777};
778
779enum ib_sig_err_type {
780	IB_SIG_BAD_GUARD,
781	IB_SIG_BAD_REFTAG,
782	IB_SIG_BAD_APPTAG,
783};
784
785/**
786 * struct ib_sig_err - signature error descriptor
787 */
788struct ib_sig_err {
789	enum ib_sig_err_type	err_type;
790	u32			expected;
791	u32			actual;
792	u64			sig_err_offset;
793	u32			key;
794};
795
796enum ib_mr_status_check {
797	IB_MR_CHECK_SIG_STATUS = 1,
798};
799
800/**
801 * struct ib_mr_status - Memory region status container
802 *
803 * @fail_status: Bitmask of MR checks status. For each
804 *     failed check a corresponding status bit is set.
805 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
806 *     failure.
807 */
808struct ib_mr_status {
809	u32		    fail_status;
810	struct ib_sig_err   sig_err;
811};
812
813/**
814 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
815 * enum.
816 * @mult: multiple to convert.
817 */
818__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
819
820struct ib_ah_attr {
821	struct ib_global_route	grh;
822	u16			dlid;
823	u8			sl;
824	u8			src_path_bits;
825	u8			static_rate;
826	u8			ah_flags;
827	u8			port_num;
828	u8			dmac[ETH_ALEN];
829};
830
831enum ib_wc_status {
832	IB_WC_SUCCESS,
833	IB_WC_LOC_LEN_ERR,
834	IB_WC_LOC_QP_OP_ERR,
835	IB_WC_LOC_EEC_OP_ERR,
836	IB_WC_LOC_PROT_ERR,
837	IB_WC_WR_FLUSH_ERR,
838	IB_WC_MW_BIND_ERR,
839	IB_WC_BAD_RESP_ERR,
840	IB_WC_LOC_ACCESS_ERR,
841	IB_WC_REM_INV_REQ_ERR,
842	IB_WC_REM_ACCESS_ERR,
843	IB_WC_REM_OP_ERR,
844	IB_WC_RETRY_EXC_ERR,
845	IB_WC_RNR_RETRY_EXC_ERR,
846	IB_WC_LOC_RDD_VIOL_ERR,
847	IB_WC_REM_INV_RD_REQ_ERR,
848	IB_WC_REM_ABORT_ERR,
849	IB_WC_INV_EECN_ERR,
850	IB_WC_INV_EEC_STATE_ERR,
851	IB_WC_FATAL_ERR,
852	IB_WC_RESP_TIMEOUT_ERR,
853	IB_WC_GENERAL_ERR
854};
855
856const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
857
858enum ib_wc_opcode {
859	IB_WC_SEND,
860	IB_WC_RDMA_WRITE,
861	IB_WC_RDMA_READ,
862	IB_WC_COMP_SWAP,
863	IB_WC_FETCH_ADD,
864	IB_WC_LSO,
865	IB_WC_LOCAL_INV,
866	IB_WC_REG_MR,
867	IB_WC_MASKED_COMP_SWAP,
868	IB_WC_MASKED_FETCH_ADD,
869/*
870 * Set value of IB_WC_RECV so consumers can test if a completion is a
871 * receive by testing (opcode & IB_WC_RECV).
872 */
873	IB_WC_RECV			= 1 << 7,
874	IB_WC_RECV_RDMA_WITH_IMM,
875	IB_WC_DUMMY = -1,	/* force enum signed */
876};
877
878enum ib_wc_flags {
879	IB_WC_GRH		= 1,
880	IB_WC_WITH_IMM		= (1<<1),
881	IB_WC_WITH_INVALIDATE	= (1<<2),
882	IB_WC_IP_CSUM_OK	= (1<<3),
883	IB_WC_WITH_SMAC		= (1<<4),
884	IB_WC_WITH_VLAN		= (1<<5),
885	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
886};
887
888struct ib_wc {
889	union {
890		u64		wr_id;
891		struct ib_cqe	*wr_cqe;
892	};
893	enum ib_wc_status	status;
894	enum ib_wc_opcode	opcode;
895	u32			vendor_err;
896	u32			byte_len;
897	struct ib_qp	       *qp;
898	union {
899		__be32		imm_data;
900		u32		invalidate_rkey;
901	} ex;
902	u32			src_qp;
903	int			wc_flags;
904	u16			pkey_index;
905	u16			slid;
906	u8			sl;
907	u8			dlid_path_bits;
908	u8			port_num;	/* valid only for DR SMPs on switches */
909	u8			smac[ETH_ALEN];
910	u16			vlan_id;
911	u8			network_hdr_type;
912};
913
914enum ib_cq_notify_flags {
915	IB_CQ_SOLICITED			= 1 << 0,
916	IB_CQ_NEXT_COMP			= 1 << 1,
917	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
918	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
919};
920
921enum ib_srq_type {
922	IB_SRQT_BASIC,
923	IB_SRQT_XRC
924};
925
926enum ib_srq_attr_mask {
927	IB_SRQ_MAX_WR	= 1 << 0,
928	IB_SRQ_LIMIT	= 1 << 1,
929};
930
931struct ib_srq_attr {
932	u32	max_wr;
933	u32	max_sge;
934	u32	srq_limit;
935};
936
937struct ib_srq_init_attr {
938	void		      (*event_handler)(struct ib_event *, void *);
939	void		       *srq_context;
940	struct ib_srq_attr	attr;
941	enum ib_srq_type	srq_type;
942
943	union {
944		struct {
945			struct ib_xrcd *xrcd;
946			struct ib_cq   *cq;
947		} xrc;
948	} ext;
949};
950
951struct ib_qp_cap {
952	u32	max_send_wr;
953	u32	max_recv_wr;
954	u32	max_send_sge;
955	u32	max_recv_sge;
956	u32	max_inline_data;
957
958	/*
959	 * Maximum number of rdma_rw_ctx structures in flight at a time.
960	 * ib_create_qp() will calculate the right amount of neededed WRs
961	 * and MRs based on this.
962	 */
963	u32	max_rdma_ctxs;
964};
965
966enum ib_sig_type {
967	IB_SIGNAL_ALL_WR,
968	IB_SIGNAL_REQ_WR
969};
970
971enum ib_qp_type {
972	/*
973	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
974	 * here (and in that order) since the MAD layer uses them as
975	 * indices into a 2-entry table.
976	 */
977	IB_QPT_SMI,
978	IB_QPT_GSI,
979
980	IB_QPT_RC,
981	IB_QPT_UC,
982	IB_QPT_UD,
983	IB_QPT_RAW_IPV6,
984	IB_QPT_RAW_ETHERTYPE,
985	IB_QPT_RAW_PACKET = 8,
986	IB_QPT_XRC_INI = 9,
987	IB_QPT_XRC_TGT,
988	IB_QPT_MAX,
989	/* Reserve a range for qp types internal to the low level driver.
990	 * These qp types will not be visible at the IB core layer, so the
991	 * IB_QPT_MAX usages should not be affected in the core layer
992	 */
993	IB_QPT_RESERVED1 = 0x1000,
994	IB_QPT_RESERVED2,
995	IB_QPT_RESERVED3,
996	IB_QPT_RESERVED4,
997	IB_QPT_RESERVED5,
998	IB_QPT_RESERVED6,
999	IB_QPT_RESERVED7,
1000	IB_QPT_RESERVED8,
1001	IB_QPT_RESERVED9,
1002	IB_QPT_RESERVED10,
1003};
1004
1005enum ib_qp_create_flags {
1006	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1007	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1008	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1009	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1010	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1011	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1012	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1013	IB_QP_CREATE_USE_GFP_NOIO		= 1 << 7,
1014	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1015	/* reserve bits 26-31 for low level drivers' internal use */
1016	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1017	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1018};
1019
1020/*
1021 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1022 * callback to destroy the passed in QP.
1023 */
1024
1025struct ib_qp_init_attr {
1026	void                  (*event_handler)(struct ib_event *, void *);
1027	void		       *qp_context;
1028	struct ib_cq	       *send_cq;
1029	struct ib_cq	       *recv_cq;
1030	struct ib_srq	       *srq;
1031	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1032	struct ib_qp_cap	cap;
1033	enum ib_sig_type	sq_sig_type;
1034	enum ib_qp_type		qp_type;
1035	enum ib_qp_create_flags	create_flags;
1036
1037	/*
1038	 * Only needed for special QP types, or when using the RW API.
1039	 */
1040	u8			port_num;
1041	struct ib_rwq_ind_table *rwq_ind_tbl;
1042};
1043
1044struct ib_qp_open_attr {
1045	void                  (*event_handler)(struct ib_event *, void *);
1046	void		       *qp_context;
1047	u32			qp_num;
1048	enum ib_qp_type		qp_type;
1049};
1050
1051enum ib_rnr_timeout {
1052	IB_RNR_TIMER_655_36 =  0,
1053	IB_RNR_TIMER_000_01 =  1,
1054	IB_RNR_TIMER_000_02 =  2,
1055	IB_RNR_TIMER_000_03 =  3,
1056	IB_RNR_TIMER_000_04 =  4,
1057	IB_RNR_TIMER_000_06 =  5,
1058	IB_RNR_TIMER_000_08 =  6,
1059	IB_RNR_TIMER_000_12 =  7,
1060	IB_RNR_TIMER_000_16 =  8,
1061	IB_RNR_TIMER_000_24 =  9,
1062	IB_RNR_TIMER_000_32 = 10,
1063	IB_RNR_TIMER_000_48 = 11,
1064	IB_RNR_TIMER_000_64 = 12,
1065	IB_RNR_TIMER_000_96 = 13,
1066	IB_RNR_TIMER_001_28 = 14,
1067	IB_RNR_TIMER_001_92 = 15,
1068	IB_RNR_TIMER_002_56 = 16,
1069	IB_RNR_TIMER_003_84 = 17,
1070	IB_RNR_TIMER_005_12 = 18,
1071	IB_RNR_TIMER_007_68 = 19,
1072	IB_RNR_TIMER_010_24 = 20,
1073	IB_RNR_TIMER_015_36 = 21,
1074	IB_RNR_TIMER_020_48 = 22,
1075	IB_RNR_TIMER_030_72 = 23,
1076	IB_RNR_TIMER_040_96 = 24,
1077	IB_RNR_TIMER_061_44 = 25,
1078	IB_RNR_TIMER_081_92 = 26,
1079	IB_RNR_TIMER_122_88 = 27,
1080	IB_RNR_TIMER_163_84 = 28,
1081	IB_RNR_TIMER_245_76 = 29,
1082	IB_RNR_TIMER_327_68 = 30,
1083	IB_RNR_TIMER_491_52 = 31
1084};
1085
1086enum ib_qp_attr_mask {
1087	IB_QP_STATE			= 1,
1088	IB_QP_CUR_STATE			= (1<<1),
1089	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1090	IB_QP_ACCESS_FLAGS		= (1<<3),
1091	IB_QP_PKEY_INDEX		= (1<<4),
1092	IB_QP_PORT			= (1<<5),
1093	IB_QP_QKEY			= (1<<6),
1094	IB_QP_AV			= (1<<7),
1095	IB_QP_PATH_MTU			= (1<<8),
1096	IB_QP_TIMEOUT			= (1<<9),
1097	IB_QP_RETRY_CNT			= (1<<10),
1098	IB_QP_RNR_RETRY			= (1<<11),
1099	IB_QP_RQ_PSN			= (1<<12),
1100	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1101	IB_QP_ALT_PATH			= (1<<14),
1102	IB_QP_MIN_RNR_TIMER		= (1<<15),
1103	IB_QP_SQ_PSN			= (1<<16),
1104	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1105	IB_QP_PATH_MIG_STATE		= (1<<18),
1106	IB_QP_CAP			= (1<<19),
1107	IB_QP_DEST_QPN			= (1<<20),
1108	IB_QP_RESERVED1			= (1<<21),
1109	IB_QP_RESERVED2			= (1<<22),
1110	IB_QP_RESERVED3			= (1<<23),
1111	IB_QP_RESERVED4			= (1<<24),
1112};
1113
1114enum ib_qp_state {
1115	IB_QPS_RESET,
1116	IB_QPS_INIT,
1117	IB_QPS_RTR,
1118	IB_QPS_RTS,
1119	IB_QPS_SQD,
1120	IB_QPS_SQE,
1121	IB_QPS_ERR,
1122	IB_QPS_DUMMY = -1,	/* force enum signed */
1123};
1124
1125enum ib_mig_state {
1126	IB_MIG_MIGRATED,
1127	IB_MIG_REARM,
1128	IB_MIG_ARMED
1129};
1130
1131enum ib_mw_type {
1132	IB_MW_TYPE_1 = 1,
1133	IB_MW_TYPE_2 = 2
1134};
1135
1136struct ib_qp_attr {
1137	enum ib_qp_state	qp_state;
1138	enum ib_qp_state	cur_qp_state;
1139	enum ib_mtu		path_mtu;
1140	enum ib_mig_state	path_mig_state;
1141	u32			qkey;
1142	u32			rq_psn;
1143	u32			sq_psn;
1144	u32			dest_qp_num;
1145	int			qp_access_flags;
1146	struct ib_qp_cap	cap;
1147	struct ib_ah_attr	ah_attr;
1148	struct ib_ah_attr	alt_ah_attr;
1149	u16			pkey_index;
1150	u16			alt_pkey_index;
1151	u8			en_sqd_async_notify;
1152	u8			sq_draining;
1153	u8			max_rd_atomic;
1154	u8			max_dest_rd_atomic;
1155	u8			min_rnr_timer;
1156	u8			port_num;
1157	u8			timeout;
1158	u8			retry_cnt;
1159	u8			rnr_retry;
1160	u8			alt_port_num;
1161	u8			alt_timeout;
1162};
1163
1164enum ib_wr_opcode {
1165	IB_WR_RDMA_WRITE,
1166	IB_WR_RDMA_WRITE_WITH_IMM,
1167	IB_WR_SEND,
1168	IB_WR_SEND_WITH_IMM,
1169	IB_WR_RDMA_READ,
1170	IB_WR_ATOMIC_CMP_AND_SWP,
1171	IB_WR_ATOMIC_FETCH_AND_ADD,
1172	IB_WR_LSO,
1173	IB_WR_SEND_WITH_INV,
1174	IB_WR_RDMA_READ_WITH_INV,
1175	IB_WR_LOCAL_INV,
1176	IB_WR_REG_MR,
1177	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1178	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1179	IB_WR_REG_SIG_MR,
1180	/* reserve values for low level drivers' internal use.
1181	 * These values will not be used at all in the ib core layer.
1182	 */
1183	IB_WR_RESERVED1 = 0xf0,
1184	IB_WR_RESERVED2,
1185	IB_WR_RESERVED3,
1186	IB_WR_RESERVED4,
1187	IB_WR_RESERVED5,
1188	IB_WR_RESERVED6,
1189	IB_WR_RESERVED7,
1190	IB_WR_RESERVED8,
1191	IB_WR_RESERVED9,
1192	IB_WR_RESERVED10,
1193	IB_WR_DUMMY = -1,	/* force enum signed */
1194};
1195
1196enum ib_send_flags {
1197	IB_SEND_FENCE		= 1,
1198	IB_SEND_SIGNALED	= (1<<1),
1199	IB_SEND_SOLICITED	= (1<<2),
1200	IB_SEND_INLINE		= (1<<3),
1201	IB_SEND_IP_CSUM		= (1<<4),
1202
1203	/* reserve bits 26-31 for low level drivers' internal use */
1204	IB_SEND_RESERVED_START	= (1 << 26),
1205	IB_SEND_RESERVED_END	= (1 << 31),
1206};
1207
1208struct ib_sge {
1209	u64	addr;
1210	u32	length;
1211	u32	lkey;
1212};
1213
1214struct ib_cqe {
1215	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1216};
1217
1218struct ib_send_wr {
1219	struct ib_send_wr      *next;
1220	union {
1221		u64		wr_id;
1222		struct ib_cqe	*wr_cqe;
1223	};
1224	struct ib_sge	       *sg_list;
1225	int			num_sge;
1226	enum ib_wr_opcode	opcode;
1227	int			send_flags;
1228	union {
1229		__be32		imm_data;
1230		u32		invalidate_rkey;
1231	} ex;
1232};
1233
1234struct ib_rdma_wr {
1235	struct ib_send_wr	wr;
1236	u64			remote_addr;
1237	u32			rkey;
1238};
1239
1240static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1241{
1242	return container_of(wr, struct ib_rdma_wr, wr);
1243}
1244
1245struct ib_atomic_wr {
1246	struct ib_send_wr	wr;
1247	u64			remote_addr;
1248	u64			compare_add;
1249	u64			swap;
1250	u64			compare_add_mask;
1251	u64			swap_mask;
1252	u32			rkey;
1253};
1254
1255static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1256{
1257	return container_of(wr, struct ib_atomic_wr, wr);
1258}
1259
1260struct ib_ud_wr {
1261	struct ib_send_wr	wr;
1262	struct ib_ah		*ah;
1263	void			*header;
1264	int			hlen;
1265	int			mss;
1266	u32			remote_qpn;
1267	u32			remote_qkey;
1268	u16			pkey_index; /* valid for GSI only */
1269	u8			port_num;   /* valid for DR SMPs on switch only */
1270};
1271
1272static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1273{
1274	return container_of(wr, struct ib_ud_wr, wr);
1275}
1276
1277struct ib_reg_wr {
1278	struct ib_send_wr	wr;
1279	struct ib_mr		*mr;
1280	u32			key;
1281	int			access;
1282};
1283
1284static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1285{
1286	return container_of(wr, struct ib_reg_wr, wr);
1287}
1288
1289struct ib_sig_handover_wr {
1290	struct ib_send_wr	wr;
1291	struct ib_sig_attrs    *sig_attrs;
1292	struct ib_mr	       *sig_mr;
1293	int			access_flags;
1294	struct ib_sge	       *prot;
1295};
1296
1297static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1298{
1299	return container_of(wr, struct ib_sig_handover_wr, wr);
1300}
1301
1302struct ib_recv_wr {
1303	struct ib_recv_wr      *next;
1304	union {
1305		u64		wr_id;
1306		struct ib_cqe	*wr_cqe;
1307	};
1308	struct ib_sge	       *sg_list;
1309	int			num_sge;
1310};
1311
1312enum ib_access_flags {
1313	IB_ACCESS_LOCAL_WRITE	= 1,
1314	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1315	IB_ACCESS_REMOTE_READ	= (1<<2),
1316	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1317	IB_ACCESS_MW_BIND	= (1<<4),
1318	IB_ZERO_BASED		= (1<<5),
1319	IB_ACCESS_ON_DEMAND     = (1<<6),
1320};
1321
1322struct ib_phys_buf {
1323	u64	addr;
1324	u64	size;
1325};
1326
1327/*
1328 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1329 * are hidden here instead of a uapi header!
1330 */
1331enum ib_mr_rereg_flags {
1332	IB_MR_REREG_TRANS	= 1,
1333	IB_MR_REREG_PD		= (1<<1),
1334	IB_MR_REREG_ACCESS	= (1<<2),
1335	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1336};
1337
1338struct ib_fmr_attr {
1339	int	max_pages;
1340	int	max_maps;
1341	u8	page_shift;
1342};
1343
1344struct ib_umem;
1345
1346struct ib_ucontext {
1347	struct ib_device       *device;
1348	struct list_head	pd_list;
1349	struct list_head	mr_list;
1350	struct list_head	mw_list;
1351	struct list_head	cq_list;
1352	struct list_head	qp_list;
1353	struct list_head	srq_list;
1354	struct list_head	ah_list;
1355	struct list_head	xrcd_list;
1356	struct list_head	rule_list;
1357	struct list_head	wq_list;
1358	struct list_head	rwq_ind_tbl_list;
1359	int			closing;
1360
1361	pid_t			tgid;
1362#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1363	struct rb_root      umem_tree;
1364	/*
1365	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1366	 * mmu notifiers registration.
1367	 */
1368	struct rw_semaphore	umem_rwsem;
1369	void (*invalidate_range)(struct ib_umem *umem,
1370				 unsigned long start, unsigned long end);
1371
1372	struct mmu_notifier	mn;
1373	atomic_t		notifier_count;
1374	/* A list of umems that don't have private mmu notifier counters yet. */
1375	struct list_head	no_private_counters;
1376	int                     odp_mrs_count;
1377#endif
1378};
1379
1380struct ib_uobject {
1381	u64			user_handle;	/* handle given to us by userspace */
1382	struct ib_ucontext     *context;	/* associated user context */
1383	void		       *object;		/* containing object */
1384	struct list_head	list;		/* link to context's list */
1385	int			id;		/* index into kernel idr */
1386	struct kref		ref;
1387	struct rw_semaphore	mutex;		/* protects .live */
1388	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1389	int			live;
1390};
1391
1392struct ib_udata {
1393	const void __user *inbuf;
1394	void __user *outbuf;
1395	size_t       inlen;
1396	size_t       outlen;
1397};
1398
1399struct ib_pd {
1400	u32			local_dma_lkey;
1401	u32			flags;
1402	struct ib_device       *device;
1403	struct ib_uobject      *uobject;
1404	atomic_t          	usecnt; /* count all resources */
1405
1406	u32			unsafe_global_rkey;
1407
1408	/*
1409	 * Implementation details of the RDMA core, don't use in drivers:
1410	 */
1411	struct ib_mr	       *__internal_mr;
1412};
1413
1414struct ib_xrcd {
1415	struct ib_device       *device;
1416	atomic_t		usecnt; /* count all exposed resources */
1417	struct inode	       *inode;
1418
1419	struct mutex		tgt_qp_mutex;
1420	struct list_head	tgt_qp_list;
1421};
1422
1423struct ib_ah {
1424	struct ib_device	*device;
1425	struct ib_pd		*pd;
1426	struct ib_uobject	*uobject;
1427};
1428
1429typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1430
1431enum ib_poll_context {
1432	IB_POLL_DIRECT,		/* caller context, no hw completions */
1433	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1434	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1435};
1436
1437struct ib_cq {
1438	struct ib_device       *device;
1439	struct ib_uobject      *uobject;
1440	ib_comp_handler   	comp_handler;
1441	void                  (*event_handler)(struct ib_event *, void *);
1442	void                   *cq_context;
1443	int               	cqe;
1444	atomic_t          	usecnt; /* count number of work queues */
1445	enum ib_poll_context	poll_ctx;
1446	struct work_struct	work;
1447};
1448
1449struct ib_srq {
1450	struct ib_device       *device;
1451	struct ib_pd	       *pd;
1452	struct ib_uobject      *uobject;
1453	void		      (*event_handler)(struct ib_event *, void *);
1454	void		       *srq_context;
1455	enum ib_srq_type	srq_type;
1456	atomic_t		usecnt;
1457
1458	union {
1459		struct {
1460			struct ib_xrcd *xrcd;
1461			struct ib_cq   *cq;
1462			u32		srq_num;
1463		} xrc;
1464	} ext;
1465};
1466
1467enum ib_wq_type {
1468	IB_WQT_RQ
1469};
1470
1471enum ib_wq_state {
1472	IB_WQS_RESET,
1473	IB_WQS_RDY,
1474	IB_WQS_ERR
1475};
1476
1477struct ib_wq {
1478	struct ib_device       *device;
1479	struct ib_uobject      *uobject;
1480	void		    *wq_context;
1481	void		    (*event_handler)(struct ib_event *, void *);
1482	struct ib_pd	       *pd;
1483	struct ib_cq	       *cq;
1484	u32		wq_num;
1485	enum ib_wq_state       state;
1486	enum ib_wq_type	wq_type;
1487	atomic_t		usecnt;
1488};
1489
1490struct ib_wq_init_attr {
1491	void		       *wq_context;
1492	enum ib_wq_type	wq_type;
1493	u32		max_wr;
1494	u32		max_sge;
1495	struct	ib_cq	       *cq;
1496	void		    (*event_handler)(struct ib_event *, void *);
1497};
1498
1499enum ib_wq_attr_mask {
1500	IB_WQ_STATE	= 1 << 0,
1501	IB_WQ_CUR_STATE	= 1 << 1,
1502};
1503
1504struct ib_wq_attr {
1505	enum	ib_wq_state	wq_state;
1506	enum	ib_wq_state	curr_wq_state;
1507};
1508
1509struct ib_rwq_ind_table {
1510	struct ib_device	*device;
1511	struct ib_uobject      *uobject;
1512	atomic_t		usecnt;
1513	u32		ind_tbl_num;
1514	u32		log_ind_tbl_size;
1515	struct ib_wq	**ind_tbl;
1516};
1517
1518struct ib_rwq_ind_table_init_attr {
1519	u32		log_ind_tbl_size;
1520	/* Each entry is a pointer to Receive Work Queue */
1521	struct ib_wq	**ind_tbl;
1522};
1523
1524/*
1525 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1526 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1527 */
1528struct ib_qp {
1529	struct ib_device       *device;
1530	struct ib_pd	       *pd;
1531	struct ib_cq	       *send_cq;
1532	struct ib_cq	       *recv_cq;
1533	spinlock_t		mr_lock;
1534	struct ib_srq	       *srq;
1535	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1536	struct list_head	xrcd_list;
1537
1538	/* count times opened, mcast attaches, flow attaches */
1539	atomic_t		usecnt;
1540	struct list_head	open_list;
1541	struct ib_qp           *real_qp;
1542	struct ib_uobject      *uobject;
1543	void                  (*event_handler)(struct ib_event *, void *);
1544	void		       *qp_context;
1545	u32			qp_num;
1546	u32			max_write_sge;
1547	u32			max_read_sge;
1548	enum ib_qp_type		qp_type;
1549	struct ib_rwq_ind_table *rwq_ind_tbl;
1550};
1551
1552struct ib_mr {
1553	struct ib_device  *device;
1554	struct ib_pd	  *pd;
1555	u32		   lkey;
1556	u32		   rkey;
1557	u64		   iova;
1558	u32		   length;
1559	unsigned int	   page_size;
1560	bool		   need_inval;
1561	union {
1562		struct ib_uobject	*uobject;	/* user */
1563		struct list_head	qp_entry;	/* FR */
1564	};
1565};
1566
1567struct ib_mw {
1568	struct ib_device	*device;
1569	struct ib_pd		*pd;
1570	struct ib_uobject	*uobject;
1571	u32			rkey;
1572	enum ib_mw_type         type;
1573};
1574
1575struct ib_fmr {
1576	struct ib_device	*device;
1577	struct ib_pd		*pd;
1578	struct list_head	list;
1579	u32			lkey;
1580	u32			rkey;
1581};
1582
1583/* Supported steering options */
1584enum ib_flow_attr_type {
1585	/* steering according to rule specifications */
1586	IB_FLOW_ATTR_NORMAL		= 0x0,
1587	/* default unicast and multicast rule -
1588	 * receive all Eth traffic which isn't steered to any QP
1589	 */
1590	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1591	/* default multicast rule -
1592	 * receive all Eth multicast traffic which isn't steered to any QP
1593	 */
1594	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1595	/* sniffer rule - receive all port traffic */
1596	IB_FLOW_ATTR_SNIFFER		= 0x3
1597};
1598
1599/* Supported steering header types */
1600enum ib_flow_spec_type {
1601	/* L2 headers*/
1602	IB_FLOW_SPEC_ETH	= 0x20,
1603	IB_FLOW_SPEC_IB		= 0x22,
1604	/* L3 header*/
1605	IB_FLOW_SPEC_IPV4	= 0x30,
1606	IB_FLOW_SPEC_IPV6	= 0x31,
1607	/* L4 headers*/
1608	IB_FLOW_SPEC_TCP	= 0x40,
1609	IB_FLOW_SPEC_UDP	= 0x41
1610};
1611#define IB_FLOW_SPEC_LAYER_MASK	0xF0
1612#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1613
1614/* Flow steering rule priority is set according to it's domain.
1615 * Lower domain value means higher priority.
1616 */
1617enum ib_flow_domain {
1618	IB_FLOW_DOMAIN_USER,
1619	IB_FLOW_DOMAIN_ETHTOOL,
1620	IB_FLOW_DOMAIN_RFS,
1621	IB_FLOW_DOMAIN_NIC,
1622	IB_FLOW_DOMAIN_NUM /* Must be last */
1623};
1624
1625enum ib_flow_flags {
1626	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1627	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 2  /* Must be last */
1628};
1629
1630struct ib_flow_eth_filter {
1631	u8	dst_mac[6];
1632	u8	src_mac[6];
1633	__be16	ether_type;
1634	__be16	vlan_tag;
1635	/* Must be last */
1636	u8	real_sz[0];
1637};
1638
1639struct ib_flow_spec_eth {
1640	enum ib_flow_spec_type	  type;
1641	u16			  size;
1642	struct ib_flow_eth_filter val;
1643	struct ib_flow_eth_filter mask;
1644};
1645
1646struct ib_flow_ib_filter {
1647	__be16 dlid;
1648	__u8   sl;
1649	/* Must be last */
1650	u8	real_sz[0];
1651};
1652
1653struct ib_flow_spec_ib {
1654	enum ib_flow_spec_type	 type;
1655	u16			 size;
1656	struct ib_flow_ib_filter val;
1657	struct ib_flow_ib_filter mask;
1658};
1659
1660/* IPv4 header flags */
1661enum ib_ipv4_flags {
1662	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1663	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1664				    last have this flag set */
1665};
1666
1667struct ib_flow_ipv4_filter {
1668	__be32	src_ip;
1669	__be32	dst_ip;
1670	u8	proto;
1671	u8	tos;
1672	u8	ttl;
1673	u8	flags;
1674	/* Must be last */
1675	u8	real_sz[0];
1676};
1677
1678struct ib_flow_spec_ipv4 {
1679	enum ib_flow_spec_type	   type;
1680	u16			   size;
1681	struct ib_flow_ipv4_filter val;
1682	struct ib_flow_ipv4_filter mask;
1683};
1684
1685struct ib_flow_ipv6_filter {
1686	u8	src_ip[16];
1687	u8	dst_ip[16];
1688	__be32	flow_label;
1689	u8	next_hdr;
1690	u8	traffic_class;
1691	u8	hop_limit;
1692	/* Must be last */
1693	u8	real_sz[0];
1694};
1695
1696struct ib_flow_spec_ipv6 {
1697	enum ib_flow_spec_type	   type;
1698	u16			   size;
1699	struct ib_flow_ipv6_filter val;
1700	struct ib_flow_ipv6_filter mask;
1701};
1702
1703struct ib_flow_tcp_udp_filter {
1704	__be16	dst_port;
1705	__be16	src_port;
1706	/* Must be last */
1707	u8	real_sz[0];
1708};
1709
1710struct ib_flow_spec_tcp_udp {
1711	enum ib_flow_spec_type	      type;
1712	u16			      size;
1713	struct ib_flow_tcp_udp_filter val;
1714	struct ib_flow_tcp_udp_filter mask;
1715};
1716
1717union ib_flow_spec {
1718	struct {
1719		enum ib_flow_spec_type	type;
1720		u16			size;
1721	};
1722	struct ib_flow_spec_eth		eth;
1723	struct ib_flow_spec_ib		ib;
1724	struct ib_flow_spec_ipv4        ipv4;
1725	struct ib_flow_spec_tcp_udp	tcp_udp;
1726	struct ib_flow_spec_ipv6        ipv6;
1727};
1728
1729struct ib_flow_attr {
1730	enum ib_flow_attr_type type;
1731	u16	     size;
1732	u16	     priority;
1733	u32	     flags;
1734	u8	     num_of_specs;
1735	u8	     port;
1736	/* Following are the optional layers according to user request
1737	 * struct ib_flow_spec_xxx
1738	 * struct ib_flow_spec_yyy
1739	 */
1740};
1741
1742struct ib_flow {
1743	struct ib_qp		*qp;
1744	struct ib_uobject	*uobject;
1745};
1746
1747struct ib_mad_hdr;
1748struct ib_grh;
1749
1750enum ib_process_mad_flags {
1751	IB_MAD_IGNORE_MKEY	= 1,
1752	IB_MAD_IGNORE_BKEY	= 2,
1753	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1754};
1755
1756enum ib_mad_result {
1757	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1758	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1759	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1760	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1761};
1762
1763#define IB_DEVICE_NAME_MAX 64
1764
1765struct ib_cache {
1766	rwlock_t                lock;
1767	struct ib_event_handler event_handler;
1768	struct ib_pkey_cache  **pkey_cache;
1769	struct ib_gid_table   **gid_cache;
1770	u8                     *lmc_cache;
1771};
1772
1773struct ib_dma_mapping_ops {
1774	int		(*mapping_error)(struct ib_device *dev,
1775					 u64 dma_addr);
1776	u64		(*map_single)(struct ib_device *dev,
1777				      void *ptr, size_t size,
1778				      enum dma_data_direction direction);
1779	void		(*unmap_single)(struct ib_device *dev,
1780					u64 addr, size_t size,
1781					enum dma_data_direction direction);
1782	u64		(*map_page)(struct ib_device *dev,
1783				    struct page *page, unsigned long offset,
1784				    size_t size,
1785				    enum dma_data_direction direction);
1786	void		(*unmap_page)(struct ib_device *dev,
1787				      u64 addr, size_t size,
1788				      enum dma_data_direction direction);
1789	int		(*map_sg)(struct ib_device *dev,
1790				  struct scatterlist *sg, int nents,
1791				  enum dma_data_direction direction);
1792	void		(*unmap_sg)(struct ib_device *dev,
1793				    struct scatterlist *sg, int nents,
1794				    enum dma_data_direction direction);
1795	int		(*map_sg_attrs)(struct ib_device *dev,
1796					struct scatterlist *sg, int nents,
1797					enum dma_data_direction direction,
1798					struct dma_attrs *attrs);
1799	void		(*unmap_sg_attrs)(struct ib_device *dev,
1800					  struct scatterlist *sg, int nents,
1801					  enum dma_data_direction direction,
1802					  struct dma_attrs *attrs);
1803	void		(*sync_single_for_cpu)(struct ib_device *dev,
1804					       u64 dma_handle,
1805					       size_t size,
1806					       enum dma_data_direction dir);
1807	void		(*sync_single_for_device)(struct ib_device *dev,
1808						  u64 dma_handle,
1809						  size_t size,
1810						  enum dma_data_direction dir);
1811	void		*(*alloc_coherent)(struct ib_device *dev,
1812					   size_t size,
1813					   u64 *dma_handle,
1814					   gfp_t flag);
1815	void		(*free_coherent)(struct ib_device *dev,
1816					 size_t size, void *cpu_addr,
1817					 u64 dma_handle);
1818};
1819
1820struct iw_cm_verbs;
1821
1822struct ib_port_immutable {
1823	int                           pkey_tbl_len;
1824	int                           gid_tbl_len;
1825	u32                           core_cap_flags;
1826	u32                           max_mad_size;
1827};
1828
1829struct ib_device {
1830	struct device                *dma_device;
1831
1832	char                          name[IB_DEVICE_NAME_MAX];
1833
1834	struct list_head              event_handler_list;
1835	spinlock_t                    event_handler_lock;
1836
1837	spinlock_t                    client_data_lock;
1838	struct list_head              core_list;
1839	/* Access to the client_data_list is protected by the client_data_lock
1840	 * spinlock and the lists_rwsem read-write semaphore */
1841	struct list_head              client_data_list;
1842
1843	struct ib_cache               cache;
1844	/**
1845	 * port_immutable is indexed by port number
1846	 */
1847	struct ib_port_immutable     *port_immutable;
1848
1849	int			      num_comp_vectors;
1850
1851	struct iw_cm_verbs	     *iwcm;
1852
1853	/**
1854	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1855	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
1856	 *   core when the device is removed.  A lifespan of -1 in the return
1857	 *   struct tells the core to set a default lifespan.
1858	 */
1859	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
1860						     u8 port_num);
1861	/**
1862	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1863	 * @index - The index in the value array we wish to have updated, or
1864	 *   num_counters if we want all stats updated
1865	 * Return codes -
1866	 *   < 0 - Error, no counters updated
1867	 *   index - Updated the single counter pointed to by index
1868	 *   num_counters - Updated all counters (will reset the timestamp
1869	 *     and prevent further calls for lifespan milliseconds)
1870	 * Drivers are allowed to update all counters in leiu of just the
1871	 *   one given in index at their option
1872	 */
1873	int		           (*get_hw_stats)(struct ib_device *device,
1874						   struct rdma_hw_stats *stats,
1875						   u8 port, int index);
1876	int		           (*query_device)(struct ib_device *device,
1877						   struct ib_device_attr *device_attr,
1878						   struct ib_udata *udata);
1879	int		           (*query_port)(struct ib_device *device,
1880						 u8 port_num,
1881						 struct ib_port_attr *port_attr);
1882	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1883						     u8 port_num);
1884	/* When calling get_netdev, the HW vendor's driver should return the
1885	 * net device of device @device at port @port_num or NULL if such
1886	 * a net device doesn't exist. The vendor driver should call dev_hold
1887	 * on this net device. The HW vendor's device driver must guarantee
1888	 * that this function returns NULL before the net device reaches
1889	 * NETDEV_UNREGISTER_FINAL state.
1890	 */
1891	struct net_device	  *(*get_netdev)(struct ib_device *device,
1892						 u8 port_num);
1893	int		           (*query_gid)(struct ib_device *device,
1894						u8 port_num, int index,
1895						union ib_gid *gid);
1896	/* When calling add_gid, the HW vendor's driver should
1897	 * add the gid of device @device at gid index @index of
1898	 * port @port_num to be @gid. Meta-info of that gid (for example,
1899	 * the network device related to this gid is available
1900	 * at @attr. @context allows the HW vendor driver to store extra
1901	 * information together with a GID entry. The HW vendor may allocate
1902	 * memory to contain this information and store it in @context when a
1903	 * new GID entry is written to. Params are consistent until the next
1904	 * call of add_gid or delete_gid. The function should return 0 on
1905	 * success or error otherwise. The function could be called
1906	 * concurrently for different ports. This function is only called
1907	 * when roce_gid_table is used.
1908	 */
1909	int		           (*add_gid)(struct ib_device *device,
1910					      u8 port_num,
1911					      unsigned int index,
1912					      const union ib_gid *gid,
1913					      const struct ib_gid_attr *attr,
1914					      void **context);
1915	/* When calling del_gid, the HW vendor's driver should delete the
1916	 * gid of device @device at gid index @index of port @port_num.
1917	 * Upon the deletion of a GID entry, the HW vendor must free any
1918	 * allocated memory. The caller will clear @context afterwards.
1919	 * This function is only called when roce_gid_table is used.
1920	 */
1921	int		           (*del_gid)(struct ib_device *device,
1922					      u8 port_num,
1923					      unsigned int index,
1924					      void **context);
1925	int		           (*query_pkey)(struct ib_device *device,
1926						 u8 port_num, u16 index, u16 *pkey);
1927	int		           (*modify_device)(struct ib_device *device,
1928						    int device_modify_mask,
1929						    struct ib_device_modify *device_modify);
1930	int		           (*modify_port)(struct ib_device *device,
1931						  u8 port_num, int port_modify_mask,
1932						  struct ib_port_modify *port_modify);
1933	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1934						     struct ib_udata *udata);
1935	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1936	int                        (*mmap)(struct ib_ucontext *context,
1937					   struct vm_area_struct *vma);
1938	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1939					       struct ib_ucontext *context,
1940					       struct ib_udata *udata);
1941	int                        (*dealloc_pd)(struct ib_pd *pd);
1942	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1943						struct ib_ah_attr *ah_attr,
1944						struct ib_udata *udata);
1945	int                        (*modify_ah)(struct ib_ah *ah,
1946						struct ib_ah_attr *ah_attr);
1947	int                        (*query_ah)(struct ib_ah *ah,
1948					       struct ib_ah_attr *ah_attr);
1949	int                        (*destroy_ah)(struct ib_ah *ah);
1950	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1951						 struct ib_srq_init_attr *srq_init_attr,
1952						 struct ib_udata *udata);
1953	int                        (*modify_srq)(struct ib_srq *srq,
1954						 struct ib_srq_attr *srq_attr,
1955						 enum ib_srq_attr_mask srq_attr_mask,
1956						 struct ib_udata *udata);
1957	int                        (*query_srq)(struct ib_srq *srq,
1958						struct ib_srq_attr *srq_attr);
1959	int                        (*destroy_srq)(struct ib_srq *srq);
1960	int                        (*post_srq_recv)(struct ib_srq *srq,
1961						    struct ib_recv_wr *recv_wr,
1962						    struct ib_recv_wr **bad_recv_wr);
1963	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1964						struct ib_qp_init_attr *qp_init_attr,
1965						struct ib_udata *udata);
1966	int                        (*modify_qp)(struct ib_qp *qp,
1967						struct ib_qp_attr *qp_attr,
1968						int qp_attr_mask,
1969						struct ib_udata *udata);
1970	int                        (*query_qp)(struct ib_qp *qp,
1971					       struct ib_qp_attr *qp_attr,
1972					       int qp_attr_mask,
1973					       struct ib_qp_init_attr *qp_init_attr);
1974	int                        (*destroy_qp)(struct ib_qp *qp);
1975	int                        (*post_send)(struct ib_qp *qp,
1976						struct ib_send_wr *send_wr,
1977						struct ib_send_wr **bad_send_wr);
1978	int                        (*post_recv)(struct ib_qp *qp,
1979						struct ib_recv_wr *recv_wr,
1980						struct ib_recv_wr **bad_recv_wr);
1981	struct ib_cq *             (*create_cq)(struct ib_device *device,
1982						const struct ib_cq_init_attr *attr,
1983						struct ib_ucontext *context,
1984						struct ib_udata *udata);
1985	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1986						u16 cq_period);
1987	int                        (*destroy_cq)(struct ib_cq *cq);
1988	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1989						struct ib_udata *udata);
1990	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1991					      struct ib_wc *wc);
1992	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1993	int                        (*req_notify_cq)(struct ib_cq *cq,
1994						    enum ib_cq_notify_flags flags);
1995	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1996						      int wc_cnt);
1997	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1998						 int mr_access_flags);
1999	struct ib_mr *		   (*reg_phys_mr)(struct ib_pd *pd,
2000						  struct ib_phys_buf *phys_buf_array,
2001						  int num_phys_buf,
2002						  int mr_access_flags,
2003						  u64 *iova_start);
2004	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2005						  u64 start, u64 length,
2006						  u64 virt_addr,
2007						  int mr_access_flags,
2008						  struct ib_udata *udata);
2009	int			   (*rereg_user_mr)(struct ib_mr *mr,
2010						    int flags,
2011						    u64 start, u64 length,
2012						    u64 virt_addr,
2013						    int mr_access_flags,
2014						    struct ib_pd *pd,
2015						    struct ib_udata *udata);
2016	int                        (*dereg_mr)(struct ib_mr *mr);
2017	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
2018					       enum ib_mr_type mr_type,
2019					       u32 max_num_sg);
2020	int                        (*map_mr_sg)(struct ib_mr *mr,
2021						struct scatterlist *sg,
2022						int sg_nents,
2023						unsigned int *sg_offset);
2024	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2025					       enum ib_mw_type type,
2026					       struct ib_udata *udata);
2027	int                        (*dealloc_mw)(struct ib_mw *mw);
2028	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2029						int mr_access_flags,
2030						struct ib_fmr_attr *fmr_attr);
2031	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2032						   u64 *page_list, int list_len,
2033						   u64 iova);
2034	int		           (*unmap_fmr)(struct list_head *fmr_list);
2035	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2036	int                        (*attach_mcast)(struct ib_qp *qp,
2037						   union ib_gid *gid,
2038						   u16 lid);
2039	int                        (*detach_mcast)(struct ib_qp *qp,
2040						   union ib_gid *gid,
2041						   u16 lid);
2042	int                        (*process_mad)(struct ib_device *device,
2043						  int process_mad_flags,
2044						  u8 port_num,
2045						  const struct ib_wc *in_wc,
2046						  const struct ib_grh *in_grh,
2047						  const struct ib_mad_hdr *in_mad,
2048						  size_t in_mad_size,
2049						  struct ib_mad_hdr *out_mad,
2050						  size_t *out_mad_size,
2051						  u16 *out_mad_pkey_index);
2052	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2053						 struct ib_ucontext *ucontext,
2054						 struct ib_udata *udata);
2055	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2056	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2057						  struct ib_flow_attr
2058						  *flow_attr,
2059						  int domain);
2060	int			   (*destroy_flow)(struct ib_flow *flow_id);
2061	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2062						      struct ib_mr_status *mr_status);
2063	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2064	void			   (*drain_rq)(struct ib_qp *qp);
2065	void			   (*drain_sq)(struct ib_qp *qp);
2066	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2067							int state);
2068	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2069						   struct ifla_vf_info *ivf);
2070	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2071						   struct ifla_vf_stats *stats);
2072	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2073						  int type);
2074	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2075						struct ib_wq_init_attr *init_attr,
2076						struct ib_udata *udata);
2077	int			   (*destroy_wq)(struct ib_wq *wq);
2078	int			   (*modify_wq)(struct ib_wq *wq,
2079						struct ib_wq_attr *attr,
2080						u32 wq_attr_mask,
2081						struct ib_udata *udata);
2082	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2083							   struct ib_rwq_ind_table_init_attr *init_attr,
2084							   struct ib_udata *udata);
2085	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2086	struct ib_dma_mapping_ops   *dma_ops;
2087
2088	struct module               *owner;
2089	struct device                dev;
2090	struct kobject               *ports_parent;
2091	struct list_head             port_list;
2092
2093	enum {
2094		IB_DEV_UNINITIALIZED,
2095		IB_DEV_REGISTERED,
2096		IB_DEV_UNREGISTERED
2097	}                            reg_state;
2098
2099	int			     uverbs_abi_ver;
2100	u64			     uverbs_cmd_mask;
2101	u64			     uverbs_ex_cmd_mask;
2102
2103	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2104	__be64			     node_guid;
2105	u32			     local_dma_lkey;
2106	u16                          is_switch:1;
2107	u8                           node_type;
2108	u8                           phys_port_cnt;
2109	struct ib_device_attr        attrs;
2110	struct attribute_group	     *hw_stats_ag;
2111	struct rdma_hw_stats         *hw_stats;
2112
2113	/**
2114	 * The following mandatory functions are used only at device
2115	 * registration.  Keep functions such as these at the end of this
2116	 * structure to avoid cache line misses when accessing struct ib_device
2117	 * in fast paths.
2118	 */
2119	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2120	void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2121};
2122
2123struct ib_client {
2124	char  *name;
2125	void (*add)   (struct ib_device *);
2126	void (*remove)(struct ib_device *, void *client_data);
2127
2128	/* Returns the net_dev belonging to this ib_client and matching the
2129	 * given parameters.
2130	 * @dev:	 An RDMA device that the net_dev use for communication.
2131	 * @port:	 A physical port number on the RDMA device.
2132	 * @pkey:	 P_Key that the net_dev uses if applicable.
2133	 * @gid:	 A GID that the net_dev uses to communicate.
2134	 * @addr:	 An IP address the net_dev is configured with.
2135	 * @client_data: The device's client data set by ib_set_client_data().
2136	 *
2137	 * An ib_client that implements a net_dev on top of RDMA devices
2138	 * (such as IP over IB) should implement this callback, allowing the
2139	 * rdma_cm module to find the right net_dev for a given request.
2140	 *
2141	 * The caller is responsible for calling dev_put on the returned
2142	 * netdev. */
2143	struct net_device *(*get_net_dev_by_params)(
2144			struct ib_device *dev,
2145			u8 port,
2146			u16 pkey,
2147			const union ib_gid *gid,
2148			const struct sockaddr *addr,
2149			void *client_data);
2150	struct list_head list;
2151};
2152
2153struct ib_device *ib_alloc_device(size_t size);
2154void ib_dealloc_device(struct ib_device *device);
2155
2156void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2157
2158int ib_register_device(struct ib_device *device,
2159		       int (*port_callback)(struct ib_device *,
2160					    u8, struct kobject *));
2161void ib_unregister_device(struct ib_device *device);
2162
2163int ib_register_client   (struct ib_client *client);
2164void ib_unregister_client(struct ib_client *client);
2165
2166void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2167void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2168			 void *data);
2169
2170static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2171{
2172	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2173}
2174
2175static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2176{
2177	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2178}
2179
2180static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2181				       size_t offset,
2182				       size_t len)
2183{
2184	const void __user *p = (const char __user *)udata->inbuf + offset;
2185	bool ret;
2186	u8 *buf;
2187
2188	if (len > USHRT_MAX)
2189		return false;
2190
2191	buf = memdup_user(p, len);
2192	if (IS_ERR(buf))
2193		return false;
2194
2195	ret = !memchr_inv(buf, 0, len);
2196	kfree(buf);
2197	return ret;
2198}
2199
2200/**
2201 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2202 * contains all required attributes and no attributes not allowed for
2203 * the given QP state transition.
2204 * @cur_state: Current QP state
2205 * @next_state: Next QP state
2206 * @type: QP type
2207 * @mask: Mask of supplied QP attributes
2208 * @ll : link layer of port
2209 *
2210 * This function is a helper function that a low-level driver's
2211 * modify_qp method can use to validate the consumer's input.  It
2212 * checks that cur_state and next_state are valid QP states, that a
2213 * transition from cur_state to next_state is allowed by the IB spec,
2214 * and that the attribute mask supplied is allowed for the transition.
2215 */
2216int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2217		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
2218		       enum rdma_link_layer ll);
2219
2220int ib_register_event_handler  (struct ib_event_handler *event_handler);
2221int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2222void ib_dispatch_event(struct ib_event *event);
2223
2224int ib_query_port(struct ib_device *device,
2225		  u8 port_num, struct ib_port_attr *port_attr);
2226
2227enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2228					       u8 port_num);
2229
2230/**
2231 * rdma_cap_ib_switch - Check if the device is IB switch
2232 * @device: Device to check
2233 *
2234 * Device driver is responsible for setting is_switch bit on
2235 * in ib_device structure at init time.
2236 *
2237 * Return: true if the device is IB switch.
2238 */
2239static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2240{
2241	return device->is_switch;
2242}
2243
2244/**
2245 * rdma_start_port - Return the first valid port number for the device
2246 * specified
2247 *
2248 * @device: Device to be checked
2249 *
2250 * Return start port number
2251 */
2252static inline u8 rdma_start_port(const struct ib_device *device)
2253{
2254	return rdma_cap_ib_switch(device) ? 0 : 1;
2255}
2256
2257/**
2258 * rdma_end_port - Return the last valid port number for the device
2259 * specified
2260 *
2261 * @device: Device to be checked
2262 *
2263 * Return last port number
2264 */
2265static inline u8 rdma_end_port(const struct ib_device *device)
2266{
2267	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2268}
2269
2270static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2271{
2272	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2273}
2274
2275static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2276{
2277	return device->port_immutable[port_num].core_cap_flags &
2278		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2279}
2280
2281static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2282{
2283	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2284}
2285
2286static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2287{
2288	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2289}
2290
2291static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2292{
2293	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2294}
2295
2296static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2297{
2298	return rdma_protocol_ib(device, port_num) ||
2299		rdma_protocol_roce(device, port_num);
2300}
2301
2302/**
2303 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2304 * Management Datagrams.
2305 * @device: Device to check
2306 * @port_num: Port number to check
2307 *
2308 * Management Datagrams (MAD) are a required part of the InfiniBand
2309 * specification and are supported on all InfiniBand devices.  A slightly
2310 * extended version are also supported on OPA interfaces.
2311 *
2312 * Return: true if the port supports sending/receiving of MAD packets.
2313 */
2314static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2315{
2316	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2317}
2318
2319/**
2320 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2321 * Management Datagrams.
2322 * @device: Device to check
2323 * @port_num: Port number to check
2324 *
2325 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2326 * datagrams with their own versions.  These OPA MADs share many but not all of
2327 * the characteristics of InfiniBand MADs.
2328 *
2329 * OPA MADs differ in the following ways:
2330 *
2331 *    1) MADs are variable size up to 2K
2332 *       IBTA defined MADs remain fixed at 256 bytes
2333 *    2) OPA SMPs must carry valid PKeys
2334 *    3) OPA SMP packets are a different format
2335 *
2336 * Return: true if the port supports OPA MAD packet formats.
2337 */
2338static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2339{
2340	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2341		== RDMA_CORE_CAP_OPA_MAD;
2342}
2343
2344/**
2345 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2346 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2347 * @device: Device to check
2348 * @port_num: Port number to check
2349 *
2350 * Each InfiniBand node is required to provide a Subnet Management Agent
2351 * that the subnet manager can access.  Prior to the fabric being fully
2352 * configured by the subnet manager, the SMA is accessed via a well known
2353 * interface called the Subnet Management Interface (SMI).  This interface
2354 * uses directed route packets to communicate with the SM to get around the
2355 * chicken and egg problem of the SM needing to know what's on the fabric
2356 * in order to configure the fabric, and needing to configure the fabric in
2357 * order to send packets to the devices on the fabric.  These directed
2358 * route packets do not need the fabric fully configured in order to reach
2359 * their destination.  The SMI is the only method allowed to send
2360 * directed route packets on an InfiniBand fabric.
2361 *
2362 * Return: true if the port provides an SMI.
2363 */
2364static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2365{
2366	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2367}
2368
2369/**
2370 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2371 * Communication Manager.
2372 * @device: Device to check
2373 * @port_num: Port number to check
2374 *
2375 * The InfiniBand Communication Manager is one of many pre-defined General
2376 * Service Agents (GSA) that are accessed via the General Service
2377 * Interface (GSI).  It's role is to facilitate establishment of connections
2378 * between nodes as well as other management related tasks for established
2379 * connections.
2380 *
2381 * Return: true if the port supports an IB CM (this does not guarantee that
2382 * a CM is actually running however).
2383 */
2384static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2385{
2386	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2387}
2388
2389/**
2390 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2391 * Communication Manager.
2392 * @device: Device to check
2393 * @port_num: Port number to check
2394 *
2395 * Similar to above, but specific to iWARP connections which have a different
2396 * managment protocol than InfiniBand.
2397 *
2398 * Return: true if the port supports an iWARP CM (this does not guarantee that
2399 * a CM is actually running however).
2400 */
2401static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2402{
2403	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2404}
2405
2406/**
2407 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2408 * Subnet Administration.
2409 * @device: Device to check
2410 * @port_num: Port number to check
2411 *
2412 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2413 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2414 * fabrics, devices should resolve routes to other hosts by contacting the
2415 * SA to query the proper route.
2416 *
2417 * Return: true if the port should act as a client to the fabric Subnet
2418 * Administration interface.  This does not imply that the SA service is
2419 * running locally.
2420 */
2421static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2422{
2423	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2424}
2425
2426/**
2427 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2428 * Multicast.
2429 * @device: Device to check
2430 * @port_num: Port number to check
2431 *
2432 * InfiniBand multicast registration is more complex than normal IPv4 or
2433 * IPv6 multicast registration.  Each Host Channel Adapter must register
2434 * with the Subnet Manager when it wishes to join a multicast group.  It
2435 * should do so only once regardless of how many queue pairs it subscribes
2436 * to this group.  And it should leave the group only after all queue pairs
2437 * attached to the group have been detached.
2438 *
2439 * Return: true if the port must undertake the additional adminstrative
2440 * overhead of registering/unregistering with the SM and tracking of the
2441 * total number of queue pairs attached to the multicast group.
2442 */
2443static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2444{
2445	return rdma_cap_ib_sa(device, port_num);
2446}
2447
2448/**
2449 * rdma_cap_af_ib - Check if the port of device has the capability
2450 * Native Infiniband Address.
2451 * @device: Device to check
2452 * @port_num: Port number to check
2453 *
2454 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2455 * GID.  RoCE uses a different mechanism, but still generates a GID via
2456 * a prescribed mechanism and port specific data.
2457 *
2458 * Return: true if the port uses a GID address to identify devices on the
2459 * network.
2460 */
2461static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2462{
2463	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2464}
2465
2466/**
2467 * rdma_cap_eth_ah - Check if the port of device has the capability
2468 * Ethernet Address Handle.
2469 * @device: Device to check
2470 * @port_num: Port number to check
2471 *
2472 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2473 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2474 * port.  Normally, packet headers are generated by the sending host
2475 * adapter, but when sending connectionless datagrams, we must manually
2476 * inject the proper headers for the fabric we are communicating over.
2477 *
2478 * Return: true if we are running as a RoCE port and must force the
2479 * addition of a Global Route Header built from our Ethernet Address
2480 * Handle into our header list for connectionless packets.
2481 */
2482static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2483{
2484	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2485}
2486
2487/**
2488 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2489 *
2490 * @device: Device
2491 * @port_num: Port number
2492 *
2493 * This MAD size includes the MAD headers and MAD payload.  No other headers
2494 * are included.
2495 *
2496 * Return the max MAD size required by the Port.  Will return 0 if the port
2497 * does not support MADs
2498 */
2499static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2500{
2501	return device->port_immutable[port_num].max_mad_size;
2502}
2503
2504/**
2505 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2506 * @device: Device to check
2507 * @port_num: Port number to check
2508 *
2509 * RoCE GID table mechanism manages the various GIDs for a device.
2510 *
2511 * NOTE: if allocating the port's GID table has failed, this call will still
2512 * return true, but any RoCE GID table API will fail.
2513 *
2514 * Return: true if the port uses RoCE GID table mechanism in order to manage
2515 * its GIDs.
2516 */
2517static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2518					   u8 port_num)
2519{
2520	return rdma_protocol_roce(device, port_num) &&
2521		device->add_gid && device->del_gid;
2522}
2523
2524/*
2525 * Check if the device supports READ W/ INVALIDATE.
2526 */
2527static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2528{
2529	/*
2530	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
2531	 * has support for it yet.
2532	 */
2533	return rdma_protocol_iwarp(dev, port_num);
2534}
2535
2536int ib_query_gid(struct ib_device *device,
2537		 u8 port_num, int index, union ib_gid *gid,
2538		 struct ib_gid_attr *attr);
2539
2540int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2541			 int state);
2542int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2543		     struct ifla_vf_info *info);
2544int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2545		    struct ifla_vf_stats *stats);
2546int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2547		   int type);
2548
2549int ib_query_pkey(struct ib_device *device,
2550		  u8 port_num, u16 index, u16 *pkey);
2551
2552int ib_modify_device(struct ib_device *device,
2553		     int device_modify_mask,
2554		     struct ib_device_modify *device_modify);
2555
2556int ib_modify_port(struct ib_device *device,
2557		   u8 port_num, int port_modify_mask,
2558		   struct ib_port_modify *port_modify);
2559
2560int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2561		enum ib_gid_type gid_type, struct net_device *ndev,
2562		u8 *port_num, u16 *index);
2563
2564int ib_find_pkey(struct ib_device *device,
2565		 u8 port_num, u16 pkey, u16 *index);
2566
2567enum ib_pd_flags {
2568	/*
2569	 * Create a memory registration for all memory in the system and place
2570	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
2571	 * ULPs to avoid the overhead of dynamic MRs.
2572	 *
2573	 * This flag is generally considered unsafe and must only be used in
2574	 * extremly trusted environments.  Every use of it will log a warning
2575	 * in the kernel log.
2576	 */
2577	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
2578};
2579
2580struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2581		const char *caller);
2582#define ib_alloc_pd(device, flags) \
2583	__ib_alloc_pd((device), (flags), __func__)
2584void ib_dealloc_pd(struct ib_pd *pd);
2585
2586/**
2587 * ib_create_ah - Creates an address handle for the given address vector.
2588 * @pd: The protection domain associated with the address handle.
2589 * @ah_attr: The attributes of the address vector.
2590 *
2591 * The address handle is used to reference a local or global destination
2592 * in all UD QP post sends.
2593 */
2594struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2595
2596/**
2597 * ib_init_ah_from_wc - Initializes address handle attributes from a
2598 *   work completion.
2599 * @device: Device on which the received message arrived.
2600 * @port_num: Port on which the received message arrived.
2601 * @wc: Work completion associated with the received message.
2602 * @grh: References the received global route header.  This parameter is
2603 *   ignored unless the work completion indicates that the GRH is valid.
2604 * @ah_attr: Returned attributes that can be used when creating an address
2605 *   handle for replying to the message.
2606 */
2607int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2608		       const struct ib_wc *wc, const struct ib_grh *grh,
2609		       struct ib_ah_attr *ah_attr);
2610
2611/**
2612 * ib_create_ah_from_wc - Creates an address handle associated with the
2613 *   sender of the specified work completion.
2614 * @pd: The protection domain associated with the address handle.
2615 * @wc: Work completion information associated with a received message.
2616 * @grh: References the received global route header.  This parameter is
2617 *   ignored unless the work completion indicates that the GRH is valid.
2618 * @port_num: The outbound port number to associate with the address.
2619 *
2620 * The address handle is used to reference a local or global destination
2621 * in all UD QP post sends.
2622 */
2623struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2624				   const struct ib_grh *grh, u8 port_num);
2625
2626/**
2627 * ib_modify_ah - Modifies the address vector associated with an address
2628 *   handle.
2629 * @ah: The address handle to modify.
2630 * @ah_attr: The new address vector attributes to associate with the
2631 *   address handle.
2632 */
2633int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2634
2635/**
2636 * ib_query_ah - Queries the address vector associated with an address
2637 *   handle.
2638 * @ah: The address handle to query.
2639 * @ah_attr: The address vector attributes associated with the address
2640 *   handle.
2641 */
2642int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2643
2644/**
2645 * ib_destroy_ah - Destroys an address handle.
2646 * @ah: The address handle to destroy.
2647 */
2648int ib_destroy_ah(struct ib_ah *ah);
2649
2650/**
2651 * ib_create_srq - Creates a SRQ associated with the specified protection
2652 *   domain.
2653 * @pd: The protection domain associated with the SRQ.
2654 * @srq_init_attr: A list of initial attributes required to create the
2655 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
2656 *   the actual capabilities of the created SRQ.
2657 *
2658 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2659 * requested size of the SRQ, and set to the actual values allocated
2660 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
2661 * will always be at least as large as the requested values.
2662 */
2663struct ib_srq *ib_create_srq(struct ib_pd *pd,
2664			     struct ib_srq_init_attr *srq_init_attr);
2665
2666/**
2667 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2668 * @srq: The SRQ to modify.
2669 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
2670 *   the current values of selected SRQ attributes are returned.
2671 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2672 *   are being modified.
2673 *
2674 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2675 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2676 * the number of receives queued drops below the limit.
2677 */
2678int ib_modify_srq(struct ib_srq *srq,
2679		  struct ib_srq_attr *srq_attr,
2680		  enum ib_srq_attr_mask srq_attr_mask);
2681
2682/**
2683 * ib_query_srq - Returns the attribute list and current values for the
2684 *   specified SRQ.
2685 * @srq: The SRQ to query.
2686 * @srq_attr: The attributes of the specified SRQ.
2687 */
2688int ib_query_srq(struct ib_srq *srq,
2689		 struct ib_srq_attr *srq_attr);
2690
2691/**
2692 * ib_destroy_srq - Destroys the specified SRQ.
2693 * @srq: The SRQ to destroy.
2694 */
2695int ib_destroy_srq(struct ib_srq *srq);
2696
2697/**
2698 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2699 * @srq: The SRQ to post the work request on.
2700 * @recv_wr: A list of work requests to post on the receive queue.
2701 * @bad_recv_wr: On an immediate failure, this parameter will reference
2702 *   the work request that failed to be posted on the QP.
2703 */
2704static inline int ib_post_srq_recv(struct ib_srq *srq,
2705				   struct ib_recv_wr *recv_wr,
2706				   struct ib_recv_wr **bad_recv_wr)
2707{
2708	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2709}
2710
2711/**
2712 * ib_create_qp - Creates a QP associated with the specified protection
2713 *   domain.
2714 * @pd: The protection domain associated with the QP.
2715 * @qp_init_attr: A list of initial attributes required to create the
2716 *   QP.  If QP creation succeeds, then the attributes are updated to
2717 *   the actual capabilities of the created QP.
2718 */
2719struct ib_qp *ib_create_qp(struct ib_pd *pd,
2720			   struct ib_qp_init_attr *qp_init_attr);
2721
2722/**
2723 * ib_modify_qp - Modifies the attributes for the specified QP and then
2724 *   transitions the QP to the given state.
2725 * @qp: The QP to modify.
2726 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
2727 *   the current values of selected QP attributes are returned.
2728 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2729 *   are being modified.
2730 */
2731int ib_modify_qp(struct ib_qp *qp,
2732		 struct ib_qp_attr *qp_attr,
2733		 int qp_attr_mask);
2734
2735/**
2736 * ib_query_qp - Returns the attribute list and current values for the
2737 *   specified QP.
2738 * @qp: The QP to query.
2739 * @qp_attr: The attributes of the specified QP.
2740 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2741 * @qp_init_attr: Additional attributes of the selected QP.
2742 *
2743 * The qp_attr_mask may be used to limit the query to gathering only the
2744 * selected attributes.
2745 */
2746int ib_query_qp(struct ib_qp *qp,
2747		struct ib_qp_attr *qp_attr,
2748		int qp_attr_mask,
2749		struct ib_qp_init_attr *qp_init_attr);
2750
2751/**
2752 * ib_destroy_qp - Destroys the specified QP.
2753 * @qp: The QP to destroy.
2754 */
2755int ib_destroy_qp(struct ib_qp *qp);
2756
2757/**
2758 * ib_open_qp - Obtain a reference to an existing sharable QP.
2759 * @xrcd - XRC domain
2760 * @qp_open_attr: Attributes identifying the QP to open.
2761 *
2762 * Returns a reference to a sharable QP.
2763 */
2764struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2765			 struct ib_qp_open_attr *qp_open_attr);
2766
2767/**
2768 * ib_close_qp - Release an external reference to a QP.
2769 * @qp: The QP handle to release
2770 *
2771 * The opened QP handle is released by the caller.  The underlying
2772 * shared QP is not destroyed until all internal references are released.
2773 */
2774int ib_close_qp(struct ib_qp *qp);
2775
2776/**
2777 * ib_post_send - Posts a list of work requests to the send queue of
2778 *   the specified QP.
2779 * @qp: The QP to post the work request on.
2780 * @send_wr: A list of work requests to post on the send queue.
2781 * @bad_send_wr: On an immediate failure, this parameter will reference
2782 *   the work request that failed to be posted on the QP.
2783 *
2784 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2785 * error is returned, the QP state shall not be affected,
2786 * ib_post_send() will return an immediate error after queueing any
2787 * earlier work requests in the list.
2788 */
2789static inline int ib_post_send(struct ib_qp *qp,
2790			       struct ib_send_wr *send_wr,
2791			       struct ib_send_wr **bad_send_wr)
2792{
2793	return qp->device->post_send(qp, send_wr, bad_send_wr);
2794}
2795
2796/**
2797 * ib_post_recv - Posts a list of work requests to the receive queue of
2798 *   the specified QP.
2799 * @qp: The QP to post the work request on.
2800 * @recv_wr: A list of work requests to post on the receive queue.
2801 * @bad_recv_wr: On an immediate failure, this parameter will reference
2802 *   the work request that failed to be posted on the QP.
2803 */
2804static inline int ib_post_recv(struct ib_qp *qp,
2805			       struct ib_recv_wr *recv_wr,
2806			       struct ib_recv_wr **bad_recv_wr)
2807{
2808	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2809}
2810
2811struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2812		int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2813void ib_free_cq(struct ib_cq *cq);
2814
2815/**
2816 * ib_create_cq - Creates a CQ on the specified device.
2817 * @device: The device on which to create the CQ.
2818 * @comp_handler: A user-specified callback that is invoked when a
2819 *   completion event occurs on the CQ.
2820 * @event_handler: A user-specified callback that is invoked when an
2821 *   asynchronous event not associated with a completion occurs on the CQ.
2822 * @cq_context: Context associated with the CQ returned to the user via
2823 *   the associated completion and event handlers.
2824 * @cq_attr: The attributes the CQ should be created upon.
2825 *
2826 * Users can examine the cq structure to determine the actual CQ size.
2827 */
2828struct ib_cq *ib_create_cq(struct ib_device *device,
2829			   ib_comp_handler comp_handler,
2830			   void (*event_handler)(struct ib_event *, void *),
2831			   void *cq_context,
2832			   const struct ib_cq_init_attr *cq_attr);
2833
2834/**
2835 * ib_resize_cq - Modifies the capacity of the CQ.
2836 * @cq: The CQ to resize.
2837 * @cqe: The minimum size of the CQ.
2838 *
2839 * Users can examine the cq structure to determine the actual CQ size.
2840 */
2841int ib_resize_cq(struct ib_cq *cq, int cqe);
2842
2843/**
2844 * ib_modify_cq - Modifies moderation params of the CQ
2845 * @cq: The CQ to modify.
2846 * @cq_count: number of CQEs that will trigger an event
2847 * @cq_period: max period of time in usec before triggering an event
2848 *
2849 */
2850int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2851
2852/**
2853 * ib_destroy_cq - Destroys the specified CQ.
2854 * @cq: The CQ to destroy.
2855 */
2856int ib_destroy_cq(struct ib_cq *cq);
2857
2858/**
2859 * ib_poll_cq - poll a CQ for completion(s)
2860 * @cq:the CQ being polled
2861 * @num_entries:maximum number of completions to return
2862 * @wc:array of at least @num_entries &struct ib_wc where completions
2863 *   will be returned
2864 *
2865 * Poll a CQ for (possibly multiple) completions.  If the return value
2866 * is < 0, an error occurred.  If the return value is >= 0, it is the
2867 * number of completions returned.  If the return value is
2868 * non-negative and < num_entries, then the CQ was emptied.
2869 */
2870static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2871			     struct ib_wc *wc)
2872{
2873	return cq->device->poll_cq(cq, num_entries, wc);
2874}
2875
2876/**
2877 * ib_peek_cq - Returns the number of unreaped completions currently
2878 *   on the specified CQ.
2879 * @cq: The CQ to peek.
2880 * @wc_cnt: A minimum number of unreaped completions to check for.
2881 *
2882 * If the number of unreaped completions is greater than or equal to wc_cnt,
2883 * this function returns wc_cnt, otherwise, it returns the actual number of
2884 * unreaped completions.
2885 */
2886int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2887
2888/**
2889 * ib_req_notify_cq - Request completion notification on a CQ.
2890 * @cq: The CQ to generate an event for.
2891 * @flags:
2892 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2893 *   to request an event on the next solicited event or next work
2894 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2895 *   may also be |ed in to request a hint about missed events, as
2896 *   described below.
2897 *
2898 * Return Value:
2899 *    < 0 means an error occurred while requesting notification
2900 *   == 0 means notification was requested successfully, and if
2901 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2902 *        were missed and it is safe to wait for another event.  In
2903 *        this case is it guaranteed that any work completions added
2904 *        to the CQ since the last CQ poll will trigger a completion
2905 *        notification event.
2906 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2907 *        in.  It means that the consumer must poll the CQ again to
2908 *        make sure it is empty to avoid missing an event because of a
2909 *        race between requesting notification and an entry being
2910 *        added to the CQ.  This return value means it is possible
2911 *        (but not guaranteed) that a work completion has been added
2912 *        to the CQ since the last poll without triggering a
2913 *        completion notification event.
2914 */
2915static inline int ib_req_notify_cq(struct ib_cq *cq,
2916				   enum ib_cq_notify_flags flags)
2917{
2918	return cq->device->req_notify_cq(cq, flags);
2919}
2920
2921/**
2922 * ib_req_ncomp_notif - Request completion notification when there are
2923 *   at least the specified number of unreaped completions on the CQ.
2924 * @cq: The CQ to generate an event for.
2925 * @wc_cnt: The number of unreaped completions that should be on the
2926 *   CQ before an event is generated.
2927 */
2928static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2929{
2930	return cq->device->req_ncomp_notif ?
2931		cq->device->req_ncomp_notif(cq, wc_cnt) :
2932		-ENOSYS;
2933}
2934
2935/**
2936 * ib_dma_mapping_error - check a DMA addr for error
2937 * @dev: The device for which the dma_addr was created
2938 * @dma_addr: The DMA address to check
2939 */
2940static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2941{
2942	if (dev->dma_ops)
2943		return dev->dma_ops->mapping_error(dev, dma_addr);
2944	return dma_mapping_error(dev->dma_device, dma_addr);
2945}
2946
2947/**
2948 * ib_dma_map_single - Map a kernel virtual address to DMA address
2949 * @dev: The device for which the dma_addr is to be created
2950 * @cpu_addr: The kernel virtual address
2951 * @size: The size of the region in bytes
2952 * @direction: The direction of the DMA
2953 */
2954static inline u64 ib_dma_map_single(struct ib_device *dev,
2955				    void *cpu_addr, size_t size,
2956				    enum dma_data_direction direction)
2957{
2958	if (dev->dma_ops)
2959		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2960	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2961}
2962
2963/**
2964 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2965 * @dev: The device for which the DMA address was created
2966 * @addr: The DMA address
2967 * @size: The size of the region in bytes
2968 * @direction: The direction of the DMA
2969 */
2970static inline void ib_dma_unmap_single(struct ib_device *dev,
2971				       u64 addr, size_t size,
2972				       enum dma_data_direction direction)
2973{
2974	if (dev->dma_ops)
2975		dev->dma_ops->unmap_single(dev, addr, size, direction);
2976	else
2977		dma_unmap_single(dev->dma_device, addr, size, direction);
2978}
2979
2980static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2981					  void *cpu_addr, size_t size,
2982					  enum dma_data_direction direction,
2983					  struct dma_attrs *dma_attrs)
2984{
2985	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2986				    direction, dma_attrs);
2987}
2988
2989static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2990					     u64 addr, size_t size,
2991					     enum dma_data_direction direction,
2992					     struct dma_attrs *dma_attrs)
2993{
2994	return dma_unmap_single_attrs(dev->dma_device, addr, size,
2995				      direction, dma_attrs);
2996}
2997
2998/**
2999 * ib_dma_map_page - Map a physical page to DMA address
3000 * @dev: The device for which the dma_addr is to be created
3001 * @page: The page to be mapped
3002 * @offset: The offset within the page
3003 * @size: The size of the region in bytes
3004 * @direction: The direction of the DMA
3005 */
3006static inline u64 ib_dma_map_page(struct ib_device *dev,
3007				  struct page *page,
3008				  unsigned long offset,
3009				  size_t size,
3010					 enum dma_data_direction direction)
3011{
3012	if (dev->dma_ops)
3013		return dev->dma_ops->map_page(dev, page, offset, size, direction);
3014	return dma_map_page(dev->dma_device, page, offset, size, direction);
3015}
3016
3017/**
3018 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3019 * @dev: The device for which the DMA address was created
3020 * @addr: The DMA address
3021 * @size: The size of the region in bytes
3022 * @direction: The direction of the DMA
3023 */
3024static inline void ib_dma_unmap_page(struct ib_device *dev,
3025				     u64 addr, size_t size,
3026				     enum dma_data_direction direction)
3027{
3028	if (dev->dma_ops)
3029		dev->dma_ops->unmap_page(dev, addr, size, direction);
3030	else
3031		dma_unmap_page(dev->dma_device, addr, size, direction);
3032}
3033
3034/**
3035 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3036 * @dev: The device for which the DMA addresses are to be created
3037 * @sg: The array of scatter/gather entries
3038 * @nents: The number of scatter/gather entries
3039 * @direction: The direction of the DMA
3040 */
3041static inline int ib_dma_map_sg(struct ib_device *dev,
3042				struct scatterlist *sg, int nents,
3043				enum dma_data_direction direction)
3044{
3045	if (dev->dma_ops)
3046		return dev->dma_ops->map_sg(dev, sg, nents, direction);
3047	return dma_map_sg(dev->dma_device, sg, nents, direction);
3048}
3049
3050/**
3051 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3052 * @dev: The device for which the DMA addresses were created
3053 * @sg: The array of scatter/gather entries
3054 * @nents: The number of scatter/gather entries
3055 * @direction: The direction of the DMA
3056 */
3057static inline void ib_dma_unmap_sg(struct ib_device *dev,
3058				   struct scatterlist *sg, int nents,
3059				   enum dma_data_direction direction)
3060{
3061	if (dev->dma_ops)
3062		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3063	else
3064		dma_unmap_sg(dev->dma_device, sg, nents, direction);
3065}
3066
3067static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3068				      struct scatterlist *sg, int nents,
3069				      enum dma_data_direction direction,
3070				      struct dma_attrs *dma_attrs)
3071{
3072	if (dev->dma_ops)
3073		return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3074						  dma_attrs);
3075	else
3076		return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3077					dma_attrs);
3078}
3079
3080static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3081					 struct scatterlist *sg, int nents,
3082					 enum dma_data_direction direction,
3083					 struct dma_attrs *dma_attrs)
3084{
3085	if (dev->dma_ops)
3086		return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3087						  dma_attrs);
3088	else
3089		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3090				   dma_attrs);
3091}
3092/**
3093 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3094 * @dev: The device for which the DMA addresses were created
3095 * @sg: The scatter/gather entry
3096 *
3097 * Note: this function is obsolete. To do: change all occurrences of
3098 * ib_sg_dma_address() into sg_dma_address().
3099 */
3100static inline u64 ib_sg_dma_address(struct ib_device *dev,
3101				    struct scatterlist *sg)
3102{
3103	return sg_dma_address(sg);
3104}
3105
3106/**
3107 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3108 * @dev: The device for which the DMA addresses were created
3109 * @sg: The scatter/gather entry
3110 *
3111 * Note: this function is obsolete. To do: change all occurrences of
3112 * ib_sg_dma_len() into sg_dma_len().
3113 */
3114static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3115					 struct scatterlist *sg)
3116{
3117	return sg_dma_len(sg);
3118}
3119
3120/**
3121 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3122 * @dev: The device for which the DMA address was created
3123 * @addr: The DMA address
3124 * @size: The size of the region in bytes
3125 * @dir: The direction of the DMA
3126 */
3127static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3128					      u64 addr,
3129					      size_t size,
3130					      enum dma_data_direction dir)
3131{
3132	if (dev->dma_ops)
3133		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3134	else
3135		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3136}
3137
3138/**
3139 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3140 * @dev: The device for which the DMA address was created
3141 * @addr: The DMA address
3142 * @size: The size of the region in bytes
3143 * @dir: The direction of the DMA
3144 */
3145static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3146						 u64 addr,
3147						 size_t size,
3148						 enum dma_data_direction dir)
3149{
3150	if (dev->dma_ops)
3151		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3152	else
3153		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3154}
3155
3156/**
3157 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3158 * @dev: The device for which the DMA address is requested
3159 * @size: The size of the region to allocate in bytes
3160 * @dma_handle: A pointer for returning the DMA address of the region
3161 * @flag: memory allocator flags
3162 */
3163static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3164					   size_t size,
3165					   u64 *dma_handle,
3166					   gfp_t flag)
3167{
3168	if (dev->dma_ops)
3169		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3170	else {
3171		dma_addr_t handle;
3172		void *ret;
3173
3174		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3175		*dma_handle = handle;
3176		return ret;
3177	}
3178}
3179
3180/**
3181 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3182 * @dev: The device for which the DMA addresses were allocated
3183 * @size: The size of the region
3184 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3185 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3186 */
3187static inline void ib_dma_free_coherent(struct ib_device *dev,
3188					size_t size, void *cpu_addr,
3189					u64 dma_handle)
3190{
3191	if (dev->dma_ops)
3192		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3193	else
3194		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3195}
3196
3197/**
3198 * ib_dereg_mr - Deregisters a memory region and removes it from the
3199 *   HCA translation table.
3200 * @mr: The memory region to deregister.
3201 *
3202 * This function can fail, if the memory region has memory windows bound to it.
3203 */
3204int ib_dereg_mr(struct ib_mr *mr);
3205
3206struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3207			  enum ib_mr_type mr_type,
3208			  u32 max_num_sg);
3209
3210/**
3211 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3212 *   R_Key and L_Key.
3213 * @mr - struct ib_mr pointer to be updated.
3214 * @newkey - new key to be used.
3215 */
3216static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3217{
3218	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3219	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3220}
3221
3222/**
3223 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3224 * for calculating a new rkey for type 2 memory windows.
3225 * @rkey - the rkey to increment.
3226 */
3227static inline u32 ib_inc_rkey(u32 rkey)
3228{
3229	const u32 mask = 0x000000ff;
3230	return ((rkey + 1) & mask) | (rkey & ~mask);
3231}
3232
3233/**
3234 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3235 * @pd: The protection domain associated with the unmapped region.
3236 * @mr_access_flags: Specifies the memory access rights.
3237 * @fmr_attr: Attributes of the unmapped region.
3238 *
3239 * A fast memory region must be mapped before it can be used as part of
3240 * a work request.
3241 */
3242struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3243			    int mr_access_flags,
3244			    struct ib_fmr_attr *fmr_attr);
3245
3246/**
3247 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3248 * @fmr: The fast memory region to associate with the pages.
3249 * @page_list: An array of physical pages to map to the fast memory region.
3250 * @list_len: The number of pages in page_list.
3251 * @iova: The I/O virtual address to use with the mapped region.
3252 */
3253static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3254				  u64 *page_list, int list_len,
3255				  u64 iova)
3256{
3257	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3258}
3259
3260/**
3261 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3262 * @fmr_list: A linked list of fast memory regions to unmap.
3263 */
3264int ib_unmap_fmr(struct list_head *fmr_list);
3265
3266/**
3267 * ib_dealloc_fmr - Deallocates a fast memory region.
3268 * @fmr: The fast memory region to deallocate.
3269 */
3270int ib_dealloc_fmr(struct ib_fmr *fmr);
3271
3272/**
3273 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3274 * @qp: QP to attach to the multicast group.  The QP must be type
3275 *   IB_QPT_UD.
3276 * @gid: Multicast group GID.
3277 * @lid: Multicast group LID in host byte order.
3278 *
3279 * In order to send and receive multicast packets, subnet
3280 * administration must have created the multicast group and configured
3281 * the fabric appropriately.  The port associated with the specified
3282 * QP must also be a member of the multicast group.
3283 */
3284int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3285
3286/**
3287 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3288 * @qp: QP to detach from the multicast group.
3289 * @gid: Multicast group GID.
3290 * @lid: Multicast group LID in host byte order.
3291 */
3292int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3293
3294/**
3295 * ib_alloc_xrcd - Allocates an XRC domain.
3296 * @device: The device on which to allocate the XRC domain.
3297 */
3298struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3299
3300/**
3301 * ib_dealloc_xrcd - Deallocates an XRC domain.
3302 * @xrcd: The XRC domain to deallocate.
3303 */
3304int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3305
3306struct ib_flow *ib_create_flow(struct ib_qp *qp,
3307			       struct ib_flow_attr *flow_attr, int domain);
3308int ib_destroy_flow(struct ib_flow *flow_id);
3309
3310static inline int ib_check_mr_access(int flags)
3311{
3312	/*
3313	 * Local write permission is required if remote write or
3314	 * remote atomic permission is also requested.
3315	 */
3316	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3317	    !(flags & IB_ACCESS_LOCAL_WRITE))
3318		return -EINVAL;
3319
3320	return 0;
3321}
3322
3323/**
3324 * ib_check_mr_status: lightweight check of MR status.
3325 *     This routine may provide status checks on a selected
3326 *     ib_mr. first use is for signature status check.
3327 *
3328 * @mr: A memory region.
3329 * @check_mask: Bitmask of which checks to perform from
3330 *     ib_mr_status_check enumeration.
3331 * @mr_status: The container of relevant status checks.
3332 *     failed checks will be indicated in the status bitmask
3333 *     and the relevant info shall be in the error item.
3334 */
3335int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3336		       struct ib_mr_status *mr_status);
3337
3338struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3339					    u16 pkey, const union ib_gid *gid,
3340					    const struct sockaddr *addr);
3341struct ib_wq *ib_create_wq(struct ib_pd *pd,
3342			   struct ib_wq_init_attr *init_attr);
3343int ib_destroy_wq(struct ib_wq *wq);
3344int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3345		 u32 wq_attr_mask);
3346struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3347						 struct ib_rwq_ind_table_init_attr*
3348						 wq_ind_table_init_attr);
3349int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3350
3351int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3352		 unsigned int *sg_offset, unsigned int page_size);
3353
3354static inline int
3355ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3356		  unsigned int *sg_offset, unsigned int page_size)
3357{
3358	int n;
3359
3360	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3361	mr->iova = 0;
3362
3363	return n;
3364}
3365
3366int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3367		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3368
3369void ib_drain_rq(struct ib_qp *qp);
3370void ib_drain_sq(struct ib_qp *qp);
3371void ib_drain_qp(struct ib_qp *qp);
3372
3373int ib_resolve_eth_dmac(struct ib_device *device,
3374			struct ib_ah_attr *ah_attr);
3375#endif /* IB_VERBS_H */
3376