ib_verbs.h revision 331769
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses.  You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 *     Redistribution and use in source and binary forms, with or
17 *     without modification, are permitted provided that the following
18 *     conditions are met:
19 *
20 *      - Redistributions of source code must retain the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer.
23 *
24 *      - Redistributions in binary form must reproduce the above
25 *        copyright notice, this list of conditions and the following
26 *        disclaimer in the documentation and/or other materials
27 *        provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
46#include <linux/kref.h>
47#include <linux/list.h>
48#include <linux/rwsem.h>
49#include <linux/scatterlist.h>
50#include <linux/workqueue.h>
51#include <linux/socket.h>
52#include <linux/if_ether.h>
53#include <net/ipv6.h>
54#include <net/ip.h>
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/rcupdate.h>
58#include <linux/netdevice.h>
59#include <netinet/ip.h>
60
61#include <asm/atomic.h>
62#include <asm/uaccess.h>
63
64struct ifla_vf_info;
65struct ifla_vf_stats;
66
67extern struct workqueue_struct *ib_wq;
68extern struct workqueue_struct *ib_comp_wq;
69
70union ib_gid {
71	u8	raw[16];
72	struct {
73		__be64	subnet_prefix;
74		__be64	interface_id;
75	} global;
76};
77
78extern union ib_gid zgid;
79
80enum ib_gid_type {
81	/* If link layer is Ethernet, this is RoCE V1 */
82	IB_GID_TYPE_IB        = 0,
83	IB_GID_TYPE_ROCE      = 0,
84	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
85	IB_GID_TYPE_SIZE
86};
87
88#define ROCE_V2_UDP_DPORT      4791
89struct ib_gid_attr {
90	enum ib_gid_type	gid_type;
91	struct net_device	*ndev;
92};
93
94enum rdma_node_type {
95	/* IB values map to NodeInfo:NodeType. */
96	RDMA_NODE_IB_CA 	= 1,
97	RDMA_NODE_IB_SWITCH,
98	RDMA_NODE_IB_ROUTER,
99	RDMA_NODE_RNIC,
100	RDMA_NODE_USNIC,
101	RDMA_NODE_USNIC_UDP,
102};
103
104enum {
105	/* set the local administered indication */
106	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
107};
108
109enum rdma_transport_type {
110	RDMA_TRANSPORT_IB,
111	RDMA_TRANSPORT_IWARP,
112	RDMA_TRANSPORT_USNIC,
113	RDMA_TRANSPORT_USNIC_UDP
114};
115
116enum rdma_protocol_type {
117	RDMA_PROTOCOL_IB,
118	RDMA_PROTOCOL_IBOE,
119	RDMA_PROTOCOL_IWARP,
120	RDMA_PROTOCOL_USNIC_UDP
121};
122
123__attribute_const__ enum rdma_transport_type
124rdma_node_get_transport(enum rdma_node_type node_type);
125
126enum rdma_network_type {
127	RDMA_NETWORK_IB,
128	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
129	RDMA_NETWORK_IPV4,
130	RDMA_NETWORK_IPV6
131};
132
133static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
134{
135	if (network_type == RDMA_NETWORK_IPV4 ||
136	    network_type == RDMA_NETWORK_IPV6)
137		return IB_GID_TYPE_ROCE_UDP_ENCAP;
138
139	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
140	return IB_GID_TYPE_IB;
141}
142
143static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
144							    union ib_gid *gid)
145{
146	if (gid_type == IB_GID_TYPE_IB)
147		return RDMA_NETWORK_IB;
148
149	if (ipv6_addr_v4mapped((struct in6_addr *)gid))
150		return RDMA_NETWORK_IPV4;
151	else
152		return RDMA_NETWORK_IPV6;
153}
154
155enum rdma_link_layer {
156	IB_LINK_LAYER_UNSPECIFIED,
157	IB_LINK_LAYER_INFINIBAND,
158	IB_LINK_LAYER_ETHERNET,
159};
160
161enum ib_device_cap_flags {
162	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
163	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
164	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
165	IB_DEVICE_RAW_MULTI			= (1 << 3),
166	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
167	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
168	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
169	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
170	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
171	IB_DEVICE_INIT_TYPE			= (1 << 9),
172	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
173	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
174	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
175	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
176	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
177
178	/*
179	 * This device supports a per-device lkey or stag that can be
180	 * used without performing a memory registration for the local
181	 * memory.  Note that ULPs should never check this flag, but
182	 * instead of use the local_dma_lkey flag in the ib_pd structure,
183	 * which will always contain a usable lkey.
184	 */
185	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
186	IB_DEVICE_RESERVED /* old SEND_W_INV */	= (1 << 16),
187	IB_DEVICE_MEM_WINDOW			= (1 << 17),
188	/*
189	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
190	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
191	 * messages and can verify the validity of checksum for
192	 * incoming messages.  Setting this flag implies that the
193	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
194	 */
195	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
196	IB_DEVICE_UD_TSO			= (1 << 19),
197	IB_DEVICE_XRC				= (1 << 20),
198
199	/*
200	 * This device supports the IB "base memory management extension",
201	 * which includes support for fast registrations (IB_WR_REG_MR,
202	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
203	 * also be set by any iWarp device which must support FRs to comply
204	 * to the iWarp verbs spec.  iWarp devices also support the
205	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
206	 * stag.
207	 */
208	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
209	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
210	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
211	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
212	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
213	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
214	/*
215	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
216	 * support execution of WQEs that involve synchronization
217	 * of I/O operations with single completion queue managed
218	 * by hardware.
219	 */
220	IB_DEVICE_CROSS_CHANNEL		= (1 << 27),
221	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
222	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
223	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
224	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
225	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
226	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
227};
228
229enum ib_signature_prot_cap {
230	IB_PROT_T10DIF_TYPE_1 = 1,
231	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
232	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
233};
234
235enum ib_signature_guard_cap {
236	IB_GUARD_T10DIF_CRC	= 1,
237	IB_GUARD_T10DIF_CSUM	= 1 << 1,
238};
239
240enum ib_atomic_cap {
241	IB_ATOMIC_NONE,
242	IB_ATOMIC_HCA,
243	IB_ATOMIC_GLOB
244};
245
246enum ib_odp_general_cap_bits {
247	IB_ODP_SUPPORT = 1 << 0,
248};
249
250enum ib_odp_transport_cap_bits {
251	IB_ODP_SUPPORT_SEND	= 1 << 0,
252	IB_ODP_SUPPORT_RECV	= 1 << 1,
253	IB_ODP_SUPPORT_WRITE	= 1 << 2,
254	IB_ODP_SUPPORT_READ	= 1 << 3,
255	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
256};
257
258struct ib_odp_caps {
259	uint64_t general_caps;
260	struct {
261		uint32_t  rc_odp_caps;
262		uint32_t  uc_odp_caps;
263		uint32_t  ud_odp_caps;
264	} per_transport_caps;
265};
266
267struct ib_rss_caps {
268	/* Corresponding bit will be set if qp type from
269	 * 'enum ib_qp_type' is supported, e.g.
270	 * supported_qpts |= 1 << IB_QPT_UD
271	 */
272	u32 supported_qpts;
273	u32 max_rwq_indirection_tables;
274	u32 max_rwq_indirection_table_size;
275};
276
277enum ib_cq_creation_flags {
278	IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
279	IB_CQ_FLAGS_IGNORE_OVERRUN	   = 1 << 1,
280};
281
282struct ib_cq_init_attr {
283	unsigned int	cqe;
284	int		comp_vector;
285	u32		flags;
286};
287
288struct ib_device_attr {
289	u64			fw_ver;
290	__be64			sys_image_guid;
291	u64			max_mr_size;
292	u64			page_size_cap;
293	u32			vendor_id;
294	u32			vendor_part_id;
295	u32			hw_ver;
296	int			max_qp;
297	int			max_qp_wr;
298	u64			device_cap_flags;
299	int			max_sge;
300	int			max_sge_rd;
301	int			max_cq;
302	int			max_cqe;
303	int			max_mr;
304	int			max_pd;
305	int			max_qp_rd_atom;
306	int			max_ee_rd_atom;
307	int			max_res_rd_atom;
308	int			max_qp_init_rd_atom;
309	int			max_ee_init_rd_atom;
310	enum ib_atomic_cap	atomic_cap;
311	enum ib_atomic_cap	masked_atomic_cap;
312	int			max_ee;
313	int			max_rdd;
314	int			max_mw;
315	int			max_raw_ipv6_qp;
316	int			max_raw_ethy_qp;
317	int			max_mcast_grp;
318	int			max_mcast_qp_attach;
319	int			max_total_mcast_qp_attach;
320	int			max_ah;
321	int			max_fmr;
322	int			max_map_per_fmr;
323	int			max_srq;
324	int			max_srq_wr;
325	int			max_srq_sge;
326	unsigned int		max_fast_reg_page_list_len;
327	u16			max_pkeys;
328	u8			local_ca_ack_delay;
329	int			sig_prot_cap;
330	int			sig_guard_cap;
331	struct ib_odp_caps	odp_caps;
332	uint64_t		timestamp_mask;
333	uint64_t		hca_core_clock; /* in KHZ */
334	struct ib_rss_caps	rss_caps;
335	u32			max_wq_type_rq;
336};
337
338enum ib_mtu {
339	IB_MTU_256  = 1,
340	IB_MTU_512  = 2,
341	IB_MTU_1024 = 3,
342	IB_MTU_2048 = 4,
343	IB_MTU_4096 = 5
344};
345
346static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
347{
348	switch (mtu) {
349	case IB_MTU_256:  return  256;
350	case IB_MTU_512:  return  512;
351	case IB_MTU_1024: return 1024;
352	case IB_MTU_2048: return 2048;
353	case IB_MTU_4096: return 4096;
354	default: 	  return -1;
355	}
356}
357
358enum ib_port_state {
359	IB_PORT_NOP		= 0,
360	IB_PORT_DOWN		= 1,
361	IB_PORT_INIT		= 2,
362	IB_PORT_ARMED		= 3,
363	IB_PORT_ACTIVE		= 4,
364	IB_PORT_ACTIVE_DEFER	= 5,
365	IB_PORT_DUMMY		= -1,	/* force enum signed */
366};
367
368enum ib_port_cap_flags {
369	IB_PORT_SM				= 1 <<  1,
370	IB_PORT_NOTICE_SUP			= 1 <<  2,
371	IB_PORT_TRAP_SUP			= 1 <<  3,
372	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
373	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
374	IB_PORT_SL_MAP_SUP			= 1 <<  6,
375	IB_PORT_MKEY_NVRAM			= 1 <<  7,
376	IB_PORT_PKEY_NVRAM			= 1 <<  8,
377	IB_PORT_LED_INFO_SUP			= 1 <<  9,
378	IB_PORT_SM_DISABLED			= 1 << 10,
379	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
380	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
381	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
382	IB_PORT_CM_SUP				= 1 << 16,
383	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
384	IB_PORT_REINIT_SUP			= 1 << 18,
385	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
386	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
387	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
388	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
389	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
390	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
391	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
392	IB_PORT_IP_BASED_GIDS			= 1 << 26,
393};
394
395enum ib_port_width {
396	IB_WIDTH_1X	= 1,
397	IB_WIDTH_4X	= 2,
398	IB_WIDTH_8X	= 4,
399	IB_WIDTH_12X	= 8
400};
401
402static inline int ib_width_enum_to_int(enum ib_port_width width)
403{
404	switch (width) {
405	case IB_WIDTH_1X:  return  1;
406	case IB_WIDTH_4X:  return  4;
407	case IB_WIDTH_8X:  return  8;
408	case IB_WIDTH_12X: return 12;
409	default: 	  return -1;
410	}
411}
412
413enum ib_port_speed {
414	IB_SPEED_SDR	= 1,
415	IB_SPEED_DDR	= 2,
416	IB_SPEED_QDR	= 4,
417	IB_SPEED_FDR10	= 8,
418	IB_SPEED_FDR	= 16,
419	IB_SPEED_EDR	= 32
420};
421
422/**
423 * struct rdma_hw_stats
424 * @timestamp - Used by the core code to track when the last update was
425 * @lifespan - Used by the core code to determine how old the counters
426 *   should be before being updated again.  Stored in jiffies, defaults
427 *   to 10 milliseconds, drivers can override the default be specifying
428 *   their own value during their allocation routine.
429 * @name - Array of pointers to static names used for the counters in
430 *   directory.
431 * @num_counters - How many hardware counters there are.  If name is
432 *   shorter than this number, a kernel oops will result.  Driver authors
433 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
434 *   in their code to prevent this.
435 * @value - Array of u64 counters that are accessed by the sysfs code and
436 *   filled in by the drivers get_stats routine
437 */
438struct rdma_hw_stats {
439	unsigned long	timestamp;
440	unsigned long	lifespan;
441	const char * const *names;
442	int		num_counters;
443	u64		value[];
444};
445
446#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
447/**
448 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
449 *   for drivers.
450 * @names - Array of static const char *
451 * @num_counters - How many elements in array
452 * @lifespan - How many milliseconds between updates
453 */
454static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
455		const char * const *names, int num_counters,
456		unsigned long lifespan)
457{
458	struct rdma_hw_stats *stats;
459
460	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
461			GFP_KERNEL);
462	if (!stats)
463		return NULL;
464	stats->names = names;
465	stats->num_counters = num_counters;
466	stats->lifespan = msecs_to_jiffies(lifespan);
467
468	return stats;
469}
470
471
472/* Define bits for the various functionality this port needs to be supported by
473 * the core.
474 */
475/* Management                           0x00000FFF */
476#define RDMA_CORE_CAP_IB_MAD            0x00000001
477#define RDMA_CORE_CAP_IB_SMI            0x00000002
478#define RDMA_CORE_CAP_IB_CM             0x00000004
479#define RDMA_CORE_CAP_IW_CM             0x00000008
480#define RDMA_CORE_CAP_IB_SA             0x00000010
481#define RDMA_CORE_CAP_OPA_MAD           0x00000020
482
483/* Address format                       0x000FF000 */
484#define RDMA_CORE_CAP_AF_IB             0x00001000
485#define RDMA_CORE_CAP_ETH_AH            0x00002000
486
487/* Protocol                             0xFFF00000 */
488#define RDMA_CORE_CAP_PROT_IB           0x00100000
489#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
490#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
491#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
492
493#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
494					| RDMA_CORE_CAP_IB_MAD \
495					| RDMA_CORE_CAP_IB_SMI \
496					| RDMA_CORE_CAP_IB_CM  \
497					| RDMA_CORE_CAP_IB_SA  \
498					| RDMA_CORE_CAP_AF_IB)
499#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
500					| RDMA_CORE_CAP_IB_MAD  \
501					| RDMA_CORE_CAP_IB_CM   \
502					| RDMA_CORE_CAP_AF_IB   \
503					| RDMA_CORE_CAP_ETH_AH)
504#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
505					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
506					| RDMA_CORE_CAP_IB_MAD  \
507					| RDMA_CORE_CAP_IB_CM   \
508					| RDMA_CORE_CAP_AF_IB   \
509					| RDMA_CORE_CAP_ETH_AH)
510#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
511					| RDMA_CORE_CAP_IW_CM)
512#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
513					| RDMA_CORE_CAP_OPA_MAD)
514
515struct ib_port_attr {
516	u64			subnet_prefix;
517	enum ib_port_state	state;
518	enum ib_mtu		max_mtu;
519	enum ib_mtu		active_mtu;
520	int			gid_tbl_len;
521	u32			port_cap_flags;
522	u32			max_msg_sz;
523	u32			bad_pkey_cntr;
524	u32			qkey_viol_cntr;
525	u16			pkey_tbl_len;
526	u16			lid;
527	u16			sm_lid;
528	u8			lmc;
529	u8			max_vl_num;
530	u8			sm_sl;
531	u8			subnet_timeout;
532	u8			init_type_reply;
533	u8			active_width;
534	u8			active_speed;
535	u8                      phys_state;
536	bool			grh_required;
537};
538
539enum ib_device_modify_flags {
540	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
541	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
542};
543
544#define IB_DEVICE_NODE_DESC_MAX 64
545
546struct ib_device_modify {
547	u64	sys_image_guid;
548	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
549};
550
551enum ib_port_modify_flags {
552	IB_PORT_SHUTDOWN		= 1,
553	IB_PORT_INIT_TYPE		= (1<<2),
554	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
555};
556
557struct ib_port_modify {
558	u32	set_port_cap_mask;
559	u32	clr_port_cap_mask;
560	u8	init_type;
561};
562
563enum ib_event_type {
564	IB_EVENT_CQ_ERR,
565	IB_EVENT_QP_FATAL,
566	IB_EVENT_QP_REQ_ERR,
567	IB_EVENT_QP_ACCESS_ERR,
568	IB_EVENT_COMM_EST,
569	IB_EVENT_SQ_DRAINED,
570	IB_EVENT_PATH_MIG,
571	IB_EVENT_PATH_MIG_ERR,
572	IB_EVENT_DEVICE_FATAL,
573	IB_EVENT_PORT_ACTIVE,
574	IB_EVENT_PORT_ERR,
575	IB_EVENT_LID_CHANGE,
576	IB_EVENT_PKEY_CHANGE,
577	IB_EVENT_SM_CHANGE,
578	IB_EVENT_SRQ_ERR,
579	IB_EVENT_SRQ_LIMIT_REACHED,
580	IB_EVENT_QP_LAST_WQE_REACHED,
581	IB_EVENT_CLIENT_REREGISTER,
582	IB_EVENT_GID_CHANGE,
583	IB_EVENT_WQ_FATAL,
584};
585
586const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
587
588struct ib_event {
589	struct ib_device	*device;
590	union {
591		struct ib_cq	*cq;
592		struct ib_qp	*qp;
593		struct ib_srq	*srq;
594		struct ib_wq	*wq;
595		u8		port_num;
596	} element;
597	enum ib_event_type	event;
598};
599
600struct ib_event_handler {
601	struct ib_device *device;
602	void            (*handler)(struct ib_event_handler *, struct ib_event *);
603	struct list_head  list;
604};
605
606#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
607	do {							\
608		(_ptr)->device  = _device;			\
609		(_ptr)->handler = _handler;			\
610		INIT_LIST_HEAD(&(_ptr)->list);			\
611	} while (0)
612
613struct ib_global_route {
614	union ib_gid	dgid;
615	u32		flow_label;
616	u8		sgid_index;
617	u8		hop_limit;
618	u8		traffic_class;
619};
620
621struct ib_grh {
622	__be32		version_tclass_flow;
623	__be16		paylen;
624	u8		next_hdr;
625	u8		hop_limit;
626	union ib_gid	sgid;
627	union ib_gid	dgid;
628};
629
630union rdma_network_hdr {
631	struct ib_grh ibgrh;
632	struct {
633		/* The IB spec states that if it's IPv4, the header
634		 * is located in the last 20 bytes of the header.
635		 */
636		u8		reserved[20];
637		struct ip	roce4grh;
638	};
639};
640
641enum {
642	IB_MULTICAST_QPN = 0xffffff
643};
644
645#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
646#define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
647
648enum ib_ah_flags {
649	IB_AH_GRH	= 1
650};
651
652enum ib_rate {
653	IB_RATE_PORT_CURRENT = 0,
654	IB_RATE_2_5_GBPS = 2,
655	IB_RATE_5_GBPS   = 5,
656	IB_RATE_10_GBPS  = 3,
657	IB_RATE_20_GBPS  = 6,
658	IB_RATE_30_GBPS  = 4,
659	IB_RATE_40_GBPS  = 7,
660	IB_RATE_60_GBPS  = 8,
661	IB_RATE_80_GBPS  = 9,
662	IB_RATE_120_GBPS = 10,
663	IB_RATE_14_GBPS  = 11,
664	IB_RATE_56_GBPS  = 12,
665	IB_RATE_112_GBPS = 13,
666	IB_RATE_168_GBPS = 14,
667	IB_RATE_25_GBPS  = 15,
668	IB_RATE_100_GBPS = 16,
669	IB_RATE_200_GBPS = 17,
670	IB_RATE_300_GBPS = 18
671};
672
673/**
674 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
675 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
676 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
677 * @rate: rate to convert.
678 */
679__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
680
681/**
682 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
683 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
684 * @rate: rate to convert.
685 */
686__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
687
688
689/**
690 * enum ib_mr_type - memory region type
691 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
692 *                            normal registration
693 * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
694 *                            signature operations (data-integrity
695 *                            capable regions)
696 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
697 *                            register any arbitrary sg lists (without
698 *                            the normal mr constraints - see
699 *                            ib_map_mr_sg)
700 */
701enum ib_mr_type {
702	IB_MR_TYPE_MEM_REG,
703	IB_MR_TYPE_SIGNATURE,
704	IB_MR_TYPE_SG_GAPS,
705};
706
707/**
708 * Signature types
709 * IB_SIG_TYPE_NONE: Unprotected.
710 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
711 */
712enum ib_signature_type {
713	IB_SIG_TYPE_NONE,
714	IB_SIG_TYPE_T10_DIF,
715};
716
717/**
718 * Signature T10-DIF block-guard types
719 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
720 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
721 */
722enum ib_t10_dif_bg_type {
723	IB_T10DIF_CRC,
724	IB_T10DIF_CSUM
725};
726
727/**
728 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
729 *     domain.
730 * @bg_type: T10-DIF block guard type (CRC|CSUM)
731 * @pi_interval: protection information interval.
732 * @bg: seed of guard computation.
733 * @app_tag: application tag of guard block
734 * @ref_tag: initial guard block reference tag.
735 * @ref_remap: Indicate wethear the reftag increments each block
736 * @app_escape: Indicate to skip block check if apptag=0xffff
737 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
738 * @apptag_check_mask: check bitmask of application tag.
739 */
740struct ib_t10_dif_domain {
741	enum ib_t10_dif_bg_type bg_type;
742	u16			pi_interval;
743	u16			bg;
744	u16			app_tag;
745	u32			ref_tag;
746	bool			ref_remap;
747	bool			app_escape;
748	bool			ref_escape;
749	u16			apptag_check_mask;
750};
751
752/**
753 * struct ib_sig_domain - Parameters for signature domain
754 * @sig_type: specific signauture type
755 * @sig: union of all signature domain attributes that may
756 *     be used to set domain layout.
757 */
758struct ib_sig_domain {
759	enum ib_signature_type sig_type;
760	union {
761		struct ib_t10_dif_domain dif;
762	} sig;
763};
764
765/**
766 * struct ib_sig_attrs - Parameters for signature handover operation
767 * @check_mask: bitmask for signature byte check (8 bytes)
768 * @mem: memory domain layout desciptor.
769 * @wire: wire domain layout desciptor.
770 */
771struct ib_sig_attrs {
772	u8			check_mask;
773	struct ib_sig_domain	mem;
774	struct ib_sig_domain	wire;
775};
776
777enum ib_sig_err_type {
778	IB_SIG_BAD_GUARD,
779	IB_SIG_BAD_REFTAG,
780	IB_SIG_BAD_APPTAG,
781};
782
783/**
784 * struct ib_sig_err - signature error descriptor
785 */
786struct ib_sig_err {
787	enum ib_sig_err_type	err_type;
788	u32			expected;
789	u32			actual;
790	u64			sig_err_offset;
791	u32			key;
792};
793
794enum ib_mr_status_check {
795	IB_MR_CHECK_SIG_STATUS = 1,
796};
797
798/**
799 * struct ib_mr_status - Memory region status container
800 *
801 * @fail_status: Bitmask of MR checks status. For each
802 *     failed check a corresponding status bit is set.
803 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
804 *     failure.
805 */
806struct ib_mr_status {
807	u32		    fail_status;
808	struct ib_sig_err   sig_err;
809};
810
811/**
812 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
813 * enum.
814 * @mult: multiple to convert.
815 */
816__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
817
818struct ib_ah_attr {
819	struct ib_global_route	grh;
820	u16			dlid;
821	u8			sl;
822	u8			src_path_bits;
823	u8			static_rate;
824	u8			ah_flags;
825	u8			port_num;
826	u8			dmac[ETH_ALEN];
827};
828
829enum ib_wc_status {
830	IB_WC_SUCCESS,
831	IB_WC_LOC_LEN_ERR,
832	IB_WC_LOC_QP_OP_ERR,
833	IB_WC_LOC_EEC_OP_ERR,
834	IB_WC_LOC_PROT_ERR,
835	IB_WC_WR_FLUSH_ERR,
836	IB_WC_MW_BIND_ERR,
837	IB_WC_BAD_RESP_ERR,
838	IB_WC_LOC_ACCESS_ERR,
839	IB_WC_REM_INV_REQ_ERR,
840	IB_WC_REM_ACCESS_ERR,
841	IB_WC_REM_OP_ERR,
842	IB_WC_RETRY_EXC_ERR,
843	IB_WC_RNR_RETRY_EXC_ERR,
844	IB_WC_LOC_RDD_VIOL_ERR,
845	IB_WC_REM_INV_RD_REQ_ERR,
846	IB_WC_REM_ABORT_ERR,
847	IB_WC_INV_EECN_ERR,
848	IB_WC_INV_EEC_STATE_ERR,
849	IB_WC_FATAL_ERR,
850	IB_WC_RESP_TIMEOUT_ERR,
851	IB_WC_GENERAL_ERR
852};
853
854const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
855
856enum ib_wc_opcode {
857	IB_WC_SEND,
858	IB_WC_RDMA_WRITE,
859	IB_WC_RDMA_READ,
860	IB_WC_COMP_SWAP,
861	IB_WC_FETCH_ADD,
862	IB_WC_LSO,
863	IB_WC_LOCAL_INV,
864	IB_WC_REG_MR,
865	IB_WC_MASKED_COMP_SWAP,
866	IB_WC_MASKED_FETCH_ADD,
867/*
868 * Set value of IB_WC_RECV so consumers can test if a completion is a
869 * receive by testing (opcode & IB_WC_RECV).
870 */
871	IB_WC_RECV			= 1 << 7,
872	IB_WC_RECV_RDMA_WITH_IMM,
873	IB_WC_DUMMY = -1,	/* force enum signed */
874};
875
876enum ib_wc_flags {
877	IB_WC_GRH		= 1,
878	IB_WC_WITH_IMM		= (1<<1),
879	IB_WC_WITH_INVALIDATE	= (1<<2),
880	IB_WC_IP_CSUM_OK	= (1<<3),
881	IB_WC_WITH_SMAC		= (1<<4),
882	IB_WC_WITH_VLAN		= (1<<5),
883	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
884};
885
886struct ib_wc {
887	union {
888		u64		wr_id;
889		struct ib_cqe	*wr_cqe;
890	};
891	enum ib_wc_status	status;
892	enum ib_wc_opcode	opcode;
893	u32			vendor_err;
894	u32			byte_len;
895	struct ib_qp	       *qp;
896	union {
897		__be32		imm_data;
898		u32		invalidate_rkey;
899	} ex;
900	u32			src_qp;
901	int			wc_flags;
902	u16			pkey_index;
903	u16			slid;
904	u8			sl;
905	u8			dlid_path_bits;
906	u8			port_num;	/* valid only for DR SMPs on switches */
907	u8			smac[ETH_ALEN];
908	u16			vlan_id;
909	u8			network_hdr_type;
910};
911
912enum ib_cq_notify_flags {
913	IB_CQ_SOLICITED			= 1 << 0,
914	IB_CQ_NEXT_COMP			= 1 << 1,
915	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
916	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
917};
918
919enum ib_srq_type {
920	IB_SRQT_BASIC,
921	IB_SRQT_XRC
922};
923
924enum ib_srq_attr_mask {
925	IB_SRQ_MAX_WR	= 1 << 0,
926	IB_SRQ_LIMIT	= 1 << 1,
927};
928
929struct ib_srq_attr {
930	u32	max_wr;
931	u32	max_sge;
932	u32	srq_limit;
933};
934
935struct ib_srq_init_attr {
936	void		      (*event_handler)(struct ib_event *, void *);
937	void		       *srq_context;
938	struct ib_srq_attr	attr;
939	enum ib_srq_type	srq_type;
940
941	union {
942		struct {
943			struct ib_xrcd *xrcd;
944			struct ib_cq   *cq;
945		} xrc;
946	} ext;
947};
948
949struct ib_qp_cap {
950	u32	max_send_wr;
951	u32	max_recv_wr;
952	u32	max_send_sge;
953	u32	max_recv_sge;
954	u32	max_inline_data;
955
956	/*
957	 * Maximum number of rdma_rw_ctx structures in flight at a time.
958	 * ib_create_qp() will calculate the right amount of neededed WRs
959	 * and MRs based on this.
960	 */
961	u32	max_rdma_ctxs;
962};
963
964enum ib_sig_type {
965	IB_SIGNAL_ALL_WR,
966	IB_SIGNAL_REQ_WR
967};
968
969enum ib_qp_type {
970	/*
971	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
972	 * here (and in that order) since the MAD layer uses them as
973	 * indices into a 2-entry table.
974	 */
975	IB_QPT_SMI,
976	IB_QPT_GSI,
977
978	IB_QPT_RC,
979	IB_QPT_UC,
980	IB_QPT_UD,
981	IB_QPT_RAW_IPV6,
982	IB_QPT_RAW_ETHERTYPE,
983	IB_QPT_RAW_PACKET = 8,
984	IB_QPT_XRC_INI = 9,
985	IB_QPT_XRC_TGT,
986	IB_QPT_MAX,
987	/* Reserve a range for qp types internal to the low level driver.
988	 * These qp types will not be visible at the IB core layer, so the
989	 * IB_QPT_MAX usages should not be affected in the core layer
990	 */
991	IB_QPT_RESERVED1 = 0x1000,
992	IB_QPT_RESERVED2,
993	IB_QPT_RESERVED3,
994	IB_QPT_RESERVED4,
995	IB_QPT_RESERVED5,
996	IB_QPT_RESERVED6,
997	IB_QPT_RESERVED7,
998	IB_QPT_RESERVED8,
999	IB_QPT_RESERVED9,
1000	IB_QPT_RESERVED10,
1001};
1002
1003enum ib_qp_create_flags {
1004	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1005	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1006	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1007	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1008	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1009	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1010	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1011	IB_QP_CREATE_USE_GFP_NOIO		= 1 << 7,
1012	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1013	/* reserve bits 26-31 for low level drivers' internal use */
1014	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1015	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1016};
1017
1018/*
1019 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1020 * callback to destroy the passed in QP.
1021 */
1022
1023struct ib_qp_init_attr {
1024	void                  (*event_handler)(struct ib_event *, void *);
1025	void		       *qp_context;
1026	struct ib_cq	       *send_cq;
1027	struct ib_cq	       *recv_cq;
1028	struct ib_srq	       *srq;
1029	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1030	struct ib_qp_cap	cap;
1031	enum ib_sig_type	sq_sig_type;
1032	enum ib_qp_type		qp_type;
1033	enum ib_qp_create_flags	create_flags;
1034
1035	/*
1036	 * Only needed for special QP types, or when using the RW API.
1037	 */
1038	u8			port_num;
1039	struct ib_rwq_ind_table *rwq_ind_tbl;
1040};
1041
1042struct ib_qp_open_attr {
1043	void                  (*event_handler)(struct ib_event *, void *);
1044	void		       *qp_context;
1045	u32			qp_num;
1046	enum ib_qp_type		qp_type;
1047};
1048
1049enum ib_rnr_timeout {
1050	IB_RNR_TIMER_655_36 =  0,
1051	IB_RNR_TIMER_000_01 =  1,
1052	IB_RNR_TIMER_000_02 =  2,
1053	IB_RNR_TIMER_000_03 =  3,
1054	IB_RNR_TIMER_000_04 =  4,
1055	IB_RNR_TIMER_000_06 =  5,
1056	IB_RNR_TIMER_000_08 =  6,
1057	IB_RNR_TIMER_000_12 =  7,
1058	IB_RNR_TIMER_000_16 =  8,
1059	IB_RNR_TIMER_000_24 =  9,
1060	IB_RNR_TIMER_000_32 = 10,
1061	IB_RNR_TIMER_000_48 = 11,
1062	IB_RNR_TIMER_000_64 = 12,
1063	IB_RNR_TIMER_000_96 = 13,
1064	IB_RNR_TIMER_001_28 = 14,
1065	IB_RNR_TIMER_001_92 = 15,
1066	IB_RNR_TIMER_002_56 = 16,
1067	IB_RNR_TIMER_003_84 = 17,
1068	IB_RNR_TIMER_005_12 = 18,
1069	IB_RNR_TIMER_007_68 = 19,
1070	IB_RNR_TIMER_010_24 = 20,
1071	IB_RNR_TIMER_015_36 = 21,
1072	IB_RNR_TIMER_020_48 = 22,
1073	IB_RNR_TIMER_030_72 = 23,
1074	IB_RNR_TIMER_040_96 = 24,
1075	IB_RNR_TIMER_061_44 = 25,
1076	IB_RNR_TIMER_081_92 = 26,
1077	IB_RNR_TIMER_122_88 = 27,
1078	IB_RNR_TIMER_163_84 = 28,
1079	IB_RNR_TIMER_245_76 = 29,
1080	IB_RNR_TIMER_327_68 = 30,
1081	IB_RNR_TIMER_491_52 = 31
1082};
1083
1084enum ib_qp_attr_mask {
1085	IB_QP_STATE			= 1,
1086	IB_QP_CUR_STATE			= (1<<1),
1087	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1088	IB_QP_ACCESS_FLAGS		= (1<<3),
1089	IB_QP_PKEY_INDEX		= (1<<4),
1090	IB_QP_PORT			= (1<<5),
1091	IB_QP_QKEY			= (1<<6),
1092	IB_QP_AV			= (1<<7),
1093	IB_QP_PATH_MTU			= (1<<8),
1094	IB_QP_TIMEOUT			= (1<<9),
1095	IB_QP_RETRY_CNT			= (1<<10),
1096	IB_QP_RNR_RETRY			= (1<<11),
1097	IB_QP_RQ_PSN			= (1<<12),
1098	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1099	IB_QP_ALT_PATH			= (1<<14),
1100	IB_QP_MIN_RNR_TIMER		= (1<<15),
1101	IB_QP_SQ_PSN			= (1<<16),
1102	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1103	IB_QP_PATH_MIG_STATE		= (1<<18),
1104	IB_QP_CAP			= (1<<19),
1105	IB_QP_DEST_QPN			= (1<<20),
1106	IB_QP_RESERVED1			= (1<<21),
1107	IB_QP_RESERVED2			= (1<<22),
1108	IB_QP_RESERVED3			= (1<<23),
1109	IB_QP_RESERVED4			= (1<<24),
1110};
1111
1112enum ib_qp_state {
1113	IB_QPS_RESET,
1114	IB_QPS_INIT,
1115	IB_QPS_RTR,
1116	IB_QPS_RTS,
1117	IB_QPS_SQD,
1118	IB_QPS_SQE,
1119	IB_QPS_ERR,
1120	IB_QPS_DUMMY = -1,	/* force enum signed */
1121};
1122
1123enum ib_mig_state {
1124	IB_MIG_MIGRATED,
1125	IB_MIG_REARM,
1126	IB_MIG_ARMED
1127};
1128
1129enum ib_mw_type {
1130	IB_MW_TYPE_1 = 1,
1131	IB_MW_TYPE_2 = 2
1132};
1133
1134struct ib_qp_attr {
1135	enum ib_qp_state	qp_state;
1136	enum ib_qp_state	cur_qp_state;
1137	enum ib_mtu		path_mtu;
1138	enum ib_mig_state	path_mig_state;
1139	u32			qkey;
1140	u32			rq_psn;
1141	u32			sq_psn;
1142	u32			dest_qp_num;
1143	int			qp_access_flags;
1144	struct ib_qp_cap	cap;
1145	struct ib_ah_attr	ah_attr;
1146	struct ib_ah_attr	alt_ah_attr;
1147	u16			pkey_index;
1148	u16			alt_pkey_index;
1149	u8			en_sqd_async_notify;
1150	u8			sq_draining;
1151	u8			max_rd_atomic;
1152	u8			max_dest_rd_atomic;
1153	u8			min_rnr_timer;
1154	u8			port_num;
1155	u8			timeout;
1156	u8			retry_cnt;
1157	u8			rnr_retry;
1158	u8			alt_port_num;
1159	u8			alt_timeout;
1160};
1161
1162enum ib_wr_opcode {
1163	IB_WR_RDMA_WRITE,
1164	IB_WR_RDMA_WRITE_WITH_IMM,
1165	IB_WR_SEND,
1166	IB_WR_SEND_WITH_IMM,
1167	IB_WR_RDMA_READ,
1168	IB_WR_ATOMIC_CMP_AND_SWP,
1169	IB_WR_ATOMIC_FETCH_AND_ADD,
1170	IB_WR_LSO,
1171	IB_WR_SEND_WITH_INV,
1172	IB_WR_RDMA_READ_WITH_INV,
1173	IB_WR_LOCAL_INV,
1174	IB_WR_REG_MR,
1175	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1176	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1177	IB_WR_REG_SIG_MR,
1178	/* reserve values for low level drivers' internal use.
1179	 * These values will not be used at all in the ib core layer.
1180	 */
1181	IB_WR_RESERVED1 = 0xf0,
1182	IB_WR_RESERVED2,
1183	IB_WR_RESERVED3,
1184	IB_WR_RESERVED4,
1185	IB_WR_RESERVED5,
1186	IB_WR_RESERVED6,
1187	IB_WR_RESERVED7,
1188	IB_WR_RESERVED8,
1189	IB_WR_RESERVED9,
1190	IB_WR_RESERVED10,
1191	IB_WR_DUMMY = -1,	/* force enum signed */
1192};
1193
1194enum ib_send_flags {
1195	IB_SEND_FENCE		= 1,
1196	IB_SEND_SIGNALED	= (1<<1),
1197	IB_SEND_SOLICITED	= (1<<2),
1198	IB_SEND_INLINE		= (1<<3),
1199	IB_SEND_IP_CSUM		= (1<<4),
1200
1201	/* reserve bits 26-31 for low level drivers' internal use */
1202	IB_SEND_RESERVED_START	= (1 << 26),
1203	IB_SEND_RESERVED_END	= (1 << 31),
1204};
1205
1206struct ib_sge {
1207	u64	addr;
1208	u32	length;
1209	u32	lkey;
1210};
1211
1212struct ib_cqe {
1213	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1214};
1215
1216struct ib_send_wr {
1217	struct ib_send_wr      *next;
1218	union {
1219		u64		wr_id;
1220		struct ib_cqe	*wr_cqe;
1221	};
1222	struct ib_sge	       *sg_list;
1223	int			num_sge;
1224	enum ib_wr_opcode	opcode;
1225	int			send_flags;
1226	union {
1227		__be32		imm_data;
1228		u32		invalidate_rkey;
1229	} ex;
1230};
1231
1232struct ib_rdma_wr {
1233	struct ib_send_wr	wr;
1234	u64			remote_addr;
1235	u32			rkey;
1236};
1237
1238static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1239{
1240	return container_of(wr, struct ib_rdma_wr, wr);
1241}
1242
1243struct ib_atomic_wr {
1244	struct ib_send_wr	wr;
1245	u64			remote_addr;
1246	u64			compare_add;
1247	u64			swap;
1248	u64			compare_add_mask;
1249	u64			swap_mask;
1250	u32			rkey;
1251};
1252
1253static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1254{
1255	return container_of(wr, struct ib_atomic_wr, wr);
1256}
1257
1258struct ib_ud_wr {
1259	struct ib_send_wr	wr;
1260	struct ib_ah		*ah;
1261	void			*header;
1262	int			hlen;
1263	int			mss;
1264	u32			remote_qpn;
1265	u32			remote_qkey;
1266	u16			pkey_index; /* valid for GSI only */
1267	u8			port_num;   /* valid for DR SMPs on switch only */
1268};
1269
1270static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1271{
1272	return container_of(wr, struct ib_ud_wr, wr);
1273}
1274
1275struct ib_reg_wr {
1276	struct ib_send_wr	wr;
1277	struct ib_mr		*mr;
1278	u32			key;
1279	int			access;
1280};
1281
1282static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1283{
1284	return container_of(wr, struct ib_reg_wr, wr);
1285}
1286
1287struct ib_sig_handover_wr {
1288	struct ib_send_wr	wr;
1289	struct ib_sig_attrs    *sig_attrs;
1290	struct ib_mr	       *sig_mr;
1291	int			access_flags;
1292	struct ib_sge	       *prot;
1293};
1294
1295static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1296{
1297	return container_of(wr, struct ib_sig_handover_wr, wr);
1298}
1299
1300struct ib_recv_wr {
1301	struct ib_recv_wr      *next;
1302	union {
1303		u64		wr_id;
1304		struct ib_cqe	*wr_cqe;
1305	};
1306	struct ib_sge	       *sg_list;
1307	int			num_sge;
1308};
1309
1310enum ib_access_flags {
1311	IB_ACCESS_LOCAL_WRITE	= 1,
1312	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1313	IB_ACCESS_REMOTE_READ	= (1<<2),
1314	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1315	IB_ACCESS_MW_BIND	= (1<<4),
1316	IB_ZERO_BASED		= (1<<5),
1317	IB_ACCESS_ON_DEMAND     = (1<<6),
1318};
1319
1320struct ib_phys_buf {
1321	u64	addr;
1322	u64	size;
1323};
1324
1325/*
1326 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1327 * are hidden here instead of a uapi header!
1328 */
1329enum ib_mr_rereg_flags {
1330	IB_MR_REREG_TRANS	= 1,
1331	IB_MR_REREG_PD		= (1<<1),
1332	IB_MR_REREG_ACCESS	= (1<<2),
1333	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1334};
1335
1336struct ib_fmr_attr {
1337	int	max_pages;
1338	int	max_maps;
1339	u8	page_shift;
1340};
1341
1342struct ib_umem;
1343
1344struct ib_ucontext {
1345	struct ib_device       *device;
1346	struct list_head	pd_list;
1347	struct list_head	mr_list;
1348	struct list_head	mw_list;
1349	struct list_head	cq_list;
1350	struct list_head	qp_list;
1351	struct list_head	srq_list;
1352	struct list_head	ah_list;
1353	struct list_head	xrcd_list;
1354	struct list_head	rule_list;
1355	struct list_head	wq_list;
1356	struct list_head	rwq_ind_tbl_list;
1357	int			closing;
1358
1359	pid_t			tgid;
1360#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1361	struct rb_root      umem_tree;
1362	/*
1363	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1364	 * mmu notifiers registration.
1365	 */
1366	struct rw_semaphore	umem_rwsem;
1367	void (*invalidate_range)(struct ib_umem *umem,
1368				 unsigned long start, unsigned long end);
1369
1370	struct mmu_notifier	mn;
1371	atomic_t		notifier_count;
1372	/* A list of umems that don't have private mmu notifier counters yet. */
1373	struct list_head	no_private_counters;
1374	int                     odp_mrs_count;
1375#endif
1376};
1377
1378struct ib_uobject {
1379	u64			user_handle;	/* handle given to us by userspace */
1380	struct ib_ucontext     *context;	/* associated user context */
1381	void		       *object;		/* containing object */
1382	struct list_head	list;		/* link to context's list */
1383	int			id;		/* index into kernel idr */
1384	struct kref		ref;
1385	struct rw_semaphore	mutex;		/* protects .live */
1386	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1387	int			live;
1388};
1389
1390struct ib_udata {
1391	const void __user *inbuf;
1392	void __user *outbuf;
1393	size_t       inlen;
1394	size_t       outlen;
1395};
1396
1397struct ib_pd {
1398	u32			local_dma_lkey;
1399	u32			flags;
1400	struct ib_device       *device;
1401	struct ib_uobject      *uobject;
1402	atomic_t          	usecnt; /* count all resources */
1403
1404	u32			unsafe_global_rkey;
1405
1406	/*
1407	 * Implementation details of the RDMA core, don't use in drivers:
1408	 */
1409	struct ib_mr	       *__internal_mr;
1410};
1411
1412struct ib_xrcd {
1413	struct ib_device       *device;
1414	atomic_t		usecnt; /* count all exposed resources */
1415	struct inode	       *inode;
1416
1417	struct mutex		tgt_qp_mutex;
1418	struct list_head	tgt_qp_list;
1419};
1420
1421struct ib_ah {
1422	struct ib_device	*device;
1423	struct ib_pd		*pd;
1424	struct ib_uobject	*uobject;
1425};
1426
1427typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1428
1429enum ib_poll_context {
1430	IB_POLL_DIRECT,		/* caller context, no hw completions */
1431	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1432	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1433};
1434
1435struct ib_cq {
1436	struct ib_device       *device;
1437	struct ib_uobject      *uobject;
1438	ib_comp_handler   	comp_handler;
1439	void                  (*event_handler)(struct ib_event *, void *);
1440	void                   *cq_context;
1441	int               	cqe;
1442	atomic_t          	usecnt; /* count number of work queues */
1443	enum ib_poll_context	poll_ctx;
1444	struct work_struct	work;
1445};
1446
1447struct ib_srq {
1448	struct ib_device       *device;
1449	struct ib_pd	       *pd;
1450	struct ib_uobject      *uobject;
1451	void		      (*event_handler)(struct ib_event *, void *);
1452	void		       *srq_context;
1453	enum ib_srq_type	srq_type;
1454	atomic_t		usecnt;
1455
1456	union {
1457		struct {
1458			struct ib_xrcd *xrcd;
1459			struct ib_cq   *cq;
1460			u32		srq_num;
1461		} xrc;
1462	} ext;
1463};
1464
1465enum ib_wq_type {
1466	IB_WQT_RQ
1467};
1468
1469enum ib_wq_state {
1470	IB_WQS_RESET,
1471	IB_WQS_RDY,
1472	IB_WQS_ERR
1473};
1474
1475struct ib_wq {
1476	struct ib_device       *device;
1477	struct ib_uobject      *uobject;
1478	void		    *wq_context;
1479	void		    (*event_handler)(struct ib_event *, void *);
1480	struct ib_pd	       *pd;
1481	struct ib_cq	       *cq;
1482	u32		wq_num;
1483	enum ib_wq_state       state;
1484	enum ib_wq_type	wq_type;
1485	atomic_t		usecnt;
1486};
1487
1488struct ib_wq_init_attr {
1489	void		       *wq_context;
1490	enum ib_wq_type	wq_type;
1491	u32		max_wr;
1492	u32		max_sge;
1493	struct	ib_cq	       *cq;
1494	void		    (*event_handler)(struct ib_event *, void *);
1495};
1496
1497enum ib_wq_attr_mask {
1498	IB_WQ_STATE	= 1 << 0,
1499	IB_WQ_CUR_STATE	= 1 << 1,
1500};
1501
1502struct ib_wq_attr {
1503	enum	ib_wq_state	wq_state;
1504	enum	ib_wq_state	curr_wq_state;
1505};
1506
1507struct ib_rwq_ind_table {
1508	struct ib_device	*device;
1509	struct ib_uobject      *uobject;
1510	atomic_t		usecnt;
1511	u32		ind_tbl_num;
1512	u32		log_ind_tbl_size;
1513	struct ib_wq	**ind_tbl;
1514};
1515
1516struct ib_rwq_ind_table_init_attr {
1517	u32		log_ind_tbl_size;
1518	/* Each entry is a pointer to Receive Work Queue */
1519	struct ib_wq	**ind_tbl;
1520};
1521
1522/*
1523 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1524 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1525 */
1526struct ib_qp {
1527	struct ib_device       *device;
1528	struct ib_pd	       *pd;
1529	struct ib_cq	       *send_cq;
1530	struct ib_cq	       *recv_cq;
1531	spinlock_t		mr_lock;
1532	struct ib_srq	       *srq;
1533	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1534	struct list_head	xrcd_list;
1535
1536	/* count times opened, mcast attaches, flow attaches */
1537	atomic_t		usecnt;
1538	struct list_head	open_list;
1539	struct ib_qp           *real_qp;
1540	struct ib_uobject      *uobject;
1541	void                  (*event_handler)(struct ib_event *, void *);
1542	void		       *qp_context;
1543	u32			qp_num;
1544	u32			max_write_sge;
1545	u32			max_read_sge;
1546	enum ib_qp_type		qp_type;
1547	struct ib_rwq_ind_table *rwq_ind_tbl;
1548};
1549
1550struct ib_mr {
1551	struct ib_device  *device;
1552	struct ib_pd	  *pd;
1553	u32		   lkey;
1554	u32		   rkey;
1555	u64		   iova;
1556	u32		   length;
1557	unsigned int	   page_size;
1558	bool		   need_inval;
1559	union {
1560		struct ib_uobject	*uobject;	/* user */
1561		struct list_head	qp_entry;	/* FR */
1562	};
1563};
1564
1565struct ib_mw {
1566	struct ib_device	*device;
1567	struct ib_pd		*pd;
1568	struct ib_uobject	*uobject;
1569	u32			rkey;
1570	enum ib_mw_type         type;
1571};
1572
1573struct ib_fmr {
1574	struct ib_device	*device;
1575	struct ib_pd		*pd;
1576	struct list_head	list;
1577	u32			lkey;
1578	u32			rkey;
1579};
1580
1581/* Supported steering options */
1582enum ib_flow_attr_type {
1583	/* steering according to rule specifications */
1584	IB_FLOW_ATTR_NORMAL		= 0x0,
1585	/* default unicast and multicast rule -
1586	 * receive all Eth traffic which isn't steered to any QP
1587	 */
1588	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1589	/* default multicast rule -
1590	 * receive all Eth multicast traffic which isn't steered to any QP
1591	 */
1592	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1593	/* sniffer rule - receive all port traffic */
1594	IB_FLOW_ATTR_SNIFFER		= 0x3
1595};
1596
1597/* Supported steering header types */
1598enum ib_flow_spec_type {
1599	/* L2 headers*/
1600	IB_FLOW_SPEC_ETH	= 0x20,
1601	IB_FLOW_SPEC_IB		= 0x22,
1602	/* L3 header*/
1603	IB_FLOW_SPEC_IPV4	= 0x30,
1604	IB_FLOW_SPEC_IPV6	= 0x31,
1605	/* L4 headers*/
1606	IB_FLOW_SPEC_TCP	= 0x40,
1607	IB_FLOW_SPEC_UDP	= 0x41
1608};
1609#define IB_FLOW_SPEC_LAYER_MASK	0xF0
1610#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1611
1612/* Flow steering rule priority is set according to it's domain.
1613 * Lower domain value means higher priority.
1614 */
1615enum ib_flow_domain {
1616	IB_FLOW_DOMAIN_USER,
1617	IB_FLOW_DOMAIN_ETHTOOL,
1618	IB_FLOW_DOMAIN_RFS,
1619	IB_FLOW_DOMAIN_NIC,
1620	IB_FLOW_DOMAIN_NUM /* Must be last */
1621};
1622
1623enum ib_flow_flags {
1624	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1625	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 2  /* Must be last */
1626};
1627
1628struct ib_flow_eth_filter {
1629	u8	dst_mac[6];
1630	u8	src_mac[6];
1631	__be16	ether_type;
1632	__be16	vlan_tag;
1633	/* Must be last */
1634	u8	real_sz[0];
1635};
1636
1637struct ib_flow_spec_eth {
1638	enum ib_flow_spec_type	  type;
1639	u16			  size;
1640	struct ib_flow_eth_filter val;
1641	struct ib_flow_eth_filter mask;
1642};
1643
1644struct ib_flow_ib_filter {
1645	__be16 dlid;
1646	__u8   sl;
1647	/* Must be last */
1648	u8	real_sz[0];
1649};
1650
1651struct ib_flow_spec_ib {
1652	enum ib_flow_spec_type	 type;
1653	u16			 size;
1654	struct ib_flow_ib_filter val;
1655	struct ib_flow_ib_filter mask;
1656};
1657
1658/* IPv4 header flags */
1659enum ib_ipv4_flags {
1660	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1661	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1662				    last have this flag set */
1663};
1664
1665struct ib_flow_ipv4_filter {
1666	__be32	src_ip;
1667	__be32	dst_ip;
1668	u8	proto;
1669	u8	tos;
1670	u8	ttl;
1671	u8	flags;
1672	/* Must be last */
1673	u8	real_sz[0];
1674};
1675
1676struct ib_flow_spec_ipv4 {
1677	enum ib_flow_spec_type	   type;
1678	u16			   size;
1679	struct ib_flow_ipv4_filter val;
1680	struct ib_flow_ipv4_filter mask;
1681};
1682
1683struct ib_flow_ipv6_filter {
1684	u8	src_ip[16];
1685	u8	dst_ip[16];
1686	__be32	flow_label;
1687	u8	next_hdr;
1688	u8	traffic_class;
1689	u8	hop_limit;
1690	/* Must be last */
1691	u8	real_sz[0];
1692};
1693
1694struct ib_flow_spec_ipv6 {
1695	enum ib_flow_spec_type	   type;
1696	u16			   size;
1697	struct ib_flow_ipv6_filter val;
1698	struct ib_flow_ipv6_filter mask;
1699};
1700
1701struct ib_flow_tcp_udp_filter {
1702	__be16	dst_port;
1703	__be16	src_port;
1704	/* Must be last */
1705	u8	real_sz[0];
1706};
1707
1708struct ib_flow_spec_tcp_udp {
1709	enum ib_flow_spec_type	      type;
1710	u16			      size;
1711	struct ib_flow_tcp_udp_filter val;
1712	struct ib_flow_tcp_udp_filter mask;
1713};
1714
1715union ib_flow_spec {
1716	struct {
1717		enum ib_flow_spec_type	type;
1718		u16			size;
1719	};
1720	struct ib_flow_spec_eth		eth;
1721	struct ib_flow_spec_ib		ib;
1722	struct ib_flow_spec_ipv4        ipv4;
1723	struct ib_flow_spec_tcp_udp	tcp_udp;
1724	struct ib_flow_spec_ipv6        ipv6;
1725};
1726
1727struct ib_flow_attr {
1728	enum ib_flow_attr_type type;
1729	u16	     size;
1730	u16	     priority;
1731	u32	     flags;
1732	u8	     num_of_specs;
1733	u8	     port;
1734	/* Following are the optional layers according to user request
1735	 * struct ib_flow_spec_xxx
1736	 * struct ib_flow_spec_yyy
1737	 */
1738};
1739
1740struct ib_flow {
1741	struct ib_qp		*qp;
1742	struct ib_uobject	*uobject;
1743};
1744
1745struct ib_mad_hdr;
1746struct ib_grh;
1747
1748enum ib_process_mad_flags {
1749	IB_MAD_IGNORE_MKEY	= 1,
1750	IB_MAD_IGNORE_BKEY	= 2,
1751	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1752};
1753
1754enum ib_mad_result {
1755	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1756	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1757	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1758	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1759};
1760
1761#define IB_DEVICE_NAME_MAX 64
1762
1763struct ib_cache {
1764	rwlock_t                lock;
1765	struct ib_event_handler event_handler;
1766	struct ib_pkey_cache  **pkey_cache;
1767	struct ib_gid_table   **gid_cache;
1768	u8                     *lmc_cache;
1769};
1770
1771struct ib_dma_mapping_ops {
1772	int		(*mapping_error)(struct ib_device *dev,
1773					 u64 dma_addr);
1774	u64		(*map_single)(struct ib_device *dev,
1775				      void *ptr, size_t size,
1776				      enum dma_data_direction direction);
1777	void		(*unmap_single)(struct ib_device *dev,
1778					u64 addr, size_t size,
1779					enum dma_data_direction direction);
1780	u64		(*map_page)(struct ib_device *dev,
1781				    struct page *page, unsigned long offset,
1782				    size_t size,
1783				    enum dma_data_direction direction);
1784	void		(*unmap_page)(struct ib_device *dev,
1785				      u64 addr, size_t size,
1786				      enum dma_data_direction direction);
1787	int		(*map_sg)(struct ib_device *dev,
1788				  struct scatterlist *sg, int nents,
1789				  enum dma_data_direction direction);
1790	void		(*unmap_sg)(struct ib_device *dev,
1791				    struct scatterlist *sg, int nents,
1792				    enum dma_data_direction direction);
1793	int		(*map_sg_attrs)(struct ib_device *dev,
1794					struct scatterlist *sg, int nents,
1795					enum dma_data_direction direction,
1796					struct dma_attrs *attrs);
1797	void		(*unmap_sg_attrs)(struct ib_device *dev,
1798					  struct scatterlist *sg, int nents,
1799					  enum dma_data_direction direction,
1800					  struct dma_attrs *attrs);
1801	void		(*sync_single_for_cpu)(struct ib_device *dev,
1802					       u64 dma_handle,
1803					       size_t size,
1804					       enum dma_data_direction dir);
1805	void		(*sync_single_for_device)(struct ib_device *dev,
1806						  u64 dma_handle,
1807						  size_t size,
1808						  enum dma_data_direction dir);
1809	void		*(*alloc_coherent)(struct ib_device *dev,
1810					   size_t size,
1811					   u64 *dma_handle,
1812					   gfp_t flag);
1813	void		(*free_coherent)(struct ib_device *dev,
1814					 size_t size, void *cpu_addr,
1815					 u64 dma_handle);
1816};
1817
1818struct iw_cm_verbs;
1819
1820struct ib_port_immutable {
1821	int                           pkey_tbl_len;
1822	int                           gid_tbl_len;
1823	u32                           core_cap_flags;
1824	u32                           max_mad_size;
1825};
1826
1827struct ib_device {
1828	struct device                *dma_device;
1829
1830	char                          name[IB_DEVICE_NAME_MAX];
1831
1832	struct list_head              event_handler_list;
1833	spinlock_t                    event_handler_lock;
1834
1835	spinlock_t                    client_data_lock;
1836	struct list_head              core_list;
1837	/* Access to the client_data_list is protected by the client_data_lock
1838	 * spinlock and the lists_rwsem read-write semaphore */
1839	struct list_head              client_data_list;
1840
1841	struct ib_cache               cache;
1842	/**
1843	 * port_immutable is indexed by port number
1844	 */
1845	struct ib_port_immutable     *port_immutable;
1846
1847	int			      num_comp_vectors;
1848
1849	struct iw_cm_verbs	     *iwcm;
1850
1851	/**
1852	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1853	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
1854	 *   core when the device is removed.  A lifespan of -1 in the return
1855	 *   struct tells the core to set a default lifespan.
1856	 */
1857	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
1858						     u8 port_num);
1859	/**
1860	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1861	 * @index - The index in the value array we wish to have updated, or
1862	 *   num_counters if we want all stats updated
1863	 * Return codes -
1864	 *   < 0 - Error, no counters updated
1865	 *   index - Updated the single counter pointed to by index
1866	 *   num_counters - Updated all counters (will reset the timestamp
1867	 *     and prevent further calls for lifespan milliseconds)
1868	 * Drivers are allowed to update all counters in leiu of just the
1869	 *   one given in index at their option
1870	 */
1871	int		           (*get_hw_stats)(struct ib_device *device,
1872						   struct rdma_hw_stats *stats,
1873						   u8 port, int index);
1874	int		           (*query_device)(struct ib_device *device,
1875						   struct ib_device_attr *device_attr,
1876						   struct ib_udata *udata);
1877	int		           (*query_port)(struct ib_device *device,
1878						 u8 port_num,
1879						 struct ib_port_attr *port_attr);
1880	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1881						     u8 port_num);
1882	/* When calling get_netdev, the HW vendor's driver should return the
1883	 * net device of device @device at port @port_num or NULL if such
1884	 * a net device doesn't exist. The vendor driver should call dev_hold
1885	 * on this net device. The HW vendor's device driver must guarantee
1886	 * that this function returns NULL before the net device reaches
1887	 * NETDEV_UNREGISTER_FINAL state.
1888	 */
1889	struct net_device	  *(*get_netdev)(struct ib_device *device,
1890						 u8 port_num);
1891	int		           (*query_gid)(struct ib_device *device,
1892						u8 port_num, int index,
1893						union ib_gid *gid);
1894	/* When calling add_gid, the HW vendor's driver should
1895	 * add the gid of device @device at gid index @index of
1896	 * port @port_num to be @gid. Meta-info of that gid (for example,
1897	 * the network device related to this gid is available
1898	 * at @attr. @context allows the HW vendor driver to store extra
1899	 * information together with a GID entry. The HW vendor may allocate
1900	 * memory to contain this information and store it in @context when a
1901	 * new GID entry is written to. Params are consistent until the next
1902	 * call of add_gid or delete_gid. The function should return 0 on
1903	 * success or error otherwise. The function could be called
1904	 * concurrently for different ports. This function is only called
1905	 * when roce_gid_table is used.
1906	 */
1907	int		           (*add_gid)(struct ib_device *device,
1908					      u8 port_num,
1909					      unsigned int index,
1910					      const union ib_gid *gid,
1911					      const struct ib_gid_attr *attr,
1912					      void **context);
1913	/* When calling del_gid, the HW vendor's driver should delete the
1914	 * gid of device @device at gid index @index of port @port_num.
1915	 * Upon the deletion of a GID entry, the HW vendor must free any
1916	 * allocated memory. The caller will clear @context afterwards.
1917	 * This function is only called when roce_gid_table is used.
1918	 */
1919	int		           (*del_gid)(struct ib_device *device,
1920					      u8 port_num,
1921					      unsigned int index,
1922					      void **context);
1923	int		           (*query_pkey)(struct ib_device *device,
1924						 u8 port_num, u16 index, u16 *pkey);
1925	int		           (*modify_device)(struct ib_device *device,
1926						    int device_modify_mask,
1927						    struct ib_device_modify *device_modify);
1928	int		           (*modify_port)(struct ib_device *device,
1929						  u8 port_num, int port_modify_mask,
1930						  struct ib_port_modify *port_modify);
1931	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1932						     struct ib_udata *udata);
1933	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1934	int                        (*mmap)(struct ib_ucontext *context,
1935					   struct vm_area_struct *vma);
1936	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1937					       struct ib_ucontext *context,
1938					       struct ib_udata *udata);
1939	int                        (*dealloc_pd)(struct ib_pd *pd);
1940	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1941						struct ib_ah_attr *ah_attr);
1942	int                        (*modify_ah)(struct ib_ah *ah,
1943						struct ib_ah_attr *ah_attr);
1944	int                        (*query_ah)(struct ib_ah *ah,
1945					       struct ib_ah_attr *ah_attr);
1946	int                        (*destroy_ah)(struct ib_ah *ah);
1947	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1948						 struct ib_srq_init_attr *srq_init_attr,
1949						 struct ib_udata *udata);
1950	int                        (*modify_srq)(struct ib_srq *srq,
1951						 struct ib_srq_attr *srq_attr,
1952						 enum ib_srq_attr_mask srq_attr_mask,
1953						 struct ib_udata *udata);
1954	int                        (*query_srq)(struct ib_srq *srq,
1955						struct ib_srq_attr *srq_attr);
1956	int                        (*destroy_srq)(struct ib_srq *srq);
1957	int                        (*post_srq_recv)(struct ib_srq *srq,
1958						    struct ib_recv_wr *recv_wr,
1959						    struct ib_recv_wr **bad_recv_wr);
1960	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1961						struct ib_qp_init_attr *qp_init_attr,
1962						struct ib_udata *udata);
1963	int                        (*modify_qp)(struct ib_qp *qp,
1964						struct ib_qp_attr *qp_attr,
1965						int qp_attr_mask,
1966						struct ib_udata *udata);
1967	int                        (*query_qp)(struct ib_qp *qp,
1968					       struct ib_qp_attr *qp_attr,
1969					       int qp_attr_mask,
1970					       struct ib_qp_init_attr *qp_init_attr);
1971	int                        (*destroy_qp)(struct ib_qp *qp);
1972	int                        (*post_send)(struct ib_qp *qp,
1973						struct ib_send_wr *send_wr,
1974						struct ib_send_wr **bad_send_wr);
1975	int                        (*post_recv)(struct ib_qp *qp,
1976						struct ib_recv_wr *recv_wr,
1977						struct ib_recv_wr **bad_recv_wr);
1978	struct ib_cq *             (*create_cq)(struct ib_device *device,
1979						const struct ib_cq_init_attr *attr,
1980						struct ib_ucontext *context,
1981						struct ib_udata *udata);
1982	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1983						u16 cq_period);
1984	int                        (*destroy_cq)(struct ib_cq *cq);
1985	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1986						struct ib_udata *udata);
1987	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1988					      struct ib_wc *wc);
1989	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1990	int                        (*req_notify_cq)(struct ib_cq *cq,
1991						    enum ib_cq_notify_flags flags);
1992	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1993						      int wc_cnt);
1994	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1995						 int mr_access_flags);
1996	struct ib_mr *		   (*reg_phys_mr)(struct ib_pd *pd,
1997						  struct ib_phys_buf *phys_buf_array,
1998						  int num_phys_buf,
1999						  int mr_access_flags,
2000						  u64 *iova_start);
2001	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2002						  u64 start, u64 length,
2003						  u64 virt_addr,
2004						  int mr_access_flags,
2005						  struct ib_udata *udata);
2006	int			   (*rereg_user_mr)(struct ib_mr *mr,
2007						    int flags,
2008						    u64 start, u64 length,
2009						    u64 virt_addr,
2010						    int mr_access_flags,
2011						    struct ib_pd *pd,
2012						    struct ib_udata *udata);
2013	int                        (*dereg_mr)(struct ib_mr *mr);
2014	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
2015					       enum ib_mr_type mr_type,
2016					       u32 max_num_sg);
2017	int                        (*map_mr_sg)(struct ib_mr *mr,
2018						struct scatterlist *sg,
2019						int sg_nents,
2020						unsigned int *sg_offset);
2021	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2022					       enum ib_mw_type type,
2023					       struct ib_udata *udata);
2024	int                        (*dealloc_mw)(struct ib_mw *mw);
2025	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2026						int mr_access_flags,
2027						struct ib_fmr_attr *fmr_attr);
2028	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2029						   u64 *page_list, int list_len,
2030						   u64 iova);
2031	int		           (*unmap_fmr)(struct list_head *fmr_list);
2032	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2033	int                        (*attach_mcast)(struct ib_qp *qp,
2034						   union ib_gid *gid,
2035						   u16 lid);
2036	int                        (*detach_mcast)(struct ib_qp *qp,
2037						   union ib_gid *gid,
2038						   u16 lid);
2039	int                        (*process_mad)(struct ib_device *device,
2040						  int process_mad_flags,
2041						  u8 port_num,
2042						  const struct ib_wc *in_wc,
2043						  const struct ib_grh *in_grh,
2044						  const struct ib_mad_hdr *in_mad,
2045						  size_t in_mad_size,
2046						  struct ib_mad_hdr *out_mad,
2047						  size_t *out_mad_size,
2048						  u16 *out_mad_pkey_index);
2049	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2050						 struct ib_ucontext *ucontext,
2051						 struct ib_udata *udata);
2052	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2053	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2054						  struct ib_flow_attr
2055						  *flow_attr,
2056						  int domain);
2057	int			   (*destroy_flow)(struct ib_flow *flow_id);
2058	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2059						      struct ib_mr_status *mr_status);
2060	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2061	void			   (*drain_rq)(struct ib_qp *qp);
2062	void			   (*drain_sq)(struct ib_qp *qp);
2063	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2064							int state);
2065	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2066						   struct ifla_vf_info *ivf);
2067	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2068						   struct ifla_vf_stats *stats);
2069	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2070						  int type);
2071	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2072						struct ib_wq_init_attr *init_attr,
2073						struct ib_udata *udata);
2074	int			   (*destroy_wq)(struct ib_wq *wq);
2075	int			   (*modify_wq)(struct ib_wq *wq,
2076						struct ib_wq_attr *attr,
2077						u32 wq_attr_mask,
2078						struct ib_udata *udata);
2079	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2080							   struct ib_rwq_ind_table_init_attr *init_attr,
2081							   struct ib_udata *udata);
2082	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2083	struct ib_dma_mapping_ops   *dma_ops;
2084
2085	struct module               *owner;
2086	struct device                dev;
2087	struct kobject               *ports_parent;
2088	struct list_head             port_list;
2089
2090	enum {
2091		IB_DEV_UNINITIALIZED,
2092		IB_DEV_REGISTERED,
2093		IB_DEV_UNREGISTERED
2094	}                            reg_state;
2095
2096	int			     uverbs_abi_ver;
2097	u64			     uverbs_cmd_mask;
2098	u64			     uverbs_ex_cmd_mask;
2099
2100	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2101	__be64			     node_guid;
2102	u32			     local_dma_lkey;
2103	u16                          is_switch:1;
2104	u8                           node_type;
2105	u8                           phys_port_cnt;
2106	struct ib_device_attr        attrs;
2107	struct attribute_group	     *hw_stats_ag;
2108	struct rdma_hw_stats         *hw_stats;
2109
2110	/**
2111	 * The following mandatory functions are used only at device
2112	 * registration.  Keep functions such as these at the end of this
2113	 * structure to avoid cache line misses when accessing struct ib_device
2114	 * in fast paths.
2115	 */
2116	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2117	void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2118};
2119
2120struct ib_client {
2121	char  *name;
2122	void (*add)   (struct ib_device *);
2123	void (*remove)(struct ib_device *, void *client_data);
2124
2125	/* Returns the net_dev belonging to this ib_client and matching the
2126	 * given parameters.
2127	 * @dev:	 An RDMA device that the net_dev use for communication.
2128	 * @port:	 A physical port number on the RDMA device.
2129	 * @pkey:	 P_Key that the net_dev uses if applicable.
2130	 * @gid:	 A GID that the net_dev uses to communicate.
2131	 * @addr:	 An IP address the net_dev is configured with.
2132	 * @client_data: The device's client data set by ib_set_client_data().
2133	 *
2134	 * An ib_client that implements a net_dev on top of RDMA devices
2135	 * (such as IP over IB) should implement this callback, allowing the
2136	 * rdma_cm module to find the right net_dev for a given request.
2137	 *
2138	 * The caller is responsible for calling dev_put on the returned
2139	 * netdev. */
2140	struct net_device *(*get_net_dev_by_params)(
2141			struct ib_device *dev,
2142			u8 port,
2143			u16 pkey,
2144			const union ib_gid *gid,
2145			const struct sockaddr *addr,
2146			void *client_data);
2147	struct list_head list;
2148};
2149
2150struct ib_device *ib_alloc_device(size_t size);
2151void ib_dealloc_device(struct ib_device *device);
2152
2153void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2154
2155int ib_register_device(struct ib_device *device,
2156		       int (*port_callback)(struct ib_device *,
2157					    u8, struct kobject *));
2158void ib_unregister_device(struct ib_device *device);
2159
2160int ib_register_client   (struct ib_client *client);
2161void ib_unregister_client(struct ib_client *client);
2162
2163void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2164void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2165			 void *data);
2166
2167static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2168{
2169	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2170}
2171
2172static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2173{
2174	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2175}
2176
2177static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2178				       size_t offset,
2179				       size_t len)
2180{
2181	const void __user *p = (const char __user *)udata->inbuf + offset;
2182	bool ret;
2183	u8 *buf;
2184
2185	if (len > USHRT_MAX)
2186		return false;
2187
2188	buf = memdup_user(p, len);
2189	if (IS_ERR(buf))
2190		return false;
2191
2192	ret = !memchr_inv(buf, 0, len);
2193	kfree(buf);
2194	return ret;
2195}
2196
2197/**
2198 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2199 * contains all required attributes and no attributes not allowed for
2200 * the given QP state transition.
2201 * @cur_state: Current QP state
2202 * @next_state: Next QP state
2203 * @type: QP type
2204 * @mask: Mask of supplied QP attributes
2205 * @ll : link layer of port
2206 *
2207 * This function is a helper function that a low-level driver's
2208 * modify_qp method can use to validate the consumer's input.  It
2209 * checks that cur_state and next_state are valid QP states, that a
2210 * transition from cur_state to next_state is allowed by the IB spec,
2211 * and that the attribute mask supplied is allowed for the transition.
2212 */
2213int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2214		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
2215		       enum rdma_link_layer ll);
2216
2217int ib_register_event_handler  (struct ib_event_handler *event_handler);
2218int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2219void ib_dispatch_event(struct ib_event *event);
2220
2221int ib_query_port(struct ib_device *device,
2222		  u8 port_num, struct ib_port_attr *port_attr);
2223
2224enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2225					       u8 port_num);
2226
2227/**
2228 * rdma_cap_ib_switch - Check if the device is IB switch
2229 * @device: Device to check
2230 *
2231 * Device driver is responsible for setting is_switch bit on
2232 * in ib_device structure at init time.
2233 *
2234 * Return: true if the device is IB switch.
2235 */
2236static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2237{
2238	return device->is_switch;
2239}
2240
2241/**
2242 * rdma_start_port - Return the first valid port number for the device
2243 * specified
2244 *
2245 * @device: Device to be checked
2246 *
2247 * Return start port number
2248 */
2249static inline u8 rdma_start_port(const struct ib_device *device)
2250{
2251	return rdma_cap_ib_switch(device) ? 0 : 1;
2252}
2253
2254/**
2255 * rdma_end_port - Return the last valid port number for the device
2256 * specified
2257 *
2258 * @device: Device to be checked
2259 *
2260 * Return last port number
2261 */
2262static inline u8 rdma_end_port(const struct ib_device *device)
2263{
2264	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2265}
2266
2267static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2268{
2269	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2270}
2271
2272static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2273{
2274	return device->port_immutable[port_num].core_cap_flags &
2275		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2276}
2277
2278static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2279{
2280	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2281}
2282
2283static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2284{
2285	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2286}
2287
2288static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2289{
2290	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2291}
2292
2293static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2294{
2295	return rdma_protocol_ib(device, port_num) ||
2296		rdma_protocol_roce(device, port_num);
2297}
2298
2299/**
2300 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2301 * Management Datagrams.
2302 * @device: Device to check
2303 * @port_num: Port number to check
2304 *
2305 * Management Datagrams (MAD) are a required part of the InfiniBand
2306 * specification and are supported on all InfiniBand devices.  A slightly
2307 * extended version are also supported on OPA interfaces.
2308 *
2309 * Return: true if the port supports sending/receiving of MAD packets.
2310 */
2311static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2312{
2313	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2314}
2315
2316/**
2317 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2318 * Management Datagrams.
2319 * @device: Device to check
2320 * @port_num: Port number to check
2321 *
2322 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2323 * datagrams with their own versions.  These OPA MADs share many but not all of
2324 * the characteristics of InfiniBand MADs.
2325 *
2326 * OPA MADs differ in the following ways:
2327 *
2328 *    1) MADs are variable size up to 2K
2329 *       IBTA defined MADs remain fixed at 256 bytes
2330 *    2) OPA SMPs must carry valid PKeys
2331 *    3) OPA SMP packets are a different format
2332 *
2333 * Return: true if the port supports OPA MAD packet formats.
2334 */
2335static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2336{
2337	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2338		== RDMA_CORE_CAP_OPA_MAD;
2339}
2340
2341/**
2342 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2343 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2344 * @device: Device to check
2345 * @port_num: Port number to check
2346 *
2347 * Each InfiniBand node is required to provide a Subnet Management Agent
2348 * that the subnet manager can access.  Prior to the fabric being fully
2349 * configured by the subnet manager, the SMA is accessed via a well known
2350 * interface called the Subnet Management Interface (SMI).  This interface
2351 * uses directed route packets to communicate with the SM to get around the
2352 * chicken and egg problem of the SM needing to know what's on the fabric
2353 * in order to configure the fabric, and needing to configure the fabric in
2354 * order to send packets to the devices on the fabric.  These directed
2355 * route packets do not need the fabric fully configured in order to reach
2356 * their destination.  The SMI is the only method allowed to send
2357 * directed route packets on an InfiniBand fabric.
2358 *
2359 * Return: true if the port provides an SMI.
2360 */
2361static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2362{
2363	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2364}
2365
2366/**
2367 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2368 * Communication Manager.
2369 * @device: Device to check
2370 * @port_num: Port number to check
2371 *
2372 * The InfiniBand Communication Manager is one of many pre-defined General
2373 * Service Agents (GSA) that are accessed via the General Service
2374 * Interface (GSI).  It's role is to facilitate establishment of connections
2375 * between nodes as well as other management related tasks for established
2376 * connections.
2377 *
2378 * Return: true if the port supports an IB CM (this does not guarantee that
2379 * a CM is actually running however).
2380 */
2381static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2382{
2383	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2384}
2385
2386/**
2387 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2388 * Communication Manager.
2389 * @device: Device to check
2390 * @port_num: Port number to check
2391 *
2392 * Similar to above, but specific to iWARP connections which have a different
2393 * managment protocol than InfiniBand.
2394 *
2395 * Return: true if the port supports an iWARP CM (this does not guarantee that
2396 * a CM is actually running however).
2397 */
2398static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2399{
2400	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2401}
2402
2403/**
2404 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2405 * Subnet Administration.
2406 * @device: Device to check
2407 * @port_num: Port number to check
2408 *
2409 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2410 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2411 * fabrics, devices should resolve routes to other hosts by contacting the
2412 * SA to query the proper route.
2413 *
2414 * Return: true if the port should act as a client to the fabric Subnet
2415 * Administration interface.  This does not imply that the SA service is
2416 * running locally.
2417 */
2418static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2419{
2420	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2421}
2422
2423/**
2424 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2425 * Multicast.
2426 * @device: Device to check
2427 * @port_num: Port number to check
2428 *
2429 * InfiniBand multicast registration is more complex than normal IPv4 or
2430 * IPv6 multicast registration.  Each Host Channel Adapter must register
2431 * with the Subnet Manager when it wishes to join a multicast group.  It
2432 * should do so only once regardless of how many queue pairs it subscribes
2433 * to this group.  And it should leave the group only after all queue pairs
2434 * attached to the group have been detached.
2435 *
2436 * Return: true if the port must undertake the additional adminstrative
2437 * overhead of registering/unregistering with the SM and tracking of the
2438 * total number of queue pairs attached to the multicast group.
2439 */
2440static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2441{
2442	return rdma_cap_ib_sa(device, port_num);
2443}
2444
2445/**
2446 * rdma_cap_af_ib - Check if the port of device has the capability
2447 * Native Infiniband Address.
2448 * @device: Device to check
2449 * @port_num: Port number to check
2450 *
2451 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2452 * GID.  RoCE uses a different mechanism, but still generates a GID via
2453 * a prescribed mechanism and port specific data.
2454 *
2455 * Return: true if the port uses a GID address to identify devices on the
2456 * network.
2457 */
2458static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2459{
2460	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2461}
2462
2463/**
2464 * rdma_cap_eth_ah - Check if the port of device has the capability
2465 * Ethernet Address Handle.
2466 * @device: Device to check
2467 * @port_num: Port number to check
2468 *
2469 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2470 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2471 * port.  Normally, packet headers are generated by the sending host
2472 * adapter, but when sending connectionless datagrams, we must manually
2473 * inject the proper headers for the fabric we are communicating over.
2474 *
2475 * Return: true if we are running as a RoCE port and must force the
2476 * addition of a Global Route Header built from our Ethernet Address
2477 * Handle into our header list for connectionless packets.
2478 */
2479static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2480{
2481	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2482}
2483
2484/**
2485 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2486 *
2487 * @device: Device
2488 * @port_num: Port number
2489 *
2490 * This MAD size includes the MAD headers and MAD payload.  No other headers
2491 * are included.
2492 *
2493 * Return the max MAD size required by the Port.  Will return 0 if the port
2494 * does not support MADs
2495 */
2496static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2497{
2498	return device->port_immutable[port_num].max_mad_size;
2499}
2500
2501/**
2502 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2503 * @device: Device to check
2504 * @port_num: Port number to check
2505 *
2506 * RoCE GID table mechanism manages the various GIDs for a device.
2507 *
2508 * NOTE: if allocating the port's GID table has failed, this call will still
2509 * return true, but any RoCE GID table API will fail.
2510 *
2511 * Return: true if the port uses RoCE GID table mechanism in order to manage
2512 * its GIDs.
2513 */
2514static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2515					   u8 port_num)
2516{
2517	return rdma_protocol_roce(device, port_num) &&
2518		device->add_gid && device->del_gid;
2519}
2520
2521/*
2522 * Check if the device supports READ W/ INVALIDATE.
2523 */
2524static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2525{
2526	/*
2527	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
2528	 * has support for it yet.
2529	 */
2530	return rdma_protocol_iwarp(dev, port_num);
2531}
2532
2533int ib_query_gid(struct ib_device *device,
2534		 u8 port_num, int index, union ib_gid *gid,
2535		 struct ib_gid_attr *attr);
2536
2537int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2538			 int state);
2539int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2540		     struct ifla_vf_info *info);
2541int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2542		    struct ifla_vf_stats *stats);
2543int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2544		   int type);
2545
2546int ib_query_pkey(struct ib_device *device,
2547		  u8 port_num, u16 index, u16 *pkey);
2548
2549int ib_modify_device(struct ib_device *device,
2550		     int device_modify_mask,
2551		     struct ib_device_modify *device_modify);
2552
2553int ib_modify_port(struct ib_device *device,
2554		   u8 port_num, int port_modify_mask,
2555		   struct ib_port_modify *port_modify);
2556
2557int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2558		enum ib_gid_type gid_type, struct net_device *ndev,
2559		u8 *port_num, u16 *index);
2560
2561int ib_find_pkey(struct ib_device *device,
2562		 u8 port_num, u16 pkey, u16 *index);
2563
2564enum ib_pd_flags {
2565	/*
2566	 * Create a memory registration for all memory in the system and place
2567	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
2568	 * ULPs to avoid the overhead of dynamic MRs.
2569	 *
2570	 * This flag is generally considered unsafe and must only be used in
2571	 * extremly trusted environments.  Every use of it will log a warning
2572	 * in the kernel log.
2573	 */
2574	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
2575};
2576
2577struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2578		const char *caller);
2579#define ib_alloc_pd(device, flags) \
2580	__ib_alloc_pd((device), (flags), __func__)
2581void ib_dealloc_pd(struct ib_pd *pd);
2582
2583/**
2584 * ib_create_ah - Creates an address handle for the given address vector.
2585 * @pd: The protection domain associated with the address handle.
2586 * @ah_attr: The attributes of the address vector.
2587 *
2588 * The address handle is used to reference a local or global destination
2589 * in all UD QP post sends.
2590 */
2591struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2592
2593/**
2594 * ib_init_ah_from_wc - Initializes address handle attributes from a
2595 *   work completion.
2596 * @device: Device on which the received message arrived.
2597 * @port_num: Port on which the received message arrived.
2598 * @wc: Work completion associated with the received message.
2599 * @grh: References the received global route header.  This parameter is
2600 *   ignored unless the work completion indicates that the GRH is valid.
2601 * @ah_attr: Returned attributes that can be used when creating an address
2602 *   handle for replying to the message.
2603 */
2604int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2605		       const struct ib_wc *wc, const struct ib_grh *grh,
2606		       struct ib_ah_attr *ah_attr);
2607
2608/**
2609 * ib_create_ah_from_wc - Creates an address handle associated with the
2610 *   sender of the specified work completion.
2611 * @pd: The protection domain associated with the address handle.
2612 * @wc: Work completion information associated with a received message.
2613 * @grh: References the received global route header.  This parameter is
2614 *   ignored unless the work completion indicates that the GRH is valid.
2615 * @port_num: The outbound port number to associate with the address.
2616 *
2617 * The address handle is used to reference a local or global destination
2618 * in all UD QP post sends.
2619 */
2620struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2621				   const struct ib_grh *grh, u8 port_num);
2622
2623/**
2624 * ib_modify_ah - Modifies the address vector associated with an address
2625 *   handle.
2626 * @ah: The address handle to modify.
2627 * @ah_attr: The new address vector attributes to associate with the
2628 *   address handle.
2629 */
2630int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2631
2632/**
2633 * ib_query_ah - Queries the address vector associated with an address
2634 *   handle.
2635 * @ah: The address handle to query.
2636 * @ah_attr: The address vector attributes associated with the address
2637 *   handle.
2638 */
2639int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2640
2641/**
2642 * ib_destroy_ah - Destroys an address handle.
2643 * @ah: The address handle to destroy.
2644 */
2645int ib_destroy_ah(struct ib_ah *ah);
2646
2647/**
2648 * ib_create_srq - Creates a SRQ associated with the specified protection
2649 *   domain.
2650 * @pd: The protection domain associated with the SRQ.
2651 * @srq_init_attr: A list of initial attributes required to create the
2652 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
2653 *   the actual capabilities of the created SRQ.
2654 *
2655 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2656 * requested size of the SRQ, and set to the actual values allocated
2657 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
2658 * will always be at least as large as the requested values.
2659 */
2660struct ib_srq *ib_create_srq(struct ib_pd *pd,
2661			     struct ib_srq_init_attr *srq_init_attr);
2662
2663/**
2664 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2665 * @srq: The SRQ to modify.
2666 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
2667 *   the current values of selected SRQ attributes are returned.
2668 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2669 *   are being modified.
2670 *
2671 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2672 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2673 * the number of receives queued drops below the limit.
2674 */
2675int ib_modify_srq(struct ib_srq *srq,
2676		  struct ib_srq_attr *srq_attr,
2677		  enum ib_srq_attr_mask srq_attr_mask);
2678
2679/**
2680 * ib_query_srq - Returns the attribute list and current values for the
2681 *   specified SRQ.
2682 * @srq: The SRQ to query.
2683 * @srq_attr: The attributes of the specified SRQ.
2684 */
2685int ib_query_srq(struct ib_srq *srq,
2686		 struct ib_srq_attr *srq_attr);
2687
2688/**
2689 * ib_destroy_srq - Destroys the specified SRQ.
2690 * @srq: The SRQ to destroy.
2691 */
2692int ib_destroy_srq(struct ib_srq *srq);
2693
2694/**
2695 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2696 * @srq: The SRQ to post the work request on.
2697 * @recv_wr: A list of work requests to post on the receive queue.
2698 * @bad_recv_wr: On an immediate failure, this parameter will reference
2699 *   the work request that failed to be posted on the QP.
2700 */
2701static inline int ib_post_srq_recv(struct ib_srq *srq,
2702				   struct ib_recv_wr *recv_wr,
2703				   struct ib_recv_wr **bad_recv_wr)
2704{
2705	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2706}
2707
2708/**
2709 * ib_create_qp - Creates a QP associated with the specified protection
2710 *   domain.
2711 * @pd: The protection domain associated with the QP.
2712 * @qp_init_attr: A list of initial attributes required to create the
2713 *   QP.  If QP creation succeeds, then the attributes are updated to
2714 *   the actual capabilities of the created QP.
2715 */
2716struct ib_qp *ib_create_qp(struct ib_pd *pd,
2717			   struct ib_qp_init_attr *qp_init_attr);
2718
2719/**
2720 * ib_modify_qp - Modifies the attributes for the specified QP and then
2721 *   transitions the QP to the given state.
2722 * @qp: The QP to modify.
2723 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
2724 *   the current values of selected QP attributes are returned.
2725 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2726 *   are being modified.
2727 */
2728int ib_modify_qp(struct ib_qp *qp,
2729		 struct ib_qp_attr *qp_attr,
2730		 int qp_attr_mask);
2731
2732/**
2733 * ib_query_qp - Returns the attribute list and current values for the
2734 *   specified QP.
2735 * @qp: The QP to query.
2736 * @qp_attr: The attributes of the specified QP.
2737 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2738 * @qp_init_attr: Additional attributes of the selected QP.
2739 *
2740 * The qp_attr_mask may be used to limit the query to gathering only the
2741 * selected attributes.
2742 */
2743int ib_query_qp(struct ib_qp *qp,
2744		struct ib_qp_attr *qp_attr,
2745		int qp_attr_mask,
2746		struct ib_qp_init_attr *qp_init_attr);
2747
2748/**
2749 * ib_destroy_qp - Destroys the specified QP.
2750 * @qp: The QP to destroy.
2751 */
2752int ib_destroy_qp(struct ib_qp *qp);
2753
2754/**
2755 * ib_open_qp - Obtain a reference to an existing sharable QP.
2756 * @xrcd - XRC domain
2757 * @qp_open_attr: Attributes identifying the QP to open.
2758 *
2759 * Returns a reference to a sharable QP.
2760 */
2761struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2762			 struct ib_qp_open_attr *qp_open_attr);
2763
2764/**
2765 * ib_close_qp - Release an external reference to a QP.
2766 * @qp: The QP handle to release
2767 *
2768 * The opened QP handle is released by the caller.  The underlying
2769 * shared QP is not destroyed until all internal references are released.
2770 */
2771int ib_close_qp(struct ib_qp *qp);
2772
2773/**
2774 * ib_post_send - Posts a list of work requests to the send queue of
2775 *   the specified QP.
2776 * @qp: The QP to post the work request on.
2777 * @send_wr: A list of work requests to post on the send queue.
2778 * @bad_send_wr: On an immediate failure, this parameter will reference
2779 *   the work request that failed to be posted on the QP.
2780 *
2781 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2782 * error is returned, the QP state shall not be affected,
2783 * ib_post_send() will return an immediate error after queueing any
2784 * earlier work requests in the list.
2785 */
2786static inline int ib_post_send(struct ib_qp *qp,
2787			       struct ib_send_wr *send_wr,
2788			       struct ib_send_wr **bad_send_wr)
2789{
2790	return qp->device->post_send(qp, send_wr, bad_send_wr);
2791}
2792
2793/**
2794 * ib_post_recv - Posts a list of work requests to the receive queue of
2795 *   the specified QP.
2796 * @qp: The QP to post the work request on.
2797 * @recv_wr: A list of work requests to post on the receive queue.
2798 * @bad_recv_wr: On an immediate failure, this parameter will reference
2799 *   the work request that failed to be posted on the QP.
2800 */
2801static inline int ib_post_recv(struct ib_qp *qp,
2802			       struct ib_recv_wr *recv_wr,
2803			       struct ib_recv_wr **bad_recv_wr)
2804{
2805	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2806}
2807
2808struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2809		int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2810void ib_free_cq(struct ib_cq *cq);
2811
2812/**
2813 * ib_create_cq - Creates a CQ on the specified device.
2814 * @device: The device on which to create the CQ.
2815 * @comp_handler: A user-specified callback that is invoked when a
2816 *   completion event occurs on the CQ.
2817 * @event_handler: A user-specified callback that is invoked when an
2818 *   asynchronous event not associated with a completion occurs on the CQ.
2819 * @cq_context: Context associated with the CQ returned to the user via
2820 *   the associated completion and event handlers.
2821 * @cq_attr: The attributes the CQ should be created upon.
2822 *
2823 * Users can examine the cq structure to determine the actual CQ size.
2824 */
2825struct ib_cq *ib_create_cq(struct ib_device *device,
2826			   ib_comp_handler comp_handler,
2827			   void (*event_handler)(struct ib_event *, void *),
2828			   void *cq_context,
2829			   const struct ib_cq_init_attr *cq_attr);
2830
2831/**
2832 * ib_resize_cq - Modifies the capacity of the CQ.
2833 * @cq: The CQ to resize.
2834 * @cqe: The minimum size of the CQ.
2835 *
2836 * Users can examine the cq structure to determine the actual CQ size.
2837 */
2838int ib_resize_cq(struct ib_cq *cq, int cqe);
2839
2840/**
2841 * ib_modify_cq - Modifies moderation params of the CQ
2842 * @cq: The CQ to modify.
2843 * @cq_count: number of CQEs that will trigger an event
2844 * @cq_period: max period of time in usec before triggering an event
2845 *
2846 */
2847int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2848
2849/**
2850 * ib_destroy_cq - Destroys the specified CQ.
2851 * @cq: The CQ to destroy.
2852 */
2853int ib_destroy_cq(struct ib_cq *cq);
2854
2855/**
2856 * ib_poll_cq - poll a CQ for completion(s)
2857 * @cq:the CQ being polled
2858 * @num_entries:maximum number of completions to return
2859 * @wc:array of at least @num_entries &struct ib_wc where completions
2860 *   will be returned
2861 *
2862 * Poll a CQ for (possibly multiple) completions.  If the return value
2863 * is < 0, an error occurred.  If the return value is >= 0, it is the
2864 * number of completions returned.  If the return value is
2865 * non-negative and < num_entries, then the CQ was emptied.
2866 */
2867static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2868			     struct ib_wc *wc)
2869{
2870	return cq->device->poll_cq(cq, num_entries, wc);
2871}
2872
2873/**
2874 * ib_peek_cq - Returns the number of unreaped completions currently
2875 *   on the specified CQ.
2876 * @cq: The CQ to peek.
2877 * @wc_cnt: A minimum number of unreaped completions to check for.
2878 *
2879 * If the number of unreaped completions is greater than or equal to wc_cnt,
2880 * this function returns wc_cnt, otherwise, it returns the actual number of
2881 * unreaped completions.
2882 */
2883int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2884
2885/**
2886 * ib_req_notify_cq - Request completion notification on a CQ.
2887 * @cq: The CQ to generate an event for.
2888 * @flags:
2889 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2890 *   to request an event on the next solicited event or next work
2891 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2892 *   may also be |ed in to request a hint about missed events, as
2893 *   described below.
2894 *
2895 * Return Value:
2896 *    < 0 means an error occurred while requesting notification
2897 *   == 0 means notification was requested successfully, and if
2898 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2899 *        were missed and it is safe to wait for another event.  In
2900 *        this case is it guaranteed that any work completions added
2901 *        to the CQ since the last CQ poll will trigger a completion
2902 *        notification event.
2903 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2904 *        in.  It means that the consumer must poll the CQ again to
2905 *        make sure it is empty to avoid missing an event because of a
2906 *        race between requesting notification and an entry being
2907 *        added to the CQ.  This return value means it is possible
2908 *        (but not guaranteed) that a work completion has been added
2909 *        to the CQ since the last poll without triggering a
2910 *        completion notification event.
2911 */
2912static inline int ib_req_notify_cq(struct ib_cq *cq,
2913				   enum ib_cq_notify_flags flags)
2914{
2915	return cq->device->req_notify_cq(cq, flags);
2916}
2917
2918/**
2919 * ib_req_ncomp_notif - Request completion notification when there are
2920 *   at least the specified number of unreaped completions on the CQ.
2921 * @cq: The CQ to generate an event for.
2922 * @wc_cnt: The number of unreaped completions that should be on the
2923 *   CQ before an event is generated.
2924 */
2925static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2926{
2927	return cq->device->req_ncomp_notif ?
2928		cq->device->req_ncomp_notif(cq, wc_cnt) :
2929		-ENOSYS;
2930}
2931
2932/**
2933 * ib_dma_mapping_error - check a DMA addr for error
2934 * @dev: The device for which the dma_addr was created
2935 * @dma_addr: The DMA address to check
2936 */
2937static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2938{
2939	if (dev->dma_ops)
2940		return dev->dma_ops->mapping_error(dev, dma_addr);
2941	return dma_mapping_error(dev->dma_device, dma_addr);
2942}
2943
2944/**
2945 * ib_dma_map_single - Map a kernel virtual address to DMA address
2946 * @dev: The device for which the dma_addr is to be created
2947 * @cpu_addr: The kernel virtual address
2948 * @size: The size of the region in bytes
2949 * @direction: The direction of the DMA
2950 */
2951static inline u64 ib_dma_map_single(struct ib_device *dev,
2952				    void *cpu_addr, size_t size,
2953				    enum dma_data_direction direction)
2954{
2955	if (dev->dma_ops)
2956		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2957	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2958}
2959
2960/**
2961 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2962 * @dev: The device for which the DMA address was created
2963 * @addr: The DMA address
2964 * @size: The size of the region in bytes
2965 * @direction: The direction of the DMA
2966 */
2967static inline void ib_dma_unmap_single(struct ib_device *dev,
2968				       u64 addr, size_t size,
2969				       enum dma_data_direction direction)
2970{
2971	if (dev->dma_ops)
2972		dev->dma_ops->unmap_single(dev, addr, size, direction);
2973	else
2974		dma_unmap_single(dev->dma_device, addr, size, direction);
2975}
2976
2977static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2978					  void *cpu_addr, size_t size,
2979					  enum dma_data_direction direction,
2980					  struct dma_attrs *dma_attrs)
2981{
2982	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2983				    direction, dma_attrs);
2984}
2985
2986static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2987					     u64 addr, size_t size,
2988					     enum dma_data_direction direction,
2989					     struct dma_attrs *dma_attrs)
2990{
2991	return dma_unmap_single_attrs(dev->dma_device, addr, size,
2992				      direction, dma_attrs);
2993}
2994
2995/**
2996 * ib_dma_map_page - Map a physical page to DMA address
2997 * @dev: The device for which the dma_addr is to be created
2998 * @page: The page to be mapped
2999 * @offset: The offset within the page
3000 * @size: The size of the region in bytes
3001 * @direction: The direction of the DMA
3002 */
3003static inline u64 ib_dma_map_page(struct ib_device *dev,
3004				  struct page *page,
3005				  unsigned long offset,
3006				  size_t size,
3007					 enum dma_data_direction direction)
3008{
3009	if (dev->dma_ops)
3010		return dev->dma_ops->map_page(dev, page, offset, size, direction);
3011	return dma_map_page(dev->dma_device, page, offset, size, direction);
3012}
3013
3014/**
3015 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3016 * @dev: The device for which the DMA address was created
3017 * @addr: The DMA address
3018 * @size: The size of the region in bytes
3019 * @direction: The direction of the DMA
3020 */
3021static inline void ib_dma_unmap_page(struct ib_device *dev,
3022				     u64 addr, size_t size,
3023				     enum dma_data_direction direction)
3024{
3025	if (dev->dma_ops)
3026		dev->dma_ops->unmap_page(dev, addr, size, direction);
3027	else
3028		dma_unmap_page(dev->dma_device, addr, size, direction);
3029}
3030
3031/**
3032 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3033 * @dev: The device for which the DMA addresses are to be created
3034 * @sg: The array of scatter/gather entries
3035 * @nents: The number of scatter/gather entries
3036 * @direction: The direction of the DMA
3037 */
3038static inline int ib_dma_map_sg(struct ib_device *dev,
3039				struct scatterlist *sg, int nents,
3040				enum dma_data_direction direction)
3041{
3042	if (dev->dma_ops)
3043		return dev->dma_ops->map_sg(dev, sg, nents, direction);
3044	return dma_map_sg(dev->dma_device, sg, nents, direction);
3045}
3046
3047/**
3048 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3049 * @dev: The device for which the DMA addresses were created
3050 * @sg: The array of scatter/gather entries
3051 * @nents: The number of scatter/gather entries
3052 * @direction: The direction of the DMA
3053 */
3054static inline void ib_dma_unmap_sg(struct ib_device *dev,
3055				   struct scatterlist *sg, int nents,
3056				   enum dma_data_direction direction)
3057{
3058	if (dev->dma_ops)
3059		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3060	else
3061		dma_unmap_sg(dev->dma_device, sg, nents, direction);
3062}
3063
3064static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3065				      struct scatterlist *sg, int nents,
3066				      enum dma_data_direction direction,
3067				      struct dma_attrs *dma_attrs)
3068{
3069	if (dev->dma_ops)
3070		return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3071						  dma_attrs);
3072	else
3073		return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3074					dma_attrs);
3075}
3076
3077static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3078					 struct scatterlist *sg, int nents,
3079					 enum dma_data_direction direction,
3080					 struct dma_attrs *dma_attrs)
3081{
3082	if (dev->dma_ops)
3083		return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3084						  dma_attrs);
3085	else
3086		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3087				   dma_attrs);
3088}
3089/**
3090 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3091 * @dev: The device for which the DMA addresses were created
3092 * @sg: The scatter/gather entry
3093 *
3094 * Note: this function is obsolete. To do: change all occurrences of
3095 * ib_sg_dma_address() into sg_dma_address().
3096 */
3097static inline u64 ib_sg_dma_address(struct ib_device *dev,
3098				    struct scatterlist *sg)
3099{
3100	return sg_dma_address(sg);
3101}
3102
3103/**
3104 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3105 * @dev: The device for which the DMA addresses were created
3106 * @sg: The scatter/gather entry
3107 *
3108 * Note: this function is obsolete. To do: change all occurrences of
3109 * ib_sg_dma_len() into sg_dma_len().
3110 */
3111static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3112					 struct scatterlist *sg)
3113{
3114	return sg_dma_len(sg);
3115}
3116
3117/**
3118 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3119 * @dev: The device for which the DMA address was created
3120 * @addr: The DMA address
3121 * @size: The size of the region in bytes
3122 * @dir: The direction of the DMA
3123 */
3124static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3125					      u64 addr,
3126					      size_t size,
3127					      enum dma_data_direction dir)
3128{
3129	if (dev->dma_ops)
3130		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3131	else
3132		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3133}
3134
3135/**
3136 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3137 * @dev: The device for which the DMA address was created
3138 * @addr: The DMA address
3139 * @size: The size of the region in bytes
3140 * @dir: The direction of the DMA
3141 */
3142static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3143						 u64 addr,
3144						 size_t size,
3145						 enum dma_data_direction dir)
3146{
3147	if (dev->dma_ops)
3148		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3149	else
3150		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3151}
3152
3153/**
3154 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3155 * @dev: The device for which the DMA address is requested
3156 * @size: The size of the region to allocate in bytes
3157 * @dma_handle: A pointer for returning the DMA address of the region
3158 * @flag: memory allocator flags
3159 */
3160static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3161					   size_t size,
3162					   u64 *dma_handle,
3163					   gfp_t flag)
3164{
3165	if (dev->dma_ops)
3166		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3167	else {
3168		dma_addr_t handle;
3169		void *ret;
3170
3171		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3172		*dma_handle = handle;
3173		return ret;
3174	}
3175}
3176
3177/**
3178 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3179 * @dev: The device for which the DMA addresses were allocated
3180 * @size: The size of the region
3181 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3182 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3183 */
3184static inline void ib_dma_free_coherent(struct ib_device *dev,
3185					size_t size, void *cpu_addr,
3186					u64 dma_handle)
3187{
3188	if (dev->dma_ops)
3189		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3190	else
3191		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3192}
3193
3194/**
3195 * ib_dereg_mr - Deregisters a memory region and removes it from the
3196 *   HCA translation table.
3197 * @mr: The memory region to deregister.
3198 *
3199 * This function can fail, if the memory region has memory windows bound to it.
3200 */
3201int ib_dereg_mr(struct ib_mr *mr);
3202
3203struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3204			  enum ib_mr_type mr_type,
3205			  u32 max_num_sg);
3206
3207/**
3208 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3209 *   R_Key and L_Key.
3210 * @mr - struct ib_mr pointer to be updated.
3211 * @newkey - new key to be used.
3212 */
3213static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3214{
3215	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3216	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3217}
3218
3219/**
3220 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3221 * for calculating a new rkey for type 2 memory windows.
3222 * @rkey - the rkey to increment.
3223 */
3224static inline u32 ib_inc_rkey(u32 rkey)
3225{
3226	const u32 mask = 0x000000ff;
3227	return ((rkey + 1) & mask) | (rkey & ~mask);
3228}
3229
3230/**
3231 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3232 * @pd: The protection domain associated with the unmapped region.
3233 * @mr_access_flags: Specifies the memory access rights.
3234 * @fmr_attr: Attributes of the unmapped region.
3235 *
3236 * A fast memory region must be mapped before it can be used as part of
3237 * a work request.
3238 */
3239struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3240			    int mr_access_flags,
3241			    struct ib_fmr_attr *fmr_attr);
3242
3243/**
3244 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3245 * @fmr: The fast memory region to associate with the pages.
3246 * @page_list: An array of physical pages to map to the fast memory region.
3247 * @list_len: The number of pages in page_list.
3248 * @iova: The I/O virtual address to use with the mapped region.
3249 */
3250static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3251				  u64 *page_list, int list_len,
3252				  u64 iova)
3253{
3254	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3255}
3256
3257/**
3258 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3259 * @fmr_list: A linked list of fast memory regions to unmap.
3260 */
3261int ib_unmap_fmr(struct list_head *fmr_list);
3262
3263/**
3264 * ib_dealloc_fmr - Deallocates a fast memory region.
3265 * @fmr: The fast memory region to deallocate.
3266 */
3267int ib_dealloc_fmr(struct ib_fmr *fmr);
3268
3269/**
3270 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3271 * @qp: QP to attach to the multicast group.  The QP must be type
3272 *   IB_QPT_UD.
3273 * @gid: Multicast group GID.
3274 * @lid: Multicast group LID in host byte order.
3275 *
3276 * In order to send and receive multicast packets, subnet
3277 * administration must have created the multicast group and configured
3278 * the fabric appropriately.  The port associated with the specified
3279 * QP must also be a member of the multicast group.
3280 */
3281int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3282
3283/**
3284 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3285 * @qp: QP to detach from the multicast group.
3286 * @gid: Multicast group GID.
3287 * @lid: Multicast group LID in host byte order.
3288 */
3289int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3290
3291/**
3292 * ib_alloc_xrcd - Allocates an XRC domain.
3293 * @device: The device on which to allocate the XRC domain.
3294 */
3295struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3296
3297/**
3298 * ib_dealloc_xrcd - Deallocates an XRC domain.
3299 * @xrcd: The XRC domain to deallocate.
3300 */
3301int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3302
3303struct ib_flow *ib_create_flow(struct ib_qp *qp,
3304			       struct ib_flow_attr *flow_attr, int domain);
3305int ib_destroy_flow(struct ib_flow *flow_id);
3306
3307static inline int ib_check_mr_access(int flags)
3308{
3309	/*
3310	 * Local write permission is required if remote write or
3311	 * remote atomic permission is also requested.
3312	 */
3313	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3314	    !(flags & IB_ACCESS_LOCAL_WRITE))
3315		return -EINVAL;
3316
3317	return 0;
3318}
3319
3320/**
3321 * ib_check_mr_status: lightweight check of MR status.
3322 *     This routine may provide status checks on a selected
3323 *     ib_mr. first use is for signature status check.
3324 *
3325 * @mr: A memory region.
3326 * @check_mask: Bitmask of which checks to perform from
3327 *     ib_mr_status_check enumeration.
3328 * @mr_status: The container of relevant status checks.
3329 *     failed checks will be indicated in the status bitmask
3330 *     and the relevant info shall be in the error item.
3331 */
3332int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3333		       struct ib_mr_status *mr_status);
3334
3335struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3336					    u16 pkey, const union ib_gid *gid,
3337					    const struct sockaddr *addr);
3338struct ib_wq *ib_create_wq(struct ib_pd *pd,
3339			   struct ib_wq_init_attr *init_attr);
3340int ib_destroy_wq(struct ib_wq *wq);
3341int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3342		 u32 wq_attr_mask);
3343struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3344						 struct ib_rwq_ind_table_init_attr*
3345						 wq_ind_table_init_attr);
3346int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3347
3348int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3349		 unsigned int *sg_offset, unsigned int page_size);
3350
3351static inline int
3352ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3353		  unsigned int *sg_offset, unsigned int page_size)
3354{
3355	int n;
3356
3357	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3358	mr->iova = 0;
3359
3360	return n;
3361}
3362
3363int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3364		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3365
3366void ib_drain_rq(struct ib_qp *qp);
3367void ib_drain_sq(struct ib_qp *qp);
3368void ib_drain_qp(struct ib_qp *qp);
3369#endif /* IB_VERBS_H */
3370