ib_verbs.c revision 337078
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3 *
4 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11 *
12 * This software is available to you under a choice of one of two
13 * licenses.  You may choose to be licensed under the terms of the GNU
14 * General Public License (GPL) Version 2, available from the file
15 * COPYING in the main directory of this source tree, or the
16 * OpenIB.org BSD license below:
17 *
18 *     Redistribution and use in source and binary forms, with or
19 *     without modification, are permitted provided that the following
20 *     conditions are met:
21 *
22 *      - Redistributions of source code must retain the above
23 *        copyright notice, this list of conditions and the following
24 *        disclaimer.
25 *
26 *      - Redistributions in binary form must reproduce the above
27 *        copyright notice, this list of conditions and the following
28 *        disclaimer in the documentation and/or other materials
29 *        provided with the distribution.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 * SOFTWARE.
39 *
40 * $FreeBSD: stable/11/sys/ofed/drivers/infiniband/core/ib_verbs.c 337078 2018-08-02 08:15:05Z hselasky $
41 */
42
43#include <linux/errno.h>
44#include <linux/err.h>
45#include <linux/string.h>
46#include <linux/slab.h>
47#include <linux/in.h>
48#include <linux/in6.h>
49
50#include <rdma/ib_verbs.h>
51#include <rdma/ib_cache.h>
52#include <rdma/ib_addr.h>
53
54#include <netinet/ip.h>
55#include <netinet/ip6.h>
56
57#include <machine/in_cksum.h>
58
59#include "core_priv.h"
60
61static const char * const ib_events[] = {
62	[IB_EVENT_CQ_ERR]		= "CQ error",
63	[IB_EVENT_QP_FATAL]		= "QP fatal error",
64	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
65	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
66	[IB_EVENT_COMM_EST]		= "communication established",
67	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
68	[IB_EVENT_PATH_MIG]		= "path migration successful",
69	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
70	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
71	[IB_EVENT_PORT_ACTIVE]		= "port active",
72	[IB_EVENT_PORT_ERR]		= "port error",
73	[IB_EVENT_LID_CHANGE]		= "LID change",
74	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
75	[IB_EVENT_SM_CHANGE]		= "SM change",
76	[IB_EVENT_SRQ_ERR]		= "SRQ error",
77	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
78	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
79	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
80	[IB_EVENT_GID_CHANGE]		= "GID changed",
81};
82
83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84{
85	size_t index = event;
86
87	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88			ib_events[index] : "unrecognized event";
89}
90EXPORT_SYMBOL(ib_event_msg);
91
92static const char * const wc_statuses[] = {
93	[IB_WC_SUCCESS]			= "success",
94	[IB_WC_LOC_LEN_ERR]		= "local length error",
95	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
96	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
97	[IB_WC_LOC_PROT_ERR]		= "local protection error",
98	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
99	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
100	[IB_WC_BAD_RESP_ERR]		= "bad response error",
101	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
102	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
103	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
104	[IB_WC_REM_OP_ERR]		= "remote operation error",
105	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
106	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
107	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
108	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
109	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
110	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
111	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
112	[IB_WC_FATAL_ERR]		= "fatal error",
113	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
114	[IB_WC_GENERAL_ERR]		= "general error",
115};
116
117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118{
119	size_t index = status;
120
121	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122			wc_statuses[index] : "unrecognized status";
123}
124EXPORT_SYMBOL(ib_wc_status_msg);
125
126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127{
128	switch (rate) {
129	case IB_RATE_2_5_GBPS: return  1;
130	case IB_RATE_5_GBPS:   return  2;
131	case IB_RATE_10_GBPS:  return  4;
132	case IB_RATE_20_GBPS:  return  8;
133	case IB_RATE_30_GBPS:  return 12;
134	case IB_RATE_40_GBPS:  return 16;
135	case IB_RATE_60_GBPS:  return 24;
136	case IB_RATE_80_GBPS:  return 32;
137	case IB_RATE_120_GBPS: return 48;
138	default:	       return -1;
139	}
140}
141EXPORT_SYMBOL(ib_rate_to_mult);
142
143__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
144{
145	switch (mult) {
146	case 1:  return IB_RATE_2_5_GBPS;
147	case 2:  return IB_RATE_5_GBPS;
148	case 4:  return IB_RATE_10_GBPS;
149	case 8:  return IB_RATE_20_GBPS;
150	case 12: return IB_RATE_30_GBPS;
151	case 16: return IB_RATE_40_GBPS;
152	case 24: return IB_RATE_60_GBPS;
153	case 32: return IB_RATE_80_GBPS;
154	case 48: return IB_RATE_120_GBPS;
155	default: return IB_RATE_PORT_CURRENT;
156	}
157}
158EXPORT_SYMBOL(mult_to_ib_rate);
159
160__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
161{
162	switch (rate) {
163	case IB_RATE_2_5_GBPS: return 2500;
164	case IB_RATE_5_GBPS:   return 5000;
165	case IB_RATE_10_GBPS:  return 10000;
166	case IB_RATE_20_GBPS:  return 20000;
167	case IB_RATE_30_GBPS:  return 30000;
168	case IB_RATE_40_GBPS:  return 40000;
169	case IB_RATE_60_GBPS:  return 60000;
170	case IB_RATE_80_GBPS:  return 80000;
171	case IB_RATE_120_GBPS: return 120000;
172	case IB_RATE_14_GBPS:  return 14062;
173	case IB_RATE_56_GBPS:  return 56250;
174	case IB_RATE_112_GBPS: return 112500;
175	case IB_RATE_168_GBPS: return 168750;
176	case IB_RATE_25_GBPS:  return 25781;
177	case IB_RATE_100_GBPS: return 103125;
178	case IB_RATE_200_GBPS: return 206250;
179	case IB_RATE_300_GBPS: return 309375;
180	default:	       return -1;
181	}
182}
183EXPORT_SYMBOL(ib_rate_to_mbps);
184
185__attribute_const__ enum rdma_transport_type
186rdma_node_get_transport(enum rdma_node_type node_type)
187{
188	switch (node_type) {
189	case RDMA_NODE_IB_CA:
190	case RDMA_NODE_IB_SWITCH:
191	case RDMA_NODE_IB_ROUTER:
192		return RDMA_TRANSPORT_IB;
193	case RDMA_NODE_RNIC:
194		return RDMA_TRANSPORT_IWARP;
195	case RDMA_NODE_USNIC:
196		return RDMA_TRANSPORT_USNIC;
197	case RDMA_NODE_USNIC_UDP:
198		return RDMA_TRANSPORT_USNIC_UDP;
199	default:
200		BUG();
201		return 0;
202	}
203}
204EXPORT_SYMBOL(rdma_node_get_transport);
205
206enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
207{
208	if (device->get_link_layer)
209		return device->get_link_layer(device, port_num);
210
211	switch (rdma_node_get_transport(device->node_type)) {
212	case RDMA_TRANSPORT_IB:
213		return IB_LINK_LAYER_INFINIBAND;
214	case RDMA_TRANSPORT_IWARP:
215	case RDMA_TRANSPORT_USNIC:
216	case RDMA_TRANSPORT_USNIC_UDP:
217		return IB_LINK_LAYER_ETHERNET;
218	default:
219		return IB_LINK_LAYER_UNSPECIFIED;
220	}
221}
222EXPORT_SYMBOL(rdma_port_get_link_layer);
223
224/* Protection domains */
225
226/**
227 * ib_alloc_pd - Allocates an unused protection domain.
228 * @device: The device on which to allocate the protection domain.
229 *
230 * A protection domain object provides an association between QPs, shared
231 * receive queues, address handles, memory regions, and memory windows.
232 *
233 * Every PD has a local_dma_lkey which can be used as the lkey value for local
234 * memory operations.
235 */
236struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
237		const char *caller)
238{
239	struct ib_pd *pd;
240	int mr_access_flags = 0;
241
242	pd = device->alloc_pd(device, NULL, NULL);
243	if (IS_ERR(pd))
244		return pd;
245
246	pd->device = device;
247	pd->uobject = NULL;
248	pd->__internal_mr = NULL;
249	atomic_set(&pd->usecnt, 0);
250	pd->flags = flags;
251
252	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
253		pd->local_dma_lkey = device->local_dma_lkey;
254	else
255		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
256
257	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
258		pr_warn("%s: enabling unsafe global rkey\n", caller);
259		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
260	}
261
262	if (mr_access_flags) {
263		struct ib_mr *mr;
264
265		mr = pd->device->get_dma_mr(pd, mr_access_flags);
266		if (IS_ERR(mr)) {
267			ib_dealloc_pd(pd);
268			return ERR_CAST(mr);
269		}
270
271		mr->device	= pd->device;
272		mr->pd		= pd;
273		mr->uobject	= NULL;
274		mr->need_inval	= false;
275
276		pd->__internal_mr = mr;
277
278		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
279			pd->local_dma_lkey = pd->__internal_mr->lkey;
280
281		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
282			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
283	}
284
285	return pd;
286}
287EXPORT_SYMBOL(__ib_alloc_pd);
288
289/**
290 * ib_dealloc_pd - Deallocates a protection domain.
291 * @pd: The protection domain to deallocate.
292 *
293 * It is an error to call this function while any resources in the pd still
294 * exist.  The caller is responsible to synchronously destroy them and
295 * guarantee no new allocations will happen.
296 */
297void ib_dealloc_pd(struct ib_pd *pd)
298{
299	int ret;
300
301	if (pd->__internal_mr) {
302		ret = pd->device->dereg_mr(pd->__internal_mr);
303		WARN_ON(ret);
304		pd->__internal_mr = NULL;
305	}
306
307	/* uverbs manipulates usecnt with proper locking, while the kabi
308	   requires the caller to guarantee we can't race here. */
309	WARN_ON(atomic_read(&pd->usecnt));
310
311	/* Making delalloc_pd a void return is a WIP, no driver should return
312	   an error here. */
313	ret = pd->device->dealloc_pd(pd);
314	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
315}
316EXPORT_SYMBOL(ib_dealloc_pd);
317
318/* Address handles */
319
320struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
321{
322	struct ib_ah *ah;
323
324	ah = pd->device->create_ah(pd, ah_attr, NULL);
325
326	if (!IS_ERR(ah)) {
327		ah->device  = pd->device;
328		ah->pd      = pd;
329		ah->uobject = NULL;
330		atomic_inc(&pd->usecnt);
331	}
332
333	return ah;
334}
335EXPORT_SYMBOL(ib_create_ah);
336
337static int ib_get_header_version(const union rdma_network_hdr *hdr)
338{
339	const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
340	struct ip ip4h_checked;
341	const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
342
343	/* If it's IPv6, the version must be 6, otherwise, the first
344	 * 20 bytes (before the IPv4 header) are garbled.
345	 */
346	if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
347		return (ip4h->ip_v == 4) ? 4 : 0;
348	/* version may be 6 or 4 because the first 20 bytes could be garbled */
349
350	/* RoCE v2 requires no options, thus header length
351	 * must be 5 words
352	 */
353	if (ip4h->ip_hl != 5)
354		return 6;
355
356	/* Verify checksum.
357	 * We can't write on scattered buffers so we need to copy to
358	 * temp buffer.
359	 */
360	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
361	ip4h_checked.ip_sum = 0;
362#if defined(INET) || defined(INET6)
363	ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
364#endif
365	/* if IPv4 header checksum is OK, believe it */
366	if (ip4h->ip_sum == ip4h_checked.ip_sum)
367		return 4;
368	return 6;
369}
370
371static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
372						     u8 port_num,
373						     const struct ib_grh *grh)
374{
375	int grh_version;
376
377	if (rdma_protocol_ib(device, port_num))
378		return RDMA_NETWORK_IB;
379
380	grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
381
382	if (grh_version == 4)
383		return RDMA_NETWORK_IPV4;
384
385	if (grh->next_hdr == IPPROTO_UDP)
386		return RDMA_NETWORK_IPV6;
387
388	return RDMA_NETWORK_ROCE_V1;
389}
390
391struct find_gid_index_context {
392	u16 vlan_id;
393	enum ib_gid_type gid_type;
394};
395
396static bool find_gid_index(const union ib_gid *gid,
397			   const struct ib_gid_attr *gid_attr,
398			   void *context)
399{
400	struct find_gid_index_context *ctx =
401		(struct find_gid_index_context *)context;
402
403	if (ctx->gid_type != gid_attr->gid_type)
404		return false;
405	if (rdma_vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)
406		return false;
407	return true;
408}
409
410static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
411				   u16 vlan_id, const union ib_gid *sgid,
412				   enum ib_gid_type gid_type,
413				   u16 *gid_index)
414{
415	struct find_gid_index_context context = {.vlan_id = vlan_id,
416						 .gid_type = gid_type};
417
418	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
419				     &context, gid_index);
420}
421
422static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
423				  enum rdma_network_type net_type,
424				  union ib_gid *sgid, union ib_gid *dgid)
425{
426	struct sockaddr_in  src_in;
427	struct sockaddr_in  dst_in;
428	__be32 src_saddr, dst_saddr;
429
430	if (!sgid || !dgid)
431		return -EINVAL;
432
433	if (net_type == RDMA_NETWORK_IPV4) {
434		memcpy(&src_in.sin_addr.s_addr,
435		       &hdr->roce4grh.ip_src, 4);
436		memcpy(&dst_in.sin_addr.s_addr,
437		       &hdr->roce4grh.ip_dst, 4);
438		src_saddr = src_in.sin_addr.s_addr;
439		dst_saddr = dst_in.sin_addr.s_addr;
440		ipv6_addr_set_v4mapped(src_saddr,
441				       (struct in6_addr *)sgid);
442		ipv6_addr_set_v4mapped(dst_saddr,
443				       (struct in6_addr *)dgid);
444		return 0;
445	} else if (net_type == RDMA_NETWORK_IPV6 ||
446		   net_type == RDMA_NETWORK_IB) {
447		*dgid = hdr->ibgrh.dgid;
448		*sgid = hdr->ibgrh.sgid;
449		return 0;
450	} else {
451		return -EINVAL;
452	}
453}
454
455int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
456		       const struct ib_wc *wc, const struct ib_grh *grh,
457		       struct ib_ah_attr *ah_attr)
458{
459	u32 flow_class;
460	u16 gid_index;
461	int ret;
462	enum rdma_network_type net_type = RDMA_NETWORK_IB;
463	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
464	int hoplimit = 0xff;
465	union ib_gid dgid;
466	union ib_gid sgid;
467
468	memset(ah_attr, 0, sizeof *ah_attr);
469	if (rdma_cap_eth_ah(device, port_num)) {
470		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
471			net_type = wc->network_hdr_type;
472		else
473			net_type = ib_get_net_type_by_grh(device, port_num, grh);
474		gid_type = ib_network_to_gid_type(net_type);
475	}
476	ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
477				     &sgid, &dgid);
478	if (ret)
479		return ret;
480
481	if (rdma_protocol_roce(device, port_num)) {
482		struct ib_gid_attr dgid_attr;
483		const u16 vlan_id = (wc->wc_flags & IB_WC_WITH_VLAN) ?
484				wc->vlan_id : 0xffff;
485
486		if (!(wc->wc_flags & IB_WC_GRH))
487			return -EPROTOTYPE;
488
489		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
490					      &dgid, gid_type, &gid_index);
491		if (ret)
492			return ret;
493
494		ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
495		if (ret)
496			return ret;
497
498		if (dgid_attr.ndev == NULL)
499			return -ENODEV;
500
501		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
502		    dgid_attr.ndev, &hoplimit);
503
504		dev_put(dgid_attr.ndev);
505		if (ret)
506			return ret;
507	}
508
509	ah_attr->dlid = wc->slid;
510	ah_attr->sl = wc->sl;
511	ah_attr->src_path_bits = wc->dlid_path_bits;
512	ah_attr->port_num = port_num;
513
514	if (wc->wc_flags & IB_WC_GRH) {
515		ah_attr->ah_flags = IB_AH_GRH;
516		ah_attr->grh.dgid = sgid;
517
518		if (!rdma_cap_eth_ah(device, port_num)) {
519			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
520				ret = ib_find_cached_gid_by_port(device, &dgid,
521								 IB_GID_TYPE_IB,
522								 port_num, NULL,
523								 &gid_index);
524				if (ret)
525					return ret;
526			} else {
527				gid_index = 0;
528			}
529		}
530
531		ah_attr->grh.sgid_index = (u8) gid_index;
532		flow_class = be32_to_cpu(grh->version_tclass_flow);
533		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
534		ah_attr->grh.hop_limit = hoplimit;
535		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
536	}
537	return 0;
538}
539EXPORT_SYMBOL(ib_init_ah_from_wc);
540
541struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
542				   const struct ib_grh *grh, u8 port_num)
543{
544	struct ib_ah_attr ah_attr;
545	int ret;
546
547	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
548	if (ret)
549		return ERR_PTR(ret);
550
551	return ib_create_ah(pd, &ah_attr);
552}
553EXPORT_SYMBOL(ib_create_ah_from_wc);
554
555int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
556{
557	return ah->device->modify_ah ?
558		ah->device->modify_ah(ah, ah_attr) :
559		-ENOSYS;
560}
561EXPORT_SYMBOL(ib_modify_ah);
562
563int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
564{
565	return ah->device->query_ah ?
566		ah->device->query_ah(ah, ah_attr) :
567		-ENOSYS;
568}
569EXPORT_SYMBOL(ib_query_ah);
570
571int ib_destroy_ah(struct ib_ah *ah)
572{
573	struct ib_pd *pd;
574	int ret;
575
576	pd = ah->pd;
577	ret = ah->device->destroy_ah(ah);
578	if (!ret)
579		atomic_dec(&pd->usecnt);
580
581	return ret;
582}
583EXPORT_SYMBOL(ib_destroy_ah);
584
585/* Shared receive queues */
586
587struct ib_srq *ib_create_srq(struct ib_pd *pd,
588			     struct ib_srq_init_attr *srq_init_attr)
589{
590	struct ib_srq *srq;
591
592	if (!pd->device->create_srq)
593		return ERR_PTR(-ENOSYS);
594
595	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
596
597	if (!IS_ERR(srq)) {
598		srq->device    	   = pd->device;
599		srq->pd        	   = pd;
600		srq->uobject       = NULL;
601		srq->event_handler = srq_init_attr->event_handler;
602		srq->srq_context   = srq_init_attr->srq_context;
603		srq->srq_type      = srq_init_attr->srq_type;
604		if (srq->srq_type == IB_SRQT_XRC) {
605			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
606			srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
607			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
608			atomic_inc(&srq->ext.xrc.cq->usecnt);
609		}
610		atomic_inc(&pd->usecnt);
611		atomic_set(&srq->usecnt, 0);
612	}
613
614	return srq;
615}
616EXPORT_SYMBOL(ib_create_srq);
617
618int ib_modify_srq(struct ib_srq *srq,
619		  struct ib_srq_attr *srq_attr,
620		  enum ib_srq_attr_mask srq_attr_mask)
621{
622	return srq->device->modify_srq ?
623		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
624		-ENOSYS;
625}
626EXPORT_SYMBOL(ib_modify_srq);
627
628int ib_query_srq(struct ib_srq *srq,
629		 struct ib_srq_attr *srq_attr)
630{
631	return srq->device->query_srq ?
632		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
633}
634EXPORT_SYMBOL(ib_query_srq);
635
636int ib_destroy_srq(struct ib_srq *srq)
637{
638	struct ib_pd *pd;
639	enum ib_srq_type srq_type;
640	struct ib_xrcd *uninitialized_var(xrcd);
641	struct ib_cq *uninitialized_var(cq);
642	int ret;
643
644	if (atomic_read(&srq->usecnt))
645		return -EBUSY;
646
647	pd = srq->pd;
648	srq_type = srq->srq_type;
649	if (srq_type == IB_SRQT_XRC) {
650		xrcd = srq->ext.xrc.xrcd;
651		cq = srq->ext.xrc.cq;
652	}
653
654	ret = srq->device->destroy_srq(srq);
655	if (!ret) {
656		atomic_dec(&pd->usecnt);
657		if (srq_type == IB_SRQT_XRC) {
658			atomic_dec(&xrcd->usecnt);
659			atomic_dec(&cq->usecnt);
660		}
661	}
662
663	return ret;
664}
665EXPORT_SYMBOL(ib_destroy_srq);
666
667/* Queue pairs */
668
669static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
670{
671	struct ib_qp *qp = context;
672	unsigned long flags;
673
674	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
675	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
676		if (event->element.qp->event_handler)
677			event->element.qp->event_handler(event, event->element.qp->qp_context);
678	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
679}
680
681static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
682{
683	mutex_lock(&xrcd->tgt_qp_mutex);
684	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
685	mutex_unlock(&xrcd->tgt_qp_mutex);
686}
687
688static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
689				  void (*event_handler)(struct ib_event *, void *),
690				  void *qp_context)
691{
692	struct ib_qp *qp;
693	unsigned long flags;
694
695	qp = kzalloc(sizeof *qp, GFP_KERNEL);
696	if (!qp)
697		return ERR_PTR(-ENOMEM);
698
699	qp->real_qp = real_qp;
700	atomic_inc(&real_qp->usecnt);
701	qp->device = real_qp->device;
702	qp->event_handler = event_handler;
703	qp->qp_context = qp_context;
704	qp->qp_num = real_qp->qp_num;
705	qp->qp_type = real_qp->qp_type;
706
707	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
708	list_add(&qp->open_list, &real_qp->open_list);
709	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
710
711	return qp;
712}
713
714struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
715			 struct ib_qp_open_attr *qp_open_attr)
716{
717	struct ib_qp *qp, *real_qp;
718
719	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
720		return ERR_PTR(-EINVAL);
721
722	qp = ERR_PTR(-EINVAL);
723	mutex_lock(&xrcd->tgt_qp_mutex);
724	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
725		if (real_qp->qp_num == qp_open_attr->qp_num) {
726			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
727					  qp_open_attr->qp_context);
728			break;
729		}
730	}
731	mutex_unlock(&xrcd->tgt_qp_mutex);
732	return qp;
733}
734EXPORT_SYMBOL(ib_open_qp);
735
736static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
737		struct ib_qp_init_attr *qp_init_attr)
738{
739	struct ib_qp *real_qp = qp;
740
741	qp->event_handler = __ib_shared_qp_event_handler;
742	qp->qp_context = qp;
743	qp->pd = NULL;
744	qp->send_cq = qp->recv_cq = NULL;
745	qp->srq = NULL;
746	qp->xrcd = qp_init_attr->xrcd;
747	atomic_inc(&qp_init_attr->xrcd->usecnt);
748	INIT_LIST_HEAD(&qp->open_list);
749
750	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
751			  qp_init_attr->qp_context);
752	if (!IS_ERR(qp))
753		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
754	else
755		real_qp->device->destroy_qp(real_qp);
756	return qp;
757}
758
759struct ib_qp *ib_create_qp(struct ib_pd *pd,
760			   struct ib_qp_init_attr *qp_init_attr)
761{
762	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
763	struct ib_qp *qp;
764
765	if (qp_init_attr->rwq_ind_tbl &&
766	    (qp_init_attr->recv_cq ||
767	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
768	    qp_init_attr->cap.max_recv_sge))
769		return ERR_PTR(-EINVAL);
770
771	qp = device->create_qp(pd, qp_init_attr, NULL);
772	if (IS_ERR(qp))
773		return qp;
774
775	qp->device     = device;
776	qp->real_qp    = qp;
777	qp->uobject    = NULL;
778	qp->qp_type    = qp_init_attr->qp_type;
779	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
780
781	atomic_set(&qp->usecnt, 0);
782	spin_lock_init(&qp->mr_lock);
783
784	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
785		return ib_create_xrc_qp(qp, qp_init_attr);
786
787	qp->event_handler = qp_init_attr->event_handler;
788	qp->qp_context = qp_init_attr->qp_context;
789	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
790		qp->recv_cq = NULL;
791		qp->srq = NULL;
792	} else {
793		qp->recv_cq = qp_init_attr->recv_cq;
794		if (qp_init_attr->recv_cq)
795			atomic_inc(&qp_init_attr->recv_cq->usecnt);
796		qp->srq = qp_init_attr->srq;
797		if (qp->srq)
798			atomic_inc(&qp_init_attr->srq->usecnt);
799	}
800
801	qp->pd	    = pd;
802	qp->send_cq = qp_init_attr->send_cq;
803	qp->xrcd    = NULL;
804
805	atomic_inc(&pd->usecnt);
806	if (qp_init_attr->send_cq)
807		atomic_inc(&qp_init_attr->send_cq->usecnt);
808	if (qp_init_attr->rwq_ind_tbl)
809		atomic_inc(&qp->rwq_ind_tbl->usecnt);
810
811	/*
812	 * Note: all hw drivers guarantee that max_send_sge is lower than
813	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
814	 * max_send_sge <= max_sge_rd.
815	 */
816	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
817	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
818				 device->attrs.max_sge_rd);
819
820	return qp;
821}
822EXPORT_SYMBOL(ib_create_qp);
823
824static const struct {
825	int			valid;
826	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
827	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
828} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
829	[IB_QPS_RESET] = {
830		[IB_QPS_RESET] = { .valid = 1 },
831		[IB_QPS_INIT]  = {
832			.valid = 1,
833			.req_param = {
834				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
835						IB_QP_PORT			|
836						IB_QP_QKEY),
837				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
838				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
839						IB_QP_PORT			|
840						IB_QP_ACCESS_FLAGS),
841				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
842						IB_QP_PORT			|
843						IB_QP_ACCESS_FLAGS),
844				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
845						IB_QP_PORT			|
846						IB_QP_ACCESS_FLAGS),
847				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
848						IB_QP_PORT			|
849						IB_QP_ACCESS_FLAGS),
850				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
851						IB_QP_QKEY),
852				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
853						IB_QP_QKEY),
854			}
855		},
856	},
857	[IB_QPS_INIT]  = {
858		[IB_QPS_RESET] = { .valid = 1 },
859		[IB_QPS_ERR] =   { .valid = 1 },
860		[IB_QPS_INIT]  = {
861			.valid = 1,
862			.opt_param = {
863				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
864						IB_QP_PORT			|
865						IB_QP_QKEY),
866				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
867						IB_QP_PORT			|
868						IB_QP_ACCESS_FLAGS),
869				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
870						IB_QP_PORT			|
871						IB_QP_ACCESS_FLAGS),
872				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
873						IB_QP_PORT			|
874						IB_QP_ACCESS_FLAGS),
875				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
876						IB_QP_PORT			|
877						IB_QP_ACCESS_FLAGS),
878				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
879						IB_QP_QKEY),
880				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
881						IB_QP_QKEY),
882			}
883		},
884		[IB_QPS_RTR]   = {
885			.valid = 1,
886			.req_param = {
887				[IB_QPT_UC]  = (IB_QP_AV			|
888						IB_QP_PATH_MTU			|
889						IB_QP_DEST_QPN			|
890						IB_QP_RQ_PSN),
891				[IB_QPT_RC]  = (IB_QP_AV			|
892						IB_QP_PATH_MTU			|
893						IB_QP_DEST_QPN			|
894						IB_QP_RQ_PSN			|
895						IB_QP_MAX_DEST_RD_ATOMIC	|
896						IB_QP_MIN_RNR_TIMER),
897				[IB_QPT_XRC_INI] = (IB_QP_AV			|
898						IB_QP_PATH_MTU			|
899						IB_QP_DEST_QPN			|
900						IB_QP_RQ_PSN),
901				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
902						IB_QP_PATH_MTU			|
903						IB_QP_DEST_QPN			|
904						IB_QP_RQ_PSN			|
905						IB_QP_MAX_DEST_RD_ATOMIC	|
906						IB_QP_MIN_RNR_TIMER),
907			},
908			.opt_param = {
909				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
910						 IB_QP_QKEY),
911				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
912						 IB_QP_ACCESS_FLAGS		|
913						 IB_QP_PKEY_INDEX),
914				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
915						 IB_QP_ACCESS_FLAGS		|
916						 IB_QP_PKEY_INDEX),
917				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
918						 IB_QP_ACCESS_FLAGS		|
919						 IB_QP_PKEY_INDEX),
920				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
921						 IB_QP_ACCESS_FLAGS		|
922						 IB_QP_PKEY_INDEX),
923				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
924						 IB_QP_QKEY),
925				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
926						 IB_QP_QKEY),
927			 },
928		},
929	},
930	[IB_QPS_RTR]   = {
931		[IB_QPS_RESET] = { .valid = 1 },
932		[IB_QPS_ERR] =   { .valid = 1 },
933		[IB_QPS_RTS]   = {
934			.valid = 1,
935			.req_param = {
936				[IB_QPT_UD]  = IB_QP_SQ_PSN,
937				[IB_QPT_UC]  = IB_QP_SQ_PSN,
938				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
939						IB_QP_RETRY_CNT			|
940						IB_QP_RNR_RETRY			|
941						IB_QP_SQ_PSN			|
942						IB_QP_MAX_QP_RD_ATOMIC),
943				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
944						IB_QP_RETRY_CNT			|
945						IB_QP_RNR_RETRY			|
946						IB_QP_SQ_PSN			|
947						IB_QP_MAX_QP_RD_ATOMIC),
948				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
949						IB_QP_SQ_PSN),
950				[IB_QPT_SMI] = IB_QP_SQ_PSN,
951				[IB_QPT_GSI] = IB_QP_SQ_PSN,
952			},
953			.opt_param = {
954				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
955						 IB_QP_QKEY),
956				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
957						 IB_QP_ALT_PATH			|
958						 IB_QP_ACCESS_FLAGS		|
959						 IB_QP_PATH_MIG_STATE),
960				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
961						 IB_QP_ALT_PATH			|
962						 IB_QP_ACCESS_FLAGS		|
963						 IB_QP_MIN_RNR_TIMER		|
964						 IB_QP_PATH_MIG_STATE),
965				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
966						 IB_QP_ALT_PATH			|
967						 IB_QP_ACCESS_FLAGS		|
968						 IB_QP_PATH_MIG_STATE),
969				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
970						 IB_QP_ALT_PATH			|
971						 IB_QP_ACCESS_FLAGS		|
972						 IB_QP_MIN_RNR_TIMER		|
973						 IB_QP_PATH_MIG_STATE),
974				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
975						 IB_QP_QKEY),
976				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
977						 IB_QP_QKEY),
978			 }
979		}
980	},
981	[IB_QPS_RTS]   = {
982		[IB_QPS_RESET] = { .valid = 1 },
983		[IB_QPS_ERR] =   { .valid = 1 },
984		[IB_QPS_RTS]   = {
985			.valid = 1,
986			.opt_param = {
987				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
988						IB_QP_QKEY),
989				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
990						IB_QP_ACCESS_FLAGS		|
991						IB_QP_ALT_PATH			|
992						IB_QP_PATH_MIG_STATE),
993				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
994						IB_QP_ACCESS_FLAGS		|
995						IB_QP_ALT_PATH			|
996						IB_QP_PATH_MIG_STATE		|
997						IB_QP_MIN_RNR_TIMER),
998				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
999						IB_QP_ACCESS_FLAGS		|
1000						IB_QP_ALT_PATH			|
1001						IB_QP_PATH_MIG_STATE),
1002				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1003						IB_QP_ACCESS_FLAGS		|
1004						IB_QP_ALT_PATH			|
1005						IB_QP_PATH_MIG_STATE		|
1006						IB_QP_MIN_RNR_TIMER),
1007				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1008						IB_QP_QKEY),
1009				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1010						IB_QP_QKEY),
1011			}
1012		},
1013		[IB_QPS_SQD]   = {
1014			.valid = 1,
1015			.opt_param = {
1016				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1017				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1018				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1019				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1020				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1021				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1022				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1023			}
1024		},
1025	},
1026	[IB_QPS_SQD]   = {
1027		[IB_QPS_RESET] = { .valid = 1 },
1028		[IB_QPS_ERR] =   { .valid = 1 },
1029		[IB_QPS_RTS]   = {
1030			.valid = 1,
1031			.opt_param = {
1032				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1033						IB_QP_QKEY),
1034				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1035						IB_QP_ALT_PATH			|
1036						IB_QP_ACCESS_FLAGS		|
1037						IB_QP_PATH_MIG_STATE),
1038				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1039						IB_QP_ALT_PATH			|
1040						IB_QP_ACCESS_FLAGS		|
1041						IB_QP_MIN_RNR_TIMER		|
1042						IB_QP_PATH_MIG_STATE),
1043				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1044						IB_QP_ALT_PATH			|
1045						IB_QP_ACCESS_FLAGS		|
1046						IB_QP_PATH_MIG_STATE),
1047				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1048						IB_QP_ALT_PATH			|
1049						IB_QP_ACCESS_FLAGS		|
1050						IB_QP_MIN_RNR_TIMER		|
1051						IB_QP_PATH_MIG_STATE),
1052				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1053						IB_QP_QKEY),
1054				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1055						IB_QP_QKEY),
1056			}
1057		},
1058		[IB_QPS_SQD]   = {
1059			.valid = 1,
1060			.opt_param = {
1061				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1062						IB_QP_QKEY),
1063				[IB_QPT_UC]  = (IB_QP_AV			|
1064						IB_QP_ALT_PATH			|
1065						IB_QP_ACCESS_FLAGS		|
1066						IB_QP_PKEY_INDEX		|
1067						IB_QP_PATH_MIG_STATE),
1068				[IB_QPT_RC]  = (IB_QP_PORT			|
1069						IB_QP_AV			|
1070						IB_QP_TIMEOUT			|
1071						IB_QP_RETRY_CNT			|
1072						IB_QP_RNR_RETRY			|
1073						IB_QP_MAX_QP_RD_ATOMIC		|
1074						IB_QP_MAX_DEST_RD_ATOMIC	|
1075						IB_QP_ALT_PATH			|
1076						IB_QP_ACCESS_FLAGS		|
1077						IB_QP_PKEY_INDEX		|
1078						IB_QP_MIN_RNR_TIMER		|
1079						IB_QP_PATH_MIG_STATE),
1080				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1081						IB_QP_AV			|
1082						IB_QP_TIMEOUT			|
1083						IB_QP_RETRY_CNT			|
1084						IB_QP_RNR_RETRY			|
1085						IB_QP_MAX_QP_RD_ATOMIC		|
1086						IB_QP_ALT_PATH			|
1087						IB_QP_ACCESS_FLAGS		|
1088						IB_QP_PKEY_INDEX		|
1089						IB_QP_PATH_MIG_STATE),
1090				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1091						IB_QP_AV			|
1092						IB_QP_TIMEOUT			|
1093						IB_QP_MAX_DEST_RD_ATOMIC	|
1094						IB_QP_ALT_PATH			|
1095						IB_QP_ACCESS_FLAGS		|
1096						IB_QP_PKEY_INDEX		|
1097						IB_QP_MIN_RNR_TIMER		|
1098						IB_QP_PATH_MIG_STATE),
1099				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1100						IB_QP_QKEY),
1101				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1102						IB_QP_QKEY),
1103			}
1104		}
1105	},
1106	[IB_QPS_SQE]   = {
1107		[IB_QPS_RESET] = { .valid = 1 },
1108		[IB_QPS_ERR] =   { .valid = 1 },
1109		[IB_QPS_RTS]   = {
1110			.valid = 1,
1111			.opt_param = {
1112				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1113						IB_QP_QKEY),
1114				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1115						IB_QP_ACCESS_FLAGS),
1116				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1117						IB_QP_QKEY),
1118				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1119						IB_QP_QKEY),
1120			}
1121		}
1122	},
1123	[IB_QPS_ERR] = {
1124		[IB_QPS_RESET] = { .valid = 1 },
1125		[IB_QPS_ERR] =   { .valid = 1 }
1126	}
1127};
1128
1129int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1130		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1131		       enum rdma_link_layer ll)
1132{
1133	enum ib_qp_attr_mask req_param, opt_param;
1134
1135	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1136	    next_state < 0 || next_state > IB_QPS_ERR)
1137		return 0;
1138
1139	if (mask & IB_QP_CUR_STATE  &&
1140	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1141	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1142		return 0;
1143
1144	if (!qp_state_table[cur_state][next_state].valid)
1145		return 0;
1146
1147	req_param = qp_state_table[cur_state][next_state].req_param[type];
1148	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1149
1150	if ((mask & req_param) != req_param)
1151		return 0;
1152
1153	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1154		return 0;
1155
1156	return 1;
1157}
1158EXPORT_SYMBOL(ib_modify_qp_is_ok);
1159
1160int ib_resolve_eth_dmac(struct ib_device *device,
1161			struct ib_ah_attr *ah_attr)
1162{
1163	int           ret = 0;
1164
1165	if (ah_attr->port_num < rdma_start_port(device) ||
1166	    ah_attr->port_num > rdma_end_port(device))
1167		return -EINVAL;
1168
1169	if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1170		return 0;
1171
1172	if (rdma_link_local_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1173		rdma_get_ll_mac((struct in6_addr *)ah_attr->grh.dgid.raw,
1174				ah_attr->dmac);
1175	} else {
1176		union ib_gid		sgid;
1177		struct ib_gid_attr	sgid_attr;
1178		int			hop_limit;
1179
1180		ret = ib_query_gid(device,
1181				   ah_attr->port_num,
1182				   ah_attr->grh.sgid_index,
1183				   &sgid, &sgid_attr);
1184
1185		if (ret || !sgid_attr.ndev) {
1186			if (!ret)
1187				ret = -ENXIO;
1188			goto out;
1189		}
1190
1191		ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1192						   &ah_attr->grh.dgid,
1193						   ah_attr->dmac,
1194						   sgid_attr.ndev, &hop_limit);
1195
1196		dev_put(sgid_attr.ndev);
1197
1198		ah_attr->grh.hop_limit = hop_limit;
1199	}
1200out:
1201	return ret;
1202}
1203EXPORT_SYMBOL(ib_resolve_eth_dmac);
1204
1205
1206int ib_modify_qp(struct ib_qp *qp,
1207		 struct ib_qp_attr *qp_attr,
1208		 int qp_attr_mask)
1209{
1210	if (qp_attr_mask & IB_QP_AV) {
1211		int ret;
1212
1213		ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1214		if (ret)
1215			return ret;
1216	}
1217
1218	return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1219}
1220EXPORT_SYMBOL(ib_modify_qp);
1221
1222int ib_query_qp(struct ib_qp *qp,
1223		struct ib_qp_attr *qp_attr,
1224		int qp_attr_mask,
1225		struct ib_qp_init_attr *qp_init_attr)
1226{
1227	return qp->device->query_qp ?
1228		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1229		-ENOSYS;
1230}
1231EXPORT_SYMBOL(ib_query_qp);
1232
1233int ib_close_qp(struct ib_qp *qp)
1234{
1235	struct ib_qp *real_qp;
1236	unsigned long flags;
1237
1238	real_qp = qp->real_qp;
1239	if (real_qp == qp)
1240		return -EINVAL;
1241
1242	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1243	list_del(&qp->open_list);
1244	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1245
1246	atomic_dec(&real_qp->usecnt);
1247	kfree(qp);
1248
1249	return 0;
1250}
1251EXPORT_SYMBOL(ib_close_qp);
1252
1253static int __ib_destroy_shared_qp(struct ib_qp *qp)
1254{
1255	struct ib_xrcd *xrcd;
1256	struct ib_qp *real_qp;
1257	int ret;
1258
1259	real_qp = qp->real_qp;
1260	xrcd = real_qp->xrcd;
1261
1262	mutex_lock(&xrcd->tgt_qp_mutex);
1263	ib_close_qp(qp);
1264	if (atomic_read(&real_qp->usecnt) == 0)
1265		list_del(&real_qp->xrcd_list);
1266	else
1267		real_qp = NULL;
1268	mutex_unlock(&xrcd->tgt_qp_mutex);
1269
1270	if (real_qp) {
1271		ret = ib_destroy_qp(real_qp);
1272		if (!ret)
1273			atomic_dec(&xrcd->usecnt);
1274		else
1275			__ib_insert_xrcd_qp(xrcd, real_qp);
1276	}
1277
1278	return 0;
1279}
1280
1281int ib_destroy_qp(struct ib_qp *qp)
1282{
1283	struct ib_pd *pd;
1284	struct ib_cq *scq, *rcq;
1285	struct ib_srq *srq;
1286	struct ib_rwq_ind_table *ind_tbl;
1287	int ret;
1288
1289	if (atomic_read(&qp->usecnt))
1290		return -EBUSY;
1291
1292	if (qp->real_qp != qp)
1293		return __ib_destroy_shared_qp(qp);
1294
1295	pd   = qp->pd;
1296	scq  = qp->send_cq;
1297	rcq  = qp->recv_cq;
1298	srq  = qp->srq;
1299	ind_tbl = qp->rwq_ind_tbl;
1300
1301	ret = qp->device->destroy_qp(qp);
1302	if (!ret) {
1303		if (pd)
1304			atomic_dec(&pd->usecnt);
1305		if (scq)
1306			atomic_dec(&scq->usecnt);
1307		if (rcq)
1308			atomic_dec(&rcq->usecnt);
1309		if (srq)
1310			atomic_dec(&srq->usecnt);
1311		if (ind_tbl)
1312			atomic_dec(&ind_tbl->usecnt);
1313	}
1314
1315	return ret;
1316}
1317EXPORT_SYMBOL(ib_destroy_qp);
1318
1319/* Completion queues */
1320
1321struct ib_cq *ib_create_cq(struct ib_device *device,
1322			   ib_comp_handler comp_handler,
1323			   void (*event_handler)(struct ib_event *, void *),
1324			   void *cq_context,
1325			   const struct ib_cq_init_attr *cq_attr)
1326{
1327	struct ib_cq *cq;
1328
1329	cq = device->create_cq(device, cq_attr, NULL, NULL);
1330
1331	if (!IS_ERR(cq)) {
1332		cq->device        = device;
1333		cq->uobject       = NULL;
1334		cq->comp_handler  = comp_handler;
1335		cq->event_handler = event_handler;
1336		cq->cq_context    = cq_context;
1337		atomic_set(&cq->usecnt, 0);
1338	}
1339
1340	return cq;
1341}
1342EXPORT_SYMBOL(ib_create_cq);
1343
1344int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1345{
1346	return cq->device->modify_cq ?
1347		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1348}
1349EXPORT_SYMBOL(ib_modify_cq);
1350
1351int ib_destroy_cq(struct ib_cq *cq)
1352{
1353	if (atomic_read(&cq->usecnt))
1354		return -EBUSY;
1355
1356	return cq->device->destroy_cq(cq);
1357}
1358EXPORT_SYMBOL(ib_destroy_cq);
1359
1360int ib_resize_cq(struct ib_cq *cq, int cqe)
1361{
1362	return cq->device->resize_cq ?
1363		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1364}
1365EXPORT_SYMBOL(ib_resize_cq);
1366
1367/* Memory regions */
1368
1369int ib_dereg_mr(struct ib_mr *mr)
1370{
1371	struct ib_pd *pd = mr->pd;
1372	int ret;
1373
1374	ret = mr->device->dereg_mr(mr);
1375	if (!ret)
1376		atomic_dec(&pd->usecnt);
1377
1378	return ret;
1379}
1380EXPORT_SYMBOL(ib_dereg_mr);
1381
1382/**
1383 * ib_alloc_mr() - Allocates a memory region
1384 * @pd:            protection domain associated with the region
1385 * @mr_type:       memory region type
1386 * @max_num_sg:    maximum sg entries available for registration.
1387 *
1388 * Notes:
1389 * Memory registeration page/sg lists must not exceed max_num_sg.
1390 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1391 * max_num_sg * used_page_size.
1392 *
1393 */
1394struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1395			  enum ib_mr_type mr_type,
1396			  u32 max_num_sg)
1397{
1398	struct ib_mr *mr;
1399
1400	if (!pd->device->alloc_mr)
1401		return ERR_PTR(-ENOSYS);
1402
1403	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1404	if (!IS_ERR(mr)) {
1405		mr->device  = pd->device;
1406		mr->pd      = pd;
1407		mr->uobject = NULL;
1408		atomic_inc(&pd->usecnt);
1409		mr->need_inval = false;
1410	}
1411
1412	return mr;
1413}
1414EXPORT_SYMBOL(ib_alloc_mr);
1415
1416/* "Fast" memory regions */
1417
1418struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1419			    int mr_access_flags,
1420			    struct ib_fmr_attr *fmr_attr)
1421{
1422	struct ib_fmr *fmr;
1423
1424	if (!pd->device->alloc_fmr)
1425		return ERR_PTR(-ENOSYS);
1426
1427	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1428	if (!IS_ERR(fmr)) {
1429		fmr->device = pd->device;
1430		fmr->pd     = pd;
1431		atomic_inc(&pd->usecnt);
1432	}
1433
1434	return fmr;
1435}
1436EXPORT_SYMBOL(ib_alloc_fmr);
1437
1438int ib_unmap_fmr(struct list_head *fmr_list)
1439{
1440	struct ib_fmr *fmr;
1441
1442	if (list_empty(fmr_list))
1443		return 0;
1444
1445	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1446	return fmr->device->unmap_fmr(fmr_list);
1447}
1448EXPORT_SYMBOL(ib_unmap_fmr);
1449
1450int ib_dealloc_fmr(struct ib_fmr *fmr)
1451{
1452	struct ib_pd *pd;
1453	int ret;
1454
1455	pd = fmr->pd;
1456	ret = fmr->device->dealloc_fmr(fmr);
1457	if (!ret)
1458		atomic_dec(&pd->usecnt);
1459
1460	return ret;
1461}
1462EXPORT_SYMBOL(ib_dealloc_fmr);
1463
1464/* Multicast groups */
1465
1466static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1467{
1468	struct ib_qp_init_attr init_attr = {};
1469	struct ib_qp_attr attr = {};
1470	int num_eth_ports = 0;
1471	int port;
1472
1473	/* If QP state >= init, it is assigned to a port and we can check this
1474	 * port only.
1475	 */
1476	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1477		if (attr.qp_state >= IB_QPS_INIT) {
1478			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1479			    IB_LINK_LAYER_INFINIBAND)
1480				return true;
1481			goto lid_check;
1482		}
1483	}
1484
1485	/* Can't get a quick answer, iterate over all ports */
1486	for (port = 0; port < qp->device->phys_port_cnt; port++)
1487		if (rdma_port_get_link_layer(qp->device, port) !=
1488		    IB_LINK_LAYER_INFINIBAND)
1489			num_eth_ports++;
1490
1491	/* If we have at lease one Ethernet port, RoCE annex declares that
1492	 * multicast LID should be ignored. We can't tell at this step if the
1493	 * QP belongs to an IB or Ethernet port.
1494	 */
1495	if (num_eth_ports)
1496		return true;
1497
1498	/* If all the ports are IB, we can check according to IB spec. */
1499lid_check:
1500	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1501		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1502}
1503
1504int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1505{
1506	int ret;
1507
1508	if (!qp->device->attach_mcast)
1509		return -ENOSYS;
1510
1511	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1512	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1513		return -EINVAL;
1514
1515	ret = qp->device->attach_mcast(qp, gid, lid);
1516	if (!ret)
1517		atomic_inc(&qp->usecnt);
1518	return ret;
1519}
1520EXPORT_SYMBOL(ib_attach_mcast);
1521
1522int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1523{
1524	int ret;
1525
1526	if (!qp->device->detach_mcast)
1527		return -ENOSYS;
1528
1529	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1530	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1531		return -EINVAL;
1532
1533	ret = qp->device->detach_mcast(qp, gid, lid);
1534	if (!ret)
1535		atomic_dec(&qp->usecnt);
1536	return ret;
1537}
1538EXPORT_SYMBOL(ib_detach_mcast);
1539
1540struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1541{
1542	struct ib_xrcd *xrcd;
1543
1544	if (!device->alloc_xrcd)
1545		return ERR_PTR(-ENOSYS);
1546
1547	xrcd = device->alloc_xrcd(device, NULL, NULL);
1548	if (!IS_ERR(xrcd)) {
1549		xrcd->device = device;
1550		xrcd->inode = NULL;
1551		atomic_set(&xrcd->usecnt, 0);
1552		mutex_init(&xrcd->tgt_qp_mutex);
1553		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1554	}
1555
1556	return xrcd;
1557}
1558EXPORT_SYMBOL(ib_alloc_xrcd);
1559
1560int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1561{
1562	struct ib_qp *qp;
1563	int ret;
1564
1565	if (atomic_read(&xrcd->usecnt))
1566		return -EBUSY;
1567
1568	while (!list_empty(&xrcd->tgt_qp_list)) {
1569		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1570		ret = ib_destroy_qp(qp);
1571		if (ret)
1572			return ret;
1573	}
1574
1575	return xrcd->device->dealloc_xrcd(xrcd);
1576}
1577EXPORT_SYMBOL(ib_dealloc_xrcd);
1578
1579/**
1580 * ib_create_wq - Creates a WQ associated with the specified protection
1581 * domain.
1582 * @pd: The protection domain associated with the WQ.
1583 * @wq_init_attr: A list of initial attributes required to create the
1584 * WQ. If WQ creation succeeds, then the attributes are updated to
1585 * the actual capabilities of the created WQ.
1586 *
1587 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1588 * the requested size of the WQ, and set to the actual values allocated
1589 * on return.
1590 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1591 * at least as large as the requested values.
1592 */
1593struct ib_wq *ib_create_wq(struct ib_pd *pd,
1594			   struct ib_wq_init_attr *wq_attr)
1595{
1596	struct ib_wq *wq;
1597
1598	if (!pd->device->create_wq)
1599		return ERR_PTR(-ENOSYS);
1600
1601	wq = pd->device->create_wq(pd, wq_attr, NULL);
1602	if (!IS_ERR(wq)) {
1603		wq->event_handler = wq_attr->event_handler;
1604		wq->wq_context = wq_attr->wq_context;
1605		wq->wq_type = wq_attr->wq_type;
1606		wq->cq = wq_attr->cq;
1607		wq->device = pd->device;
1608		wq->pd = pd;
1609		wq->uobject = NULL;
1610		atomic_inc(&pd->usecnt);
1611		atomic_inc(&wq_attr->cq->usecnt);
1612		atomic_set(&wq->usecnt, 0);
1613	}
1614	return wq;
1615}
1616EXPORT_SYMBOL(ib_create_wq);
1617
1618/**
1619 * ib_destroy_wq - Destroys the specified WQ.
1620 * @wq: The WQ to destroy.
1621 */
1622int ib_destroy_wq(struct ib_wq *wq)
1623{
1624	int err;
1625	struct ib_cq *cq = wq->cq;
1626	struct ib_pd *pd = wq->pd;
1627
1628	if (atomic_read(&wq->usecnt))
1629		return -EBUSY;
1630
1631	err = wq->device->destroy_wq(wq);
1632	if (!err) {
1633		atomic_dec(&pd->usecnt);
1634		atomic_dec(&cq->usecnt);
1635	}
1636	return err;
1637}
1638EXPORT_SYMBOL(ib_destroy_wq);
1639
1640/**
1641 * ib_modify_wq - Modifies the specified WQ.
1642 * @wq: The WQ to modify.
1643 * @wq_attr: On input, specifies the WQ attributes to modify.
1644 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1645 *   are being modified.
1646 * On output, the current values of selected WQ attributes are returned.
1647 */
1648int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1649		 u32 wq_attr_mask)
1650{
1651	int err;
1652
1653	if (!wq->device->modify_wq)
1654		return -ENOSYS;
1655
1656	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1657	return err;
1658}
1659EXPORT_SYMBOL(ib_modify_wq);
1660
1661/*
1662 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1663 * @device: The device on which to create the rwq indirection table.
1664 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1665 * create the Indirection Table.
1666 *
1667 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1668 *	than the created ib_rwq_ind_table object and the caller is responsible
1669 *	for its memory allocation/free.
1670 */
1671struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1672						 struct ib_rwq_ind_table_init_attr *init_attr)
1673{
1674	struct ib_rwq_ind_table *rwq_ind_table;
1675	int i;
1676	u32 table_size;
1677
1678	if (!device->create_rwq_ind_table)
1679		return ERR_PTR(-ENOSYS);
1680
1681	table_size = (1 << init_attr->log_ind_tbl_size);
1682	rwq_ind_table = device->create_rwq_ind_table(device,
1683				init_attr, NULL);
1684	if (IS_ERR(rwq_ind_table))
1685		return rwq_ind_table;
1686
1687	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1688	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1689	rwq_ind_table->device = device;
1690	rwq_ind_table->uobject = NULL;
1691	atomic_set(&rwq_ind_table->usecnt, 0);
1692
1693	for (i = 0; i < table_size; i++)
1694		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1695
1696	return rwq_ind_table;
1697}
1698EXPORT_SYMBOL(ib_create_rwq_ind_table);
1699
1700/*
1701 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1702 * @wq_ind_table: The Indirection Table to destroy.
1703*/
1704int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1705{
1706	int err, i;
1707	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1708	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1709
1710	if (atomic_read(&rwq_ind_table->usecnt))
1711		return -EBUSY;
1712
1713	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1714	if (!err) {
1715		for (i = 0; i < table_size; i++)
1716			atomic_dec(&ind_tbl[i]->usecnt);
1717	}
1718
1719	return err;
1720}
1721EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1722
1723struct ib_flow *ib_create_flow(struct ib_qp *qp,
1724			       struct ib_flow_attr *flow_attr,
1725			       int domain)
1726{
1727	struct ib_flow *flow_id;
1728	if (!qp->device->create_flow)
1729		return ERR_PTR(-ENOSYS);
1730
1731	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1732	if (!IS_ERR(flow_id))
1733		atomic_inc(&qp->usecnt);
1734	return flow_id;
1735}
1736EXPORT_SYMBOL(ib_create_flow);
1737
1738int ib_destroy_flow(struct ib_flow *flow_id)
1739{
1740	int err;
1741	struct ib_qp *qp = flow_id->qp;
1742
1743	err = qp->device->destroy_flow(flow_id);
1744	if (!err)
1745		atomic_dec(&qp->usecnt);
1746	return err;
1747}
1748EXPORT_SYMBOL(ib_destroy_flow);
1749
1750int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1751		       struct ib_mr_status *mr_status)
1752{
1753	return mr->device->check_mr_status ?
1754		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1755}
1756EXPORT_SYMBOL(ib_check_mr_status);
1757
1758int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1759			 int state)
1760{
1761	if (!device->set_vf_link_state)
1762		return -ENOSYS;
1763
1764	return device->set_vf_link_state(device, vf, port, state);
1765}
1766EXPORT_SYMBOL(ib_set_vf_link_state);
1767
1768int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1769		     struct ifla_vf_info *info)
1770{
1771	if (!device->get_vf_config)
1772		return -ENOSYS;
1773
1774	return device->get_vf_config(device, vf, port, info);
1775}
1776EXPORT_SYMBOL(ib_get_vf_config);
1777
1778int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1779		    struct ifla_vf_stats *stats)
1780{
1781	if (!device->get_vf_stats)
1782		return -ENOSYS;
1783
1784	return device->get_vf_stats(device, vf, port, stats);
1785}
1786EXPORT_SYMBOL(ib_get_vf_stats);
1787
1788int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1789		   int type)
1790{
1791	if (!device->set_vf_guid)
1792		return -ENOSYS;
1793
1794	return device->set_vf_guid(device, vf, port, guid, type);
1795}
1796EXPORT_SYMBOL(ib_set_vf_guid);
1797
1798/**
1799 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1800 *     and set it the memory region.
1801 * @mr:            memory region
1802 * @sg:            dma mapped scatterlist
1803 * @sg_nents:      number of entries in sg
1804 * @sg_offset:     offset in bytes into sg
1805 * @page_size:     page vector desired page size
1806 *
1807 * Constraints:
1808 * - The first sg element is allowed to have an offset.
1809 * - Each sg element must either be aligned to page_size or virtually
1810 *   contiguous to the previous element. In case an sg element has a
1811 *   non-contiguous offset, the mapping prefix will not include it.
1812 * - The last sg element is allowed to have length less than page_size.
1813 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1814 *   then only max_num_sg entries will be mapped.
1815 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1816 *   constraints holds and the page_size argument is ignored.
1817 *
1818 * Returns the number of sg elements that were mapped to the memory region.
1819 *
1820 * After this completes successfully, the  memory region
1821 * is ready for registration.
1822 */
1823int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1824		 unsigned int *sg_offset, unsigned int page_size)
1825{
1826	if (unlikely(!mr->device->map_mr_sg))
1827		return -ENOSYS;
1828
1829	mr->page_size = page_size;
1830
1831	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1832}
1833EXPORT_SYMBOL(ib_map_mr_sg);
1834
1835/**
1836 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1837 *     to a page vector
1838 * @mr:            memory region
1839 * @sgl:           dma mapped scatterlist
1840 * @sg_nents:      number of entries in sg
1841 * @sg_offset_p:   IN:  start offset in bytes into sg
1842 *                 OUT: offset in bytes for element n of the sg of the first
1843 *                      byte that has not been processed where n is the return
1844 *                      value of this function.
1845 * @set_page:      driver page assignment function pointer
1846 *
1847 * Core service helper for drivers to convert the largest
1848 * prefix of given sg list to a page vector. The sg list
1849 * prefix converted is the prefix that meet the requirements
1850 * of ib_map_mr_sg.
1851 *
1852 * Returns the number of sg elements that were assigned to
1853 * a page vector.
1854 */
1855int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1856		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1857{
1858	struct scatterlist *sg;
1859	u64 last_end_dma_addr = 0;
1860	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1861	unsigned int last_page_off = 0;
1862	u64 page_mask = ~((u64)mr->page_size - 1);
1863	int i, ret;
1864
1865	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1866		return -EINVAL;
1867
1868	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1869	mr->length = 0;
1870
1871	for_each_sg(sgl, sg, sg_nents, i) {
1872		u64 dma_addr = sg_dma_address(sg) + sg_offset;
1873		u64 prev_addr = dma_addr;
1874		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1875		u64 end_dma_addr = dma_addr + dma_len;
1876		u64 page_addr = dma_addr & page_mask;
1877
1878		/*
1879		 * For the second and later elements, check whether either the
1880		 * end of element i-1 or the start of element i is not aligned
1881		 * on a page boundary.
1882		 */
1883		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1884			/* Stop mapping if there is a gap. */
1885			if (last_end_dma_addr != dma_addr)
1886				break;
1887
1888			/*
1889			 * Coalesce this element with the last. If it is small
1890			 * enough just update mr->length. Otherwise start
1891			 * mapping from the next page.
1892			 */
1893			goto next_page;
1894		}
1895
1896		do {
1897			ret = set_page(mr, page_addr);
1898			if (unlikely(ret < 0)) {
1899				sg_offset = prev_addr - sg_dma_address(sg);
1900				mr->length += prev_addr - dma_addr;
1901				if (sg_offset_p)
1902					*sg_offset_p = sg_offset;
1903				return i || sg_offset ? i : ret;
1904			}
1905			prev_addr = page_addr;
1906next_page:
1907			page_addr += mr->page_size;
1908		} while (page_addr < end_dma_addr);
1909
1910		mr->length += dma_len;
1911		last_end_dma_addr = end_dma_addr;
1912		last_page_off = end_dma_addr & ~page_mask;
1913
1914		sg_offset = 0;
1915	}
1916
1917	if (sg_offset_p)
1918		*sg_offset_p = 0;
1919	return i;
1920}
1921EXPORT_SYMBOL(ib_sg_to_pages);
1922
1923struct ib_drain_cqe {
1924	struct ib_cqe cqe;
1925	struct completion done;
1926};
1927
1928static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1929{
1930	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1931						cqe);
1932
1933	complete(&cqe->done);
1934}
1935
1936/*
1937 * Post a WR and block until its completion is reaped for the SQ.
1938 */
1939static void __ib_drain_sq(struct ib_qp *qp)
1940{
1941	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1942	struct ib_drain_cqe sdrain;
1943	struct ib_send_wr swr = {}, *bad_swr;
1944	int ret;
1945
1946	if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1947		WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1948			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1949		return;
1950	}
1951
1952	swr.wr_cqe = &sdrain.cqe;
1953	sdrain.cqe.done = ib_drain_qp_done;
1954	init_completion(&sdrain.done);
1955
1956	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1957	if (ret) {
1958		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1959		return;
1960	}
1961
1962	ret = ib_post_send(qp, &swr, &bad_swr);
1963	if (ret) {
1964		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1965		return;
1966	}
1967
1968	wait_for_completion(&sdrain.done);
1969}
1970
1971/*
1972 * Post a WR and block until its completion is reaped for the RQ.
1973 */
1974static void __ib_drain_rq(struct ib_qp *qp)
1975{
1976	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1977	struct ib_drain_cqe rdrain;
1978	struct ib_recv_wr rwr = {}, *bad_rwr;
1979	int ret;
1980
1981	if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1982		WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1983			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1984		return;
1985	}
1986
1987	rwr.wr_cqe = &rdrain.cqe;
1988	rdrain.cqe.done = ib_drain_qp_done;
1989	init_completion(&rdrain.done);
1990
1991	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1992	if (ret) {
1993		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1994		return;
1995	}
1996
1997	ret = ib_post_recv(qp, &rwr, &bad_rwr);
1998	if (ret) {
1999		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2000		return;
2001	}
2002
2003	wait_for_completion(&rdrain.done);
2004}
2005
2006/**
2007 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2008 *		   application.
2009 * @qp:            queue pair to drain
2010 *
2011 * If the device has a provider-specific drain function, then
2012 * call that.  Otherwise call the generic drain function
2013 * __ib_drain_sq().
2014 *
2015 * The caller must:
2016 *
2017 * ensure there is room in the CQ and SQ for the drain work request and
2018 * completion.
2019 *
2020 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2021 * IB_POLL_DIRECT.
2022 *
2023 * ensure that there are no other contexts that are posting WRs concurrently.
2024 * Otherwise the drain is not guaranteed.
2025 */
2026void ib_drain_sq(struct ib_qp *qp)
2027{
2028	if (qp->device->drain_sq)
2029		qp->device->drain_sq(qp);
2030	else
2031		__ib_drain_sq(qp);
2032}
2033EXPORT_SYMBOL(ib_drain_sq);
2034
2035/**
2036 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2037 *		   application.
2038 * @qp:            queue pair to drain
2039 *
2040 * If the device has a provider-specific drain function, then
2041 * call that.  Otherwise call the generic drain function
2042 * __ib_drain_rq().
2043 *
2044 * The caller must:
2045 *
2046 * ensure there is room in the CQ and RQ for the drain work request and
2047 * completion.
2048 *
2049 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2050 * IB_POLL_DIRECT.
2051 *
2052 * ensure that there are no other contexts that are posting WRs concurrently.
2053 * Otherwise the drain is not guaranteed.
2054 */
2055void ib_drain_rq(struct ib_qp *qp)
2056{
2057	if (qp->device->drain_rq)
2058		qp->device->drain_rq(qp);
2059	else
2060		__ib_drain_rq(qp);
2061}
2062EXPORT_SYMBOL(ib_drain_rq);
2063
2064/**
2065 * ib_drain_qp() - Block until all CQEs have been consumed by the
2066 *		   application on both the RQ and SQ.
2067 * @qp:            queue pair to drain
2068 *
2069 * The caller must:
2070 *
2071 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2072 * and completions.
2073 *
2074 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2075 * IB_POLL_DIRECT.
2076 *
2077 * ensure that there are no other contexts that are posting WRs concurrently.
2078 * Otherwise the drain is not guaranteed.
2079 */
2080void ib_drain_qp(struct ib_qp *qp)
2081{
2082	ib_drain_sq(qp);
2083	if (!qp->srq)
2084		ib_drain_rq(qp);
2085}
2086EXPORT_SYMBOL(ib_drain_qp);
2087