ib_verbs.c revision 331769
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses.  You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 *     Redistribution and use in source and binary forms, with or
17 *     without modification, are permitted provided that the following
18 *     conditions are met:
19 *
20 *      - Redistributions of source code must retain the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer.
23 *
24 *      - Redistributions in binary form must reproduce the above
25 *        copyright notice, this list of conditions and the following
26 *        disclaimer in the documentation and/or other materials
27 *        provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#include <linux/errno.h>
40#include <linux/err.h>
41#include <linux/string.h>
42#include <linux/slab.h>
43#include <linux/in.h>
44#include <linux/in6.h>
45
46#include <rdma/ib_verbs.h>
47#include <rdma/ib_cache.h>
48#include <rdma/ib_addr.h>
49
50#include <netinet/ip.h>
51#include <netinet/ip6.h>
52
53#include <machine/in_cksum.h>
54
55#include "core_priv.h"
56
57static const char * const ib_events[] = {
58	[IB_EVENT_CQ_ERR]		= "CQ error",
59	[IB_EVENT_QP_FATAL]		= "QP fatal error",
60	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
61	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
62	[IB_EVENT_COMM_EST]		= "communication established",
63	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
64	[IB_EVENT_PATH_MIG]		= "path migration successful",
65	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
66	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
67	[IB_EVENT_PORT_ACTIVE]		= "port active",
68	[IB_EVENT_PORT_ERR]		= "port error",
69	[IB_EVENT_LID_CHANGE]		= "LID change",
70	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
71	[IB_EVENT_SM_CHANGE]		= "SM change",
72	[IB_EVENT_SRQ_ERR]		= "SRQ error",
73	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
74	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
75	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
76	[IB_EVENT_GID_CHANGE]		= "GID changed",
77};
78
79const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
80{
81	size_t index = event;
82
83	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
84			ib_events[index] : "unrecognized event";
85}
86EXPORT_SYMBOL(ib_event_msg);
87
88static const char * const wc_statuses[] = {
89	[IB_WC_SUCCESS]			= "success",
90	[IB_WC_LOC_LEN_ERR]		= "local length error",
91	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
92	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
93	[IB_WC_LOC_PROT_ERR]		= "local protection error",
94	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
95	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
96	[IB_WC_BAD_RESP_ERR]		= "bad response error",
97	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
98	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
99	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
100	[IB_WC_REM_OP_ERR]		= "remote operation error",
101	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
102	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
103	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
104	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
105	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
106	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
107	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
108	[IB_WC_FATAL_ERR]		= "fatal error",
109	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
110	[IB_WC_GENERAL_ERR]		= "general error",
111};
112
113const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
114{
115	size_t index = status;
116
117	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
118			wc_statuses[index] : "unrecognized status";
119}
120EXPORT_SYMBOL(ib_wc_status_msg);
121
122__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
123{
124	switch (rate) {
125	case IB_RATE_2_5_GBPS: return  1;
126	case IB_RATE_5_GBPS:   return  2;
127	case IB_RATE_10_GBPS:  return  4;
128	case IB_RATE_20_GBPS:  return  8;
129	case IB_RATE_30_GBPS:  return 12;
130	case IB_RATE_40_GBPS:  return 16;
131	case IB_RATE_60_GBPS:  return 24;
132	case IB_RATE_80_GBPS:  return 32;
133	case IB_RATE_120_GBPS: return 48;
134	default:	       return -1;
135	}
136}
137EXPORT_SYMBOL(ib_rate_to_mult);
138
139__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
140{
141	switch (mult) {
142	case 1:  return IB_RATE_2_5_GBPS;
143	case 2:  return IB_RATE_5_GBPS;
144	case 4:  return IB_RATE_10_GBPS;
145	case 8:  return IB_RATE_20_GBPS;
146	case 12: return IB_RATE_30_GBPS;
147	case 16: return IB_RATE_40_GBPS;
148	case 24: return IB_RATE_60_GBPS;
149	case 32: return IB_RATE_80_GBPS;
150	case 48: return IB_RATE_120_GBPS;
151	default: return IB_RATE_PORT_CURRENT;
152	}
153}
154EXPORT_SYMBOL(mult_to_ib_rate);
155
156__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
157{
158	switch (rate) {
159	case IB_RATE_2_5_GBPS: return 2500;
160	case IB_RATE_5_GBPS:   return 5000;
161	case IB_RATE_10_GBPS:  return 10000;
162	case IB_RATE_20_GBPS:  return 20000;
163	case IB_RATE_30_GBPS:  return 30000;
164	case IB_RATE_40_GBPS:  return 40000;
165	case IB_RATE_60_GBPS:  return 60000;
166	case IB_RATE_80_GBPS:  return 80000;
167	case IB_RATE_120_GBPS: return 120000;
168	case IB_RATE_14_GBPS:  return 14062;
169	case IB_RATE_56_GBPS:  return 56250;
170	case IB_RATE_112_GBPS: return 112500;
171	case IB_RATE_168_GBPS: return 168750;
172	case IB_RATE_25_GBPS:  return 25781;
173	case IB_RATE_100_GBPS: return 103125;
174	case IB_RATE_200_GBPS: return 206250;
175	case IB_RATE_300_GBPS: return 309375;
176	default:	       return -1;
177	}
178}
179EXPORT_SYMBOL(ib_rate_to_mbps);
180
181__attribute_const__ enum rdma_transport_type
182rdma_node_get_transport(enum rdma_node_type node_type)
183{
184	switch (node_type) {
185	case RDMA_NODE_IB_CA:
186	case RDMA_NODE_IB_SWITCH:
187	case RDMA_NODE_IB_ROUTER:
188		return RDMA_TRANSPORT_IB;
189	case RDMA_NODE_RNIC:
190		return RDMA_TRANSPORT_IWARP;
191	case RDMA_NODE_USNIC:
192		return RDMA_TRANSPORT_USNIC;
193	case RDMA_NODE_USNIC_UDP:
194		return RDMA_TRANSPORT_USNIC_UDP;
195	default:
196		BUG();
197		return 0;
198	}
199}
200EXPORT_SYMBOL(rdma_node_get_transport);
201
202enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
203{
204	if (device->get_link_layer)
205		return device->get_link_layer(device, port_num);
206
207	switch (rdma_node_get_transport(device->node_type)) {
208	case RDMA_TRANSPORT_IB:
209		return IB_LINK_LAYER_INFINIBAND;
210	case RDMA_TRANSPORT_IWARP:
211	case RDMA_TRANSPORT_USNIC:
212	case RDMA_TRANSPORT_USNIC_UDP:
213		return IB_LINK_LAYER_ETHERNET;
214	default:
215		return IB_LINK_LAYER_UNSPECIFIED;
216	}
217}
218EXPORT_SYMBOL(rdma_port_get_link_layer);
219
220/* Protection domains */
221
222/**
223 * ib_alloc_pd - Allocates an unused protection domain.
224 * @device: The device on which to allocate the protection domain.
225 *
226 * A protection domain object provides an association between QPs, shared
227 * receive queues, address handles, memory regions, and memory windows.
228 *
229 * Every PD has a local_dma_lkey which can be used as the lkey value for local
230 * memory operations.
231 */
232struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
233		const char *caller)
234{
235	struct ib_pd *pd;
236	int mr_access_flags = 0;
237
238	pd = device->alloc_pd(device, NULL, NULL);
239	if (IS_ERR(pd))
240		return pd;
241
242	pd->device = device;
243	pd->uobject = NULL;
244	pd->__internal_mr = NULL;
245	atomic_set(&pd->usecnt, 0);
246	pd->flags = flags;
247
248	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
249		pd->local_dma_lkey = device->local_dma_lkey;
250	else
251		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
252
253	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
254		pr_warn("%s: enabling unsafe global rkey\n", caller);
255		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
256	}
257
258	if (mr_access_flags) {
259		struct ib_mr *mr;
260
261		mr = pd->device->get_dma_mr(pd, mr_access_flags);
262		if (IS_ERR(mr)) {
263			ib_dealloc_pd(pd);
264			return ERR_CAST(mr);
265		}
266
267		mr->device	= pd->device;
268		mr->pd		= pd;
269		mr->uobject	= NULL;
270		mr->need_inval	= false;
271
272		pd->__internal_mr = mr;
273
274		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
275			pd->local_dma_lkey = pd->__internal_mr->lkey;
276
277		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
278			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
279	}
280
281	return pd;
282}
283EXPORT_SYMBOL(__ib_alloc_pd);
284
285/**
286 * ib_dealloc_pd - Deallocates a protection domain.
287 * @pd: The protection domain to deallocate.
288 *
289 * It is an error to call this function while any resources in the pd still
290 * exist.  The caller is responsible to synchronously destroy them and
291 * guarantee no new allocations will happen.
292 */
293void ib_dealloc_pd(struct ib_pd *pd)
294{
295	int ret;
296
297	if (pd->__internal_mr) {
298		ret = pd->device->dereg_mr(pd->__internal_mr);
299		WARN_ON(ret);
300		pd->__internal_mr = NULL;
301	}
302
303	/* uverbs manipulates usecnt with proper locking, while the kabi
304	   requires the caller to guarantee we can't race here. */
305	WARN_ON(atomic_read(&pd->usecnt));
306
307	/* Making delalloc_pd a void return is a WIP, no driver should return
308	   an error here. */
309	ret = pd->device->dealloc_pd(pd);
310	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
311}
312EXPORT_SYMBOL(ib_dealloc_pd);
313
314/* Address handles */
315
316struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
317{
318	struct ib_ah *ah;
319
320	ah = pd->device->create_ah(pd, ah_attr);
321
322	if (!IS_ERR(ah)) {
323		ah->device  = pd->device;
324		ah->pd      = pd;
325		ah->uobject = NULL;
326		atomic_inc(&pd->usecnt);
327	}
328
329	return ah;
330}
331EXPORT_SYMBOL(ib_create_ah);
332
333static int ib_get_header_version(const union rdma_network_hdr *hdr)
334{
335	const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
336	struct ip ip4h_checked;
337	const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
338
339	/* If it's IPv6, the version must be 6, otherwise, the first
340	 * 20 bytes (before the IPv4 header) are garbled.
341	 */
342	if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
343		return (ip4h->ip_v == 4) ? 4 : 0;
344	/* version may be 6 or 4 because the first 20 bytes could be garbled */
345
346	/* RoCE v2 requires no options, thus header length
347	 * must be 5 words
348	 */
349	if (ip4h->ip_hl != 5)
350		return 6;
351
352	/* Verify checksum.
353	 * We can't write on scattered buffers so we need to copy to
354	 * temp buffer.
355	 */
356	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
357	ip4h_checked.ip_sum = 0;
358#if defined(INET) || defined(INET6)
359	ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
360#endif
361	/* if IPv4 header checksum is OK, believe it */
362	if (ip4h->ip_sum == ip4h_checked.ip_sum)
363		return 4;
364	return 6;
365}
366
367static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
368						     u8 port_num,
369						     const struct ib_grh *grh)
370{
371	int grh_version;
372
373	if (rdma_protocol_ib(device, port_num))
374		return RDMA_NETWORK_IB;
375
376	grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
377
378	if (grh_version == 4)
379		return RDMA_NETWORK_IPV4;
380
381	if (grh->next_hdr == IPPROTO_UDP)
382		return RDMA_NETWORK_IPV6;
383
384	return RDMA_NETWORK_ROCE_V1;
385}
386
387struct find_gid_index_context {
388	u16 vlan_id;
389	enum ib_gid_type gid_type;
390};
391
392static bool find_gid_index(const union ib_gid *gid,
393			   const struct ib_gid_attr *gid_attr,
394			   void *context)
395{
396	struct find_gid_index_context *ctx =
397		(struct find_gid_index_context *)context;
398
399	if (ctx->gid_type != gid_attr->gid_type)
400		return false;
401
402	if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
403	    (is_vlan_dev(gid_attr->ndev) &&
404	     vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
405		return false;
406
407	return true;
408}
409
410static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
411				   u16 vlan_id, const union ib_gid *sgid,
412				   enum ib_gid_type gid_type,
413				   u16 *gid_index)
414{
415	struct find_gid_index_context context = {.vlan_id = vlan_id,
416						 .gid_type = gid_type};
417
418	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
419				     &context, gid_index);
420}
421
422static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
423				  enum rdma_network_type net_type,
424				  union ib_gid *sgid, union ib_gid *dgid)
425{
426	struct sockaddr_in  src_in;
427	struct sockaddr_in  dst_in;
428	__be32 src_saddr, dst_saddr;
429
430	if (!sgid || !dgid)
431		return -EINVAL;
432
433	if (net_type == RDMA_NETWORK_IPV4) {
434		memcpy(&src_in.sin_addr.s_addr,
435		       &hdr->roce4grh.ip_src, 4);
436		memcpy(&dst_in.sin_addr.s_addr,
437		       &hdr->roce4grh.ip_dst, 4);
438		src_saddr = src_in.sin_addr.s_addr;
439		dst_saddr = dst_in.sin_addr.s_addr;
440		ipv6_addr_set_v4mapped(src_saddr,
441				       (struct in6_addr *)sgid);
442		ipv6_addr_set_v4mapped(dst_saddr,
443				       (struct in6_addr *)dgid);
444		return 0;
445	} else if (net_type == RDMA_NETWORK_IPV6 ||
446		   net_type == RDMA_NETWORK_IB) {
447		*dgid = hdr->ibgrh.dgid;
448		*sgid = hdr->ibgrh.sgid;
449		return 0;
450	} else {
451		return -EINVAL;
452	}
453}
454
455int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
456		       const struct ib_wc *wc, const struct ib_grh *grh,
457		       struct ib_ah_attr *ah_attr)
458{
459	u32 flow_class;
460	u16 gid_index;
461	int ret;
462	enum rdma_network_type net_type = RDMA_NETWORK_IB;
463	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
464	int hoplimit = 0xff;
465	union ib_gid dgid;
466	union ib_gid sgid;
467
468	memset(ah_attr, 0, sizeof *ah_attr);
469	if (rdma_cap_eth_ah(device, port_num)) {
470		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
471			net_type = wc->network_hdr_type;
472		else
473			net_type = ib_get_net_type_by_grh(device, port_num, grh);
474		gid_type = ib_network_to_gid_type(net_type);
475	}
476	ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
477				     &sgid, &dgid);
478	if (ret)
479		return ret;
480
481	if (rdma_protocol_roce(device, port_num)) {
482		int if_index = 0;
483		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
484				wc->vlan_id : 0xffff;
485		struct net_device *idev;
486		struct net_device *resolved_dev;
487
488		if (!(wc->wc_flags & IB_WC_GRH))
489			return -EPROTOTYPE;
490
491		if (!device->get_netdev)
492			return -EOPNOTSUPP;
493
494		idev = device->get_netdev(device, port_num);
495		if (!idev)
496			return -ENODEV;
497
498		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
499						   ah_attr->dmac,
500						   wc->wc_flags & IB_WC_WITH_VLAN ?
501						   NULL : &vlan_id,
502						   &if_index, &hoplimit);
503		if (ret) {
504			dev_put(idev);
505			return ret;
506		}
507
508		resolved_dev = dev_get_by_index(&init_net, if_index);
509		if (resolved_dev->if_flags & IFF_LOOPBACK) {
510			dev_put(resolved_dev);
511			resolved_dev = idev;
512			dev_hold(resolved_dev);
513		}
514		rcu_read_lock();
515		if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
516								   resolved_dev))
517			ret = -EHOSTUNREACH;
518		rcu_read_unlock();
519		dev_put(idev);
520		dev_put(resolved_dev);
521		if (ret)
522			return ret;
523
524		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
525					      &dgid, gid_type, &gid_index);
526		if (ret)
527			return ret;
528	}
529
530	ah_attr->dlid = wc->slid;
531	ah_attr->sl = wc->sl;
532	ah_attr->src_path_bits = wc->dlid_path_bits;
533	ah_attr->port_num = port_num;
534
535	if (wc->wc_flags & IB_WC_GRH) {
536		ah_attr->ah_flags = IB_AH_GRH;
537		ah_attr->grh.dgid = sgid;
538
539		if (!rdma_cap_eth_ah(device, port_num)) {
540			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
541				ret = ib_find_cached_gid_by_port(device, &dgid,
542								 IB_GID_TYPE_IB,
543								 port_num, NULL,
544								 &gid_index);
545				if (ret)
546					return ret;
547			} else {
548				gid_index = 0;
549			}
550		}
551
552		ah_attr->grh.sgid_index = (u8) gid_index;
553		flow_class = be32_to_cpu(grh->version_tclass_flow);
554		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
555		ah_attr->grh.hop_limit = hoplimit;
556		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
557	}
558	return 0;
559}
560EXPORT_SYMBOL(ib_init_ah_from_wc);
561
562struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
563				   const struct ib_grh *grh, u8 port_num)
564{
565	struct ib_ah_attr ah_attr;
566	int ret;
567
568	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
569	if (ret)
570		return ERR_PTR(ret);
571
572	return ib_create_ah(pd, &ah_attr);
573}
574EXPORT_SYMBOL(ib_create_ah_from_wc);
575
576int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
577{
578	return ah->device->modify_ah ?
579		ah->device->modify_ah(ah, ah_attr) :
580		-ENOSYS;
581}
582EXPORT_SYMBOL(ib_modify_ah);
583
584int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
585{
586	return ah->device->query_ah ?
587		ah->device->query_ah(ah, ah_attr) :
588		-ENOSYS;
589}
590EXPORT_SYMBOL(ib_query_ah);
591
592int ib_destroy_ah(struct ib_ah *ah)
593{
594	struct ib_pd *pd;
595	int ret;
596
597	pd = ah->pd;
598	ret = ah->device->destroy_ah(ah);
599	if (!ret)
600		atomic_dec(&pd->usecnt);
601
602	return ret;
603}
604EXPORT_SYMBOL(ib_destroy_ah);
605
606/* Shared receive queues */
607
608struct ib_srq *ib_create_srq(struct ib_pd *pd,
609			     struct ib_srq_init_attr *srq_init_attr)
610{
611	struct ib_srq *srq;
612
613	if (!pd->device->create_srq)
614		return ERR_PTR(-ENOSYS);
615
616	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
617
618	if (!IS_ERR(srq)) {
619		srq->device    	   = pd->device;
620		srq->pd        	   = pd;
621		srq->uobject       = NULL;
622		srq->event_handler = srq_init_attr->event_handler;
623		srq->srq_context   = srq_init_attr->srq_context;
624		srq->srq_type      = srq_init_attr->srq_type;
625		if (srq->srq_type == IB_SRQT_XRC) {
626			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
627			srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
628			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
629			atomic_inc(&srq->ext.xrc.cq->usecnt);
630		}
631		atomic_inc(&pd->usecnt);
632		atomic_set(&srq->usecnt, 0);
633	}
634
635	return srq;
636}
637EXPORT_SYMBOL(ib_create_srq);
638
639int ib_modify_srq(struct ib_srq *srq,
640		  struct ib_srq_attr *srq_attr,
641		  enum ib_srq_attr_mask srq_attr_mask)
642{
643	return srq->device->modify_srq ?
644		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
645		-ENOSYS;
646}
647EXPORT_SYMBOL(ib_modify_srq);
648
649int ib_query_srq(struct ib_srq *srq,
650		 struct ib_srq_attr *srq_attr)
651{
652	return srq->device->query_srq ?
653		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
654}
655EXPORT_SYMBOL(ib_query_srq);
656
657int ib_destroy_srq(struct ib_srq *srq)
658{
659	struct ib_pd *pd;
660	enum ib_srq_type srq_type;
661	struct ib_xrcd *uninitialized_var(xrcd);
662	struct ib_cq *uninitialized_var(cq);
663	int ret;
664
665	if (atomic_read(&srq->usecnt))
666		return -EBUSY;
667
668	pd = srq->pd;
669	srq_type = srq->srq_type;
670	if (srq_type == IB_SRQT_XRC) {
671		xrcd = srq->ext.xrc.xrcd;
672		cq = srq->ext.xrc.cq;
673	}
674
675	ret = srq->device->destroy_srq(srq);
676	if (!ret) {
677		atomic_dec(&pd->usecnt);
678		if (srq_type == IB_SRQT_XRC) {
679			atomic_dec(&xrcd->usecnt);
680			atomic_dec(&cq->usecnt);
681		}
682	}
683
684	return ret;
685}
686EXPORT_SYMBOL(ib_destroy_srq);
687
688/* Queue pairs */
689
690static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
691{
692	struct ib_qp *qp = context;
693	unsigned long flags;
694
695	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
696	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
697		if (event->element.qp->event_handler)
698			event->element.qp->event_handler(event, event->element.qp->qp_context);
699	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
700}
701
702static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
703{
704	mutex_lock(&xrcd->tgt_qp_mutex);
705	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
706	mutex_unlock(&xrcd->tgt_qp_mutex);
707}
708
709static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
710				  void (*event_handler)(struct ib_event *, void *),
711				  void *qp_context)
712{
713	struct ib_qp *qp;
714	unsigned long flags;
715
716	qp = kzalloc(sizeof *qp, GFP_KERNEL);
717	if (!qp)
718		return ERR_PTR(-ENOMEM);
719
720	qp->real_qp = real_qp;
721	atomic_inc(&real_qp->usecnt);
722	qp->device = real_qp->device;
723	qp->event_handler = event_handler;
724	qp->qp_context = qp_context;
725	qp->qp_num = real_qp->qp_num;
726	qp->qp_type = real_qp->qp_type;
727
728	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
729	list_add(&qp->open_list, &real_qp->open_list);
730	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
731
732	return qp;
733}
734
735struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
736			 struct ib_qp_open_attr *qp_open_attr)
737{
738	struct ib_qp *qp, *real_qp;
739
740	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
741		return ERR_PTR(-EINVAL);
742
743	qp = ERR_PTR(-EINVAL);
744	mutex_lock(&xrcd->tgt_qp_mutex);
745	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
746		if (real_qp->qp_num == qp_open_attr->qp_num) {
747			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
748					  qp_open_attr->qp_context);
749			break;
750		}
751	}
752	mutex_unlock(&xrcd->tgt_qp_mutex);
753	return qp;
754}
755EXPORT_SYMBOL(ib_open_qp);
756
757static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
758		struct ib_qp_init_attr *qp_init_attr)
759{
760	struct ib_qp *real_qp = qp;
761
762	qp->event_handler = __ib_shared_qp_event_handler;
763	qp->qp_context = qp;
764	qp->pd = NULL;
765	qp->send_cq = qp->recv_cq = NULL;
766	qp->srq = NULL;
767	qp->xrcd = qp_init_attr->xrcd;
768	atomic_inc(&qp_init_attr->xrcd->usecnt);
769	INIT_LIST_HEAD(&qp->open_list);
770
771	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
772			  qp_init_attr->qp_context);
773	if (!IS_ERR(qp))
774		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
775	else
776		real_qp->device->destroy_qp(real_qp);
777	return qp;
778}
779
780struct ib_qp *ib_create_qp(struct ib_pd *pd,
781			   struct ib_qp_init_attr *qp_init_attr)
782{
783	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
784	struct ib_qp *qp;
785
786	if (qp_init_attr->rwq_ind_tbl &&
787	    (qp_init_attr->recv_cq ||
788	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
789	    qp_init_attr->cap.max_recv_sge))
790		return ERR_PTR(-EINVAL);
791
792	qp = device->create_qp(pd, qp_init_attr, NULL);
793	if (IS_ERR(qp))
794		return qp;
795
796	qp->device     = device;
797	qp->real_qp    = qp;
798	qp->uobject    = NULL;
799	qp->qp_type    = qp_init_attr->qp_type;
800	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
801
802	atomic_set(&qp->usecnt, 0);
803	spin_lock_init(&qp->mr_lock);
804
805	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
806		return ib_create_xrc_qp(qp, qp_init_attr);
807
808	qp->event_handler = qp_init_attr->event_handler;
809	qp->qp_context = qp_init_attr->qp_context;
810	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
811		qp->recv_cq = NULL;
812		qp->srq = NULL;
813	} else {
814		qp->recv_cq = qp_init_attr->recv_cq;
815		if (qp_init_attr->recv_cq)
816			atomic_inc(&qp_init_attr->recv_cq->usecnt);
817		qp->srq = qp_init_attr->srq;
818		if (qp->srq)
819			atomic_inc(&qp_init_attr->srq->usecnt);
820	}
821
822	qp->pd	    = pd;
823	qp->send_cq = qp_init_attr->send_cq;
824	qp->xrcd    = NULL;
825
826	atomic_inc(&pd->usecnt);
827	if (qp_init_attr->send_cq)
828		atomic_inc(&qp_init_attr->send_cq->usecnt);
829	if (qp_init_attr->rwq_ind_tbl)
830		atomic_inc(&qp->rwq_ind_tbl->usecnt);
831
832	/*
833	 * Note: all hw drivers guarantee that max_send_sge is lower than
834	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
835	 * max_send_sge <= max_sge_rd.
836	 */
837	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
838	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
839				 device->attrs.max_sge_rd);
840
841	return qp;
842}
843EXPORT_SYMBOL(ib_create_qp);
844
845static const struct {
846	int			valid;
847	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
848	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
849} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
850	[IB_QPS_RESET] = {
851		[IB_QPS_RESET] = { .valid = 1 },
852		[IB_QPS_INIT]  = {
853			.valid = 1,
854			.req_param = {
855				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
856						IB_QP_PORT			|
857						IB_QP_QKEY),
858				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
859				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
860						IB_QP_PORT			|
861						IB_QP_ACCESS_FLAGS),
862				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
863						IB_QP_PORT			|
864						IB_QP_ACCESS_FLAGS),
865				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
866						IB_QP_PORT			|
867						IB_QP_ACCESS_FLAGS),
868				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
869						IB_QP_PORT			|
870						IB_QP_ACCESS_FLAGS),
871				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
872						IB_QP_QKEY),
873				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
874						IB_QP_QKEY),
875			}
876		},
877	},
878	[IB_QPS_INIT]  = {
879		[IB_QPS_RESET] = { .valid = 1 },
880		[IB_QPS_ERR] =   { .valid = 1 },
881		[IB_QPS_INIT]  = {
882			.valid = 1,
883			.opt_param = {
884				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
885						IB_QP_PORT			|
886						IB_QP_QKEY),
887				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
888						IB_QP_PORT			|
889						IB_QP_ACCESS_FLAGS),
890				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
891						IB_QP_PORT			|
892						IB_QP_ACCESS_FLAGS),
893				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
894						IB_QP_PORT			|
895						IB_QP_ACCESS_FLAGS),
896				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
897						IB_QP_PORT			|
898						IB_QP_ACCESS_FLAGS),
899				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
900						IB_QP_QKEY),
901				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
902						IB_QP_QKEY),
903			}
904		},
905		[IB_QPS_RTR]   = {
906			.valid = 1,
907			.req_param = {
908				[IB_QPT_UC]  = (IB_QP_AV			|
909						IB_QP_PATH_MTU			|
910						IB_QP_DEST_QPN			|
911						IB_QP_RQ_PSN),
912				[IB_QPT_RC]  = (IB_QP_AV			|
913						IB_QP_PATH_MTU			|
914						IB_QP_DEST_QPN			|
915						IB_QP_RQ_PSN			|
916						IB_QP_MAX_DEST_RD_ATOMIC	|
917						IB_QP_MIN_RNR_TIMER),
918				[IB_QPT_XRC_INI] = (IB_QP_AV			|
919						IB_QP_PATH_MTU			|
920						IB_QP_DEST_QPN			|
921						IB_QP_RQ_PSN),
922				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
923						IB_QP_PATH_MTU			|
924						IB_QP_DEST_QPN			|
925						IB_QP_RQ_PSN			|
926						IB_QP_MAX_DEST_RD_ATOMIC	|
927						IB_QP_MIN_RNR_TIMER),
928			},
929			.opt_param = {
930				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
931						 IB_QP_QKEY),
932				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
933						 IB_QP_ACCESS_FLAGS		|
934						 IB_QP_PKEY_INDEX),
935				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
936						 IB_QP_ACCESS_FLAGS		|
937						 IB_QP_PKEY_INDEX),
938				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
939						 IB_QP_ACCESS_FLAGS		|
940						 IB_QP_PKEY_INDEX),
941				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
942						 IB_QP_ACCESS_FLAGS		|
943						 IB_QP_PKEY_INDEX),
944				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
945						 IB_QP_QKEY),
946				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
947						 IB_QP_QKEY),
948			 },
949		},
950	},
951	[IB_QPS_RTR]   = {
952		[IB_QPS_RESET] = { .valid = 1 },
953		[IB_QPS_ERR] =   { .valid = 1 },
954		[IB_QPS_RTS]   = {
955			.valid = 1,
956			.req_param = {
957				[IB_QPT_UD]  = IB_QP_SQ_PSN,
958				[IB_QPT_UC]  = IB_QP_SQ_PSN,
959				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
960						IB_QP_RETRY_CNT			|
961						IB_QP_RNR_RETRY			|
962						IB_QP_SQ_PSN			|
963						IB_QP_MAX_QP_RD_ATOMIC),
964				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
965						IB_QP_RETRY_CNT			|
966						IB_QP_RNR_RETRY			|
967						IB_QP_SQ_PSN			|
968						IB_QP_MAX_QP_RD_ATOMIC),
969				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
970						IB_QP_SQ_PSN),
971				[IB_QPT_SMI] = IB_QP_SQ_PSN,
972				[IB_QPT_GSI] = IB_QP_SQ_PSN,
973			},
974			.opt_param = {
975				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
976						 IB_QP_QKEY),
977				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
978						 IB_QP_ALT_PATH			|
979						 IB_QP_ACCESS_FLAGS		|
980						 IB_QP_PATH_MIG_STATE),
981				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
982						 IB_QP_ALT_PATH			|
983						 IB_QP_ACCESS_FLAGS		|
984						 IB_QP_MIN_RNR_TIMER		|
985						 IB_QP_PATH_MIG_STATE),
986				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
987						 IB_QP_ALT_PATH			|
988						 IB_QP_ACCESS_FLAGS		|
989						 IB_QP_PATH_MIG_STATE),
990				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
991						 IB_QP_ALT_PATH			|
992						 IB_QP_ACCESS_FLAGS		|
993						 IB_QP_MIN_RNR_TIMER		|
994						 IB_QP_PATH_MIG_STATE),
995				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
996						 IB_QP_QKEY),
997				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
998						 IB_QP_QKEY),
999			 }
1000		}
1001	},
1002	[IB_QPS_RTS]   = {
1003		[IB_QPS_RESET] = { .valid = 1 },
1004		[IB_QPS_ERR] =   { .valid = 1 },
1005		[IB_QPS_RTS]   = {
1006			.valid = 1,
1007			.opt_param = {
1008				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1009						IB_QP_QKEY),
1010				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1011						IB_QP_ACCESS_FLAGS		|
1012						IB_QP_ALT_PATH			|
1013						IB_QP_PATH_MIG_STATE),
1014				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1015						IB_QP_ACCESS_FLAGS		|
1016						IB_QP_ALT_PATH			|
1017						IB_QP_PATH_MIG_STATE		|
1018						IB_QP_MIN_RNR_TIMER),
1019				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1020						IB_QP_ACCESS_FLAGS		|
1021						IB_QP_ALT_PATH			|
1022						IB_QP_PATH_MIG_STATE),
1023				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1024						IB_QP_ACCESS_FLAGS		|
1025						IB_QP_ALT_PATH			|
1026						IB_QP_PATH_MIG_STATE		|
1027						IB_QP_MIN_RNR_TIMER),
1028				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1029						IB_QP_QKEY),
1030				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1031						IB_QP_QKEY),
1032			}
1033		},
1034		[IB_QPS_SQD]   = {
1035			.valid = 1,
1036			.opt_param = {
1037				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1038				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1039				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1040				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1041				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1042				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1043				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1044			}
1045		},
1046	},
1047	[IB_QPS_SQD]   = {
1048		[IB_QPS_RESET] = { .valid = 1 },
1049		[IB_QPS_ERR] =   { .valid = 1 },
1050		[IB_QPS_RTS]   = {
1051			.valid = 1,
1052			.opt_param = {
1053				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1054						IB_QP_QKEY),
1055				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1056						IB_QP_ALT_PATH			|
1057						IB_QP_ACCESS_FLAGS		|
1058						IB_QP_PATH_MIG_STATE),
1059				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1060						IB_QP_ALT_PATH			|
1061						IB_QP_ACCESS_FLAGS		|
1062						IB_QP_MIN_RNR_TIMER		|
1063						IB_QP_PATH_MIG_STATE),
1064				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1065						IB_QP_ALT_PATH			|
1066						IB_QP_ACCESS_FLAGS		|
1067						IB_QP_PATH_MIG_STATE),
1068				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1069						IB_QP_ALT_PATH			|
1070						IB_QP_ACCESS_FLAGS		|
1071						IB_QP_MIN_RNR_TIMER		|
1072						IB_QP_PATH_MIG_STATE),
1073				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1074						IB_QP_QKEY),
1075				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1076						IB_QP_QKEY),
1077			}
1078		},
1079		[IB_QPS_SQD]   = {
1080			.valid = 1,
1081			.opt_param = {
1082				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1083						IB_QP_QKEY),
1084				[IB_QPT_UC]  = (IB_QP_AV			|
1085						IB_QP_ALT_PATH			|
1086						IB_QP_ACCESS_FLAGS		|
1087						IB_QP_PKEY_INDEX		|
1088						IB_QP_PATH_MIG_STATE),
1089				[IB_QPT_RC]  = (IB_QP_PORT			|
1090						IB_QP_AV			|
1091						IB_QP_TIMEOUT			|
1092						IB_QP_RETRY_CNT			|
1093						IB_QP_RNR_RETRY			|
1094						IB_QP_MAX_QP_RD_ATOMIC		|
1095						IB_QP_MAX_DEST_RD_ATOMIC	|
1096						IB_QP_ALT_PATH			|
1097						IB_QP_ACCESS_FLAGS		|
1098						IB_QP_PKEY_INDEX		|
1099						IB_QP_MIN_RNR_TIMER		|
1100						IB_QP_PATH_MIG_STATE),
1101				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1102						IB_QP_AV			|
1103						IB_QP_TIMEOUT			|
1104						IB_QP_RETRY_CNT			|
1105						IB_QP_RNR_RETRY			|
1106						IB_QP_MAX_QP_RD_ATOMIC		|
1107						IB_QP_ALT_PATH			|
1108						IB_QP_ACCESS_FLAGS		|
1109						IB_QP_PKEY_INDEX		|
1110						IB_QP_PATH_MIG_STATE),
1111				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1112						IB_QP_AV			|
1113						IB_QP_TIMEOUT			|
1114						IB_QP_MAX_DEST_RD_ATOMIC	|
1115						IB_QP_ALT_PATH			|
1116						IB_QP_ACCESS_FLAGS		|
1117						IB_QP_PKEY_INDEX		|
1118						IB_QP_MIN_RNR_TIMER		|
1119						IB_QP_PATH_MIG_STATE),
1120				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1121						IB_QP_QKEY),
1122				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1123						IB_QP_QKEY),
1124			}
1125		}
1126	},
1127	[IB_QPS_SQE]   = {
1128		[IB_QPS_RESET] = { .valid = 1 },
1129		[IB_QPS_ERR] =   { .valid = 1 },
1130		[IB_QPS_RTS]   = {
1131			.valid = 1,
1132			.opt_param = {
1133				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1134						IB_QP_QKEY),
1135				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1136						IB_QP_ACCESS_FLAGS),
1137				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1138						IB_QP_QKEY),
1139				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1140						IB_QP_QKEY),
1141			}
1142		}
1143	},
1144	[IB_QPS_ERR] = {
1145		[IB_QPS_RESET] = { .valid = 1 },
1146		[IB_QPS_ERR] =   { .valid = 1 }
1147	}
1148};
1149
1150int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1151		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1152		       enum rdma_link_layer ll)
1153{
1154	enum ib_qp_attr_mask req_param, opt_param;
1155
1156	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1157	    next_state < 0 || next_state > IB_QPS_ERR)
1158		return 0;
1159
1160	if (mask & IB_QP_CUR_STATE  &&
1161	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1162	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1163		return 0;
1164
1165	if (!qp_state_table[cur_state][next_state].valid)
1166		return 0;
1167
1168	req_param = qp_state_table[cur_state][next_state].req_param[type];
1169	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1170
1171	if ((mask & req_param) != req_param)
1172		return 0;
1173
1174	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1175		return 0;
1176
1177	return 1;
1178}
1179EXPORT_SYMBOL(ib_modify_qp_is_ok);
1180
1181int ib_resolve_eth_dmac(struct ib_qp *qp,
1182			struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1183{
1184	int           ret = 0;
1185
1186	if (*qp_attr_mask & IB_QP_AV) {
1187		if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1188		    qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1189			return -EINVAL;
1190
1191		if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1192			return 0;
1193
1194		if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1195			rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1196					qp_attr->ah_attr.dmac);
1197		} else {
1198			union ib_gid		sgid;
1199			struct ib_gid_attr	sgid_attr;
1200			int			ifindex;
1201			int			hop_limit;
1202
1203			ret = ib_query_gid(qp->device,
1204					   qp_attr->ah_attr.port_num,
1205					   qp_attr->ah_attr.grh.sgid_index,
1206					   &sgid, &sgid_attr);
1207
1208			if (ret || !sgid_attr.ndev) {
1209				if (!ret)
1210					ret = -ENXIO;
1211				goto out;
1212			}
1213
1214			ifindex = sgid_attr.ndev->if_index;
1215
1216			ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1217							   &qp_attr->ah_attr.grh.dgid,
1218							   qp_attr->ah_attr.dmac,
1219							   NULL, &ifindex, &hop_limit);
1220
1221			dev_put(sgid_attr.ndev);
1222
1223			qp_attr->ah_attr.grh.hop_limit = hop_limit;
1224		}
1225	}
1226out:
1227	return ret;
1228}
1229EXPORT_SYMBOL(ib_resolve_eth_dmac);
1230
1231
1232int ib_modify_qp(struct ib_qp *qp,
1233		 struct ib_qp_attr *qp_attr,
1234		 int qp_attr_mask)
1235{
1236	int ret;
1237
1238	ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1239	if (ret)
1240		return ret;
1241
1242	return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1243}
1244EXPORT_SYMBOL(ib_modify_qp);
1245
1246int ib_query_qp(struct ib_qp *qp,
1247		struct ib_qp_attr *qp_attr,
1248		int qp_attr_mask,
1249		struct ib_qp_init_attr *qp_init_attr)
1250{
1251	return qp->device->query_qp ?
1252		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1253		-ENOSYS;
1254}
1255EXPORT_SYMBOL(ib_query_qp);
1256
1257int ib_close_qp(struct ib_qp *qp)
1258{
1259	struct ib_qp *real_qp;
1260	unsigned long flags;
1261
1262	real_qp = qp->real_qp;
1263	if (real_qp == qp)
1264		return -EINVAL;
1265
1266	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1267	list_del(&qp->open_list);
1268	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1269
1270	atomic_dec(&real_qp->usecnt);
1271	kfree(qp);
1272
1273	return 0;
1274}
1275EXPORT_SYMBOL(ib_close_qp);
1276
1277static int __ib_destroy_shared_qp(struct ib_qp *qp)
1278{
1279	struct ib_xrcd *xrcd;
1280	struct ib_qp *real_qp;
1281	int ret;
1282
1283	real_qp = qp->real_qp;
1284	xrcd = real_qp->xrcd;
1285
1286	mutex_lock(&xrcd->tgt_qp_mutex);
1287	ib_close_qp(qp);
1288	if (atomic_read(&real_qp->usecnt) == 0)
1289		list_del(&real_qp->xrcd_list);
1290	else
1291		real_qp = NULL;
1292	mutex_unlock(&xrcd->tgt_qp_mutex);
1293
1294	if (real_qp) {
1295		ret = ib_destroy_qp(real_qp);
1296		if (!ret)
1297			atomic_dec(&xrcd->usecnt);
1298		else
1299			__ib_insert_xrcd_qp(xrcd, real_qp);
1300	}
1301
1302	return 0;
1303}
1304
1305int ib_destroy_qp(struct ib_qp *qp)
1306{
1307	struct ib_pd *pd;
1308	struct ib_cq *scq, *rcq;
1309	struct ib_srq *srq;
1310	struct ib_rwq_ind_table *ind_tbl;
1311	int ret;
1312
1313	if (atomic_read(&qp->usecnt))
1314		return -EBUSY;
1315
1316	if (qp->real_qp != qp)
1317		return __ib_destroy_shared_qp(qp);
1318
1319	pd   = qp->pd;
1320	scq  = qp->send_cq;
1321	rcq  = qp->recv_cq;
1322	srq  = qp->srq;
1323	ind_tbl = qp->rwq_ind_tbl;
1324
1325	ret = qp->device->destroy_qp(qp);
1326	if (!ret) {
1327		if (pd)
1328			atomic_dec(&pd->usecnt);
1329		if (scq)
1330			atomic_dec(&scq->usecnt);
1331		if (rcq)
1332			atomic_dec(&rcq->usecnt);
1333		if (srq)
1334			atomic_dec(&srq->usecnt);
1335		if (ind_tbl)
1336			atomic_dec(&ind_tbl->usecnt);
1337	}
1338
1339	return ret;
1340}
1341EXPORT_SYMBOL(ib_destroy_qp);
1342
1343/* Completion queues */
1344
1345struct ib_cq *ib_create_cq(struct ib_device *device,
1346			   ib_comp_handler comp_handler,
1347			   void (*event_handler)(struct ib_event *, void *),
1348			   void *cq_context,
1349			   const struct ib_cq_init_attr *cq_attr)
1350{
1351	struct ib_cq *cq;
1352
1353	cq = device->create_cq(device, cq_attr, NULL, NULL);
1354
1355	if (!IS_ERR(cq)) {
1356		cq->device        = device;
1357		cq->uobject       = NULL;
1358		cq->comp_handler  = comp_handler;
1359		cq->event_handler = event_handler;
1360		cq->cq_context    = cq_context;
1361		atomic_set(&cq->usecnt, 0);
1362	}
1363
1364	return cq;
1365}
1366EXPORT_SYMBOL(ib_create_cq);
1367
1368int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1369{
1370	return cq->device->modify_cq ?
1371		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1372}
1373EXPORT_SYMBOL(ib_modify_cq);
1374
1375int ib_destroy_cq(struct ib_cq *cq)
1376{
1377	if (atomic_read(&cq->usecnt))
1378		return -EBUSY;
1379
1380	return cq->device->destroy_cq(cq);
1381}
1382EXPORT_SYMBOL(ib_destroy_cq);
1383
1384int ib_resize_cq(struct ib_cq *cq, int cqe)
1385{
1386	return cq->device->resize_cq ?
1387		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1388}
1389EXPORT_SYMBOL(ib_resize_cq);
1390
1391/* Memory regions */
1392
1393int ib_dereg_mr(struct ib_mr *mr)
1394{
1395	struct ib_pd *pd = mr->pd;
1396	int ret;
1397
1398	ret = mr->device->dereg_mr(mr);
1399	if (!ret)
1400		atomic_dec(&pd->usecnt);
1401
1402	return ret;
1403}
1404EXPORT_SYMBOL(ib_dereg_mr);
1405
1406/**
1407 * ib_alloc_mr() - Allocates a memory region
1408 * @pd:            protection domain associated with the region
1409 * @mr_type:       memory region type
1410 * @max_num_sg:    maximum sg entries available for registration.
1411 *
1412 * Notes:
1413 * Memory registeration page/sg lists must not exceed max_num_sg.
1414 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1415 * max_num_sg * used_page_size.
1416 *
1417 */
1418struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1419			  enum ib_mr_type mr_type,
1420			  u32 max_num_sg)
1421{
1422	struct ib_mr *mr;
1423
1424	if (!pd->device->alloc_mr)
1425		return ERR_PTR(-ENOSYS);
1426
1427	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1428	if (!IS_ERR(mr)) {
1429		mr->device  = pd->device;
1430		mr->pd      = pd;
1431		mr->uobject = NULL;
1432		atomic_inc(&pd->usecnt);
1433		mr->need_inval = false;
1434	}
1435
1436	return mr;
1437}
1438EXPORT_SYMBOL(ib_alloc_mr);
1439
1440/* "Fast" memory regions */
1441
1442struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1443			    int mr_access_flags,
1444			    struct ib_fmr_attr *fmr_attr)
1445{
1446	struct ib_fmr *fmr;
1447
1448	if (!pd->device->alloc_fmr)
1449		return ERR_PTR(-ENOSYS);
1450
1451	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1452	if (!IS_ERR(fmr)) {
1453		fmr->device = pd->device;
1454		fmr->pd     = pd;
1455		atomic_inc(&pd->usecnt);
1456	}
1457
1458	return fmr;
1459}
1460EXPORT_SYMBOL(ib_alloc_fmr);
1461
1462int ib_unmap_fmr(struct list_head *fmr_list)
1463{
1464	struct ib_fmr *fmr;
1465
1466	if (list_empty(fmr_list))
1467		return 0;
1468
1469	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1470	return fmr->device->unmap_fmr(fmr_list);
1471}
1472EXPORT_SYMBOL(ib_unmap_fmr);
1473
1474int ib_dealloc_fmr(struct ib_fmr *fmr)
1475{
1476	struct ib_pd *pd;
1477	int ret;
1478
1479	pd = fmr->pd;
1480	ret = fmr->device->dealloc_fmr(fmr);
1481	if (!ret)
1482		atomic_dec(&pd->usecnt);
1483
1484	return ret;
1485}
1486EXPORT_SYMBOL(ib_dealloc_fmr);
1487
1488/* Multicast groups */
1489
1490int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1491{
1492	int ret;
1493
1494	if (!qp->device->attach_mcast)
1495		return -ENOSYS;
1496	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1497		return -EINVAL;
1498
1499	ret = qp->device->attach_mcast(qp, gid, lid);
1500	if (!ret)
1501		atomic_inc(&qp->usecnt);
1502	return ret;
1503}
1504EXPORT_SYMBOL(ib_attach_mcast);
1505
1506int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1507{
1508	int ret;
1509
1510	if (!qp->device->detach_mcast)
1511		return -ENOSYS;
1512	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1513		return -EINVAL;
1514
1515	ret = qp->device->detach_mcast(qp, gid, lid);
1516	if (!ret)
1517		atomic_dec(&qp->usecnt);
1518	return ret;
1519}
1520EXPORT_SYMBOL(ib_detach_mcast);
1521
1522struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1523{
1524	struct ib_xrcd *xrcd;
1525
1526	if (!device->alloc_xrcd)
1527		return ERR_PTR(-ENOSYS);
1528
1529	xrcd = device->alloc_xrcd(device, NULL, NULL);
1530	if (!IS_ERR(xrcd)) {
1531		xrcd->device = device;
1532		xrcd->inode = NULL;
1533		atomic_set(&xrcd->usecnt, 0);
1534		mutex_init(&xrcd->tgt_qp_mutex);
1535		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1536	}
1537
1538	return xrcd;
1539}
1540EXPORT_SYMBOL(ib_alloc_xrcd);
1541
1542int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1543{
1544	struct ib_qp *qp;
1545	int ret;
1546
1547	if (atomic_read(&xrcd->usecnt))
1548		return -EBUSY;
1549
1550	while (!list_empty(&xrcd->tgt_qp_list)) {
1551		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1552		ret = ib_destroy_qp(qp);
1553		if (ret)
1554			return ret;
1555	}
1556
1557	return xrcd->device->dealloc_xrcd(xrcd);
1558}
1559EXPORT_SYMBOL(ib_dealloc_xrcd);
1560
1561/**
1562 * ib_create_wq - Creates a WQ associated with the specified protection
1563 * domain.
1564 * @pd: The protection domain associated with the WQ.
1565 * @wq_init_attr: A list of initial attributes required to create the
1566 * WQ. If WQ creation succeeds, then the attributes are updated to
1567 * the actual capabilities of the created WQ.
1568 *
1569 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1570 * the requested size of the WQ, and set to the actual values allocated
1571 * on return.
1572 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1573 * at least as large as the requested values.
1574 */
1575struct ib_wq *ib_create_wq(struct ib_pd *pd,
1576			   struct ib_wq_init_attr *wq_attr)
1577{
1578	struct ib_wq *wq;
1579
1580	if (!pd->device->create_wq)
1581		return ERR_PTR(-ENOSYS);
1582
1583	wq = pd->device->create_wq(pd, wq_attr, NULL);
1584	if (!IS_ERR(wq)) {
1585		wq->event_handler = wq_attr->event_handler;
1586		wq->wq_context = wq_attr->wq_context;
1587		wq->wq_type = wq_attr->wq_type;
1588		wq->cq = wq_attr->cq;
1589		wq->device = pd->device;
1590		wq->pd = pd;
1591		wq->uobject = NULL;
1592		atomic_inc(&pd->usecnt);
1593		atomic_inc(&wq_attr->cq->usecnt);
1594		atomic_set(&wq->usecnt, 0);
1595	}
1596	return wq;
1597}
1598EXPORT_SYMBOL(ib_create_wq);
1599
1600/**
1601 * ib_destroy_wq - Destroys the specified WQ.
1602 * @wq: The WQ to destroy.
1603 */
1604int ib_destroy_wq(struct ib_wq *wq)
1605{
1606	int err;
1607	struct ib_cq *cq = wq->cq;
1608	struct ib_pd *pd = wq->pd;
1609
1610	if (atomic_read(&wq->usecnt))
1611		return -EBUSY;
1612
1613	err = wq->device->destroy_wq(wq);
1614	if (!err) {
1615		atomic_dec(&pd->usecnt);
1616		atomic_dec(&cq->usecnt);
1617	}
1618	return err;
1619}
1620EXPORT_SYMBOL(ib_destroy_wq);
1621
1622/**
1623 * ib_modify_wq - Modifies the specified WQ.
1624 * @wq: The WQ to modify.
1625 * @wq_attr: On input, specifies the WQ attributes to modify.
1626 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1627 *   are being modified.
1628 * On output, the current values of selected WQ attributes are returned.
1629 */
1630int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1631		 u32 wq_attr_mask)
1632{
1633	int err;
1634
1635	if (!wq->device->modify_wq)
1636		return -ENOSYS;
1637
1638	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1639	return err;
1640}
1641EXPORT_SYMBOL(ib_modify_wq);
1642
1643/*
1644 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1645 * @device: The device on which to create the rwq indirection table.
1646 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1647 * create the Indirection Table.
1648 *
1649 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1650 *	than the created ib_rwq_ind_table object and the caller is responsible
1651 *	for its memory allocation/free.
1652 */
1653struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1654						 struct ib_rwq_ind_table_init_attr *init_attr)
1655{
1656	struct ib_rwq_ind_table *rwq_ind_table;
1657	int i;
1658	u32 table_size;
1659
1660	if (!device->create_rwq_ind_table)
1661		return ERR_PTR(-ENOSYS);
1662
1663	table_size = (1 << init_attr->log_ind_tbl_size);
1664	rwq_ind_table = device->create_rwq_ind_table(device,
1665				init_attr, NULL);
1666	if (IS_ERR(rwq_ind_table))
1667		return rwq_ind_table;
1668
1669	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1670	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1671	rwq_ind_table->device = device;
1672	rwq_ind_table->uobject = NULL;
1673	atomic_set(&rwq_ind_table->usecnt, 0);
1674
1675	for (i = 0; i < table_size; i++)
1676		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1677
1678	return rwq_ind_table;
1679}
1680EXPORT_SYMBOL(ib_create_rwq_ind_table);
1681
1682/*
1683 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1684 * @wq_ind_table: The Indirection Table to destroy.
1685*/
1686int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1687{
1688	int err, i;
1689	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1690	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1691
1692	if (atomic_read(&rwq_ind_table->usecnt))
1693		return -EBUSY;
1694
1695	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1696	if (!err) {
1697		for (i = 0; i < table_size; i++)
1698			atomic_dec(&ind_tbl[i]->usecnt);
1699	}
1700
1701	return err;
1702}
1703EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1704
1705struct ib_flow *ib_create_flow(struct ib_qp *qp,
1706			       struct ib_flow_attr *flow_attr,
1707			       int domain)
1708{
1709	struct ib_flow *flow_id;
1710	if (!qp->device->create_flow)
1711		return ERR_PTR(-ENOSYS);
1712
1713	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1714	if (!IS_ERR(flow_id))
1715		atomic_inc(&qp->usecnt);
1716	return flow_id;
1717}
1718EXPORT_SYMBOL(ib_create_flow);
1719
1720int ib_destroy_flow(struct ib_flow *flow_id)
1721{
1722	int err;
1723	struct ib_qp *qp = flow_id->qp;
1724
1725	err = qp->device->destroy_flow(flow_id);
1726	if (!err)
1727		atomic_dec(&qp->usecnt);
1728	return err;
1729}
1730EXPORT_SYMBOL(ib_destroy_flow);
1731
1732int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1733		       struct ib_mr_status *mr_status)
1734{
1735	return mr->device->check_mr_status ?
1736		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1737}
1738EXPORT_SYMBOL(ib_check_mr_status);
1739
1740int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1741			 int state)
1742{
1743	if (!device->set_vf_link_state)
1744		return -ENOSYS;
1745
1746	return device->set_vf_link_state(device, vf, port, state);
1747}
1748EXPORT_SYMBOL(ib_set_vf_link_state);
1749
1750int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1751		     struct ifla_vf_info *info)
1752{
1753	if (!device->get_vf_config)
1754		return -ENOSYS;
1755
1756	return device->get_vf_config(device, vf, port, info);
1757}
1758EXPORT_SYMBOL(ib_get_vf_config);
1759
1760int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1761		    struct ifla_vf_stats *stats)
1762{
1763	if (!device->get_vf_stats)
1764		return -ENOSYS;
1765
1766	return device->get_vf_stats(device, vf, port, stats);
1767}
1768EXPORT_SYMBOL(ib_get_vf_stats);
1769
1770int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1771		   int type)
1772{
1773	if (!device->set_vf_guid)
1774		return -ENOSYS;
1775
1776	return device->set_vf_guid(device, vf, port, guid, type);
1777}
1778EXPORT_SYMBOL(ib_set_vf_guid);
1779
1780/**
1781 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1782 *     and set it the memory region.
1783 * @mr:            memory region
1784 * @sg:            dma mapped scatterlist
1785 * @sg_nents:      number of entries in sg
1786 * @sg_offset:     offset in bytes into sg
1787 * @page_size:     page vector desired page size
1788 *
1789 * Constraints:
1790 * - The first sg element is allowed to have an offset.
1791 * - Each sg element must either be aligned to page_size or virtually
1792 *   contiguous to the previous element. In case an sg element has a
1793 *   non-contiguous offset, the mapping prefix will not include it.
1794 * - The last sg element is allowed to have length less than page_size.
1795 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1796 *   then only max_num_sg entries will be mapped.
1797 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1798 *   constraints holds and the page_size argument is ignored.
1799 *
1800 * Returns the number of sg elements that were mapped to the memory region.
1801 *
1802 * After this completes successfully, the  memory region
1803 * is ready for registration.
1804 */
1805int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1806		 unsigned int *sg_offset, unsigned int page_size)
1807{
1808	if (unlikely(!mr->device->map_mr_sg))
1809		return -ENOSYS;
1810
1811	mr->page_size = page_size;
1812
1813	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1814}
1815EXPORT_SYMBOL(ib_map_mr_sg);
1816
1817/**
1818 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1819 *     to a page vector
1820 * @mr:            memory region
1821 * @sgl:           dma mapped scatterlist
1822 * @sg_nents:      number of entries in sg
1823 * @sg_offset_p:   IN:  start offset in bytes into sg
1824 *                 OUT: offset in bytes for element n of the sg of the first
1825 *                      byte that has not been processed where n is the return
1826 *                      value of this function.
1827 * @set_page:      driver page assignment function pointer
1828 *
1829 * Core service helper for drivers to convert the largest
1830 * prefix of given sg list to a page vector. The sg list
1831 * prefix converted is the prefix that meet the requirements
1832 * of ib_map_mr_sg.
1833 *
1834 * Returns the number of sg elements that were assigned to
1835 * a page vector.
1836 */
1837int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1838		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1839{
1840	struct scatterlist *sg;
1841	u64 last_end_dma_addr = 0;
1842	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1843	unsigned int last_page_off = 0;
1844	u64 page_mask = ~((u64)mr->page_size - 1);
1845	int i, ret;
1846
1847	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1848		return -EINVAL;
1849
1850	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1851	mr->length = 0;
1852
1853	for_each_sg(sgl, sg, sg_nents, i) {
1854		u64 dma_addr = sg_dma_address(sg) + sg_offset;
1855		u64 prev_addr = dma_addr;
1856		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1857		u64 end_dma_addr = dma_addr + dma_len;
1858		u64 page_addr = dma_addr & page_mask;
1859
1860		/*
1861		 * For the second and later elements, check whether either the
1862		 * end of element i-1 or the start of element i is not aligned
1863		 * on a page boundary.
1864		 */
1865		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1866			/* Stop mapping if there is a gap. */
1867			if (last_end_dma_addr != dma_addr)
1868				break;
1869
1870			/*
1871			 * Coalesce this element with the last. If it is small
1872			 * enough just update mr->length. Otherwise start
1873			 * mapping from the next page.
1874			 */
1875			goto next_page;
1876		}
1877
1878		do {
1879			ret = set_page(mr, page_addr);
1880			if (unlikely(ret < 0)) {
1881				sg_offset = prev_addr - sg_dma_address(sg);
1882				mr->length += prev_addr - dma_addr;
1883				if (sg_offset_p)
1884					*sg_offset_p = sg_offset;
1885				return i || sg_offset ? i : ret;
1886			}
1887			prev_addr = page_addr;
1888next_page:
1889			page_addr += mr->page_size;
1890		} while (page_addr < end_dma_addr);
1891
1892		mr->length += dma_len;
1893		last_end_dma_addr = end_dma_addr;
1894		last_page_off = end_dma_addr & ~page_mask;
1895
1896		sg_offset = 0;
1897	}
1898
1899	if (sg_offset_p)
1900		*sg_offset_p = 0;
1901	return i;
1902}
1903EXPORT_SYMBOL(ib_sg_to_pages);
1904
1905struct ib_drain_cqe {
1906	struct ib_cqe cqe;
1907	struct completion done;
1908};
1909
1910static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1911{
1912	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1913						cqe);
1914
1915	complete(&cqe->done);
1916}
1917
1918/*
1919 * Post a WR and block until its completion is reaped for the SQ.
1920 */
1921static void __ib_drain_sq(struct ib_qp *qp)
1922{
1923	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1924	struct ib_drain_cqe sdrain;
1925	struct ib_send_wr swr = {}, *bad_swr;
1926	int ret;
1927
1928	if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1929		WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1930			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1931		return;
1932	}
1933
1934	swr.wr_cqe = &sdrain.cqe;
1935	sdrain.cqe.done = ib_drain_qp_done;
1936	init_completion(&sdrain.done);
1937
1938	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1939	if (ret) {
1940		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1941		return;
1942	}
1943
1944	ret = ib_post_send(qp, &swr, &bad_swr);
1945	if (ret) {
1946		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1947		return;
1948	}
1949
1950	wait_for_completion(&sdrain.done);
1951}
1952
1953/*
1954 * Post a WR and block until its completion is reaped for the RQ.
1955 */
1956static void __ib_drain_rq(struct ib_qp *qp)
1957{
1958	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1959	struct ib_drain_cqe rdrain;
1960	struct ib_recv_wr rwr = {}, *bad_rwr;
1961	int ret;
1962
1963	if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1964		WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1965			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1966		return;
1967	}
1968
1969	rwr.wr_cqe = &rdrain.cqe;
1970	rdrain.cqe.done = ib_drain_qp_done;
1971	init_completion(&rdrain.done);
1972
1973	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1974	if (ret) {
1975		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1976		return;
1977	}
1978
1979	ret = ib_post_recv(qp, &rwr, &bad_rwr);
1980	if (ret) {
1981		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1982		return;
1983	}
1984
1985	wait_for_completion(&rdrain.done);
1986}
1987
1988/**
1989 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1990 *		   application.
1991 * @qp:            queue pair to drain
1992 *
1993 * If the device has a provider-specific drain function, then
1994 * call that.  Otherwise call the generic drain function
1995 * __ib_drain_sq().
1996 *
1997 * The caller must:
1998 *
1999 * ensure there is room in the CQ and SQ for the drain work request and
2000 * completion.
2001 *
2002 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2003 * IB_POLL_DIRECT.
2004 *
2005 * ensure that there are no other contexts that are posting WRs concurrently.
2006 * Otherwise the drain is not guaranteed.
2007 */
2008void ib_drain_sq(struct ib_qp *qp)
2009{
2010	if (qp->device->drain_sq)
2011		qp->device->drain_sq(qp);
2012	else
2013		__ib_drain_sq(qp);
2014}
2015EXPORT_SYMBOL(ib_drain_sq);
2016
2017/**
2018 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2019 *		   application.
2020 * @qp:            queue pair to drain
2021 *
2022 * If the device has a provider-specific drain function, then
2023 * call that.  Otherwise call the generic drain function
2024 * __ib_drain_rq().
2025 *
2026 * The caller must:
2027 *
2028 * ensure there is room in the CQ and RQ for the drain work request and
2029 * completion.
2030 *
2031 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2032 * IB_POLL_DIRECT.
2033 *
2034 * ensure that there are no other contexts that are posting WRs concurrently.
2035 * Otherwise the drain is not guaranteed.
2036 */
2037void ib_drain_rq(struct ib_qp *qp)
2038{
2039	if (qp->device->drain_rq)
2040		qp->device->drain_rq(qp);
2041	else
2042		__ib_drain_rq(qp);
2043}
2044EXPORT_SYMBOL(ib_drain_rq);
2045
2046/**
2047 * ib_drain_qp() - Block until all CQEs have been consumed by the
2048 *		   application on both the RQ and SQ.
2049 * @qp:            queue pair to drain
2050 *
2051 * The caller must:
2052 *
2053 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2054 * and completions.
2055 *
2056 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2057 * IB_POLL_DIRECT.
2058 *
2059 * ensure that there are no other contexts that are posting WRs concurrently.
2060 * Otherwise the drain is not guaranteed.
2061 */
2062void ib_drain_qp(struct ib_qp *qp)
2063{
2064	ib_drain_sq(qp);
2065	if (!qp->srq)
2066		ib_drain_rq(qp);
2067}
2068EXPORT_SYMBOL(ib_drain_qp);
2069