ip_fw_dynamic.c revision 326388
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/11/sys/netpfil/ipfw/ip_fw_dynamic.c 326388 2017-11-30 07:42:56Z ae $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Dynamic rule support for ipfw
34 */
35
36#include "opt_ipfw.h"
37#include "opt_inet.h"
38#ifndef INET
39#error IPFIREWALL requires INET.
40#endif /* INET */
41#include "opt_inet6.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/rmlock.h>
51#include <sys/socket.h>
52#include <sys/sysctl.h>
53#include <sys/syslog.h>
54#include <net/ethernet.h> /* for ETHERTYPE_IP */
55#include <net/if.h>
56#include <net/if_var.h>
57#include <net/pfil.h>
58#include <net/vnet.h>
59
60#include <netinet/in.h>
61#include <netinet/ip.h>
62#include <netinet/ip_var.h>	/* ip_defttl */
63#include <netinet/ip_fw.h>
64#include <netinet/tcp_var.h>
65#include <netinet/udp.h>
66
67#include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
68#ifdef INET6
69#include <netinet6/in6_var.h>
70#include <netinet6/ip6_var.h>
71#endif
72
73#include <netpfil/ipfw/ip_fw_private.h>
74
75#include <machine/in_cksum.h>	/* XXX for in_cksum */
76
77#ifdef MAC
78#include <security/mac/mac_framework.h>
79#endif
80
81/*
82 * Description of dynamic rules.
83 *
84 * Dynamic rules are stored in lists accessed through a hash table
85 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
86 * be modified through the sysctl variable dyn_buckets which is
87 * updated when the table becomes empty.
88 *
89 * XXX currently there is only one list, ipfw_dyn.
90 *
91 * When a packet is received, its address fields are first masked
92 * with the mask defined for the rule, then hashed, then matched
93 * against the entries in the corresponding list.
94 * Dynamic rules can be used for different purposes:
95 *  + stateful rules;
96 *  + enforcing limits on the number of sessions;
97 *  + in-kernel NAT (not implemented yet)
98 *
99 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
100 * measured in seconds and depending on the flags.
101 *
102 * The total number of dynamic rules is equal to UMA zone items count.
103 * The max number of dynamic rules is dyn_max. When we reach
104 * the maximum number of rules we do not create anymore. This is
105 * done to avoid consuming too much memory, but also too much
106 * time when searching on each packet (ideally, we should try instead
107 * to put a limit on the length of the list on each bucket...).
108 *
109 * Each dynamic rule holds a pointer to the parent ipfw rule so
110 * we know what action to perform. Dynamic rules are removed when
111 * the parent rule is deleted. This can be changed by dyn_keep_states
112 * sysctl.
113 *
114 * There are some limitations with dynamic rules -- we do not
115 * obey the 'randomized match', and we do not do multiple
116 * passes through the firewall. XXX check the latter!!!
117 */
118
119struct ipfw_dyn_bucket {
120	struct mtx	mtx;		/* Bucket protecting lock */
121	ipfw_dyn_rule	*head;		/* Pointer to first rule */
122};
123
124/*
125 * Static variables followed by global ones
126 */
127static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v);
128static VNET_DEFINE(u_int32_t, dyn_buckets_max);
129static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
130static VNET_DEFINE(struct callout, ipfw_timeout);
131#define	V_ipfw_dyn_v			VNET(ipfw_dyn_v)
132#define	V_dyn_buckets_max		VNET(dyn_buckets_max)
133#define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
134#define V_ipfw_timeout                  VNET(ipfw_timeout)
135
136static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone);
137#define	V_ipfw_dyn_rule_zone		VNET(ipfw_dyn_rule_zone)
138
139#define	IPFW_BUCK_LOCK_INIT(b)	\
140	mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF)
141#define	IPFW_BUCK_LOCK_DESTROY(b)	\
142	mtx_destroy(&(b)->mtx)
143#define	IPFW_BUCK_LOCK(i)	mtx_lock(&V_ipfw_dyn_v[(i)].mtx)
144#define	IPFW_BUCK_UNLOCK(i)	mtx_unlock(&V_ipfw_dyn_v[(i)].mtx)
145#define	IPFW_BUCK_ASSERT(i)	mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED)
146
147
148static VNET_DEFINE(int, dyn_keep_states);
149#define	V_dyn_keep_states		VNET(dyn_keep_states)
150
151/*
152 * Timeouts for various events in handing dynamic rules.
153 */
154static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
155static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
156static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
157static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
158static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
159static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
160
161#define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
162#define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
163#define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
164#define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
165#define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
166#define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
167
168/*
169 * Keepalives are sent if dyn_keepalive is set. They are sent every
170 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
171 * seconds of lifetime of a rule.
172 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
173 * than dyn_keepalive_period.
174 */
175
176static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
177static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
178static VNET_DEFINE(u_int32_t, dyn_keepalive);
179static VNET_DEFINE(time_t, dyn_keepalive_last);
180
181#define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
182#define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
183#define	V_dyn_keepalive			VNET(dyn_keepalive)
184#define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
185
186static VNET_DEFINE(u_int32_t, dyn_max);		/* max # of dynamic rules */
187
188#define	DYN_COUNT			uma_zone_get_cur(V_ipfw_dyn_rule_zone)
189#define	V_dyn_max			VNET(dyn_max)
190
191/* for userspace, we emulate the uma_zone_counter with ipfw_dyn_count */
192static int ipfw_dyn_count;	/* number of objects */
193
194#ifdef USERSPACE /* emulation of UMA object counters for userspace */
195#define uma_zone_get_cur(x)	ipfw_dyn_count
196#endif /* USERSPACE */
197
198static int last_log;	/* Log ratelimiting */
199
200static void ipfw_dyn_tick(void *vnetx);
201static void check_dyn_rules(struct ip_fw_chain *, ipfw_range_tlv *, int, int);
202#ifdef SYSCTL_NODE
203
204static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS);
205static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS);
206
207SYSBEGIN(f2)
208
209SYSCTL_DECL(_net_inet_ip_fw);
210SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
211    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0,
212    "Max number of dyn. buckets");
213SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
214    CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
215    "Current Number of dyn. buckets");
216SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count,
217    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU",
218    "Number of dyn. rules");
219SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
220    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU",
221    "Max number of dyn. rules");
222SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
223    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
224    "Lifetime of dyn. rules for acks");
225SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
226    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
227    "Lifetime of dyn. rules for syn");
228SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
229    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
230    "Lifetime of dyn. rules for fin");
231SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
232    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
233    "Lifetime of dyn. rules for rst");
234SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
235    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
236    "Lifetime of dyn. rules for UDP");
237SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
238    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
239    "Lifetime of dyn. rules for other situations");
240SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
241    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
242    "Enable keepalives for dyn. rules");
243SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
244    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
245    "Do not flush dynamic states on rule deletion");
246
247SYSEND
248
249#endif /* SYSCTL_NODE */
250
251
252#ifdef INET6
253static __inline int
254hash_packet6(const struct ipfw_flow_id *id)
255{
256	u_int32_t i;
257	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
258	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
259	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
260	    (id->src_ip6.__u6_addr.__u6_addr32[3]);
261	return ntohl(i);
262}
263#endif
264
265/*
266 * IMPORTANT: the hash function for dynamic rules must be commutative
267 * in source and destination (ip,port), because rules are bidirectional
268 * and we want to find both in the same bucket.
269 */
270static __inline int
271hash_packet(const struct ipfw_flow_id *id, int buckets)
272{
273	u_int32_t i;
274
275#ifdef INET6
276	if (IS_IP6_FLOW_ID(id))
277		i = hash_packet6(id);
278	else
279#endif /* INET6 */
280	i = (id->dst_ip) ^ (id->src_ip);
281	i ^= (id->dst_port) ^ (id->src_port);
282	return (i & (buckets - 1));
283}
284
285#if 0
286#define	DYN_DEBUG(fmt, ...)	do {			\
287	printf("%s: " fmt "\n", __func__, __VA_ARGS__);	\
288} while (0)
289#else
290#define	DYN_DEBUG(fmt, ...)
291#endif
292
293static char *default_state_name = "default";
294struct dyn_state_obj {
295	struct named_object	no;
296	char			name[64];
297};
298
299#define	DYN_STATE_OBJ(ch, cmd)	\
300    ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
301/*
302 * Classifier callback.
303 * Return 0 if opcode contains object that should be referenced
304 * or rewritten.
305 */
306static int
307dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
308{
309
310	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
311	/* Don't rewrite "check-state any" */
312	if (cmd->arg1 == 0 &&
313	    cmd->opcode == O_CHECK_STATE)
314		return (1);
315
316	*puidx = cmd->arg1;
317	*ptype = 0;
318	return (0);
319}
320
321static void
322dyn_update(ipfw_insn *cmd, uint16_t idx)
323{
324
325	cmd->arg1 = idx;
326	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
327}
328
329static int
330dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
331    struct named_object **pno)
332{
333	ipfw_obj_ntlv *ntlv;
334	const char *name;
335
336	DYN_DEBUG("uidx %d", ti->uidx);
337	if (ti->uidx != 0) {
338		if (ti->tlvs == NULL)
339			return (EINVAL);
340		/* Search ntlv in the buffer provided by user */
341		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
342		    IPFW_TLV_STATE_NAME);
343		if (ntlv == NULL)
344			return (EINVAL);
345		name = ntlv->name;
346	} else
347		name = default_state_name;
348	/*
349	 * Search named object with corresponding name.
350	 * Since states objects are global - ignore the set value
351	 * and use zero instead.
352	 */
353	*pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
354	    IPFW_TLV_STATE_NAME, name);
355	/*
356	 * We always return success here.
357	 * The caller will check *pno and mark object as unresolved,
358	 * then it will automatically create "default" object.
359	 */
360	return (0);
361}
362
363static struct named_object *
364dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
365{
366
367	DYN_DEBUG("kidx %d", idx);
368	return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
369}
370
371static int
372dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
373    uint16_t *pkidx)
374{
375	struct namedobj_instance *ni;
376	struct dyn_state_obj *obj;
377	struct named_object *no;
378	ipfw_obj_ntlv *ntlv;
379	char *name;
380
381	DYN_DEBUG("uidx %d", ti->uidx);
382	if (ti->uidx != 0) {
383		if (ti->tlvs == NULL)
384			return (EINVAL);
385		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
386		    IPFW_TLV_STATE_NAME);
387		if (ntlv == NULL)
388			return (EINVAL);
389		name = ntlv->name;
390	} else
391		name = default_state_name;
392
393	ni = CHAIN_TO_SRV(ch);
394	obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
395	obj->no.name = obj->name;
396	obj->no.etlv = IPFW_TLV_STATE_NAME;
397	strlcpy(obj->name, name, sizeof(obj->name));
398
399	IPFW_UH_WLOCK(ch);
400	no = ipfw_objhash_lookup_name_type(ni, 0,
401	    IPFW_TLV_STATE_NAME, name);
402	if (no != NULL) {
403		/*
404		 * Object is already created.
405		 * Just return its kidx and bump refcount.
406		 */
407		*pkidx = no->kidx;
408		no->refcnt++;
409		IPFW_UH_WUNLOCK(ch);
410		free(obj, M_IPFW);
411		DYN_DEBUG("\tfound kidx %d", *pkidx);
412		return (0);
413	}
414	if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
415		DYN_DEBUG("\talloc_idx failed for %s", name);
416		IPFW_UH_WUNLOCK(ch);
417		free(obj, M_IPFW);
418		return (ENOSPC);
419	}
420	ipfw_objhash_add(ni, &obj->no);
421	SRV_OBJECT(ch, obj->no.kidx) = obj;
422	obj->no.refcnt++;
423	*pkidx = obj->no.kidx;
424	IPFW_UH_WUNLOCK(ch);
425	DYN_DEBUG("\tcreated kidx %d", *pkidx);
426	return (0);
427}
428
429static void
430dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
431{
432	struct dyn_state_obj *obj;
433
434	IPFW_UH_WLOCK_ASSERT(ch);
435
436	KASSERT(no->refcnt == 1,
437	    ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
438	    no->name, no->etlv, no->kidx, no->refcnt));
439
440	DYN_DEBUG("kidx %d", no->kidx);
441	obj = SRV_OBJECT(ch, no->kidx);
442	SRV_OBJECT(ch, no->kidx) = NULL;
443	ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
444	ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
445
446	free(obj, M_IPFW);
447}
448
449static struct opcode_obj_rewrite dyn_opcodes[] = {
450	{
451		O_KEEP_STATE, IPFW_TLV_STATE_NAME,
452		dyn_classify, dyn_update,
453		dyn_findbyname, dyn_findbykidx,
454		dyn_create, dyn_destroy
455	},
456	{
457		O_CHECK_STATE, IPFW_TLV_STATE_NAME,
458		dyn_classify, dyn_update,
459		dyn_findbyname, dyn_findbykidx,
460		dyn_create, dyn_destroy
461	},
462	{
463		O_PROBE_STATE, IPFW_TLV_STATE_NAME,
464		dyn_classify, dyn_update,
465		dyn_findbyname, dyn_findbykidx,
466		dyn_create, dyn_destroy
467	},
468	{
469		O_LIMIT, IPFW_TLV_STATE_NAME,
470		dyn_classify, dyn_update,
471		dyn_findbyname, dyn_findbykidx,
472		dyn_create, dyn_destroy
473	},
474};
475/**
476 * Print customizable flow id description via log(9) facility.
477 */
478static void
479print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
480    int log_flags, char *prefix, char *postfix)
481{
482	struct in_addr da;
483#ifdef INET6
484	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
485#else
486	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
487#endif
488
489#ifdef INET6
490	if (IS_IP6_FLOW_ID(id)) {
491		ip6_sprintf(src, &id->src_ip6);
492		ip6_sprintf(dst, &id->dst_ip6);
493	} else
494#endif
495	{
496		da.s_addr = htonl(id->src_ip);
497		inet_ntop(AF_INET, &da, src, sizeof(src));
498		da.s_addr = htonl(id->dst_ip);
499		inet_ntop(AF_INET, &da, dst, sizeof(dst));
500	}
501	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
502	    prefix, dyn_type, src, id->src_port, dst,
503	    id->dst_port, DYN_COUNT, postfix);
504}
505
506#define	print_dyn_rule(id, dtype, prefix, postfix)	\
507	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
508
509#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
510#define TIME_LE(a,b)       ((int)((a)-(b)) < 0)
511
512static void
513dyn_update_proto_state(ipfw_dyn_rule *q, const struct ipfw_flow_id *id,
514    const void *ulp, int dir)
515{
516	const struct tcphdr *tcp;
517	uint32_t ack;
518	u_char flags;
519
520	if (id->proto == IPPROTO_TCP) {
521		tcp = (const struct tcphdr *)ulp;
522		flags = id->_flags & (TH_FIN | TH_SYN | TH_RST);
523#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
524#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
525#define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
526#define	ACK_FWD		0x10000			/* fwd ack seen */
527#define	ACK_REV		0x20000			/* rev ack seen */
528
529		q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8);
530		switch (q->state & TCP_FLAGS) {
531		case TH_SYN:			/* opening */
532			q->expire = time_uptime + V_dyn_syn_lifetime;
533			break;
534
535		case BOTH_SYN:			/* move to established */
536		case BOTH_SYN | TH_FIN:		/* one side tries to close */
537		case BOTH_SYN | (TH_FIN << 8):
538#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
539			if (tcp == NULL)
540				break;
541
542			ack = ntohl(tcp->th_ack);
543			if (dir == MATCH_FORWARD) {
544				if (q->ack_fwd == 0 ||
545				    _SEQ_GE(ack, q->ack_fwd)) {
546					q->ack_fwd = ack;
547					q->state |= ACK_FWD;
548				}
549			} else {
550				if (q->ack_rev == 0 ||
551				    _SEQ_GE(ack, q->ack_rev)) {
552					q->ack_rev = ack;
553					q->state |= ACK_REV;
554				}
555			}
556			if ((q->state & (ACK_FWD | ACK_REV)) ==
557			    (ACK_FWD | ACK_REV)) {
558				q->expire = time_uptime + V_dyn_ack_lifetime;
559				q->state &= ~(ACK_FWD | ACK_REV);
560			}
561			break;
562
563		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
564			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
565				V_dyn_fin_lifetime =
566				    V_dyn_keepalive_period - 1;
567			q->expire = time_uptime + V_dyn_fin_lifetime;
568			break;
569
570		default:
571#if 0
572			/*
573			 * reset or some invalid combination, but can also
574			 * occur if we use keep-state the wrong way.
575			 */
576			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
577				printf("invalid state: 0x%x\n", q->state);
578#endif
579			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
580				V_dyn_rst_lifetime =
581				    V_dyn_keepalive_period - 1;
582			q->expire = time_uptime + V_dyn_rst_lifetime;
583			break;
584		}
585	} else if (id->proto == IPPROTO_UDP) {
586		q->expire = time_uptime + V_dyn_udp_lifetime;
587	} else {
588		/* other protocols */
589		q->expire = time_uptime + V_dyn_short_lifetime;
590	}
591}
592
593/*
594 * Lookup a dynamic rule, locked version.
595 */
596static ipfw_dyn_rule *
597lookup_dyn_rule_locked(const struct ipfw_flow_id *pkt, const void *ulp,
598    int i, int *match_direction, uint16_t kidx)
599{
600	/*
601	 * Stateful ipfw extensions.
602	 * Lookup into dynamic session queue.
603	 */
604	ipfw_dyn_rule *prev, *q = NULL;
605	int dir;
606
607	IPFW_BUCK_ASSERT(i);
608
609	dir = MATCH_NONE;
610	for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) {
611		if (q->dyn_type == O_LIMIT_PARENT)
612			continue;
613
614		if (pkt->addr_type != q->id.addr_type)
615			continue;
616
617		if (pkt->proto != q->id.proto)
618			continue;
619
620		if (kidx != 0 && kidx != q->kidx)
621			continue;
622
623		if (IS_IP6_FLOW_ID(pkt)) {
624			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) &&
625			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) &&
626			    pkt->src_port == q->id.src_port &&
627			    pkt->dst_port == q->id.dst_port) {
628				dir = MATCH_FORWARD;
629				break;
630			}
631			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) &&
632			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) &&
633			    pkt->src_port == q->id.dst_port &&
634			    pkt->dst_port == q->id.src_port) {
635				dir = MATCH_REVERSE;
636				break;
637			}
638		} else {
639			if (pkt->src_ip == q->id.src_ip &&
640			    pkt->dst_ip == q->id.dst_ip &&
641			    pkt->src_port == q->id.src_port &&
642			    pkt->dst_port == q->id.dst_port) {
643				dir = MATCH_FORWARD;
644				break;
645			}
646			if (pkt->src_ip == q->id.dst_ip &&
647			    pkt->dst_ip == q->id.src_ip &&
648			    pkt->src_port == q->id.dst_port &&
649			    pkt->dst_port == q->id.src_port) {
650				dir = MATCH_REVERSE;
651				break;
652			}
653		}
654	}
655	if (q == NULL)
656		goto done;	/* q = NULL, not found */
657
658	if (prev != NULL) {	/* found and not in front */
659		prev->next = q->next;
660		q->next = V_ipfw_dyn_v[i].head;
661		V_ipfw_dyn_v[i].head = q;
662	}
663
664	/* update state according to flags */
665	dyn_update_proto_state(q, pkt, ulp, dir);
666done:
667	if (match_direction != NULL)
668		*match_direction = dir;
669	return (q);
670}
671
672struct ip_fw *
673ipfw_dyn_lookup_state(const struct ipfw_flow_id *pkt, const void *ulp,
674    int pktlen, int *match_direction, uint16_t kidx)
675{
676	struct ip_fw *rule;
677	ipfw_dyn_rule *q;
678	int i;
679
680	i = hash_packet(pkt, V_curr_dyn_buckets);
681
682	IPFW_BUCK_LOCK(i);
683	q = lookup_dyn_rule_locked(pkt, ulp, i, match_direction, kidx);
684	if (q == NULL)
685		rule = NULL;
686	else {
687		rule = q->rule;
688		IPFW_INC_DYN_COUNTER(q, pktlen);
689	}
690	IPFW_BUCK_UNLOCK(i);
691	return (rule);
692}
693
694static int
695resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets)
696{
697	int i, k, nbuckets_old;
698	ipfw_dyn_rule *q;
699	struct ipfw_dyn_bucket *dyn_v, *dyn_v_old;
700
701	/* Check if given number is power of 2 and less than 64k */
702	if ((nbuckets > 65536) || (!powerof2(nbuckets)))
703		return 1;
704
705	CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__,
706	    V_curr_dyn_buckets, nbuckets);
707
708	/* Allocate and initialize new hash */
709	dyn_v = malloc(nbuckets * sizeof(*dyn_v), M_IPFW,
710	    M_WAITOK | M_ZERO);
711
712	for (i = 0 ; i < nbuckets; i++)
713		IPFW_BUCK_LOCK_INIT(&dyn_v[i]);
714
715	/*
716	 * Call upper half lock, as get_map() do to ease
717	 * read-only access to dynamic rules hash from sysctl
718	 */
719	IPFW_UH_WLOCK(chain);
720
721	/*
722	 * Acquire chain write lock to permit hash access
723	 * for main traffic path without additional locks
724	 */
725	IPFW_WLOCK(chain);
726
727	/* Save old values */
728	nbuckets_old = V_curr_dyn_buckets;
729	dyn_v_old = V_ipfw_dyn_v;
730
731	/* Skip relinking if array is not set up */
732	if (V_ipfw_dyn_v == NULL)
733		V_curr_dyn_buckets = 0;
734
735	/* Re-link all dynamic states */
736	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
737		while (V_ipfw_dyn_v[i].head != NULL) {
738			/* Remove from current chain */
739			q = V_ipfw_dyn_v[i].head;
740			V_ipfw_dyn_v[i].head = q->next;
741
742			/* Get new hash value */
743			k = hash_packet(&q->id, nbuckets);
744			q->bucket = k;
745			/* Add to the new head */
746			q->next = dyn_v[k].head;
747			dyn_v[k].head = q;
748             }
749	}
750
751	/* Update current pointers/buckets values */
752	V_curr_dyn_buckets = nbuckets;
753	V_ipfw_dyn_v = dyn_v;
754
755	IPFW_WUNLOCK(chain);
756
757	IPFW_UH_WUNLOCK(chain);
758
759	/* Start periodic callout on initial creation */
760	if (dyn_v_old == NULL) {
761        	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0);
762		return (0);
763	}
764
765	/* Destroy all mutexes */
766	for (i = 0 ; i < nbuckets_old ; i++)
767		IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]);
768
769	/* Free old hash */
770	free(dyn_v_old, M_IPFW);
771
772	return 0;
773}
774
775/**
776 * Install state of type 'type' for a dynamic session.
777 * The hash table contains two type of rules:
778 * - regular rules (O_KEEP_STATE)
779 * - rules for sessions with limited number of sess per user
780 *   (O_LIMIT). When they are created, the parent is
781 *   increased by 1, and decreased on delete. In this case,
782 *   the third parameter is the parent rule and not the chain.
783 * - "parent" rules for the above (O_LIMIT_PARENT).
784 */
785static ipfw_dyn_rule *
786add_dyn_rule(const struct ipfw_flow_id *id, int i, uint8_t dyn_type,
787    struct ip_fw *rule, uint16_t kidx)
788{
789	ipfw_dyn_rule *r;
790
791	IPFW_BUCK_ASSERT(i);
792
793	r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
794	if (r == NULL) {
795		if (last_log != time_uptime) {
796			last_log = time_uptime;
797			log(LOG_DEBUG,
798			    "ipfw: Cannot allocate dynamic state, "
799			    "consider increasing net.inet.ip.fw.dyn_max\n");
800		}
801		return NULL;
802	}
803	ipfw_dyn_count++;
804
805	/*
806	 * refcount on parent is already incremented, so
807	 * it is safe to use parent unlocked.
808	 */
809	if (dyn_type == O_LIMIT) {
810		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
811		if ( parent->dyn_type != O_LIMIT_PARENT)
812			panic("invalid parent");
813		r->parent = parent;
814		rule = parent->rule;
815	}
816
817	r->id = *id;
818	r->expire = time_uptime + V_dyn_syn_lifetime;
819	r->rule = rule;
820	r->dyn_type = dyn_type;
821	IPFW_ZERO_DYN_COUNTER(r);
822	r->count = 0;
823	r->kidx = kidx;
824	r->bucket = i;
825	r->next = V_ipfw_dyn_v[i].head;
826	V_ipfw_dyn_v[i].head = r;
827	DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");)
828	return r;
829}
830
831/**
832 * lookup dynamic parent rule using pkt and rule as search keys.
833 * If the lookup fails, then install one.
834 */
835static ipfw_dyn_rule *
836lookup_dyn_parent(const struct ipfw_flow_id *pkt, int *pindex,
837    struct ip_fw *rule, uint16_t kidx)
838{
839	ipfw_dyn_rule *q;
840	int i, is_v6;
841
842	is_v6 = IS_IP6_FLOW_ID(pkt);
843	i = hash_packet( pkt, V_curr_dyn_buckets );
844	*pindex = i;
845	IPFW_BUCK_LOCK(i);
846	for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next)
847		if (q->dyn_type == O_LIMIT_PARENT &&
848		    kidx == q->kidx &&
849		    rule == q->rule &&
850		    pkt->proto == q->id.proto &&
851		    pkt->src_port == q->id.src_port &&
852		    pkt->dst_port == q->id.dst_port &&
853		    (
854			(is_v6 &&
855			 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
856				&(q->id.src_ip6)) &&
857			 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
858				&(q->id.dst_ip6))) ||
859			(!is_v6 &&
860			 pkt->src_ip == q->id.src_ip &&
861			 pkt->dst_ip == q->id.dst_ip)
862		    )
863		) {
864			q->expire = time_uptime + V_dyn_short_lifetime;
865			DEB(print_dyn_rule(pkt, q->dyn_type,
866			    "lookup_dyn_parent found", "");)
867			return q;
868		}
869
870	/* Add virtual limiting rule */
871	return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule, kidx);
872}
873
874/**
875 * Install dynamic state for rule type cmd->o.opcode
876 *
877 * Returns 1 (failure) if state is not installed because of errors or because
878 * session limitations are enforced.
879 */
880int
881ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
882    ipfw_insn_limit *cmd, struct ip_fw_args *args, uint32_t tablearg)
883{
884	ipfw_dyn_rule *q;
885	int i;
886
887	DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state",
888	    (cmd->o.arg1 == 0 ? "": DYN_STATE_OBJ(chain, &cmd->o)->name));)
889
890	i = hash_packet(&args->f_id, V_curr_dyn_buckets);
891
892	IPFW_BUCK_LOCK(i);
893
894	q = lookup_dyn_rule_locked(&args->f_id, NULL, i, NULL, cmd->o.arg1);
895	if (q != NULL) {	/* should never occur */
896		DEB(
897		if (last_log != time_uptime) {
898			last_log = time_uptime;
899			printf("ipfw: %s: entry already present, done\n",
900			    __func__);
901		})
902		IPFW_BUCK_UNLOCK(i);
903		return (0);
904	}
905
906	/*
907	 * State limiting is done via uma(9) zone limiting.
908	 * Save pointer to newly-installed rule and reject
909	 * packet if add_dyn_rule() returned NULL.
910	 * Note q is currently set to NULL.
911	 */
912
913	switch (cmd->o.opcode) {
914	case O_KEEP_STATE:	/* bidir rule */
915		q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule,
916		    cmd->o.arg1);
917		break;
918
919	case O_LIMIT: {		/* limit number of sessions */
920		struct ipfw_flow_id id;
921		ipfw_dyn_rule *parent;
922		uint32_t conn_limit;
923		uint16_t limit_mask = cmd->limit_mask;
924		int pindex;
925
926		conn_limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
927
928		DEB(
929		if (cmd->conn_limit == IP_FW_TARG)
930			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
931			    "(tablearg)\n", __func__, conn_limit);
932		else
933			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
934			    __func__, conn_limit);
935		)
936
937		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
938		id.proto = args->f_id.proto;
939		id.addr_type = args->f_id.addr_type;
940		id.fib = M_GETFIB(args->m);
941
942		if (IS_IP6_FLOW_ID (&(args->f_id))) {
943			bzero(&id.src_ip6, sizeof(id.src_ip6));
944			bzero(&id.dst_ip6, sizeof(id.dst_ip6));
945
946			if (limit_mask & DYN_SRC_ADDR)
947				id.src_ip6 = args->f_id.src_ip6;
948			if (limit_mask & DYN_DST_ADDR)
949				id.dst_ip6 = args->f_id.dst_ip6;
950		} else {
951			if (limit_mask & DYN_SRC_ADDR)
952				id.src_ip = args->f_id.src_ip;
953			if (limit_mask & DYN_DST_ADDR)
954				id.dst_ip = args->f_id.dst_ip;
955		}
956		if (limit_mask & DYN_SRC_PORT)
957			id.src_port = args->f_id.src_port;
958		if (limit_mask & DYN_DST_PORT)
959			id.dst_port = args->f_id.dst_port;
960
961		/*
962		 * We have to release lock for previous bucket to
963		 * avoid possible deadlock
964		 */
965		IPFW_BUCK_UNLOCK(i);
966
967		parent = lookup_dyn_parent(&id, &pindex, rule, cmd->o.arg1);
968		if (parent == NULL) {
969			printf("ipfw: %s: add parent failed\n", __func__);
970			IPFW_BUCK_UNLOCK(pindex);
971			return (1);
972		}
973
974		if (parent->count >= conn_limit) {
975			if (V_fw_verbose && last_log != time_uptime) {
976				last_log = time_uptime;
977				char sbuf[24];
978				last_log = time_uptime;
979				snprintf(sbuf, sizeof(sbuf),
980				    "%d drop session",
981				    parent->rule->rulenum);
982				print_dyn_rule_flags(&args->f_id,
983				    cmd->o.opcode,
984				    LOG_SECURITY | LOG_DEBUG,
985				    sbuf, "too many entries");
986			}
987			IPFW_BUCK_UNLOCK(pindex);
988			return (1);
989		}
990		/* Increment counter on parent */
991		parent->count++;
992		IPFW_BUCK_UNLOCK(pindex);
993
994		IPFW_BUCK_LOCK(i);
995		q = add_dyn_rule(&args->f_id, i, O_LIMIT,
996		    (struct ip_fw *)parent, cmd->o.arg1);
997		if (q == NULL) {
998			/* Decrement index and notify caller */
999			IPFW_BUCK_UNLOCK(i);
1000			IPFW_BUCK_LOCK(pindex);
1001			parent->count--;
1002			IPFW_BUCK_UNLOCK(pindex);
1003			return (1);
1004		}
1005		break;
1006	}
1007	default:
1008		printf("ipfw: %s: unknown dynamic rule type %u\n",
1009		    __func__, cmd->o.opcode);
1010	}
1011
1012	if (q == NULL) {
1013		IPFW_BUCK_UNLOCK(i);
1014		return (1);	/* Notify caller about failure */
1015	}
1016
1017	dyn_update_proto_state(q, &args->f_id, NULL, MATCH_FORWARD);
1018	IPFW_BUCK_UNLOCK(i);
1019	return (0);
1020}
1021
1022/*
1023 * Queue keepalive packets for given dynamic rule
1024 */
1025static struct mbuf **
1026ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q)
1027{
1028	struct mbuf *m_rev, *m_fwd;
1029
1030	m_rev = (q->state & ACK_REV) ? NULL :
1031	    ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
1032	m_fwd = (q->state & ACK_FWD) ? NULL :
1033	    ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0);
1034
1035	if (m_rev != NULL) {
1036		*mtailp = m_rev;
1037		mtailp = &(*mtailp)->m_nextpkt;
1038	}
1039	if (m_fwd != NULL) {
1040		*mtailp = m_fwd;
1041		mtailp = &(*mtailp)->m_nextpkt;
1042	}
1043
1044	return (mtailp);
1045}
1046
1047/*
1048 * This procedure is used to perform various maintenance
1049 * on dynamic hash list. Currently it is called every second.
1050 */
1051static void
1052ipfw_dyn_tick(void * vnetx)
1053{
1054	struct ip_fw_chain *chain;
1055	int check_ka = 0;
1056#ifdef VIMAGE
1057	struct vnet *vp = vnetx;
1058#endif
1059
1060	CURVNET_SET(vp);
1061
1062	chain = &V_layer3_chain;
1063
1064	/* Run keepalive checks every keepalive_period iff ka is enabled */
1065	if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) &&
1066	    (V_dyn_keepalive != 0)) {
1067		V_dyn_keepalive_last = time_uptime;
1068		check_ka = 1;
1069	}
1070
1071	check_dyn_rules(chain, NULL, check_ka, 1);
1072
1073	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0);
1074
1075	CURVNET_RESTORE();
1076}
1077
1078
1079/*
1080 * Walk through all dynamic states doing generic maintenance:
1081 * 1) free expired states
1082 * 2) free all states based on deleted rule / set
1083 * 3) send keepalives for states if needed
1084 *
1085 * @chain - pointer to current ipfw rules chain
1086 * @rule - delete all states originated by given rule if != NULL
1087 * @set - delete all states originated by any rule in set @set if != RESVD_SET
1088 * @check_ka - perform checking/sending keepalives
1089 * @timer - indicate call from timer routine.
1090 *
1091 * Timer routine must call this function unlocked to permit
1092 * sending keepalives/resizing table.
1093 *
1094 * Others has to call function with IPFW_UH_WLOCK held.
1095 * Additionally, function assume that dynamic rule/set is
1096 * ALREADY deleted so no new states can be generated by
1097 * 'deleted' rules.
1098 *
1099 * Write lock is needed to ensure that unused parent rules
1100 * are not freed by other instance (see stage 2, 3)
1101 */
1102static void
1103check_dyn_rules(struct ip_fw_chain *chain, ipfw_range_tlv *rt,
1104    int check_ka, int timer)
1105{
1106	struct mbuf *m0, *m, *mnext, **mtailp;
1107	struct ip *h;
1108	int i, dyn_count, new_buckets = 0, max_buckets;
1109	int expired = 0, expired_limits = 0, parents = 0, total = 0;
1110	ipfw_dyn_rule *q, *q_prev, *q_next;
1111	ipfw_dyn_rule *exp_head, **exptailp;
1112	ipfw_dyn_rule *exp_lhead, **expltailp;
1113
1114	KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated",
1115	    __func__));
1116
1117	/* Avoid possible LOR */
1118	KASSERT(!check_ka || timer, ("%s: keepalive check with lock held",
1119	    __func__));
1120
1121	/*
1122	 * Do not perform any checks if we currently have no dynamic states
1123	 */
1124	if (DYN_COUNT == 0)
1125		return;
1126
1127	/* Expired states */
1128	exp_head = NULL;
1129	exptailp = &exp_head;
1130
1131	/* Expired limit states */
1132	exp_lhead = NULL;
1133	expltailp = &exp_lhead;
1134
1135	/*
1136	 * We make a chain of packets to go out here -- not deferring
1137	 * until after we drop the IPFW dynamic rule lock would result
1138	 * in a lock order reversal with the normal packet input -> ipfw
1139	 * call stack.
1140	 */
1141	m0 = NULL;
1142	mtailp = &m0;
1143
1144	/* Protect from hash resizing */
1145	if (timer != 0)
1146		IPFW_UH_WLOCK(chain);
1147	else
1148		IPFW_UH_WLOCK_ASSERT(chain);
1149
1150#define	NEXT_RULE()	{ q_prev = q; q = q->next ; continue; }
1151
1152	/* Stage 1: perform requested deletion */
1153	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1154		IPFW_BUCK_LOCK(i);
1155		for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) {
1156			/* account every rule */
1157			total++;
1158
1159			/* Skip parent rules at all */
1160			if (q->dyn_type == O_LIMIT_PARENT) {
1161				parents++;
1162				NEXT_RULE();
1163			}
1164
1165			/*
1166			 * Remove rules which are:
1167			 * 1) expired
1168			 * 2) matches deletion range
1169			 */
1170			if ((TIME_LEQ(q->expire, time_uptime)) ||
1171			    (rt != NULL && ipfw_match_range(q->rule, rt))) {
1172				if (TIME_LE(time_uptime, q->expire) &&
1173				    q->dyn_type == O_KEEP_STATE &&
1174				    V_dyn_keep_states != 0) {
1175					/*
1176					 * Do not delete state if
1177					 * it is not expired and
1178					 * dyn_keep_states is ON.
1179					 * However we need to re-link it
1180					 * to any other stable rule
1181					 */
1182					q->rule = chain->default_rule;
1183					NEXT_RULE();
1184				}
1185
1186				/* Unlink q from current list */
1187				q_next = q->next;
1188				if (q == V_ipfw_dyn_v[i].head)
1189					V_ipfw_dyn_v[i].head = q_next;
1190				else
1191					q_prev->next = q_next;
1192
1193				q->next = NULL;
1194
1195				/* queue q to expire list */
1196				if (q->dyn_type != O_LIMIT) {
1197					*exptailp = q;
1198					exptailp = &(*exptailp)->next;
1199					DEB(print_dyn_rule(&q->id, q->dyn_type,
1200					    "unlink entry", "left");
1201					)
1202				} else {
1203					/* Separate list for limit rules */
1204					*expltailp = q;
1205					expltailp = &(*expltailp)->next;
1206					expired_limits++;
1207					DEB(print_dyn_rule(&q->id, q->dyn_type,
1208					    "unlink limit entry", "left");
1209					)
1210				}
1211
1212				q = q_next;
1213				expired++;
1214				continue;
1215			}
1216
1217			/*
1218			 * Check if we need to send keepalive:
1219			 * we need to ensure if is time to do KA,
1220			 * this is established TCP session, and
1221			 * expire time is within keepalive interval
1222			 */
1223			if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) &&
1224			    ((q->state & BOTH_SYN) == BOTH_SYN) &&
1225			    (TIME_LEQ(q->expire, time_uptime +
1226			      V_dyn_keepalive_interval)))
1227				mtailp = ipfw_dyn_send_ka(mtailp, q);
1228
1229			NEXT_RULE();
1230		}
1231		IPFW_BUCK_UNLOCK(i);
1232	}
1233
1234	/* Stage 2: decrement counters from O_LIMIT parents */
1235	if (expired_limits != 0) {
1236		/*
1237		 * XXX: Note that deleting set with more than one
1238		 * heavily-used LIMIT rules can result in overwhelming
1239		 * locking due to lack of per-hash value sorting
1240		 *
1241		 * We should probably think about:
1242		 * 1) pre-allocating hash of size, say,
1243		 * MAX(16, V_curr_dyn_buckets / 1024)
1244		 * 2) checking if expired_limits is large enough
1245		 * 3) If yes, init hash (or its part), re-link
1246		 * current list and start decrementing procedure in
1247		 * each bucket separately
1248		 */
1249
1250		/*
1251		 * Small optimization: do not unlock bucket until
1252		 * we see the next item resides in different bucket
1253		 */
1254		if (exp_lhead != NULL) {
1255			i = exp_lhead->parent->bucket;
1256			IPFW_BUCK_LOCK(i);
1257		}
1258		for (q = exp_lhead; q != NULL; q = q->next) {
1259			if (i != q->parent->bucket) {
1260				IPFW_BUCK_UNLOCK(i);
1261				i = q->parent->bucket;
1262				IPFW_BUCK_LOCK(i);
1263			}
1264
1265			/* Decrease parent refcount */
1266			q->parent->count--;
1267		}
1268		if (exp_lhead != NULL)
1269			IPFW_BUCK_UNLOCK(i);
1270	}
1271
1272	/*
1273	 * We protectet ourselves from unused parent deletion
1274	 * (from the timer function) by holding UH write lock.
1275	 */
1276
1277	/* Stage 3: remove unused parent rules */
1278	if ((parents != 0) && (expired != 0)) {
1279		for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1280			IPFW_BUCK_LOCK(i);
1281			for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) {
1282				if (q->dyn_type != O_LIMIT_PARENT)
1283					NEXT_RULE();
1284
1285				if (q->count != 0)
1286					NEXT_RULE();
1287
1288				/* Parent rule without consumers */
1289
1290				/* Unlink q from current list */
1291				q_next = q->next;
1292				if (q == V_ipfw_dyn_v[i].head)
1293					V_ipfw_dyn_v[i].head = q_next;
1294				else
1295					q_prev->next = q_next;
1296
1297				q->next = NULL;
1298
1299				/* Add to expired list */
1300				*exptailp = q;
1301				exptailp = &(*exptailp)->next;
1302
1303				DEB(print_dyn_rule(&q->id, q->dyn_type,
1304				    "unlink parent entry", "left");
1305				)
1306
1307				expired++;
1308
1309				q = q_next;
1310			}
1311			IPFW_BUCK_UNLOCK(i);
1312		}
1313	}
1314
1315#undef NEXT_RULE
1316
1317	if (timer != 0) {
1318		/*
1319		 * Check if we need to resize hash:
1320		 * if current number of states exceeds number of buckes in hash,
1321		 * grow hash size to the minimum power of 2 which is bigger than
1322		 * current states count. Limit hash size by 64k.
1323		 */
1324		max_buckets = (V_dyn_buckets_max > 65536) ?
1325		    65536 : V_dyn_buckets_max;
1326
1327		dyn_count = DYN_COUNT;
1328
1329		if ((dyn_count > V_curr_dyn_buckets * 2) &&
1330		    (dyn_count < max_buckets)) {
1331			new_buckets = V_curr_dyn_buckets;
1332			while (new_buckets < dyn_count) {
1333				new_buckets *= 2;
1334
1335				if (new_buckets >= max_buckets)
1336					break;
1337			}
1338		}
1339
1340		IPFW_UH_WUNLOCK(chain);
1341	}
1342
1343	/* Finally delete old states ad limits if any */
1344	for (q = exp_head; q != NULL; q = q_next) {
1345		q_next = q->next;
1346		uma_zfree(V_ipfw_dyn_rule_zone, q);
1347		ipfw_dyn_count--;
1348	}
1349
1350	for (q = exp_lhead; q != NULL; q = q_next) {
1351		q_next = q->next;
1352		uma_zfree(V_ipfw_dyn_rule_zone, q);
1353		ipfw_dyn_count--;
1354	}
1355
1356	/*
1357	 * The rest code MUST be called from timer routine only
1358	 * without holding any locks
1359	 */
1360	if (timer == 0)
1361		return;
1362
1363	/* Send keepalive packets if any */
1364	for (m = m0; m != NULL; m = mnext) {
1365		mnext = m->m_nextpkt;
1366		m->m_nextpkt = NULL;
1367		h = mtod(m, struct ip *);
1368		if (h->ip_v == 4)
1369			ip_output(m, NULL, NULL, 0, NULL, NULL);
1370#ifdef INET6
1371		else
1372			ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1373#endif
1374	}
1375
1376	/* Run table resize without holding any locks */
1377	if (new_buckets != 0)
1378		resize_dynamic_table(chain, new_buckets);
1379}
1380
1381/*
1382 * Deletes all dynamic rules originated by given rule or all rules in
1383 * given set. Specify RESVD_SET to indicate set should not be used.
1384 * @chain - pointer to current ipfw rules chain
1385 * @rr - delete all states originated by rules in matched range.
1386 *
1387 * Function has to be called with IPFW_UH_WLOCK held.
1388 * Additionally, function assume that dynamic rule/set is
1389 * ALREADY deleted so no new states can be generated by
1390 * 'deleted' rules.
1391 */
1392void
1393ipfw_expire_dyn_rules(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
1394{
1395
1396	check_dyn_rules(chain, rt, 0, 0);
1397}
1398
1399/*
1400 * Check if rule contains at least one dynamic opcode.
1401 *
1402 * Returns 1 if such opcode is found, 0 otherwise.
1403 */
1404int
1405ipfw_is_dyn_rule(struct ip_fw *rule)
1406{
1407	int cmdlen, l;
1408	ipfw_insn *cmd;
1409
1410	l = rule->cmd_len;
1411	cmd = rule->cmd;
1412	cmdlen = 0;
1413	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
1414		cmdlen = F_LEN(cmd);
1415
1416		switch (cmd->opcode) {
1417		case O_LIMIT:
1418		case O_KEEP_STATE:
1419		case O_PROBE_STATE:
1420		case O_CHECK_STATE:
1421			return (1);
1422		}
1423	}
1424
1425	return (0);
1426}
1427
1428void
1429ipfw_dyn_init(struct ip_fw_chain *chain)
1430{
1431
1432        V_ipfw_dyn_v = NULL;
1433        V_dyn_buckets_max = 256; /* must be power of 2 */
1434        V_curr_dyn_buckets = 256; /* must be power of 2 */
1435
1436        V_dyn_ack_lifetime = 300;
1437        V_dyn_syn_lifetime = 20;
1438        V_dyn_fin_lifetime = 1;
1439        V_dyn_rst_lifetime = 1;
1440        V_dyn_udp_lifetime = 10;
1441        V_dyn_short_lifetime = 5;
1442
1443        V_dyn_keepalive_interval = 20;
1444        V_dyn_keepalive_period = 5;
1445        V_dyn_keepalive = 1;    /* do send keepalives */
1446	V_dyn_keepalive_last = time_uptime;
1447
1448        V_dyn_max = 16384; /* max # of dynamic rules */
1449
1450	V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1451	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1452	    UMA_ALIGN_PTR, 0);
1453
1454	/* Enforce limit on dynamic rules */
1455	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1456
1457        callout_init(&V_ipfw_timeout, 1);
1458
1459	/*
1460	 * This can potentially be done on first dynamic rule
1461	 * being added to chain.
1462	 */
1463	resize_dynamic_table(chain, V_curr_dyn_buckets);
1464	IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
1465}
1466
1467void
1468ipfw_dyn_uninit(int pass)
1469{
1470	int i;
1471
1472	if (pass == 0) {
1473		callout_drain(&V_ipfw_timeout);
1474		return;
1475	}
1476	IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
1477
1478	if (V_ipfw_dyn_v != NULL) {
1479		/*
1480		 * Skip deleting all dynamic states -
1481		 * uma_zdestroy() does this more efficiently;
1482		 */
1483
1484		/* Destroy all mutexes */
1485		for (i = 0 ; i < V_curr_dyn_buckets ; i++)
1486			IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]);
1487		free(V_ipfw_dyn_v, M_IPFW);
1488		V_ipfw_dyn_v = NULL;
1489	}
1490
1491        uma_zdestroy(V_ipfw_dyn_rule_zone);
1492}
1493
1494#ifdef SYSCTL_NODE
1495/*
1496 * Get/set maximum number of dynamic states in given VNET instance.
1497 */
1498static int
1499sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS)
1500{
1501	int error;
1502	unsigned int nstates;
1503
1504	nstates = V_dyn_max;
1505
1506	error = sysctl_handle_int(oidp, &nstates, 0, req);
1507	/* Read operation or some error */
1508	if ((error != 0) || (req->newptr == NULL))
1509		return (error);
1510
1511	V_dyn_max = nstates;
1512	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1513
1514	return (0);
1515}
1516
1517/*
1518 * Get current number of dynamic states in given VNET instance.
1519 */
1520static int
1521sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS)
1522{
1523	int error;
1524	unsigned int nstates;
1525
1526	nstates = DYN_COUNT;
1527
1528	error = sysctl_handle_int(oidp, &nstates, 0, req);
1529
1530	return (error);
1531}
1532#endif
1533
1534/*
1535 * Returns size of dynamic states in legacy format
1536 */
1537int
1538ipfw_dyn_len(void)
1539{
1540
1541	return (V_ipfw_dyn_v == NULL) ? 0 :
1542		(DYN_COUNT * sizeof(ipfw_dyn_rule));
1543}
1544
1545/*
1546 * Returns number of dynamic states.
1547 * Used by dump format v1 (current).
1548 */
1549int
1550ipfw_dyn_get_count(void)
1551{
1552
1553	return (V_ipfw_dyn_v == NULL) ? 0 : DYN_COUNT;
1554}
1555
1556static void
1557export_dyn_rule(ipfw_dyn_rule *src, ipfw_dyn_rule *dst)
1558{
1559	uint16_t rulenum;
1560
1561	rulenum = (uint16_t)src->rule->rulenum;
1562	memcpy(dst, src, sizeof(*src));
1563	memcpy(&dst->rule, &rulenum, sizeof(rulenum));
1564	/*
1565	 * store set number into high word of
1566	 * dst->rule pointer.
1567	 */
1568	memcpy((char *)&dst->rule + sizeof(rulenum), &src->rule->set,
1569	    sizeof(src->rule->set));
1570	/*
1571	 * store a non-null value in "next".
1572	 * The userland code will interpret a
1573	 * NULL here as a marker
1574	 * for the last dynamic rule.
1575	 */
1576	memcpy(&dst->next, &dst, sizeof(dst));
1577	dst->expire = TIME_LEQ(dst->expire, time_uptime) ?  0:
1578	    dst->expire - time_uptime;
1579}
1580
1581/*
1582 * Fills int buffer given by @sd with dynamic states.
1583 * Used by dump format v1 (current).
1584 *
1585 * Returns 0 on success.
1586 */
1587int
1588ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
1589{
1590	ipfw_dyn_rule *p;
1591	ipfw_obj_dyntlv *dst, *last;
1592	ipfw_obj_ctlv *ctlv;
1593	int i;
1594	size_t sz;
1595
1596	if (V_ipfw_dyn_v == NULL)
1597		return (0);
1598
1599	IPFW_UH_RLOCK_ASSERT(chain);
1600
1601	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1602	if (ctlv == NULL)
1603		return (ENOMEM);
1604	sz = sizeof(ipfw_obj_dyntlv);
1605	ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
1606	ctlv->objsize = sz;
1607	last = NULL;
1608
1609	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1610		IPFW_BUCK_LOCK(i);
1611		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1612			dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, sz);
1613			if (dst == NULL) {
1614				IPFW_BUCK_UNLOCK(i);
1615				return (ENOMEM);
1616			}
1617
1618			export_dyn_rule(p, &dst->state);
1619			dst->head.length = sz;
1620			dst->head.type = IPFW_TLV_DYN_ENT;
1621			last = dst;
1622		}
1623		IPFW_BUCK_UNLOCK(i);
1624	}
1625
1626	if (last != NULL) /* mark last dynamic rule */
1627		last->head.flags = IPFW_DF_LAST;
1628
1629	return (0);
1630}
1631
1632/*
1633 * Fill given buffer with dynamic states (legacy format).
1634 * IPFW_UH_RLOCK has to be held while calling.
1635 */
1636void
1637ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
1638{
1639	ipfw_dyn_rule *p, *last = NULL;
1640	char *bp;
1641	int i;
1642
1643	if (V_ipfw_dyn_v == NULL)
1644		return;
1645	bp = *pbp;
1646
1647	IPFW_UH_RLOCK_ASSERT(chain);
1648
1649	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1650		IPFW_BUCK_LOCK(i);
1651		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1652			if (bp + sizeof *p <= ep) {
1653				ipfw_dyn_rule *dst =
1654					(ipfw_dyn_rule *)bp;
1655
1656				export_dyn_rule(p, dst);
1657				last = dst;
1658				bp += sizeof(ipfw_dyn_rule);
1659			}
1660		}
1661		IPFW_BUCK_UNLOCK(i);
1662	}
1663
1664	if (last != NULL) /* mark last dynamic rule */
1665		bzero(&last->next, sizeof(last));
1666	*pbp = bp;
1667}
1668/* end of file */
1669