ip_fw_dynamic.c revision 324046
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/11/sys/netpfil/ipfw/ip_fw_dynamic.c 324046 2017-09-27 01:46:14Z ae $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Dynamic rule support for ipfw
34 */
35
36#include "opt_ipfw.h"
37#include "opt_inet.h"
38#ifndef INET
39#error IPFIREWALL requires INET.
40#endif /* INET */
41#include "opt_inet6.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/rmlock.h>
51#include <sys/socket.h>
52#include <sys/sysctl.h>
53#include <sys/syslog.h>
54#include <net/ethernet.h> /* for ETHERTYPE_IP */
55#include <net/if.h>
56#include <net/if_var.h>
57#include <net/pfil.h>
58#include <net/vnet.h>
59
60#include <netinet/in.h>
61#include <netinet/ip.h>
62#include <netinet/ip_var.h>	/* ip_defttl */
63#include <netinet/ip_fw.h>
64#include <netinet/tcp_var.h>
65#include <netinet/udp.h>
66
67#include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
68#ifdef INET6
69#include <netinet6/in6_var.h>
70#include <netinet6/ip6_var.h>
71#endif
72
73#include <netpfil/ipfw/ip_fw_private.h>
74
75#include <machine/in_cksum.h>	/* XXX for in_cksum */
76
77#ifdef MAC
78#include <security/mac/mac_framework.h>
79#endif
80
81/*
82 * Description of dynamic rules.
83 *
84 * Dynamic rules are stored in lists accessed through a hash table
85 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
86 * be modified through the sysctl variable dyn_buckets which is
87 * updated when the table becomes empty.
88 *
89 * XXX currently there is only one list, ipfw_dyn.
90 *
91 * When a packet is received, its address fields are first masked
92 * with the mask defined for the rule, then hashed, then matched
93 * against the entries in the corresponding list.
94 * Dynamic rules can be used for different purposes:
95 *  + stateful rules;
96 *  + enforcing limits on the number of sessions;
97 *  + in-kernel NAT (not implemented yet)
98 *
99 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
100 * measured in seconds and depending on the flags.
101 *
102 * The total number of dynamic rules is equal to UMA zone items count.
103 * The max number of dynamic rules is dyn_max. When we reach
104 * the maximum number of rules we do not create anymore. This is
105 * done to avoid consuming too much memory, but also too much
106 * time when searching on each packet (ideally, we should try instead
107 * to put a limit on the length of the list on each bucket...).
108 *
109 * Each dynamic rule holds a pointer to the parent ipfw rule so
110 * we know what action to perform. Dynamic rules are removed when
111 * the parent rule is deleted. This can be changed by dyn_keep_states
112 * sysctl.
113 *
114 * There are some limitations with dynamic rules -- we do not
115 * obey the 'randomized match', and we do not do multiple
116 * passes through the firewall. XXX check the latter!!!
117 */
118
119struct ipfw_dyn_bucket {
120	struct mtx	mtx;		/* Bucket protecting lock */
121	ipfw_dyn_rule	*head;		/* Pointer to first rule */
122};
123
124/*
125 * Static variables followed by global ones
126 */
127static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v);
128static VNET_DEFINE(u_int32_t, dyn_buckets_max);
129static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
130static VNET_DEFINE(struct callout, ipfw_timeout);
131#define	V_ipfw_dyn_v			VNET(ipfw_dyn_v)
132#define	V_dyn_buckets_max		VNET(dyn_buckets_max)
133#define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
134#define V_ipfw_timeout                  VNET(ipfw_timeout)
135
136static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone);
137#define	V_ipfw_dyn_rule_zone		VNET(ipfw_dyn_rule_zone)
138
139#define	IPFW_BUCK_LOCK_INIT(b)	\
140	mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF)
141#define	IPFW_BUCK_LOCK_DESTROY(b)	\
142	mtx_destroy(&(b)->mtx)
143#define	IPFW_BUCK_LOCK(i)	mtx_lock(&V_ipfw_dyn_v[(i)].mtx)
144#define	IPFW_BUCK_UNLOCK(i)	mtx_unlock(&V_ipfw_dyn_v[(i)].mtx)
145#define	IPFW_BUCK_ASSERT(i)	mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED)
146
147
148static VNET_DEFINE(int, dyn_keep_states);
149#define	V_dyn_keep_states		VNET(dyn_keep_states)
150
151/*
152 * Timeouts for various events in handing dynamic rules.
153 */
154static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
155static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
156static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
157static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
158static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
159static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
160
161#define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
162#define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
163#define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
164#define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
165#define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
166#define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
167
168/*
169 * Keepalives are sent if dyn_keepalive is set. They are sent every
170 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
171 * seconds of lifetime of a rule.
172 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
173 * than dyn_keepalive_period.
174 */
175
176static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
177static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
178static VNET_DEFINE(u_int32_t, dyn_keepalive);
179static VNET_DEFINE(time_t, dyn_keepalive_last);
180
181#define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
182#define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
183#define	V_dyn_keepalive			VNET(dyn_keepalive)
184#define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
185
186static VNET_DEFINE(u_int32_t, dyn_max);		/* max # of dynamic rules */
187
188#define	DYN_COUNT			uma_zone_get_cur(V_ipfw_dyn_rule_zone)
189#define	V_dyn_max			VNET(dyn_max)
190
191/* for userspace, we emulate the uma_zone_counter with ipfw_dyn_count */
192static int ipfw_dyn_count;	/* number of objects */
193
194#ifdef USERSPACE /* emulation of UMA object counters for userspace */
195#define uma_zone_get_cur(x)	ipfw_dyn_count
196#endif /* USERSPACE */
197
198static int last_log;	/* Log ratelimiting */
199
200static void ipfw_dyn_tick(void *vnetx);
201static void check_dyn_rules(struct ip_fw_chain *, ipfw_range_tlv *, int, int);
202#ifdef SYSCTL_NODE
203
204static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS);
205static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS);
206
207SYSBEGIN(f2)
208
209SYSCTL_DECL(_net_inet_ip_fw);
210SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
211    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0,
212    "Max number of dyn. buckets");
213SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
214    CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
215    "Current Number of dyn. buckets");
216SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count,
217    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU",
218    "Number of dyn. rules");
219SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
220    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU",
221    "Max number of dyn. rules");
222SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
223    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
224    "Lifetime of dyn. rules for acks");
225SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
226    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
227    "Lifetime of dyn. rules for syn");
228SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
229    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
230    "Lifetime of dyn. rules for fin");
231SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
232    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
233    "Lifetime of dyn. rules for rst");
234SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
235    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
236    "Lifetime of dyn. rules for UDP");
237SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
238    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
239    "Lifetime of dyn. rules for other situations");
240SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
241    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
242    "Enable keepalives for dyn. rules");
243SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
244    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
245    "Do not flush dynamic states on rule deletion");
246
247SYSEND
248
249#endif /* SYSCTL_NODE */
250
251
252#ifdef INET6
253static __inline int
254hash_packet6(struct ipfw_flow_id *id)
255{
256	u_int32_t i;
257	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
258	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
259	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
260	    (id->src_ip6.__u6_addr.__u6_addr32[3]);
261	return ntohl(i);
262}
263#endif
264
265/*
266 * IMPORTANT: the hash function for dynamic rules must be commutative
267 * in source and destination (ip,port), because rules are bidirectional
268 * and we want to find both in the same bucket.
269 */
270static __inline int
271hash_packet(struct ipfw_flow_id *id, int buckets)
272{
273	u_int32_t i;
274
275#ifdef INET6
276	if (IS_IP6_FLOW_ID(id))
277		i = hash_packet6(id);
278	else
279#endif /* INET6 */
280	i = (id->dst_ip) ^ (id->src_ip);
281	i ^= (id->dst_port) ^ (id->src_port);
282	return (i & (buckets - 1));
283}
284
285#if 0
286#define	DYN_DEBUG(fmt, ...)	do {			\
287	printf("%s: " fmt "\n", __func__, __VA_ARGS__);	\
288} while (0)
289#else
290#define	DYN_DEBUG(fmt, ...)
291#endif
292
293static char *default_state_name = "default";
294struct dyn_state_obj {
295	struct named_object	no;
296	char			name[64];
297};
298
299#define	DYN_STATE_OBJ(ch, cmd)	\
300    ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
301/*
302 * Classifier callback.
303 * Return 0 if opcode contains object that should be referenced
304 * or rewritten.
305 */
306static int
307dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
308{
309
310	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
311	/* Don't rewrite "check-state any" */
312	if (cmd->arg1 == 0 &&
313	    cmd->opcode == O_CHECK_STATE)
314		return (1);
315
316	*puidx = cmd->arg1;
317	*ptype = 0;
318	return (0);
319}
320
321static void
322dyn_update(ipfw_insn *cmd, uint16_t idx)
323{
324
325	cmd->arg1 = idx;
326	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
327}
328
329static int
330dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
331    struct named_object **pno)
332{
333	ipfw_obj_ntlv *ntlv;
334	const char *name;
335
336	DYN_DEBUG("uidx %d", ti->uidx);
337	if (ti->uidx != 0) {
338		if (ti->tlvs == NULL)
339			return (EINVAL);
340		/* Search ntlv in the buffer provided by user */
341		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
342		    IPFW_TLV_STATE_NAME);
343		if (ntlv == NULL)
344			return (EINVAL);
345		name = ntlv->name;
346	} else
347		name = default_state_name;
348	/*
349	 * Search named object with corresponding name.
350	 * Since states objects are global - ignore the set value
351	 * and use zero instead.
352	 */
353	*pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
354	    IPFW_TLV_STATE_NAME, name);
355	/*
356	 * We always return success here.
357	 * The caller will check *pno and mark object as unresolved,
358	 * then it will automatically create "default" object.
359	 */
360	return (0);
361}
362
363static struct named_object *
364dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
365{
366
367	DYN_DEBUG("kidx %d", idx);
368	return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
369}
370
371static int
372dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
373    uint16_t *pkidx)
374{
375	struct namedobj_instance *ni;
376	struct dyn_state_obj *obj;
377	struct named_object *no;
378	ipfw_obj_ntlv *ntlv;
379	char *name;
380
381	DYN_DEBUG("uidx %d", ti->uidx);
382	if (ti->uidx != 0) {
383		if (ti->tlvs == NULL)
384			return (EINVAL);
385		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
386		    IPFW_TLV_STATE_NAME);
387		if (ntlv == NULL)
388			return (EINVAL);
389		name = ntlv->name;
390	} else
391		name = default_state_name;
392
393	ni = CHAIN_TO_SRV(ch);
394	obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
395	obj->no.name = obj->name;
396	obj->no.etlv = IPFW_TLV_STATE_NAME;
397	strlcpy(obj->name, name, sizeof(obj->name));
398
399	IPFW_UH_WLOCK(ch);
400	no = ipfw_objhash_lookup_name_type(ni, 0,
401	    IPFW_TLV_STATE_NAME, name);
402	if (no != NULL) {
403		/*
404		 * Object is already created.
405		 * Just return its kidx and bump refcount.
406		 */
407		*pkidx = no->kidx;
408		no->refcnt++;
409		IPFW_UH_WUNLOCK(ch);
410		free(obj, M_IPFW);
411		DYN_DEBUG("\tfound kidx %d", *pkidx);
412		return (0);
413	}
414	if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
415		DYN_DEBUG("\talloc_idx failed for %s", name);
416		IPFW_UH_WUNLOCK(ch);
417		free(obj, M_IPFW);
418		return (ENOSPC);
419	}
420	ipfw_objhash_add(ni, &obj->no);
421	SRV_OBJECT(ch, obj->no.kidx) = obj;
422	obj->no.refcnt++;
423	*pkidx = obj->no.kidx;
424	IPFW_UH_WUNLOCK(ch);
425	DYN_DEBUG("\tcreated kidx %d", *pkidx);
426	return (0);
427}
428
429static void
430dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
431{
432	struct dyn_state_obj *obj;
433
434	IPFW_UH_WLOCK_ASSERT(ch);
435
436	KASSERT(no->refcnt == 1,
437	    ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
438	    no->name, no->etlv, no->kidx, no->refcnt));
439
440	DYN_DEBUG("kidx %d", no->kidx);
441	obj = SRV_OBJECT(ch, no->kidx);
442	SRV_OBJECT(ch, no->kidx) = NULL;
443	ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
444	ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
445
446	free(obj, M_IPFW);
447}
448
449static struct opcode_obj_rewrite dyn_opcodes[] = {
450	{
451		O_KEEP_STATE, IPFW_TLV_STATE_NAME,
452		dyn_classify, dyn_update,
453		dyn_findbyname, dyn_findbykidx,
454		dyn_create, dyn_destroy
455	},
456	{
457		O_CHECK_STATE, IPFW_TLV_STATE_NAME,
458		dyn_classify, dyn_update,
459		dyn_findbyname, dyn_findbykidx,
460		dyn_create, dyn_destroy
461	},
462	{
463		O_PROBE_STATE, IPFW_TLV_STATE_NAME,
464		dyn_classify, dyn_update,
465		dyn_findbyname, dyn_findbykidx,
466		dyn_create, dyn_destroy
467	},
468	{
469		O_LIMIT, IPFW_TLV_STATE_NAME,
470		dyn_classify, dyn_update,
471		dyn_findbyname, dyn_findbykidx,
472		dyn_create, dyn_destroy
473	},
474};
475/**
476 * Print customizable flow id description via log(9) facility.
477 */
478static void
479print_dyn_rule_flags(struct ipfw_flow_id *id, int dyn_type, int log_flags,
480    char *prefix, char *postfix)
481{
482	struct in_addr da;
483#ifdef INET6
484	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
485#else
486	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
487#endif
488
489#ifdef INET6
490	if (IS_IP6_FLOW_ID(id)) {
491		ip6_sprintf(src, &id->src_ip6);
492		ip6_sprintf(dst, &id->dst_ip6);
493	} else
494#endif
495	{
496		da.s_addr = htonl(id->src_ip);
497		inet_ntop(AF_INET, &da, src, sizeof(src));
498		da.s_addr = htonl(id->dst_ip);
499		inet_ntop(AF_INET, &da, dst, sizeof(dst));
500	}
501	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
502	    prefix, dyn_type, src, id->src_port, dst,
503	    id->dst_port, DYN_COUNT, postfix);
504}
505
506#define	print_dyn_rule(id, dtype, prefix, postfix)	\
507	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
508
509#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
510#define TIME_LE(a,b)       ((int)((a)-(b)) < 0)
511
512static void
513dyn_update_proto_state(ipfw_dyn_rule *q, const struct ipfw_flow_id *id,
514    const struct tcphdr *tcp, int dir)
515{
516	uint32_t ack;
517	u_char flags;
518
519	if (id->proto == IPPROTO_TCP) {
520		flags = id->_flags & (TH_FIN | TH_SYN | TH_RST);
521#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
522#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
523#define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
524#define	ACK_FWD		0x10000			/* fwd ack seen */
525#define	ACK_REV		0x20000			/* rev ack seen */
526
527		q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8);
528		switch (q->state & TCP_FLAGS) {
529		case TH_SYN:			/* opening */
530			q->expire = time_uptime + V_dyn_syn_lifetime;
531			break;
532
533		case BOTH_SYN:			/* move to established */
534		case BOTH_SYN | TH_FIN:		/* one side tries to close */
535		case BOTH_SYN | (TH_FIN << 8):
536#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
537			if (tcp == NULL)
538				break;
539
540			ack = ntohl(tcp->th_ack);
541			if (dir == MATCH_FORWARD) {
542				if (q->ack_fwd == 0 ||
543				    _SEQ_GE(ack, q->ack_fwd)) {
544					q->ack_fwd = ack;
545					q->state |= ACK_FWD;
546				}
547			} else {
548				if (q->ack_rev == 0 ||
549				    _SEQ_GE(ack, q->ack_rev)) {
550					q->ack_rev = ack;
551					q->state |= ACK_REV;
552				}
553			}
554			if ((q->state & (ACK_FWD | ACK_REV)) ==
555			    (ACK_FWD | ACK_REV)) {
556				q->expire = time_uptime + V_dyn_ack_lifetime;
557				q->state &= ~(ACK_FWD | ACK_REV);
558			}
559			break;
560
561		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
562			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
563				V_dyn_fin_lifetime =
564				    V_dyn_keepalive_period - 1;
565			q->expire = time_uptime + V_dyn_fin_lifetime;
566			break;
567
568		default:
569#if 0
570			/*
571			 * reset or some invalid combination, but can also
572			 * occur if we use keep-state the wrong way.
573			 */
574			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
575				printf("invalid state: 0x%x\n", q->state);
576#endif
577			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
578				V_dyn_rst_lifetime =
579				    V_dyn_keepalive_period - 1;
580			q->expire = time_uptime + V_dyn_rst_lifetime;
581			break;
582		}
583	} else if (id->proto == IPPROTO_UDP) {
584		q->expire = time_uptime + V_dyn_udp_lifetime;
585	} else {
586		/* other protocols */
587		q->expire = time_uptime + V_dyn_short_lifetime;
588	}
589}
590
591/*
592 * Lookup a dynamic rule, locked version.
593 */
594static ipfw_dyn_rule *
595lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int i, int *match_direction,
596    struct tcphdr *tcp, uint16_t kidx)
597{
598	/*
599	 * Stateful ipfw extensions.
600	 * Lookup into dynamic session queue.
601	 */
602	ipfw_dyn_rule *prev, *q = NULL;
603	int dir;
604
605	IPFW_BUCK_ASSERT(i);
606
607	dir = MATCH_NONE;
608	for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) {
609		if (q->dyn_type == O_LIMIT_PARENT)
610			continue;
611
612		if (pkt->proto != q->id.proto)
613			continue;
614
615		if (kidx != 0 && kidx != q->kidx)
616			continue;
617
618		if (IS_IP6_FLOW_ID(pkt)) {
619			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) &&
620			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) &&
621			    pkt->src_port == q->id.src_port &&
622			    pkt->dst_port == q->id.dst_port) {
623				dir = MATCH_FORWARD;
624				break;
625			}
626			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) &&
627			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) &&
628			    pkt->src_port == q->id.dst_port &&
629			    pkt->dst_port == q->id.src_port) {
630				dir = MATCH_REVERSE;
631				break;
632			}
633		} else {
634			if (pkt->src_ip == q->id.src_ip &&
635			    pkt->dst_ip == q->id.dst_ip &&
636			    pkt->src_port == q->id.src_port &&
637			    pkt->dst_port == q->id.dst_port) {
638				dir = MATCH_FORWARD;
639				break;
640			}
641			if (pkt->src_ip == q->id.dst_ip &&
642			    pkt->dst_ip == q->id.src_ip &&
643			    pkt->src_port == q->id.dst_port &&
644			    pkt->dst_port == q->id.src_port) {
645				dir = MATCH_REVERSE;
646				break;
647			}
648		}
649	}
650	if (q == NULL)
651		goto done;	/* q = NULL, not found */
652
653	if (prev != NULL) {	/* found and not in front */
654		prev->next = q->next;
655		q->next = V_ipfw_dyn_v[i].head;
656		V_ipfw_dyn_v[i].head = q;
657	}
658
659	/* update state according to flags */
660	dyn_update_proto_state(q, pkt, tcp, dir);
661done:
662	if (match_direction != NULL)
663		*match_direction = dir;
664	return (q);
665}
666
667ipfw_dyn_rule *
668ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
669    struct tcphdr *tcp, uint16_t kidx)
670{
671	ipfw_dyn_rule *q;
672	int i;
673
674	i = hash_packet(pkt, V_curr_dyn_buckets);
675
676	IPFW_BUCK_LOCK(i);
677	q = lookup_dyn_rule_locked(pkt, i, match_direction, tcp, kidx);
678	if (q == NULL)
679		IPFW_BUCK_UNLOCK(i);
680	/* NB: return table locked when q is not NULL */
681	return q;
682}
683
684/*
685 * Unlock bucket mtx
686 * @p - pointer to dynamic rule
687 */
688void
689ipfw_dyn_unlock(ipfw_dyn_rule *q)
690{
691
692	IPFW_BUCK_UNLOCK(q->bucket);
693}
694
695static int
696resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets)
697{
698	int i, k, nbuckets_old;
699	ipfw_dyn_rule *q;
700	struct ipfw_dyn_bucket *dyn_v, *dyn_v_old;
701
702	/* Check if given number is power of 2 and less than 64k */
703	if ((nbuckets > 65536) || (!powerof2(nbuckets)))
704		return 1;
705
706	CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__,
707	    V_curr_dyn_buckets, nbuckets);
708
709	/* Allocate and initialize new hash */
710	dyn_v = malloc(nbuckets * sizeof(*dyn_v), M_IPFW,
711	    M_WAITOK | M_ZERO);
712
713	for (i = 0 ; i < nbuckets; i++)
714		IPFW_BUCK_LOCK_INIT(&dyn_v[i]);
715
716	/*
717	 * Call upper half lock, as get_map() do to ease
718	 * read-only access to dynamic rules hash from sysctl
719	 */
720	IPFW_UH_WLOCK(chain);
721
722	/*
723	 * Acquire chain write lock to permit hash access
724	 * for main traffic path without additional locks
725	 */
726	IPFW_WLOCK(chain);
727
728	/* Save old values */
729	nbuckets_old = V_curr_dyn_buckets;
730	dyn_v_old = V_ipfw_dyn_v;
731
732	/* Skip relinking if array is not set up */
733	if (V_ipfw_dyn_v == NULL)
734		V_curr_dyn_buckets = 0;
735
736	/* Re-link all dynamic states */
737	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
738		while (V_ipfw_dyn_v[i].head != NULL) {
739			/* Remove from current chain */
740			q = V_ipfw_dyn_v[i].head;
741			V_ipfw_dyn_v[i].head = q->next;
742
743			/* Get new hash value */
744			k = hash_packet(&q->id, nbuckets);
745			q->bucket = k;
746			/* Add to the new head */
747			q->next = dyn_v[k].head;
748			dyn_v[k].head = q;
749             }
750	}
751
752	/* Update current pointers/buckets values */
753	V_curr_dyn_buckets = nbuckets;
754	V_ipfw_dyn_v = dyn_v;
755
756	IPFW_WUNLOCK(chain);
757
758	IPFW_UH_WUNLOCK(chain);
759
760	/* Start periodic callout on initial creation */
761	if (dyn_v_old == NULL) {
762        	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0);
763		return (0);
764	}
765
766	/* Destroy all mutexes */
767	for (i = 0 ; i < nbuckets_old ; i++)
768		IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]);
769
770	/* Free old hash */
771	free(dyn_v_old, M_IPFW);
772
773	return 0;
774}
775
776/**
777 * Install state of type 'type' for a dynamic session.
778 * The hash table contains two type of rules:
779 * - regular rules (O_KEEP_STATE)
780 * - rules for sessions with limited number of sess per user
781 *   (O_LIMIT). When they are created, the parent is
782 *   increased by 1, and decreased on delete. In this case,
783 *   the third parameter is the parent rule and not the chain.
784 * - "parent" rules for the above (O_LIMIT_PARENT).
785 */
786static ipfw_dyn_rule *
787add_dyn_rule(struct ipfw_flow_id *id, int i, uint8_t dyn_type,
788    struct ip_fw *rule, uint16_t kidx)
789{
790	ipfw_dyn_rule *r;
791
792	IPFW_BUCK_ASSERT(i);
793
794	r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
795	if (r == NULL) {
796		if (last_log != time_uptime) {
797			last_log = time_uptime;
798			log(LOG_DEBUG,
799			    "ipfw: Cannot allocate dynamic state, "
800			    "consider increasing net.inet.ip.fw.dyn_max\n");
801		}
802		return NULL;
803	}
804	ipfw_dyn_count++;
805
806	/*
807	 * refcount on parent is already incremented, so
808	 * it is safe to use parent unlocked.
809	 */
810	if (dyn_type == O_LIMIT) {
811		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
812		if ( parent->dyn_type != O_LIMIT_PARENT)
813			panic("invalid parent");
814		r->parent = parent;
815		rule = parent->rule;
816	}
817
818	r->id = *id;
819	r->expire = time_uptime + V_dyn_syn_lifetime;
820	r->rule = rule;
821	r->dyn_type = dyn_type;
822	IPFW_ZERO_DYN_COUNTER(r);
823	r->count = 0;
824	r->kidx = kidx;
825	r->bucket = i;
826	r->next = V_ipfw_dyn_v[i].head;
827	V_ipfw_dyn_v[i].head = r;
828	DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");)
829	return r;
830}
831
832/**
833 * lookup dynamic parent rule using pkt and rule as search keys.
834 * If the lookup fails, then install one.
835 */
836static ipfw_dyn_rule *
837lookup_dyn_parent(struct ipfw_flow_id *pkt, int *pindex, struct ip_fw *rule,
838    uint16_t kidx)
839{
840	ipfw_dyn_rule *q;
841	int i, is_v6;
842
843	is_v6 = IS_IP6_FLOW_ID(pkt);
844	i = hash_packet( pkt, V_curr_dyn_buckets );
845	*pindex = i;
846	IPFW_BUCK_LOCK(i);
847	for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next)
848		if (q->dyn_type == O_LIMIT_PARENT &&
849		    kidx == q->kidx &&
850		    rule == q->rule &&
851		    pkt->proto == q->id.proto &&
852		    pkt->src_port == q->id.src_port &&
853		    pkt->dst_port == q->id.dst_port &&
854		    (
855			(is_v6 &&
856			 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
857				&(q->id.src_ip6)) &&
858			 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
859				&(q->id.dst_ip6))) ||
860			(!is_v6 &&
861			 pkt->src_ip == q->id.src_ip &&
862			 pkt->dst_ip == q->id.dst_ip)
863		    )
864		) {
865			q->expire = time_uptime + V_dyn_short_lifetime;
866			DEB(print_dyn_rule(pkt, q->dyn_type,
867			    "lookup_dyn_parent found", "");)
868			return q;
869		}
870
871	/* Add virtual limiting rule */
872	return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule, kidx);
873}
874
875/**
876 * Install dynamic state for rule type cmd->o.opcode
877 *
878 * Returns 1 (failure) if state is not installed because of errors or because
879 * session limitations are enforced.
880 */
881int
882ipfw_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
883    ipfw_insn_limit *cmd, struct ip_fw_args *args, uint32_t tablearg)
884{
885	ipfw_dyn_rule *q;
886	int i;
887
888	DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state",
889	    (cmd->o.arg1 == 0 ? "": DYN_STATE_OBJ(chain, &cmd->o)->name));)
890
891	i = hash_packet(&args->f_id, V_curr_dyn_buckets);
892
893	IPFW_BUCK_LOCK(i);
894
895	q = lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL, cmd->o.arg1);
896	if (q != NULL) {	/* should never occur */
897		DEB(
898		if (last_log != time_uptime) {
899			last_log = time_uptime;
900			printf("ipfw: %s: entry already present, done\n",
901			    __func__);
902		})
903		IPFW_BUCK_UNLOCK(i);
904		return (0);
905	}
906
907	/*
908	 * State limiting is done via uma(9) zone limiting.
909	 * Save pointer to newly-installed rule and reject
910	 * packet if add_dyn_rule() returned NULL.
911	 * Note q is currently set to NULL.
912	 */
913
914	switch (cmd->o.opcode) {
915	case O_KEEP_STATE:	/* bidir rule */
916		q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule,
917		    cmd->o.arg1);
918		break;
919
920	case O_LIMIT: {		/* limit number of sessions */
921		struct ipfw_flow_id id;
922		ipfw_dyn_rule *parent;
923		uint32_t conn_limit;
924		uint16_t limit_mask = cmd->limit_mask;
925		int pindex;
926
927		conn_limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
928
929		DEB(
930		if (cmd->conn_limit == IP_FW_TARG)
931			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
932			    "(tablearg)\n", __func__, conn_limit);
933		else
934			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
935			    __func__, conn_limit);
936		)
937
938		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
939		id.proto = args->f_id.proto;
940		id.addr_type = args->f_id.addr_type;
941		id.fib = M_GETFIB(args->m);
942
943		if (IS_IP6_FLOW_ID (&(args->f_id))) {
944			bzero(&id.src_ip6, sizeof(id.src_ip6));
945			bzero(&id.dst_ip6, sizeof(id.dst_ip6));
946
947			if (limit_mask & DYN_SRC_ADDR)
948				id.src_ip6 = args->f_id.src_ip6;
949			if (limit_mask & DYN_DST_ADDR)
950				id.dst_ip6 = args->f_id.dst_ip6;
951		} else {
952			if (limit_mask & DYN_SRC_ADDR)
953				id.src_ip = args->f_id.src_ip;
954			if (limit_mask & DYN_DST_ADDR)
955				id.dst_ip = args->f_id.dst_ip;
956		}
957		if (limit_mask & DYN_SRC_PORT)
958			id.src_port = args->f_id.src_port;
959		if (limit_mask & DYN_DST_PORT)
960			id.dst_port = args->f_id.dst_port;
961
962		/*
963		 * We have to release lock for previous bucket to
964		 * avoid possible deadlock
965		 */
966		IPFW_BUCK_UNLOCK(i);
967
968		parent = lookup_dyn_parent(&id, &pindex, rule, cmd->o.arg1);
969		if (parent == NULL) {
970			printf("ipfw: %s: add parent failed\n", __func__);
971			IPFW_BUCK_UNLOCK(pindex);
972			return (1);
973		}
974
975		if (parent->count >= conn_limit) {
976			if (V_fw_verbose && last_log != time_uptime) {
977				last_log = time_uptime;
978				char sbuf[24];
979				last_log = time_uptime;
980				snprintf(sbuf, sizeof(sbuf),
981				    "%d drop session",
982				    parent->rule->rulenum);
983				print_dyn_rule_flags(&args->f_id,
984				    cmd->o.opcode,
985				    LOG_SECURITY | LOG_DEBUG,
986				    sbuf, "too many entries");
987			}
988			IPFW_BUCK_UNLOCK(pindex);
989			return (1);
990		}
991		/* Increment counter on parent */
992		parent->count++;
993		IPFW_BUCK_UNLOCK(pindex);
994
995		IPFW_BUCK_LOCK(i);
996		q = add_dyn_rule(&args->f_id, i, O_LIMIT,
997		    (struct ip_fw *)parent, cmd->o.arg1);
998		if (q == NULL) {
999			/* Decrement index and notify caller */
1000			IPFW_BUCK_UNLOCK(i);
1001			IPFW_BUCK_LOCK(pindex);
1002			parent->count--;
1003			IPFW_BUCK_UNLOCK(pindex);
1004			return (1);
1005		}
1006		break;
1007	}
1008	default:
1009		printf("ipfw: %s: unknown dynamic rule type %u\n",
1010		    __func__, cmd->o.opcode);
1011	}
1012
1013	if (q == NULL) {
1014		IPFW_BUCK_UNLOCK(i);
1015		return (1);	/* Notify caller about failure */
1016	}
1017
1018	dyn_update_proto_state(q, &args->f_id, NULL, MATCH_FORWARD);
1019	IPFW_BUCK_UNLOCK(i);
1020	return (0);
1021}
1022
1023/*
1024 * Generate a TCP packet, containing either a RST or a keepalive.
1025 * When flags & TH_RST, we are sending a RST packet, because of a
1026 * "reset" action matched the packet.
1027 * Otherwise we are sending a keepalive, and flags & TH_
1028 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1029 * so that MAC can label the reply appropriately.
1030 */
1031struct mbuf *
1032ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1033    u_int32_t ack, int flags)
1034{
1035	struct mbuf *m = NULL;		/* stupid compiler */
1036	int len, dir;
1037	struct ip *h = NULL;		/* stupid compiler */
1038#ifdef INET6
1039	struct ip6_hdr *h6 = NULL;
1040#endif
1041	struct tcphdr *th = NULL;
1042
1043	MGETHDR(m, M_NOWAIT, MT_DATA);
1044	if (m == NULL)
1045		return (NULL);
1046
1047	M_SETFIB(m, id->fib);
1048#ifdef MAC
1049	if (replyto != NULL)
1050		mac_netinet_firewall_reply(replyto, m);
1051	else
1052		mac_netinet_firewall_send(m);
1053#else
1054	(void)replyto;		/* don't warn about unused arg */
1055#endif
1056
1057	switch (id->addr_type) {
1058	case 4:
1059		len = sizeof(struct ip) + sizeof(struct tcphdr);
1060		break;
1061#ifdef INET6
1062	case 6:
1063		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1064		break;
1065#endif
1066	default:
1067		/* XXX: log me?!? */
1068		FREE_PKT(m);
1069		return (NULL);
1070	}
1071	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
1072
1073	m->m_data += max_linkhdr;
1074	m->m_flags |= M_SKIP_FIREWALL;
1075	m->m_pkthdr.len = m->m_len = len;
1076	m->m_pkthdr.rcvif = NULL;
1077	bzero(m->m_data, len);
1078
1079	switch (id->addr_type) {
1080	case 4:
1081		h = mtod(m, struct ip *);
1082
1083		/* prepare for checksum */
1084		h->ip_p = IPPROTO_TCP;
1085		h->ip_len = htons(sizeof(struct tcphdr));
1086		if (dir) {
1087			h->ip_src.s_addr = htonl(id->src_ip);
1088			h->ip_dst.s_addr = htonl(id->dst_ip);
1089		} else {
1090			h->ip_src.s_addr = htonl(id->dst_ip);
1091			h->ip_dst.s_addr = htonl(id->src_ip);
1092		}
1093
1094		th = (struct tcphdr *)(h + 1);
1095		break;
1096#ifdef INET6
1097	case 6:
1098		h6 = mtod(m, struct ip6_hdr *);
1099
1100		/* prepare for checksum */
1101		h6->ip6_nxt = IPPROTO_TCP;
1102		h6->ip6_plen = htons(sizeof(struct tcphdr));
1103		if (dir) {
1104			h6->ip6_src = id->src_ip6;
1105			h6->ip6_dst = id->dst_ip6;
1106		} else {
1107			h6->ip6_src = id->dst_ip6;
1108			h6->ip6_dst = id->src_ip6;
1109		}
1110
1111		th = (struct tcphdr *)(h6 + 1);
1112		break;
1113#endif
1114	}
1115
1116	if (dir) {
1117		th->th_sport = htons(id->src_port);
1118		th->th_dport = htons(id->dst_port);
1119	} else {
1120		th->th_sport = htons(id->dst_port);
1121		th->th_dport = htons(id->src_port);
1122	}
1123	th->th_off = sizeof(struct tcphdr) >> 2;
1124
1125	if (flags & TH_RST) {
1126		if (flags & TH_ACK) {
1127			th->th_seq = htonl(ack);
1128			th->th_flags = TH_RST;
1129		} else {
1130			if (flags & TH_SYN)
1131				seq++;
1132			th->th_ack = htonl(seq);
1133			th->th_flags = TH_RST | TH_ACK;
1134		}
1135	} else {
1136		/*
1137		 * Keepalive - use caller provided sequence numbers
1138		 */
1139		th->th_seq = htonl(seq);
1140		th->th_ack = htonl(ack);
1141		th->th_flags = TH_ACK;
1142	}
1143
1144	switch (id->addr_type) {
1145	case 4:
1146		th->th_sum = in_cksum(m, len);
1147
1148		/* finish the ip header */
1149		h->ip_v = 4;
1150		h->ip_hl = sizeof(*h) >> 2;
1151		h->ip_tos = IPTOS_LOWDELAY;
1152		h->ip_off = htons(0);
1153		h->ip_len = htons(len);
1154		h->ip_ttl = V_ip_defttl;
1155		h->ip_sum = 0;
1156		break;
1157#ifdef INET6
1158	case 6:
1159		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
1160		    sizeof(struct tcphdr));
1161
1162		/* finish the ip6 header */
1163		h6->ip6_vfc |= IPV6_VERSION;
1164		h6->ip6_hlim = IPV6_DEFHLIM;
1165		break;
1166#endif
1167	}
1168
1169	return (m);
1170}
1171
1172/*
1173 * Queue keepalive packets for given dynamic rule
1174 */
1175static struct mbuf **
1176ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q)
1177{
1178	struct mbuf *m_rev, *m_fwd;
1179
1180	m_rev = (q->state & ACK_REV) ? NULL :
1181	    ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
1182	m_fwd = (q->state & ACK_FWD) ? NULL :
1183	    ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0);
1184
1185	if (m_rev != NULL) {
1186		*mtailp = m_rev;
1187		mtailp = &(*mtailp)->m_nextpkt;
1188	}
1189	if (m_fwd != NULL) {
1190		*mtailp = m_fwd;
1191		mtailp = &(*mtailp)->m_nextpkt;
1192	}
1193
1194	return (mtailp);
1195}
1196
1197/*
1198 * This procedure is used to perform various maintenance
1199 * on dynamic hash list. Currently it is called every second.
1200 */
1201static void
1202ipfw_dyn_tick(void * vnetx)
1203{
1204	struct ip_fw_chain *chain;
1205	int check_ka = 0;
1206#ifdef VIMAGE
1207	struct vnet *vp = vnetx;
1208#endif
1209
1210	CURVNET_SET(vp);
1211
1212	chain = &V_layer3_chain;
1213
1214	/* Run keepalive checks every keepalive_period iff ka is enabled */
1215	if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) &&
1216	    (V_dyn_keepalive != 0)) {
1217		V_dyn_keepalive_last = time_uptime;
1218		check_ka = 1;
1219	}
1220
1221	check_dyn_rules(chain, NULL, check_ka, 1);
1222
1223	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0);
1224
1225	CURVNET_RESTORE();
1226}
1227
1228
1229/*
1230 * Walk through all dynamic states doing generic maintenance:
1231 * 1) free expired states
1232 * 2) free all states based on deleted rule / set
1233 * 3) send keepalives for states if needed
1234 *
1235 * @chain - pointer to current ipfw rules chain
1236 * @rule - delete all states originated by given rule if != NULL
1237 * @set - delete all states originated by any rule in set @set if != RESVD_SET
1238 * @check_ka - perform checking/sending keepalives
1239 * @timer - indicate call from timer routine.
1240 *
1241 * Timer routine must call this function unlocked to permit
1242 * sending keepalives/resizing table.
1243 *
1244 * Others has to call function with IPFW_UH_WLOCK held.
1245 * Additionally, function assume that dynamic rule/set is
1246 * ALREADY deleted so no new states can be generated by
1247 * 'deleted' rules.
1248 *
1249 * Write lock is needed to ensure that unused parent rules
1250 * are not freed by other instance (see stage 2, 3)
1251 */
1252static void
1253check_dyn_rules(struct ip_fw_chain *chain, ipfw_range_tlv *rt,
1254    int check_ka, int timer)
1255{
1256	struct mbuf *m0, *m, *mnext, **mtailp;
1257	struct ip *h;
1258	int i, dyn_count, new_buckets = 0, max_buckets;
1259	int expired = 0, expired_limits = 0, parents = 0, total = 0;
1260	ipfw_dyn_rule *q, *q_prev, *q_next;
1261	ipfw_dyn_rule *exp_head, **exptailp;
1262	ipfw_dyn_rule *exp_lhead, **expltailp;
1263
1264	KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated",
1265	    __func__));
1266
1267	/* Avoid possible LOR */
1268	KASSERT(!check_ka || timer, ("%s: keepalive check with lock held",
1269	    __func__));
1270
1271	/*
1272	 * Do not perform any checks if we currently have no dynamic states
1273	 */
1274	if (DYN_COUNT == 0)
1275		return;
1276
1277	/* Expired states */
1278	exp_head = NULL;
1279	exptailp = &exp_head;
1280
1281	/* Expired limit states */
1282	exp_lhead = NULL;
1283	expltailp = &exp_lhead;
1284
1285	/*
1286	 * We make a chain of packets to go out here -- not deferring
1287	 * until after we drop the IPFW dynamic rule lock would result
1288	 * in a lock order reversal with the normal packet input -> ipfw
1289	 * call stack.
1290	 */
1291	m0 = NULL;
1292	mtailp = &m0;
1293
1294	/* Protect from hash resizing */
1295	if (timer != 0)
1296		IPFW_UH_WLOCK(chain);
1297	else
1298		IPFW_UH_WLOCK_ASSERT(chain);
1299
1300#define	NEXT_RULE()	{ q_prev = q; q = q->next ; continue; }
1301
1302	/* Stage 1: perform requested deletion */
1303	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1304		IPFW_BUCK_LOCK(i);
1305		for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) {
1306			/* account every rule */
1307			total++;
1308
1309			/* Skip parent rules at all */
1310			if (q->dyn_type == O_LIMIT_PARENT) {
1311				parents++;
1312				NEXT_RULE();
1313			}
1314
1315			/*
1316			 * Remove rules which are:
1317			 * 1) expired
1318			 * 2) matches deletion range
1319			 */
1320			if ((TIME_LEQ(q->expire, time_uptime)) ||
1321			    (rt != NULL && ipfw_match_range(q->rule, rt))) {
1322				if (TIME_LE(time_uptime, q->expire) &&
1323				    q->dyn_type == O_KEEP_STATE &&
1324				    V_dyn_keep_states != 0) {
1325					/*
1326					 * Do not delete state if
1327					 * it is not expired and
1328					 * dyn_keep_states is ON.
1329					 * However we need to re-link it
1330					 * to any other stable rule
1331					 */
1332					q->rule = chain->default_rule;
1333					NEXT_RULE();
1334				}
1335
1336				/* Unlink q from current list */
1337				q_next = q->next;
1338				if (q == V_ipfw_dyn_v[i].head)
1339					V_ipfw_dyn_v[i].head = q_next;
1340				else
1341					q_prev->next = q_next;
1342
1343				q->next = NULL;
1344
1345				/* queue q to expire list */
1346				if (q->dyn_type != O_LIMIT) {
1347					*exptailp = q;
1348					exptailp = &(*exptailp)->next;
1349					DEB(print_dyn_rule(&q->id, q->dyn_type,
1350					    "unlink entry", "left");
1351					)
1352				} else {
1353					/* Separate list for limit rules */
1354					*expltailp = q;
1355					expltailp = &(*expltailp)->next;
1356					expired_limits++;
1357					DEB(print_dyn_rule(&q->id, q->dyn_type,
1358					    "unlink limit entry", "left");
1359					)
1360				}
1361
1362				q = q_next;
1363				expired++;
1364				continue;
1365			}
1366
1367			/*
1368			 * Check if we need to send keepalive:
1369			 * we need to ensure if is time to do KA,
1370			 * this is established TCP session, and
1371			 * expire time is within keepalive interval
1372			 */
1373			if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) &&
1374			    ((q->state & BOTH_SYN) == BOTH_SYN) &&
1375			    (TIME_LEQ(q->expire, time_uptime +
1376			      V_dyn_keepalive_interval)))
1377				mtailp = ipfw_dyn_send_ka(mtailp, q);
1378
1379			NEXT_RULE();
1380		}
1381		IPFW_BUCK_UNLOCK(i);
1382	}
1383
1384	/* Stage 2: decrement counters from O_LIMIT parents */
1385	if (expired_limits != 0) {
1386		/*
1387		 * XXX: Note that deleting set with more than one
1388		 * heavily-used LIMIT rules can result in overwhelming
1389		 * locking due to lack of per-hash value sorting
1390		 *
1391		 * We should probably think about:
1392		 * 1) pre-allocating hash of size, say,
1393		 * MAX(16, V_curr_dyn_buckets / 1024)
1394		 * 2) checking if expired_limits is large enough
1395		 * 3) If yes, init hash (or its part), re-link
1396		 * current list and start decrementing procedure in
1397		 * each bucket separately
1398		 */
1399
1400		/*
1401		 * Small optimization: do not unlock bucket until
1402		 * we see the next item resides in different bucket
1403		 */
1404		if (exp_lhead != NULL) {
1405			i = exp_lhead->parent->bucket;
1406			IPFW_BUCK_LOCK(i);
1407		}
1408		for (q = exp_lhead; q != NULL; q = q->next) {
1409			if (i != q->parent->bucket) {
1410				IPFW_BUCK_UNLOCK(i);
1411				i = q->parent->bucket;
1412				IPFW_BUCK_LOCK(i);
1413			}
1414
1415			/* Decrease parent refcount */
1416			q->parent->count--;
1417		}
1418		if (exp_lhead != NULL)
1419			IPFW_BUCK_UNLOCK(i);
1420	}
1421
1422	/*
1423	 * We protectet ourselves from unused parent deletion
1424	 * (from the timer function) by holding UH write lock.
1425	 */
1426
1427	/* Stage 3: remove unused parent rules */
1428	if ((parents != 0) && (expired != 0)) {
1429		for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1430			IPFW_BUCK_LOCK(i);
1431			for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) {
1432				if (q->dyn_type != O_LIMIT_PARENT)
1433					NEXT_RULE();
1434
1435				if (q->count != 0)
1436					NEXT_RULE();
1437
1438				/* Parent rule without consumers */
1439
1440				/* Unlink q from current list */
1441				q_next = q->next;
1442				if (q == V_ipfw_dyn_v[i].head)
1443					V_ipfw_dyn_v[i].head = q_next;
1444				else
1445					q_prev->next = q_next;
1446
1447				q->next = NULL;
1448
1449				/* Add to expired list */
1450				*exptailp = q;
1451				exptailp = &(*exptailp)->next;
1452
1453				DEB(print_dyn_rule(&q->id, q->dyn_type,
1454				    "unlink parent entry", "left");
1455				)
1456
1457				expired++;
1458
1459				q = q_next;
1460			}
1461			IPFW_BUCK_UNLOCK(i);
1462		}
1463	}
1464
1465#undef NEXT_RULE
1466
1467	if (timer != 0) {
1468		/*
1469		 * Check if we need to resize hash:
1470		 * if current number of states exceeds number of buckes in hash,
1471		 * grow hash size to the minimum power of 2 which is bigger than
1472		 * current states count. Limit hash size by 64k.
1473		 */
1474		max_buckets = (V_dyn_buckets_max > 65536) ?
1475		    65536 : V_dyn_buckets_max;
1476
1477		dyn_count = DYN_COUNT;
1478
1479		if ((dyn_count > V_curr_dyn_buckets * 2) &&
1480		    (dyn_count < max_buckets)) {
1481			new_buckets = V_curr_dyn_buckets;
1482			while (new_buckets < dyn_count) {
1483				new_buckets *= 2;
1484
1485				if (new_buckets >= max_buckets)
1486					break;
1487			}
1488		}
1489
1490		IPFW_UH_WUNLOCK(chain);
1491	}
1492
1493	/* Finally delete old states ad limits if any */
1494	for (q = exp_head; q != NULL; q = q_next) {
1495		q_next = q->next;
1496		uma_zfree(V_ipfw_dyn_rule_zone, q);
1497		ipfw_dyn_count--;
1498	}
1499
1500	for (q = exp_lhead; q != NULL; q = q_next) {
1501		q_next = q->next;
1502		uma_zfree(V_ipfw_dyn_rule_zone, q);
1503		ipfw_dyn_count--;
1504	}
1505
1506	/*
1507	 * The rest code MUST be called from timer routine only
1508	 * without holding any locks
1509	 */
1510	if (timer == 0)
1511		return;
1512
1513	/* Send keepalive packets if any */
1514	for (m = m0; m != NULL; m = mnext) {
1515		mnext = m->m_nextpkt;
1516		m->m_nextpkt = NULL;
1517		h = mtod(m, struct ip *);
1518		if (h->ip_v == 4)
1519			ip_output(m, NULL, NULL, 0, NULL, NULL);
1520#ifdef INET6
1521		else
1522			ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1523#endif
1524	}
1525
1526	/* Run table resize without holding any locks */
1527	if (new_buckets != 0)
1528		resize_dynamic_table(chain, new_buckets);
1529}
1530
1531/*
1532 * Deletes all dynamic rules originated by given rule or all rules in
1533 * given set. Specify RESVD_SET to indicate set should not be used.
1534 * @chain - pointer to current ipfw rules chain
1535 * @rr - delete all states originated by rules in matched range.
1536 *
1537 * Function has to be called with IPFW_UH_WLOCK held.
1538 * Additionally, function assume that dynamic rule/set is
1539 * ALREADY deleted so no new states can be generated by
1540 * 'deleted' rules.
1541 */
1542void
1543ipfw_expire_dyn_rules(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
1544{
1545
1546	check_dyn_rules(chain, rt, 0, 0);
1547}
1548
1549/*
1550 * Check if rule contains at least one dynamic opcode.
1551 *
1552 * Returns 1 if such opcode is found, 0 otherwise.
1553 */
1554int
1555ipfw_is_dyn_rule(struct ip_fw *rule)
1556{
1557	int cmdlen, l;
1558	ipfw_insn *cmd;
1559
1560	l = rule->cmd_len;
1561	cmd = rule->cmd;
1562	cmdlen = 0;
1563	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
1564		cmdlen = F_LEN(cmd);
1565
1566		switch (cmd->opcode) {
1567		case O_LIMIT:
1568		case O_KEEP_STATE:
1569		case O_PROBE_STATE:
1570		case O_CHECK_STATE:
1571			return (1);
1572		}
1573	}
1574
1575	return (0);
1576}
1577
1578void
1579ipfw_dyn_init(struct ip_fw_chain *chain)
1580{
1581
1582        V_ipfw_dyn_v = NULL;
1583        V_dyn_buckets_max = 256; /* must be power of 2 */
1584        V_curr_dyn_buckets = 256; /* must be power of 2 */
1585
1586        V_dyn_ack_lifetime = 300;
1587        V_dyn_syn_lifetime = 20;
1588        V_dyn_fin_lifetime = 1;
1589        V_dyn_rst_lifetime = 1;
1590        V_dyn_udp_lifetime = 10;
1591        V_dyn_short_lifetime = 5;
1592
1593        V_dyn_keepalive_interval = 20;
1594        V_dyn_keepalive_period = 5;
1595        V_dyn_keepalive = 1;    /* do send keepalives */
1596	V_dyn_keepalive_last = time_uptime;
1597
1598        V_dyn_max = 16384; /* max # of dynamic rules */
1599
1600	V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1601	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1602	    UMA_ALIGN_PTR, 0);
1603
1604	/* Enforce limit on dynamic rules */
1605	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1606
1607        callout_init(&V_ipfw_timeout, 1);
1608
1609	/*
1610	 * This can potentially be done on first dynamic rule
1611	 * being added to chain.
1612	 */
1613	resize_dynamic_table(chain, V_curr_dyn_buckets);
1614	IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
1615}
1616
1617void
1618ipfw_dyn_uninit(int pass)
1619{
1620	int i;
1621
1622	if (pass == 0) {
1623		callout_drain(&V_ipfw_timeout);
1624		return;
1625	}
1626	IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
1627
1628	if (V_ipfw_dyn_v != NULL) {
1629		/*
1630		 * Skip deleting all dynamic states -
1631		 * uma_zdestroy() does this more efficiently;
1632		 */
1633
1634		/* Destroy all mutexes */
1635		for (i = 0 ; i < V_curr_dyn_buckets ; i++)
1636			IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]);
1637		free(V_ipfw_dyn_v, M_IPFW);
1638		V_ipfw_dyn_v = NULL;
1639	}
1640
1641        uma_zdestroy(V_ipfw_dyn_rule_zone);
1642}
1643
1644#ifdef SYSCTL_NODE
1645/*
1646 * Get/set maximum number of dynamic states in given VNET instance.
1647 */
1648static int
1649sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS)
1650{
1651	int error;
1652	unsigned int nstates;
1653
1654	nstates = V_dyn_max;
1655
1656	error = sysctl_handle_int(oidp, &nstates, 0, req);
1657	/* Read operation or some error */
1658	if ((error != 0) || (req->newptr == NULL))
1659		return (error);
1660
1661	V_dyn_max = nstates;
1662	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1663
1664	return (0);
1665}
1666
1667/*
1668 * Get current number of dynamic states in given VNET instance.
1669 */
1670static int
1671sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS)
1672{
1673	int error;
1674	unsigned int nstates;
1675
1676	nstates = DYN_COUNT;
1677
1678	error = sysctl_handle_int(oidp, &nstates, 0, req);
1679
1680	return (error);
1681}
1682#endif
1683
1684/*
1685 * Returns size of dynamic states in legacy format
1686 */
1687int
1688ipfw_dyn_len(void)
1689{
1690
1691	return (V_ipfw_dyn_v == NULL) ? 0 :
1692		(DYN_COUNT * sizeof(ipfw_dyn_rule));
1693}
1694
1695/*
1696 * Returns number of dynamic states.
1697 * Used by dump format v1 (current).
1698 */
1699int
1700ipfw_dyn_get_count(void)
1701{
1702
1703	return (V_ipfw_dyn_v == NULL) ? 0 : DYN_COUNT;
1704}
1705
1706static void
1707export_dyn_rule(ipfw_dyn_rule *src, ipfw_dyn_rule *dst)
1708{
1709	uint16_t rulenum;
1710
1711	rulenum = (uint16_t)src->rule->rulenum;
1712	memcpy(dst, src, sizeof(*src));
1713	memcpy(&dst->rule, &rulenum, sizeof(rulenum));
1714	/*
1715	 * store set number into high word of
1716	 * dst->rule pointer.
1717	 */
1718	memcpy((char *)&dst->rule + sizeof(rulenum), &src->rule->set,
1719	    sizeof(src->rule->set));
1720	/*
1721	 * store a non-null value in "next".
1722	 * The userland code will interpret a
1723	 * NULL here as a marker
1724	 * for the last dynamic rule.
1725	 */
1726	memcpy(&dst->next, &dst, sizeof(dst));
1727	dst->expire = TIME_LEQ(dst->expire, time_uptime) ?  0:
1728	    dst->expire - time_uptime;
1729}
1730
1731/*
1732 * Fills int buffer given by @sd with dynamic states.
1733 * Used by dump format v1 (current).
1734 *
1735 * Returns 0 on success.
1736 */
1737int
1738ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
1739{
1740	ipfw_dyn_rule *p;
1741	ipfw_obj_dyntlv *dst, *last;
1742	ipfw_obj_ctlv *ctlv;
1743	int i;
1744	size_t sz;
1745
1746	if (V_ipfw_dyn_v == NULL)
1747		return (0);
1748
1749	IPFW_UH_RLOCK_ASSERT(chain);
1750
1751	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1752	if (ctlv == NULL)
1753		return (ENOMEM);
1754	sz = sizeof(ipfw_obj_dyntlv);
1755	ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
1756	ctlv->objsize = sz;
1757	last = NULL;
1758
1759	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1760		IPFW_BUCK_LOCK(i);
1761		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1762			dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, sz);
1763			if (dst == NULL) {
1764				IPFW_BUCK_UNLOCK(i);
1765				return (ENOMEM);
1766			}
1767
1768			export_dyn_rule(p, &dst->state);
1769			dst->head.length = sz;
1770			dst->head.type = IPFW_TLV_DYN_ENT;
1771			last = dst;
1772		}
1773		IPFW_BUCK_UNLOCK(i);
1774	}
1775
1776	if (last != NULL) /* mark last dynamic rule */
1777		last->head.flags = IPFW_DF_LAST;
1778
1779	return (0);
1780}
1781
1782/*
1783 * Fill given buffer with dynamic states (legacy format).
1784 * IPFW_UH_RLOCK has to be held while calling.
1785 */
1786void
1787ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
1788{
1789	ipfw_dyn_rule *p, *last = NULL;
1790	char *bp;
1791	int i;
1792
1793	if (V_ipfw_dyn_v == NULL)
1794		return;
1795	bp = *pbp;
1796
1797	IPFW_UH_RLOCK_ASSERT(chain);
1798
1799	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1800		IPFW_BUCK_LOCK(i);
1801		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1802			if (bp + sizeof *p <= ep) {
1803				ipfw_dyn_rule *dst =
1804					(ipfw_dyn_rule *)bp;
1805
1806				export_dyn_rule(p, dst);
1807				last = dst;
1808				bp += sizeof(ipfw_dyn_rule);
1809			}
1810		}
1811		IPFW_BUCK_UNLOCK(i);
1812	}
1813
1814	if (last != NULL) /* mark last dynamic rule */
1815		bzero(&last->next, sizeof(last));
1816	*pbp = bp;
1817}
1818/* end of file */
1819