ip_fw2.c revision 337461
1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/11/sys/netpfil/ipfw/ip_fw2.c 337461 2018-08-08 16:11:46Z ae $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdivert.h"
35#include "opt_inet.h"
36#ifndef INET
37#error "IPFIREWALL requires INET"
38#endif /* INET */
39#include "opt_inet6.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/condvar.h>
44#include <sys/counter.h>
45#include <sys/eventhandler.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/jail.h>
51#include <sys/module.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/rwlock.h>
55#include <sys/rmlock.h>
56#include <sys/socket.h>
57#include <sys/socketvar.h>
58#include <sys/sysctl.h>
59#include <sys/syslog.h>
60#include <sys/ucred.h>
61#include <net/ethernet.h> /* for ETHERTYPE_IP */
62#include <net/if.h>
63#include <net/if_var.h>
64#include <net/route.h>
65#include <net/pfil.h>
66#include <net/vnet.h>
67
68#include <netpfil/pf/pf_mtag.h>
69
70#include <netinet/in.h>
71#include <netinet/in_var.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_icmp.h>
76#include <netinet/ip_fw.h>
77#include <netinet/ip_carp.h>
78#include <netinet/pim.h>
79#include <netinet/tcp_var.h>
80#include <netinet/udp.h>
81#include <netinet/udp_var.h>
82#include <netinet/sctp.h>
83#include <netinet/sctp_crc32.h>
84#include <netinet/sctp_header.h>
85
86#include <netinet/ip6.h>
87#include <netinet/icmp6.h>
88#include <netinet/in_fib.h>
89#ifdef INET6
90#include <netinet6/in6_fib.h>
91#include <netinet6/in6_pcb.h>
92#include <netinet6/scope6_var.h>
93#include <netinet6/ip6_var.h>
94#endif
95
96#include <net/if_gre.h> /* for struct grehdr */
97
98#include <netpfil/ipfw/ip_fw_private.h>
99
100#include <machine/in_cksum.h>	/* XXX for in_cksum */
101
102#ifdef MAC
103#include <security/mac/mac_framework.h>
104#endif
105
106/*
107 * static variables followed by global ones.
108 * All ipfw global variables are here.
109 */
110
111static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
112#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
113
114static VNET_DEFINE(int, fw_permit_single_frag6) = 1;
115#define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
116
117#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
118static int default_to_accept = 1;
119#else
120static int default_to_accept;
121#endif
122
123VNET_DEFINE(int, autoinc_step);
124VNET_DEFINE(int, fw_one_pass) = 1;
125
126VNET_DEFINE(unsigned int, fw_tables_max);
127VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
128/* Use 128 tables by default */
129static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
130
131#ifndef LINEAR_SKIPTO
132static int jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
133    int tablearg, int jump_backwards);
134#define	JUMP(ch, f, num, targ, back)	jump_fast(ch, f, num, targ, back)
135#else
136static int jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
137    int tablearg, int jump_backwards);
138#define	JUMP(ch, f, num, targ, back)	jump_linear(ch, f, num, targ, back)
139#endif
140
141/*
142 * Each rule belongs to one of 32 different sets (0..31).
143 * The variable set_disable contains one bit per set.
144 * If the bit is set, all rules in the corresponding set
145 * are disabled. Set RESVD_SET(31) is reserved for the default rule
146 * and rules that are not deleted by the flush command,
147 * and CANNOT be disabled.
148 * Rules in set RESVD_SET can only be deleted individually.
149 */
150VNET_DEFINE(u_int32_t, set_disable);
151#define	V_set_disable			VNET(set_disable)
152
153VNET_DEFINE(int, fw_verbose);
154/* counter for ipfw_log(NULL...) */
155VNET_DEFINE(u_int64_t, norule_counter);
156VNET_DEFINE(int, verbose_limit);
157
158/* layer3_chain contains the list of rules for layer 3 */
159VNET_DEFINE(struct ip_fw_chain, layer3_chain);
160
161/* ipfw_vnet_ready controls when we are open for business */
162VNET_DEFINE(int, ipfw_vnet_ready) = 0;
163
164VNET_DEFINE(int, ipfw_nat_ready) = 0;
165
166ipfw_nat_t *ipfw_nat_ptr = NULL;
167struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
168ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
169ipfw_nat_cfg_t *ipfw_nat_del_ptr;
170ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
171ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
172
173#ifdef SYSCTL_NODE
174uint32_t dummy_def = IPFW_DEFAULT_RULE;
175static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
176static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
177
178SYSBEGIN(f3)
179
180SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
181SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
182    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
183    "Only do a single pass through ipfw when using dummynet(4)");
184SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
185    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
186    "Rule number auto-increment step");
187SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
188    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
189    "Log matches to ipfw rules");
190SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
191    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
192    "Set upper limit of matches of ipfw rules logged");
193SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
194    &dummy_def, 0,
195    "The default/max possible rule number.");
196SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
197    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, 0, 0, sysctl_ipfw_table_num, "IU",
198    "Maximum number of concurrently used tables");
199SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
200    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
201    0, 0, sysctl_ipfw_tables_sets, "IU",
202    "Use per-set namespace for tables");
203SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
204    &default_to_accept, 0,
205    "Make the default rule accept all packets.");
206TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
207SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
208    CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
209    "Number of static rules");
210
211#ifdef INET6
212SYSCTL_DECL(_net_inet6_ip6);
213SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
214SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
215    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
216    &VNET_NAME(fw_deny_unknown_exthdrs), 0,
217    "Deny packets with unknown IPv6 Extension Headers");
218SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
219    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
220    &VNET_NAME(fw_permit_single_frag6), 0,
221    "Permit single packet IPv6 fragments");
222#endif /* INET6 */
223
224SYSEND
225
226#endif /* SYSCTL_NODE */
227
228
229/*
230 * Some macros used in the various matching options.
231 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
232 * Other macros just cast void * into the appropriate type
233 */
234#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
235#define	TCP(p)		((struct tcphdr *)(p))
236#define	SCTP(p)		((struct sctphdr *)(p))
237#define	UDP(p)		((struct udphdr *)(p))
238#define	ICMP(p)		((struct icmphdr *)(p))
239#define	ICMP6(p)	((struct icmp6_hdr *)(p))
240
241static __inline int
242icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
243{
244	int type = icmp->icmp_type;
245
246	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
247}
248
249#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
250    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
251
252static int
253is_icmp_query(struct icmphdr *icmp)
254{
255	int type = icmp->icmp_type;
256
257	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
258}
259#undef TT
260
261/*
262 * The following checks use two arrays of 8 or 16 bits to store the
263 * bits that we want set or clear, respectively. They are in the
264 * low and high half of cmd->arg1 or cmd->d[0].
265 *
266 * We scan options and store the bits we find set. We succeed if
267 *
268 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
269 *
270 * The code is sometimes optimized not to store additional variables.
271 */
272
273static int
274flags_match(ipfw_insn *cmd, u_int8_t bits)
275{
276	u_char want_clear;
277	bits = ~bits;
278
279	if ( ((cmd->arg1 & 0xff) & bits) != 0)
280		return 0; /* some bits we want set were clear */
281	want_clear = (cmd->arg1 >> 8) & 0xff;
282	if ( (want_clear & bits) != want_clear)
283		return 0; /* some bits we want clear were set */
284	return 1;
285}
286
287static int
288ipopts_match(struct ip *ip, ipfw_insn *cmd)
289{
290	int optlen, bits = 0;
291	u_char *cp = (u_char *)(ip + 1);
292	int x = (ip->ip_hl << 2) - sizeof (struct ip);
293
294	for (; x > 0; x -= optlen, cp += optlen) {
295		int opt = cp[IPOPT_OPTVAL];
296
297		if (opt == IPOPT_EOL)
298			break;
299		if (opt == IPOPT_NOP)
300			optlen = 1;
301		else {
302			optlen = cp[IPOPT_OLEN];
303			if (optlen <= 0 || optlen > x)
304				return 0; /* invalid or truncated */
305		}
306		switch (opt) {
307
308		default:
309			break;
310
311		case IPOPT_LSRR:
312			bits |= IP_FW_IPOPT_LSRR;
313			break;
314
315		case IPOPT_SSRR:
316			bits |= IP_FW_IPOPT_SSRR;
317			break;
318
319		case IPOPT_RR:
320			bits |= IP_FW_IPOPT_RR;
321			break;
322
323		case IPOPT_TS:
324			bits |= IP_FW_IPOPT_TS;
325			break;
326		}
327	}
328	return (flags_match(cmd, bits));
329}
330
331static int
332tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
333{
334	int optlen, bits = 0;
335	u_char *cp = (u_char *)(tcp + 1);
336	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
337
338	for (; x > 0; x -= optlen, cp += optlen) {
339		int opt = cp[0];
340		if (opt == TCPOPT_EOL)
341			break;
342		if (opt == TCPOPT_NOP)
343			optlen = 1;
344		else {
345			optlen = cp[1];
346			if (optlen <= 0)
347				break;
348		}
349
350		switch (opt) {
351
352		default:
353			break;
354
355		case TCPOPT_MAXSEG:
356			bits |= IP_FW_TCPOPT_MSS;
357			break;
358
359		case TCPOPT_WINDOW:
360			bits |= IP_FW_TCPOPT_WINDOW;
361			break;
362
363		case TCPOPT_SACK_PERMITTED:
364		case TCPOPT_SACK:
365			bits |= IP_FW_TCPOPT_SACK;
366			break;
367
368		case TCPOPT_TIMESTAMP:
369			bits |= IP_FW_TCPOPT_TS;
370			break;
371
372		}
373	}
374	return (flags_match(cmd, bits));
375}
376
377static int
378iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
379    uint32_t *tablearg)
380{
381
382	if (ifp == NULL)	/* no iface with this packet, match fails */
383		return (0);
384
385	/* Check by name or by IP address */
386	if (cmd->name[0] != '\0') { /* match by name */
387		if (cmd->name[0] == '\1') /* use tablearg to match */
388			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
389			    &ifp->if_index, tablearg);
390		/* Check name */
391		if (cmd->p.glob) {
392			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
393				return(1);
394		} else {
395			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
396				return(1);
397		}
398	} else {
399#if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
400		struct ifaddr *ia;
401
402		if_addr_rlock(ifp);
403		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
404			if (ia->ifa_addr->sa_family != AF_INET)
405				continue;
406			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
407			    (ia->ifa_addr))->sin_addr.s_addr) {
408				if_addr_runlock(ifp);
409				return(1);	/* match */
410			}
411		}
412		if_addr_runlock(ifp);
413#endif /* __FreeBSD__ */
414	}
415	return(0);	/* no match, fail ... */
416}
417
418/*
419 * The verify_path function checks if a route to the src exists and
420 * if it is reachable via ifp (when provided).
421 *
422 * The 'verrevpath' option checks that the interface that an IP packet
423 * arrives on is the same interface that traffic destined for the
424 * packet's source address would be routed out of.
425 * The 'versrcreach' option just checks that the source address is
426 * reachable via any route (except default) in the routing table.
427 * These two are a measure to block forged packets. This is also
428 * commonly known as "anti-spoofing" or Unicast Reverse Path
429 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
430 * is purposely reminiscent of the Cisco IOS command,
431 *
432 *   ip verify unicast reverse-path
433 *   ip verify unicast source reachable-via any
434 *
435 * which implements the same functionality. But note that the syntax
436 * is misleading, and the check may be performed on all IP packets
437 * whether unicast, multicast, or broadcast.
438 */
439static int
440verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
441{
442#if defined(USERSPACE) || !defined(__FreeBSD__)
443	return 0;
444#else
445	struct nhop4_basic nh4;
446
447	if (fib4_lookup_nh_basic(fib, src, NHR_IFAIF, 0, &nh4) != 0)
448		return (0);
449
450	/*
451	 * If ifp is provided, check for equality with rtentry.
452	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
453	 * in order to pass packets injected back by if_simloop():
454	 * routing entry (via lo0) for our own address
455	 * may exist, so we need to handle routing assymetry.
456	 */
457	if (ifp != NULL && ifp != nh4.nh_ifp)
458		return (0);
459
460	/* if no ifp provided, check if rtentry is not default route */
461	if (ifp == NULL && (nh4.nh_flags & NHF_DEFAULT) != 0)
462		return (0);
463
464	/* or if this is a blackhole/reject route */
465	if (ifp == NULL && (nh4.nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
466		return (0);
467
468	/* found valid route */
469	return 1;
470#endif /* __FreeBSD__ */
471}
472
473/*
474 * Generate an SCTP packet containing an ABORT chunk. The verification tag
475 * is given by vtag. The T-bit is set in the ABORT chunk if and only if
476 * reflected is not 0.
477 */
478
479static struct mbuf *
480ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
481    int reflected)
482{
483	struct mbuf *m;
484	struct ip *ip;
485#ifdef INET6
486	struct ip6_hdr *ip6;
487#endif
488	struct sctphdr *sctp;
489	struct sctp_chunkhdr *chunk;
490	u_int16_t hlen, plen, tlen;
491
492	MGETHDR(m, M_NOWAIT, MT_DATA);
493	if (m == NULL)
494		return (NULL);
495
496	M_SETFIB(m, id->fib);
497#ifdef MAC
498	if (replyto != NULL)
499		mac_netinet_firewall_reply(replyto, m);
500	else
501		mac_netinet_firewall_send(m);
502#else
503	(void)replyto;		/* don't warn about unused arg */
504#endif
505
506	switch (id->addr_type) {
507	case 4:
508		hlen = sizeof(struct ip);
509		break;
510#ifdef INET6
511	case 6:
512		hlen = sizeof(struct ip6_hdr);
513		break;
514#endif
515	default:
516		/* XXX: log me?!? */
517		FREE_PKT(m);
518		return (NULL);
519	}
520	plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
521	tlen = hlen + plen;
522	m->m_data += max_linkhdr;
523	m->m_flags |= M_SKIP_FIREWALL;
524	m->m_pkthdr.len = m->m_len = tlen;
525	m->m_pkthdr.rcvif = NULL;
526	bzero(m->m_data, tlen);
527
528	switch (id->addr_type) {
529	case 4:
530		ip = mtod(m, struct ip *);
531
532		ip->ip_v = 4;
533		ip->ip_hl = sizeof(struct ip) >> 2;
534		ip->ip_tos = IPTOS_LOWDELAY;
535		ip->ip_len = htons(tlen);
536		ip->ip_id = htons(0);
537		ip->ip_off = htons(0);
538		ip->ip_ttl = V_ip_defttl;
539		ip->ip_p = IPPROTO_SCTP;
540		ip->ip_sum = 0;
541		ip->ip_src.s_addr = htonl(id->dst_ip);
542		ip->ip_dst.s_addr = htonl(id->src_ip);
543
544		sctp = (struct sctphdr *)(ip + 1);
545		break;
546#ifdef INET6
547	case 6:
548		ip6 = mtod(m, struct ip6_hdr *);
549
550		ip6->ip6_vfc = IPV6_VERSION;
551		ip6->ip6_plen = htons(plen);
552		ip6->ip6_nxt = IPPROTO_SCTP;
553		ip6->ip6_hlim = IPV6_DEFHLIM;
554		ip6->ip6_src = id->dst_ip6;
555		ip6->ip6_dst = id->src_ip6;
556
557		sctp = (struct sctphdr *)(ip6 + 1);
558		break;
559#endif
560	}
561
562	sctp->src_port = htons(id->dst_port);
563	sctp->dest_port = htons(id->src_port);
564	sctp->v_tag = htonl(vtag);
565	sctp->checksum = htonl(0);
566
567	chunk = (struct sctp_chunkhdr *)(sctp + 1);
568	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
569	chunk->chunk_flags = 0;
570	if (reflected != 0) {
571		chunk->chunk_flags |= SCTP_HAD_NO_TCB;
572	}
573	chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
574
575	sctp->checksum = sctp_calculate_cksum(m, hlen);
576
577	return (m);
578}
579
580/*
581 * Generate a TCP packet, containing either a RST or a keepalive.
582 * When flags & TH_RST, we are sending a RST packet, because of a
583 * "reset" action matched the packet.
584 * Otherwise we are sending a keepalive, and flags & TH_
585 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
586 * so that MAC can label the reply appropriately.
587 */
588struct mbuf *
589ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
590    u_int32_t ack, int flags)
591{
592	struct mbuf *m = NULL;		/* stupid compiler */
593	struct ip *h = NULL;		/* stupid compiler */
594#ifdef INET6
595	struct ip6_hdr *h6 = NULL;
596#endif
597	struct tcphdr *th = NULL;
598	int len, dir;
599
600	MGETHDR(m, M_NOWAIT, MT_DATA);
601	if (m == NULL)
602		return (NULL);
603
604	M_SETFIB(m, id->fib);
605#ifdef MAC
606	if (replyto != NULL)
607		mac_netinet_firewall_reply(replyto, m);
608	else
609		mac_netinet_firewall_send(m);
610#else
611	(void)replyto;		/* don't warn about unused arg */
612#endif
613
614	switch (id->addr_type) {
615	case 4:
616		len = sizeof(struct ip) + sizeof(struct tcphdr);
617		break;
618#ifdef INET6
619	case 6:
620		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
621		break;
622#endif
623	default:
624		/* XXX: log me?!? */
625		FREE_PKT(m);
626		return (NULL);
627	}
628	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
629
630	m->m_data += max_linkhdr;
631	m->m_flags |= M_SKIP_FIREWALL;
632	m->m_pkthdr.len = m->m_len = len;
633	m->m_pkthdr.rcvif = NULL;
634	bzero(m->m_data, len);
635
636	switch (id->addr_type) {
637	case 4:
638		h = mtod(m, struct ip *);
639
640		/* prepare for checksum */
641		h->ip_p = IPPROTO_TCP;
642		h->ip_len = htons(sizeof(struct tcphdr));
643		if (dir) {
644			h->ip_src.s_addr = htonl(id->src_ip);
645			h->ip_dst.s_addr = htonl(id->dst_ip);
646		} else {
647			h->ip_src.s_addr = htonl(id->dst_ip);
648			h->ip_dst.s_addr = htonl(id->src_ip);
649		}
650
651		th = (struct tcphdr *)(h + 1);
652		break;
653#ifdef INET6
654	case 6:
655		h6 = mtod(m, struct ip6_hdr *);
656
657		/* prepare for checksum */
658		h6->ip6_nxt = IPPROTO_TCP;
659		h6->ip6_plen = htons(sizeof(struct tcphdr));
660		if (dir) {
661			h6->ip6_src = id->src_ip6;
662			h6->ip6_dst = id->dst_ip6;
663		} else {
664			h6->ip6_src = id->dst_ip6;
665			h6->ip6_dst = id->src_ip6;
666		}
667
668		th = (struct tcphdr *)(h6 + 1);
669		break;
670#endif
671	}
672
673	if (dir) {
674		th->th_sport = htons(id->src_port);
675		th->th_dport = htons(id->dst_port);
676	} else {
677		th->th_sport = htons(id->dst_port);
678		th->th_dport = htons(id->src_port);
679	}
680	th->th_off = sizeof(struct tcphdr) >> 2;
681
682	if (flags & TH_RST) {
683		if (flags & TH_ACK) {
684			th->th_seq = htonl(ack);
685			th->th_flags = TH_RST;
686		} else {
687			if (flags & TH_SYN)
688				seq++;
689			th->th_ack = htonl(seq);
690			th->th_flags = TH_RST | TH_ACK;
691		}
692	} else {
693		/*
694		 * Keepalive - use caller provided sequence numbers
695		 */
696		th->th_seq = htonl(seq);
697		th->th_ack = htonl(ack);
698		th->th_flags = TH_ACK;
699	}
700
701	switch (id->addr_type) {
702	case 4:
703		th->th_sum = in_cksum(m, len);
704
705		/* finish the ip header */
706		h->ip_v = 4;
707		h->ip_hl = sizeof(*h) >> 2;
708		h->ip_tos = IPTOS_LOWDELAY;
709		h->ip_off = htons(0);
710		h->ip_len = htons(len);
711		h->ip_ttl = V_ip_defttl;
712		h->ip_sum = 0;
713		break;
714#ifdef INET6
715	case 6:
716		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
717		    sizeof(struct tcphdr));
718
719		/* finish the ip6 header */
720		h6->ip6_vfc |= IPV6_VERSION;
721		h6->ip6_hlim = IPV6_DEFHLIM;
722		break;
723#endif
724	}
725
726	return (m);
727}
728
729#ifdef INET6
730/*
731 * ipv6 specific rules here...
732 */
733static __inline int
734icmp6type_match (int type, ipfw_insn_u32 *cmd)
735{
736	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
737}
738
739static int
740flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
741{
742	int i;
743	for (i=0; i <= cmd->o.arg1; ++i )
744		if (curr_flow == cmd->d[i] )
745			return 1;
746	return 0;
747}
748
749/* support for IP6_*_ME opcodes */
750static const struct in6_addr lla_mask = {{{
751	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
752	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
753}}};
754
755static int
756ipfw_localip6(struct in6_addr *in6)
757{
758	struct rm_priotracker in6_ifa_tracker;
759	struct in6_ifaddr *ia;
760
761	if (IN6_IS_ADDR_MULTICAST(in6))
762		return (0);
763
764	if (!IN6_IS_ADDR_LINKLOCAL(in6))
765		return (in6_localip(in6));
766
767	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
768	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
769		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
770			continue;
771		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
772		    in6, &lla_mask)) {
773			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
774			return (1);
775		}
776	}
777	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
778	return (0);
779}
780
781static int
782verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
783{
784	struct nhop6_basic nh6;
785
786	if (IN6_IS_SCOPE_LINKLOCAL(src))
787		return (1);
788
789	if (fib6_lookup_nh_basic(fib, src, 0, NHR_IFAIF, 0, &nh6) != 0)
790		return (0);
791
792	/* If ifp is provided, check for equality with route table. */
793	if (ifp != NULL && ifp != nh6.nh_ifp)
794		return (0);
795
796	/* if no ifp provided, check if rtentry is not default route */
797	if (ifp == NULL && (nh6.nh_flags & NHF_DEFAULT) != 0)
798		return (0);
799
800	/* or if this is a blackhole/reject route */
801	if (ifp == NULL && (nh6.nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
802		return (0);
803
804	/* found valid route */
805	return 1;
806}
807
808static int
809is_icmp6_query(int icmp6_type)
810{
811	if ((icmp6_type <= ICMP6_MAXTYPE) &&
812	    (icmp6_type == ICMP6_ECHO_REQUEST ||
813	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
814	    icmp6_type == ICMP6_WRUREQUEST ||
815	    icmp6_type == ICMP6_FQDN_QUERY ||
816	    icmp6_type == ICMP6_NI_QUERY))
817		return (1);
818
819	return (0);
820}
821
822static int
823map_icmp_unreach(int code)
824{
825
826	/* RFC 7915 p4.2 */
827	switch (code) {
828	case ICMP_UNREACH_NET:
829	case ICMP_UNREACH_HOST:
830	case ICMP_UNREACH_SRCFAIL:
831	case ICMP_UNREACH_NET_UNKNOWN:
832	case ICMP_UNREACH_HOST_UNKNOWN:
833	case ICMP_UNREACH_TOSNET:
834	case ICMP_UNREACH_TOSHOST:
835		return (ICMP6_DST_UNREACH_NOROUTE);
836	case ICMP_UNREACH_PORT:
837		return (ICMP6_DST_UNREACH_NOPORT);
838	default:
839		/*
840		 * Map the rest of codes into admit prohibited.
841		 * XXX: unreach proto should be mapped into ICMPv6
842		 * parameter problem, but we use only unreach type.
843		 */
844		return (ICMP6_DST_UNREACH_ADMIN);
845	}
846}
847
848static void
849send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
850{
851	struct mbuf *m;
852
853	m = args->m;
854	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
855		struct tcphdr *tcp;
856		tcp = (struct tcphdr *)((char *)ip6 + hlen);
857
858		if ((tcp->th_flags & TH_RST) == 0) {
859			struct mbuf *m0;
860			m0 = ipfw_send_pkt(args->m, &(args->f_id),
861			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
862			    tcp->th_flags | TH_RST);
863			if (m0 != NULL)
864				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
865				    NULL);
866		}
867		FREE_PKT(m);
868	} else if (code == ICMP6_UNREACH_ABORT &&
869	    args->f_id.proto == IPPROTO_SCTP) {
870		struct mbuf *m0;
871		struct sctphdr *sctp;
872		u_int32_t v_tag;
873		int reflected;
874
875		sctp = (struct sctphdr *)((char *)ip6 + hlen);
876		reflected = 1;
877		v_tag = ntohl(sctp->v_tag);
878		/* Investigate the first chunk header if available */
879		if (m->m_len >= hlen + sizeof(struct sctphdr) +
880		    sizeof(struct sctp_chunkhdr)) {
881			struct sctp_chunkhdr *chunk;
882
883			chunk = (struct sctp_chunkhdr *)(sctp + 1);
884			switch (chunk->chunk_type) {
885			case SCTP_INITIATION:
886				/*
887				 * Packets containing an INIT chunk MUST have
888				 * a zero v-tag.
889				 */
890				if (v_tag != 0) {
891					v_tag = 0;
892					break;
893				}
894				/* INIT chunk MUST NOT be bundled */
895				if (m->m_pkthdr.len >
896				    hlen + sizeof(struct sctphdr) +
897				    ntohs(chunk->chunk_length) + 3) {
898					break;
899				}
900				/* Use the initiate tag if available */
901				if ((m->m_len >= hlen + sizeof(struct sctphdr) +
902				    sizeof(struct sctp_chunkhdr) +
903				    offsetof(struct sctp_init, a_rwnd))) {
904					struct sctp_init *init;
905
906					init = (struct sctp_init *)(chunk + 1);
907					v_tag = ntohl(init->initiate_tag);
908					reflected = 0;
909				}
910				break;
911			case SCTP_ABORT_ASSOCIATION:
912				/*
913				 * If the packet contains an ABORT chunk, don't
914				 * reply.
915				 * XXX: We should search through all chunks,
916				 *      but don't do to avoid attacks.
917				 */
918				v_tag = 0;
919				break;
920			}
921		}
922		if (v_tag == 0) {
923			m0 = NULL;
924		} else {
925			m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
926			    reflected);
927		}
928		if (m0 != NULL)
929			ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
930		FREE_PKT(m);
931	} else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
932		/* Send an ICMPv6 unreach. */
933#if 0
934		/*
935		 * Unlike above, the mbufs need to line up with the ip6 hdr,
936		 * as the contents are read. We need to m_adj() the
937		 * needed amount.
938		 * The mbuf will however be thrown away so we can adjust it.
939		 * Remember we did an m_pullup on it already so we
940		 * can make some assumptions about contiguousness.
941		 */
942		if (args->L3offset)
943			m_adj(m, args->L3offset);
944#endif
945		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
946	} else
947		FREE_PKT(m);
948
949	args->m = NULL;
950}
951
952#endif /* INET6 */
953
954
955/*
956 * sends a reject message, consuming the mbuf passed as an argument.
957 */
958static void
959send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
960{
961
962#if 0
963	/* XXX When ip is not guaranteed to be at mtod() we will
964	 * need to account for this */
965	 * The mbuf will however be thrown away so we can adjust it.
966	 * Remember we did an m_pullup on it already so we
967	 * can make some assumptions about contiguousness.
968	 */
969	if (args->L3offset)
970		m_adj(m, args->L3offset);
971#endif
972	if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
973		/* Send an ICMP unreach */
974		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
975	} else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
976		struct tcphdr *const tcp =
977		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
978		if ( (tcp->th_flags & TH_RST) == 0) {
979			struct mbuf *m;
980			m = ipfw_send_pkt(args->m, &(args->f_id),
981				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
982				tcp->th_flags | TH_RST);
983			if (m != NULL)
984				ip_output(m, NULL, NULL, 0, NULL, NULL);
985		}
986		FREE_PKT(args->m);
987	} else if (code == ICMP_REJECT_ABORT &&
988	    args->f_id.proto == IPPROTO_SCTP) {
989		struct mbuf *m;
990		struct sctphdr *sctp;
991		struct sctp_chunkhdr *chunk;
992		struct sctp_init *init;
993		u_int32_t v_tag;
994		int reflected;
995
996		sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
997		reflected = 1;
998		v_tag = ntohl(sctp->v_tag);
999		if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1000		    sizeof(struct sctp_chunkhdr)) {
1001			/* Look at the first chunk header if available */
1002			chunk = (struct sctp_chunkhdr *)(sctp + 1);
1003			switch (chunk->chunk_type) {
1004			case SCTP_INITIATION:
1005				/*
1006				 * Packets containing an INIT chunk MUST have
1007				 * a zero v-tag.
1008				 */
1009				if (v_tag != 0) {
1010					v_tag = 0;
1011					break;
1012				}
1013				/* INIT chunk MUST NOT be bundled */
1014				if (iplen >
1015				    (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1016				    ntohs(chunk->chunk_length) + 3) {
1017					break;
1018				}
1019				/* Use the initiate tag if available */
1020				if ((iplen >= (ip->ip_hl << 2) +
1021				    sizeof(struct sctphdr) +
1022				    sizeof(struct sctp_chunkhdr) +
1023				    offsetof(struct sctp_init, a_rwnd))) {
1024					init = (struct sctp_init *)(chunk + 1);
1025					v_tag = ntohl(init->initiate_tag);
1026					reflected = 0;
1027				}
1028				break;
1029			case SCTP_ABORT_ASSOCIATION:
1030				/*
1031				 * If the packet contains an ABORT chunk, don't
1032				 * reply.
1033				 * XXX: We should search through all chunks,
1034				 * but don't do to avoid attacks.
1035				 */
1036				v_tag = 0;
1037				break;
1038			}
1039		}
1040		if (v_tag == 0) {
1041			m = NULL;
1042		} else {
1043			m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1044			    reflected);
1045		}
1046		if (m != NULL)
1047			ip_output(m, NULL, NULL, 0, NULL, NULL);
1048		FREE_PKT(args->m);
1049	} else
1050		FREE_PKT(args->m);
1051	args->m = NULL;
1052}
1053
1054/*
1055 * Support for uid/gid/jail lookup. These tests are expensive
1056 * (because we may need to look into the list of active sockets)
1057 * so we cache the results. ugid_lookupp is 0 if we have not
1058 * yet done a lookup, 1 if we succeeded, and -1 if we tried
1059 * and failed. The function always returns the match value.
1060 * We could actually spare the variable and use *uc, setting
1061 * it to '(void *)check_uidgid if we have no info, NULL if
1062 * we tried and failed, or any other value if successful.
1063 */
1064static int
1065check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1066    struct ucred **uc)
1067{
1068#if defined(USERSPACE)
1069	return 0;	// not supported in userspace
1070#else
1071#ifndef __FreeBSD__
1072	/* XXX */
1073	return cred_check(insn, proto, oif,
1074	    dst_ip, dst_port, src_ip, src_port,
1075	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1076#else  /* FreeBSD */
1077	struct in_addr src_ip, dst_ip;
1078	struct inpcbinfo *pi;
1079	struct ipfw_flow_id *id;
1080	struct inpcb *pcb, *inp;
1081	struct ifnet *oif;
1082	int lookupflags;
1083	int match;
1084
1085	id = &args->f_id;
1086	inp = args->inp;
1087	oif = args->oif;
1088
1089	/*
1090	 * Check to see if the UDP or TCP stack supplied us with
1091	 * the PCB. If so, rather then holding a lock and looking
1092	 * up the PCB, we can use the one that was supplied.
1093	 */
1094	if (inp && *ugid_lookupp == 0) {
1095		INP_LOCK_ASSERT(inp);
1096		if (inp->inp_socket != NULL) {
1097			*uc = crhold(inp->inp_cred);
1098			*ugid_lookupp = 1;
1099		} else
1100			*ugid_lookupp = -1;
1101	}
1102	/*
1103	 * If we have already been here and the packet has no
1104	 * PCB entry associated with it, then we can safely
1105	 * assume that this is a no match.
1106	 */
1107	if (*ugid_lookupp == -1)
1108		return (0);
1109	if (id->proto == IPPROTO_TCP) {
1110		lookupflags = 0;
1111		pi = &V_tcbinfo;
1112	} else if (id->proto == IPPROTO_UDP) {
1113		lookupflags = INPLOOKUP_WILDCARD;
1114		pi = &V_udbinfo;
1115	} else if (id->proto == IPPROTO_UDPLITE) {
1116		lookupflags = INPLOOKUP_WILDCARD;
1117		pi = &V_ulitecbinfo;
1118	} else
1119		return 0;
1120	lookupflags |= INPLOOKUP_RLOCKPCB;
1121	match = 0;
1122	if (*ugid_lookupp == 0) {
1123		if (id->addr_type == 6) {
1124#ifdef INET6
1125			if (oif == NULL)
1126				pcb = in6_pcblookup_mbuf(pi,
1127				    &id->src_ip6, htons(id->src_port),
1128				    &id->dst_ip6, htons(id->dst_port),
1129				    lookupflags, oif, args->m);
1130			else
1131				pcb = in6_pcblookup_mbuf(pi,
1132				    &id->dst_ip6, htons(id->dst_port),
1133				    &id->src_ip6, htons(id->src_port),
1134				    lookupflags, oif, args->m);
1135#else
1136			*ugid_lookupp = -1;
1137			return (0);
1138#endif
1139		} else {
1140			src_ip.s_addr = htonl(id->src_ip);
1141			dst_ip.s_addr = htonl(id->dst_ip);
1142			if (oif == NULL)
1143				pcb = in_pcblookup_mbuf(pi,
1144				    src_ip, htons(id->src_port),
1145				    dst_ip, htons(id->dst_port),
1146				    lookupflags, oif, args->m);
1147			else
1148				pcb = in_pcblookup_mbuf(pi,
1149				    dst_ip, htons(id->dst_port),
1150				    src_ip, htons(id->src_port),
1151				    lookupflags, oif, args->m);
1152		}
1153		if (pcb != NULL) {
1154			INP_RLOCK_ASSERT(pcb);
1155			*uc = crhold(pcb->inp_cred);
1156			*ugid_lookupp = 1;
1157			INP_RUNLOCK(pcb);
1158		}
1159		if (*ugid_lookupp == 0) {
1160			/*
1161			 * We tried and failed, set the variable to -1
1162			 * so we will not try again on this packet.
1163			 */
1164			*ugid_lookupp = -1;
1165			return (0);
1166		}
1167	}
1168	if (insn->o.opcode == O_UID)
1169		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1170	else if (insn->o.opcode == O_GID)
1171		match = groupmember((gid_t)insn->d[0], *uc);
1172	else if (insn->o.opcode == O_JAIL)
1173		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1174	return (match);
1175#endif /* __FreeBSD__ */
1176#endif /* not supported in userspace */
1177}
1178
1179/*
1180 * Helper function to set args with info on the rule after the matching
1181 * one. slot is precise, whereas we guess rule_id as they are
1182 * assigned sequentially.
1183 */
1184static inline void
1185set_match(struct ip_fw_args *args, int slot,
1186	struct ip_fw_chain *chain)
1187{
1188	args->rule.chain_id = chain->id;
1189	args->rule.slot = slot + 1; /* we use 0 as a marker */
1190	args->rule.rule_id = 1 + chain->map[slot]->id;
1191	args->rule.rulenum = chain->map[slot]->rulenum;
1192}
1193
1194#ifndef LINEAR_SKIPTO
1195/*
1196 * Helper function to enable cached rule lookups using
1197 * cached_id and cached_pos fields in ipfw rule.
1198 */
1199static int
1200jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1201    int tablearg, int jump_backwards)
1202{
1203	int f_pos;
1204
1205	/* If possible use cached f_pos (in f->cached_pos),
1206	 * whose version is written in f->cached_id
1207	 * (horrible hacks to avoid changing the ABI).
1208	 */
1209	if (num != IP_FW_TARG && f->cached_id == chain->id)
1210		f_pos = f->cached_pos;
1211	else {
1212		int i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1213		/* make sure we do not jump backward */
1214		if (jump_backwards == 0 && i <= f->rulenum)
1215			i = f->rulenum + 1;
1216		if (chain->idxmap != NULL)
1217			f_pos = chain->idxmap[i];
1218		else
1219			f_pos = ipfw_find_rule(chain, i, 0);
1220		/* update the cache */
1221		if (num != IP_FW_TARG) {
1222			f->cached_id = chain->id;
1223			f->cached_pos = f_pos;
1224		}
1225	}
1226
1227	return (f_pos);
1228}
1229#else
1230/*
1231 * Helper function to enable real fast rule lookups.
1232 */
1233static int
1234jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1235    int tablearg, int jump_backwards)
1236{
1237	int f_pos;
1238
1239	num = IP_FW_ARG_TABLEARG(chain, num, skipto);
1240	/* make sure we do not jump backward */
1241	if (jump_backwards == 0 && num <= f->rulenum)
1242		num = f->rulenum + 1;
1243	f_pos = chain->idxmap[num];
1244
1245	return (f_pos);
1246}
1247#endif
1248
1249#define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
1250/*
1251 * The main check routine for the firewall.
1252 *
1253 * All arguments are in args so we can modify them and return them
1254 * back to the caller.
1255 *
1256 * Parameters:
1257 *
1258 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1259 *		Starts with the IP header.
1260 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
1261 *	args->L3offset	Number of bytes bypassed if we came from L2.
1262 *			e.g. often sizeof(eh)  ** NOTYET **
1263 *	args->oif	Outgoing interface, NULL if packet is incoming.
1264 *		The incoming interface is in the mbuf. (in)
1265 *	args->divert_rule (in/out)
1266 *		Skip up to the first rule past this rule number;
1267 *		upon return, non-zero port number for divert or tee.
1268 *
1269 *	args->rule	Pointer to the last matching rule (in/out)
1270 *	args->next_hop	Socket we are forwarding to (out).
1271 *	args->next_hop6	IPv6 next hop we are forwarding to (out).
1272 *	args->f_id	Addresses grabbed from the packet (out)
1273 * 	args->rule.info	a cookie depending on rule action
1274 *
1275 * Return value:
1276 *
1277 *	IP_FW_PASS	the packet must be accepted
1278 *	IP_FW_DENY	the packet must be dropped
1279 *	IP_FW_DIVERT	divert packet, port in m_tag
1280 *	IP_FW_TEE	tee packet, port in m_tag
1281 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1282 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1283 *		args->rule contains the matching rule,
1284 *		args->rule.info has additional information.
1285 *
1286 */
1287int
1288ipfw_chk(struct ip_fw_args *args)
1289{
1290
1291	/*
1292	 * Local variables holding state while processing a packet:
1293	 *
1294	 * IMPORTANT NOTE: to speed up the processing of rules, there
1295	 * are some assumption on the values of the variables, which
1296	 * are documented here. Should you change them, please check
1297	 * the implementation of the various instructions to make sure
1298	 * that they still work.
1299	 *
1300	 * args->eh	The MAC header. It is non-null for a layer2
1301	 *	packet, it is NULL for a layer-3 packet.
1302	 * **notyet**
1303	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
1304	 *
1305	 * m | args->m	Pointer to the mbuf, as received from the caller.
1306	 *	It may change if ipfw_chk() does an m_pullup, or if it
1307	 *	consumes the packet because it calls send_reject().
1308	 *	XXX This has to change, so that ipfw_chk() never modifies
1309	 *	or consumes the buffer.
1310	 * ip	is the beginning of the ip(4 or 6) header.
1311	 *	Calculated by adding the L3offset to the start of data.
1312	 *	(Until we start using L3offset, the packet is
1313	 *	supposed to start with the ip header).
1314	 */
1315	struct mbuf *m = args->m;
1316	struct ip *ip = mtod(m, struct ip *);
1317
1318	/*
1319	 * For rules which contain uid/gid or jail constraints, cache
1320	 * a copy of the users credentials after the pcb lookup has been
1321	 * executed. This will speed up the processing of rules with
1322	 * these types of constraints, as well as decrease contention
1323	 * on pcb related locks.
1324	 */
1325#ifndef __FreeBSD__
1326	struct bsd_ucred ucred_cache;
1327#else
1328	struct ucred *ucred_cache = NULL;
1329#endif
1330	int ucred_lookup = 0;
1331
1332	/*
1333	 * oif | args->oif	If NULL, ipfw_chk has been called on the
1334	 *	inbound path (ether_input, ip_input).
1335	 *	If non-NULL, ipfw_chk has been called on the outbound path
1336	 *	(ether_output, ip_output).
1337	 */
1338	struct ifnet *oif = args->oif;
1339
1340	int f_pos = 0;		/* index of current rule in the array */
1341	int retval = 0;
1342
1343	/*
1344	 * hlen	The length of the IP header.
1345	 */
1346	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1347
1348	/*
1349	 * offset	The offset of a fragment. offset != 0 means that
1350	 *	we have a fragment at this offset of an IPv4 packet.
1351	 *	offset == 0 means that (if this is an IPv4 packet)
1352	 *	this is the first or only fragment.
1353	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1354	 *	or there is a single packet fragment (fragment header added
1355	 *	without needed).  We will treat a single packet fragment as if
1356	 *	there was no fragment header (or log/block depending on the
1357	 *	V_fw_permit_single_frag6 sysctl setting).
1358	 */
1359	u_short offset = 0;
1360	u_short ip6f_mf = 0;
1361
1362	/*
1363	 * Local copies of addresses. They are only valid if we have
1364	 * an IP packet.
1365	 *
1366	 * proto	The protocol. Set to 0 for non-ip packets,
1367	 *	or to the protocol read from the packet otherwise.
1368	 *	proto != 0 means that we have an IPv4 packet.
1369	 *
1370	 * src_port, dst_port	port numbers, in HOST format. Only
1371	 *	valid for TCP and UDP packets.
1372	 *
1373	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1374	 *	Only valid for IPv4 packets.
1375	 */
1376	uint8_t proto;
1377	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
1378	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1379	int iplen = 0;
1380	int pktlen;
1381	uint16_t	etype = 0;	/* Host order stored ether type */
1382
1383	/*
1384	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1385	 * 	MATCH_NONE when checked and not matched (q = NULL),
1386	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
1387	 */
1388	struct ipfw_dyn_info dyn_info;
1389	struct ip_fw *q = NULL;
1390	struct ip_fw_chain *chain = &V_layer3_chain;
1391
1392	/*
1393	 * We store in ulp a pointer to the upper layer protocol header.
1394	 * In the ipv4 case this is easy to determine from the header,
1395	 * but for ipv6 we might have some additional headers in the middle.
1396	 * ulp is NULL if not found.
1397	 */
1398	void *ulp = NULL;		/* upper layer protocol pointer. */
1399
1400	/* XXX ipv6 variables */
1401	int is_ipv6 = 0;
1402	uint8_t	icmp6_type = 0;
1403	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
1404	/* end of ipv6 variables */
1405
1406	int is_ipv4 = 0;
1407
1408	int done = 0;		/* flag to exit the outer loop */
1409
1410	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1411		return (IP_FW_PASS);	/* accept */
1412
1413	dst_ip.s_addr = 0;		/* make sure it is initialized */
1414	src_ip.s_addr = 0;		/* make sure it is initialized */
1415	pktlen = m->m_pkthdr.len;
1416	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
1417	proto = args->f_id.proto = 0;	/* mark f_id invalid */
1418		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
1419
1420	DYN_INFO_INIT(&dyn_info);
1421/*
1422 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1423 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1424 * pointer might become stale after other pullups (but we never use it
1425 * this way).
1426 */
1427#define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1428#define PULLUP_LEN(_len, p, T)					\
1429do {								\
1430	int x = (_len) + T;					\
1431	if ((m)->m_len < x) {					\
1432		args->m = m = m_pullup(m, x);			\
1433		if (m == NULL)					\
1434			goto pullup_failed;			\
1435	}							\
1436	p = (mtod(m, char *) + (_len));				\
1437} while (0)
1438
1439	/*
1440	 * if we have an ether header,
1441	 */
1442	if (args->eh)
1443		etype = ntohs(args->eh->ether_type);
1444
1445	/* Identify IP packets and fill up variables. */
1446	if (pktlen >= sizeof(struct ip6_hdr) &&
1447	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
1448		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1449		is_ipv6 = 1;
1450		args->f_id.addr_type = 6;
1451		hlen = sizeof(struct ip6_hdr);
1452		proto = ip6->ip6_nxt;
1453
1454		/* Search extension headers to find upper layer protocols */
1455		while (ulp == NULL && offset == 0) {
1456			switch (proto) {
1457			case IPPROTO_ICMPV6:
1458				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1459				icmp6_type = ICMP6(ulp)->icmp6_type;
1460				break;
1461
1462			case IPPROTO_TCP:
1463				PULLUP_TO(hlen, ulp, struct tcphdr);
1464				dst_port = TCP(ulp)->th_dport;
1465				src_port = TCP(ulp)->th_sport;
1466				/* save flags for dynamic rules */
1467				args->f_id._flags = TCP(ulp)->th_flags;
1468				break;
1469
1470			case IPPROTO_SCTP:
1471				if (pktlen >= hlen + sizeof(struct sctphdr) +
1472				    sizeof(struct sctp_chunkhdr) +
1473				    offsetof(struct sctp_init, a_rwnd))
1474					PULLUP_LEN(hlen, ulp,
1475					    sizeof(struct sctphdr) +
1476					    sizeof(struct sctp_chunkhdr) +
1477					    offsetof(struct sctp_init, a_rwnd));
1478				else if (pktlen >= hlen + sizeof(struct sctphdr))
1479					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1480				else
1481					PULLUP_LEN(hlen, ulp,
1482					    sizeof(struct sctphdr));
1483				src_port = SCTP(ulp)->src_port;
1484				dst_port = SCTP(ulp)->dest_port;
1485				break;
1486
1487			case IPPROTO_UDP:
1488			case IPPROTO_UDPLITE:
1489				PULLUP_TO(hlen, ulp, struct udphdr);
1490				dst_port = UDP(ulp)->uh_dport;
1491				src_port = UDP(ulp)->uh_sport;
1492				break;
1493
1494			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1495				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1496				ext_hd |= EXT_HOPOPTS;
1497				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1498				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1499				ulp = NULL;
1500				break;
1501
1502			case IPPROTO_ROUTING:	/* RFC 2460 */
1503				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1504				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1505				case 0:
1506					ext_hd |= EXT_RTHDR0;
1507					break;
1508				case 2:
1509					ext_hd |= EXT_RTHDR2;
1510					break;
1511				default:
1512					if (V_fw_verbose)
1513						printf("IPFW2: IPV6 - Unknown "
1514						    "Routing Header type(%d)\n",
1515						    ((struct ip6_rthdr *)
1516						    ulp)->ip6r_type);
1517					if (V_fw_deny_unknown_exthdrs)
1518					    return (IP_FW_DENY);
1519					break;
1520				}
1521				ext_hd |= EXT_ROUTING;
1522				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1523				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1524				ulp = NULL;
1525				break;
1526
1527			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1528				PULLUP_TO(hlen, ulp, struct ip6_frag);
1529				ext_hd |= EXT_FRAGMENT;
1530				hlen += sizeof (struct ip6_frag);
1531				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1532				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1533					IP6F_OFF_MASK;
1534				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1535					IP6F_MORE_FRAG;
1536				if (V_fw_permit_single_frag6 == 0 &&
1537				    offset == 0 && ip6f_mf == 0) {
1538					if (V_fw_verbose)
1539						printf("IPFW2: IPV6 - Invalid "
1540						    "Fragment Header\n");
1541					if (V_fw_deny_unknown_exthdrs)
1542					    return (IP_FW_DENY);
1543					break;
1544				}
1545				args->f_id.extra =
1546				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1547				ulp = NULL;
1548				break;
1549
1550			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1551				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1552				ext_hd |= EXT_DSTOPTS;
1553				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1554				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1555				ulp = NULL;
1556				break;
1557
1558			case IPPROTO_AH:	/* RFC 2402 */
1559				PULLUP_TO(hlen, ulp, struct ip6_ext);
1560				ext_hd |= EXT_AH;
1561				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1562				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1563				ulp = NULL;
1564				break;
1565
1566			case IPPROTO_ESP:	/* RFC 2406 */
1567				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1568				/* Anything past Seq# is variable length and
1569				 * data past this ext. header is encrypted. */
1570				ext_hd |= EXT_ESP;
1571				break;
1572
1573			case IPPROTO_NONE:	/* RFC 2460 */
1574				/*
1575				 * Packet ends here, and IPv6 header has
1576				 * already been pulled up. If ip6e_len!=0
1577				 * then octets must be ignored.
1578				 */
1579				ulp = ip; /* non-NULL to get out of loop. */
1580				break;
1581
1582			case IPPROTO_OSPFIGP:
1583				/* XXX OSPF header check? */
1584				PULLUP_TO(hlen, ulp, struct ip6_ext);
1585				break;
1586
1587			case IPPROTO_PIM:
1588				/* XXX PIM header check? */
1589				PULLUP_TO(hlen, ulp, struct pim);
1590				break;
1591
1592			case IPPROTO_GRE:	/* RFC 1701 */
1593				/* XXX GRE header check? */
1594				PULLUP_TO(hlen, ulp, struct grehdr);
1595				break;
1596
1597			case IPPROTO_CARP:
1598				PULLUP_TO(hlen, ulp, struct carp_header);
1599				if (((struct carp_header *)ulp)->carp_version !=
1600				    CARP_VERSION)
1601					return (IP_FW_DENY);
1602				if (((struct carp_header *)ulp)->carp_type !=
1603				    CARP_ADVERTISEMENT)
1604					return (IP_FW_DENY);
1605				break;
1606
1607			case IPPROTO_IPV6:	/* RFC 2893 */
1608				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1609				break;
1610
1611			case IPPROTO_IPV4:	/* RFC 2893 */
1612				PULLUP_TO(hlen, ulp, struct ip);
1613				break;
1614
1615			default:
1616				if (V_fw_verbose)
1617					printf("IPFW2: IPV6 - Unknown "
1618					    "Extension Header(%d), ext_hd=%x\n",
1619					     proto, ext_hd);
1620				if (V_fw_deny_unknown_exthdrs)
1621				    return (IP_FW_DENY);
1622				PULLUP_TO(hlen, ulp, struct ip6_ext);
1623				break;
1624			} /*switch */
1625		}
1626		ip = mtod(m, struct ip *);
1627		ip6 = (struct ip6_hdr *)ip;
1628		args->f_id.src_ip6 = ip6->ip6_src;
1629		args->f_id.dst_ip6 = ip6->ip6_dst;
1630		args->f_id.src_ip = 0;
1631		args->f_id.dst_ip = 0;
1632		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1633		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1634	} else if (pktlen >= sizeof(struct ip) &&
1635	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1636	    	is_ipv4 = 1;
1637		hlen = ip->ip_hl << 2;
1638		args->f_id.addr_type = 4;
1639
1640		/*
1641		 * Collect parameters into local variables for faster matching.
1642		 */
1643		proto = ip->ip_p;
1644		src_ip = ip->ip_src;
1645		dst_ip = ip->ip_dst;
1646		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1647		iplen = ntohs(ip->ip_len);
1648
1649		if (offset == 0) {
1650			switch (proto) {
1651			case IPPROTO_TCP:
1652				PULLUP_TO(hlen, ulp, struct tcphdr);
1653				dst_port = TCP(ulp)->th_dport;
1654				src_port = TCP(ulp)->th_sport;
1655				/* save flags for dynamic rules */
1656				args->f_id._flags = TCP(ulp)->th_flags;
1657				break;
1658
1659			case IPPROTO_SCTP:
1660				if (pktlen >= hlen + sizeof(struct sctphdr) +
1661				    sizeof(struct sctp_chunkhdr) +
1662				    offsetof(struct sctp_init, a_rwnd))
1663					PULLUP_LEN(hlen, ulp,
1664					    sizeof(struct sctphdr) +
1665					    sizeof(struct sctp_chunkhdr) +
1666					    offsetof(struct sctp_init, a_rwnd));
1667				else if (pktlen >= hlen + sizeof(struct sctphdr))
1668					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1669				else
1670					PULLUP_LEN(hlen, ulp,
1671					    sizeof(struct sctphdr));
1672				src_port = SCTP(ulp)->src_port;
1673				dst_port = SCTP(ulp)->dest_port;
1674				break;
1675
1676			case IPPROTO_UDP:
1677			case IPPROTO_UDPLITE:
1678				PULLUP_TO(hlen, ulp, struct udphdr);
1679				dst_port = UDP(ulp)->uh_dport;
1680				src_port = UDP(ulp)->uh_sport;
1681				break;
1682
1683			case IPPROTO_ICMP:
1684				PULLUP_TO(hlen, ulp, struct icmphdr);
1685				//args->f_id.flags = ICMP(ulp)->icmp_type;
1686				break;
1687
1688			default:
1689				break;
1690			}
1691		}
1692
1693		ip = mtod(m, struct ip *);
1694		args->f_id.src_ip = ntohl(src_ip.s_addr);
1695		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1696	}
1697#undef PULLUP_TO
1698	pktlen = iplen < pktlen ? iplen: pktlen;
1699	if (proto) { /* we may have port numbers, store them */
1700		args->f_id.proto = proto;
1701		args->f_id.src_port = src_port = ntohs(src_port);
1702		args->f_id.dst_port = dst_port = ntohs(dst_port);
1703	}
1704
1705	IPFW_PF_RLOCK(chain);
1706	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1707		IPFW_PF_RUNLOCK(chain);
1708		return (IP_FW_PASS);	/* accept */
1709	}
1710	if (args->rule.slot) {
1711		/*
1712		 * Packet has already been tagged as a result of a previous
1713		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1714		 * REASS, NETGRAPH, DIVERT/TEE...)
1715		 * Validate the slot and continue from the next one
1716		 * if still present, otherwise do a lookup.
1717		 */
1718		f_pos = (args->rule.chain_id == chain->id) ?
1719		    args->rule.slot :
1720		    ipfw_find_rule(chain, args->rule.rulenum,
1721			args->rule.rule_id);
1722	} else {
1723		f_pos = 0;
1724	}
1725
1726	/*
1727	 * Now scan the rules, and parse microinstructions for each rule.
1728	 * We have two nested loops and an inner switch. Sometimes we
1729	 * need to break out of one or both loops, or re-enter one of
1730	 * the loops with updated variables. Loop variables are:
1731	 *
1732	 *	f_pos (outer loop) points to the current rule.
1733	 *		On output it points to the matching rule.
1734	 *	done (outer loop) is used as a flag to break the loop.
1735	 *	l (inner loop)	residual length of current rule.
1736	 *		cmd points to the current microinstruction.
1737	 *
1738	 * We break the inner loop by setting l=0 and possibly
1739	 * cmdlen=0 if we don't want to advance cmd.
1740	 * We break the outer loop by setting done=1
1741	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1742	 * as needed.
1743	 */
1744	for (; f_pos < chain->n_rules; f_pos++) {
1745		ipfw_insn *cmd;
1746		uint32_t tablearg = 0;
1747		int l, cmdlen, skip_or; /* skip rest of OR block */
1748		struct ip_fw *f;
1749
1750		f = chain->map[f_pos];
1751		if (V_set_disable & (1 << f->set) )
1752			continue;
1753
1754		skip_or = 0;
1755		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1756		    l -= cmdlen, cmd += cmdlen) {
1757			int match;
1758
1759			/*
1760			 * check_body is a jump target used when we find a
1761			 * CHECK_STATE, and need to jump to the body of
1762			 * the target rule.
1763			 */
1764
1765/* check_body: */
1766			cmdlen = F_LEN(cmd);
1767			/*
1768			 * An OR block (insn_1 || .. || insn_n) has the
1769			 * F_OR bit set in all but the last instruction.
1770			 * The first match will set "skip_or", and cause
1771			 * the following instructions to be skipped until
1772			 * past the one with the F_OR bit clear.
1773			 */
1774			if (skip_or) {		/* skip this instruction */
1775				if ((cmd->len & F_OR) == 0)
1776					skip_or = 0;	/* next one is good */
1777				continue;
1778			}
1779			match = 0; /* set to 1 if we succeed */
1780
1781			switch (cmd->opcode) {
1782			/*
1783			 * The first set of opcodes compares the packet's
1784			 * fields with some pattern, setting 'match' if a
1785			 * match is found. At the end of the loop there is
1786			 * logic to deal with F_NOT and F_OR flags associated
1787			 * with the opcode.
1788			 */
1789			case O_NOP:
1790				match = 1;
1791				break;
1792
1793			case O_FORWARD_MAC:
1794				printf("ipfw: opcode %d unimplemented\n",
1795				    cmd->opcode);
1796				break;
1797
1798			case O_GID:
1799			case O_UID:
1800			case O_JAIL:
1801				/*
1802				 * We only check offset == 0 && proto != 0,
1803				 * as this ensures that we have a
1804				 * packet with the ports info.
1805				 */
1806				if (offset != 0)
1807					break;
1808				if (proto == IPPROTO_TCP ||
1809				    proto == IPPROTO_UDP ||
1810				    proto == IPPROTO_UDPLITE)
1811					match = check_uidgid(
1812						    (ipfw_insn_u32 *)cmd,
1813						    args, &ucred_lookup,
1814#ifdef __FreeBSD__
1815						    &ucred_cache);
1816#else
1817						    (void *)&ucred_cache);
1818#endif
1819				break;
1820
1821			case O_RECV:
1822				match = iface_match(m->m_pkthdr.rcvif,
1823				    (ipfw_insn_if *)cmd, chain, &tablearg);
1824				break;
1825
1826			case O_XMIT:
1827				match = iface_match(oif, (ipfw_insn_if *)cmd,
1828				    chain, &tablearg);
1829				break;
1830
1831			case O_VIA:
1832				match = iface_match(oif ? oif :
1833				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd,
1834				    chain, &tablearg);
1835				break;
1836
1837			case O_MACADDR2:
1838				if (args->eh != NULL) {	/* have MAC header */
1839					u_int32_t *want = (u_int32_t *)
1840						((ipfw_insn_mac *)cmd)->addr;
1841					u_int32_t *mask = (u_int32_t *)
1842						((ipfw_insn_mac *)cmd)->mask;
1843					u_int32_t *hdr = (u_int32_t *)args->eh;
1844
1845					match =
1846					    ( want[0] == (hdr[0] & mask[0]) &&
1847					      want[1] == (hdr[1] & mask[1]) &&
1848					      want[2] == (hdr[2] & mask[2]) );
1849				}
1850				break;
1851
1852			case O_MAC_TYPE:
1853				if (args->eh != NULL) {
1854					u_int16_t *p =
1855					    ((ipfw_insn_u16 *)cmd)->ports;
1856					int i;
1857
1858					for (i = cmdlen - 1; !match && i>0;
1859					    i--, p += 2)
1860						match = (etype >= p[0] &&
1861						    etype <= p[1]);
1862				}
1863				break;
1864
1865			case O_FRAG:
1866				match = (offset != 0);
1867				break;
1868
1869			case O_IN:	/* "out" is "not in" */
1870				match = (oif == NULL);
1871				break;
1872
1873			case O_LAYER2:
1874				match = (args->eh != NULL);
1875				break;
1876
1877			case O_DIVERTED:
1878			    {
1879				/* For diverted packets, args->rule.info
1880				 * contains the divert port (in host format)
1881				 * reason and direction.
1882				 */
1883				uint32_t i = args->rule.info;
1884				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1885				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1886			    }
1887				break;
1888
1889			case O_PROTO:
1890				/*
1891				 * We do not allow an arg of 0 so the
1892				 * check of "proto" only suffices.
1893				 */
1894				match = (proto == cmd->arg1);
1895				break;
1896
1897			case O_IP_SRC:
1898				match = is_ipv4 &&
1899				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1900				    src_ip.s_addr);
1901				break;
1902
1903			case O_IP_DST_LOOKUP:
1904			{
1905				void *pkey;
1906				uint32_t vidx, key;
1907				uint16_t keylen;
1908
1909				if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1910					/* Determine lookup key type */
1911					vidx = ((ipfw_insn_u32 *)cmd)->d[1];
1912					if (vidx != 4 /* uid */ &&
1913					    vidx != 5 /* jail */ &&
1914					    is_ipv6 == 0 && is_ipv4 == 0)
1915						break;
1916					/* Determine key length */
1917					if (vidx == 0 /* dst-ip */ ||
1918					    vidx == 1 /* src-ip */)
1919						keylen = is_ipv6 ?
1920						    sizeof(struct in6_addr):
1921						    sizeof(in_addr_t);
1922					else {
1923						keylen = sizeof(key);
1924						pkey = &key;
1925					}
1926					if (vidx == 0 /* dst-ip */)
1927						pkey = is_ipv4 ? (void *)&dst_ip:
1928						    (void *)&args->f_id.dst_ip6;
1929					else if (vidx == 1 /* src-ip */)
1930						pkey = is_ipv4 ? (void *)&src_ip:
1931						    (void *)&args->f_id.src_ip6;
1932					else if (vidx == 6 /* dscp */) {
1933						if (is_ipv4)
1934							key = ip->ip_tos >> 2;
1935						else {
1936							key = args->f_id.flow_id6;
1937							key = (key & 0x0f) << 2 |
1938							    (key & 0xf000) >> 14;
1939						}
1940						key &= 0x3f;
1941					} else if (vidx == 2 /* dst-port */ ||
1942					    vidx == 3 /* src-port */) {
1943						/* Skip fragments */
1944						if (offset != 0)
1945							break;
1946						/* Skip proto without ports */
1947						if (proto != IPPROTO_TCP &&
1948						    proto != IPPROTO_UDP &&
1949						    proto != IPPROTO_UDPLITE &&
1950						    proto != IPPROTO_SCTP)
1951							break;
1952						if (vidx == 2 /* dst-port */)
1953							key = dst_port;
1954						else
1955							key = src_port;
1956					}
1957#ifndef USERSPACE
1958					else if (vidx == 4 /* uid */ ||
1959					    vidx == 5 /* jail */) {
1960						check_uidgid(
1961						    (ipfw_insn_u32 *)cmd,
1962						    args, &ucred_lookup,
1963#ifdef __FreeBSD__
1964						    &ucred_cache);
1965						if (vidx == 4 /* uid */)
1966							key = ucred_cache->cr_uid;
1967						else if (vidx == 5 /* jail */)
1968							key = ucred_cache->cr_prison->pr_id;
1969#else /* !__FreeBSD__ */
1970						    (void *)&ucred_cache);
1971						if (vidx == 4 /* uid */)
1972							key = ucred_cache.uid;
1973						else if (vidx == 5 /* jail */)
1974							key = ucred_cache.xid;
1975#endif /* !__FreeBSD__ */
1976					}
1977#endif /* !USERSPACE */
1978					else
1979						break;
1980					match = ipfw_lookup_table(chain,
1981					    cmd->arg1, keylen, pkey, &vidx);
1982					if (!match)
1983						break;
1984					tablearg = vidx;
1985					break;
1986				}
1987				/* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */
1988				/* FALLTHROUGH */
1989			}
1990			case O_IP_SRC_LOOKUP:
1991			{
1992				void *pkey;
1993				uint32_t vidx;
1994				uint16_t keylen;
1995
1996				if (is_ipv4) {
1997					keylen = sizeof(in_addr_t);
1998					if (cmd->opcode == O_IP_DST_LOOKUP)
1999						pkey = &dst_ip;
2000					else
2001						pkey = &src_ip;
2002				} else if (is_ipv6) {
2003					keylen = sizeof(struct in6_addr);
2004					if (cmd->opcode == O_IP_DST_LOOKUP)
2005						pkey = &args->f_id.dst_ip6;
2006					else
2007						pkey = &args->f_id.src_ip6;
2008				} else
2009					break;
2010				match = ipfw_lookup_table(chain, cmd->arg1,
2011				    keylen, pkey, &vidx);
2012				if (!match)
2013					break;
2014				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2015					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2016					    TARG_VAL(chain, vidx, tag);
2017					if (!match)
2018						break;
2019				}
2020				tablearg = vidx;
2021				break;
2022			}
2023
2024			case O_IP_FLOW_LOOKUP:
2025				{
2026					uint32_t v = 0;
2027					match = ipfw_lookup_table(chain,
2028					    cmd->arg1, 0, &args->f_id, &v);
2029					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2030						match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2031						    TARG_VAL(chain, v, tag);
2032					if (match)
2033						tablearg = v;
2034				}
2035				break;
2036			case O_IP_SRC_MASK:
2037			case O_IP_DST_MASK:
2038				if (is_ipv4) {
2039				    uint32_t a =
2040					(cmd->opcode == O_IP_DST_MASK) ?
2041					    dst_ip.s_addr : src_ip.s_addr;
2042				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2043				    int i = cmdlen-1;
2044
2045				    for (; !match && i>0; i-= 2, p+= 2)
2046					match = (p[0] == (a & p[1]));
2047				}
2048				break;
2049
2050			case O_IP_SRC_ME:
2051				if (is_ipv4) {
2052					match = in_localip(src_ip);
2053					break;
2054				}
2055#ifdef INET6
2056				/* FALLTHROUGH */
2057			case O_IP6_SRC_ME:
2058				match= is_ipv6 && ipfw_localip6(&args->f_id.src_ip6);
2059#endif
2060				break;
2061
2062			case O_IP_DST_SET:
2063			case O_IP_SRC_SET:
2064				if (is_ipv4) {
2065					u_int32_t *d = (u_int32_t *)(cmd+1);
2066					u_int32_t addr =
2067					    cmd->opcode == O_IP_DST_SET ?
2068						args->f_id.dst_ip :
2069						args->f_id.src_ip;
2070
2071					    if (addr < d[0])
2072						    break;
2073					    addr -= d[0]; /* subtract base */
2074					    match = (addr < cmd->arg1) &&
2075						( d[ 1 + (addr>>5)] &
2076						  (1<<(addr & 0x1f)) );
2077				}
2078				break;
2079
2080			case O_IP_DST:
2081				match = is_ipv4 &&
2082				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2083				    dst_ip.s_addr);
2084				break;
2085
2086			case O_IP_DST_ME:
2087				if (is_ipv4) {
2088					match = in_localip(dst_ip);
2089					break;
2090				}
2091#ifdef INET6
2092				/* FALLTHROUGH */
2093			case O_IP6_DST_ME:
2094				match= is_ipv6 && ipfw_localip6(&args->f_id.dst_ip6);
2095#endif
2096				break;
2097
2098
2099			case O_IP_SRCPORT:
2100			case O_IP_DSTPORT:
2101				/*
2102				 * offset == 0 && proto != 0 is enough
2103				 * to guarantee that we have a
2104				 * packet with port info.
2105				 */
2106				if ((proto == IPPROTO_UDP ||
2107				    proto == IPPROTO_UDPLITE ||
2108				    proto == IPPROTO_TCP ||
2109				    proto==IPPROTO_SCTP) && offset == 0) {
2110					u_int16_t x =
2111					    (cmd->opcode == O_IP_SRCPORT) ?
2112						src_port : dst_port ;
2113					u_int16_t *p =
2114					    ((ipfw_insn_u16 *)cmd)->ports;
2115					int i;
2116
2117					for (i = cmdlen - 1; !match && i>0;
2118					    i--, p += 2)
2119						match = (x>=p[0] && x<=p[1]);
2120				}
2121				break;
2122
2123			case O_ICMPTYPE:
2124				match = (offset == 0 && proto==IPPROTO_ICMP &&
2125				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2126				break;
2127
2128#ifdef INET6
2129			case O_ICMP6TYPE:
2130				match = is_ipv6 && offset == 0 &&
2131				    proto==IPPROTO_ICMPV6 &&
2132				    icmp6type_match(
2133					ICMP6(ulp)->icmp6_type,
2134					(ipfw_insn_u32 *)cmd);
2135				break;
2136#endif /* INET6 */
2137
2138			case O_IPOPT:
2139				match = (is_ipv4 &&
2140				    ipopts_match(ip, cmd) );
2141				break;
2142
2143			case O_IPVER:
2144				match = (is_ipv4 &&
2145				    cmd->arg1 == ip->ip_v);
2146				break;
2147
2148			case O_IPID:
2149			case O_IPLEN:
2150			case O_IPTTL:
2151				if (is_ipv4) {	/* only for IP packets */
2152				    uint16_t x;
2153				    uint16_t *p;
2154				    int i;
2155
2156				    if (cmd->opcode == O_IPLEN)
2157					x = iplen;
2158				    else if (cmd->opcode == O_IPTTL)
2159					x = ip->ip_ttl;
2160				    else /* must be IPID */
2161					x = ntohs(ip->ip_id);
2162				    if (cmdlen == 1) {
2163					match = (cmd->arg1 == x);
2164					break;
2165				    }
2166				    /* otherwise we have ranges */
2167				    p = ((ipfw_insn_u16 *)cmd)->ports;
2168				    i = cmdlen - 1;
2169				    for (; !match && i>0; i--, p += 2)
2170					match = (x >= p[0] && x <= p[1]);
2171				}
2172				break;
2173
2174			case O_IPPRECEDENCE:
2175				match = (is_ipv4 &&
2176				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2177				break;
2178
2179			case O_IPTOS:
2180				match = (is_ipv4 &&
2181				    flags_match(cmd, ip->ip_tos));
2182				break;
2183
2184			case O_DSCP:
2185			    {
2186				uint32_t *p;
2187				uint16_t x;
2188
2189				p = ((ipfw_insn_u32 *)cmd)->d;
2190
2191				if (is_ipv4)
2192					x = ip->ip_tos >> 2;
2193				else if (is_ipv6) {
2194					uint8_t *v;
2195					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2196					x = (*v & 0x0F) << 2;
2197					v++;
2198					x |= *v >> 6;
2199				} else
2200					break;
2201
2202				/* DSCP bitmask is stored as low_u32 high_u32 */
2203				if (x >= 32)
2204					match = *(p + 1) & (1 << (x - 32));
2205				else
2206					match = *p & (1 << x);
2207			    }
2208				break;
2209
2210			case O_TCPDATALEN:
2211				if (proto == IPPROTO_TCP && offset == 0) {
2212				    struct tcphdr *tcp;
2213				    uint16_t x;
2214				    uint16_t *p;
2215				    int i;
2216#ifdef INET6
2217				    if (is_ipv6) {
2218					    struct ip6_hdr *ip6;
2219
2220					    ip6 = (struct ip6_hdr *)ip;
2221					    if (ip6->ip6_plen == 0) {
2222						    /*
2223						     * Jumbo payload is not
2224						     * supported by this
2225						     * opcode.
2226						     */
2227						    break;
2228					    }
2229					    x = iplen - hlen;
2230				    } else
2231#endif /* INET6 */
2232					    x = iplen - (ip->ip_hl << 2);
2233				    tcp = TCP(ulp);
2234				    x -= tcp->th_off << 2;
2235				    if (cmdlen == 1) {
2236					match = (cmd->arg1 == x);
2237					break;
2238				    }
2239				    /* otherwise we have ranges */
2240				    p = ((ipfw_insn_u16 *)cmd)->ports;
2241				    i = cmdlen - 1;
2242				    for (; !match && i>0; i--, p += 2)
2243					match = (x >= p[0] && x <= p[1]);
2244				}
2245				break;
2246
2247			case O_TCPFLAGS:
2248				match = (proto == IPPROTO_TCP && offset == 0 &&
2249				    flags_match(cmd, TCP(ulp)->th_flags));
2250				break;
2251
2252			case O_TCPOPTS:
2253				if (proto == IPPROTO_TCP && offset == 0 && ulp){
2254					PULLUP_LEN(hlen, ulp,
2255					    (TCP(ulp)->th_off << 2));
2256					match = tcpopts_match(TCP(ulp), cmd);
2257				}
2258				break;
2259
2260			case O_TCPSEQ:
2261				match = (proto == IPPROTO_TCP && offset == 0 &&
2262				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2263					TCP(ulp)->th_seq);
2264				break;
2265
2266			case O_TCPACK:
2267				match = (proto == IPPROTO_TCP && offset == 0 &&
2268				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2269					TCP(ulp)->th_ack);
2270				break;
2271
2272			case O_TCPWIN:
2273				if (proto == IPPROTO_TCP && offset == 0) {
2274				    uint16_t x;
2275				    uint16_t *p;
2276				    int i;
2277
2278				    x = ntohs(TCP(ulp)->th_win);
2279				    if (cmdlen == 1) {
2280					match = (cmd->arg1 == x);
2281					break;
2282				    }
2283				    /* Otherwise we have ranges. */
2284				    p = ((ipfw_insn_u16 *)cmd)->ports;
2285				    i = cmdlen - 1;
2286				    for (; !match && i > 0; i--, p += 2)
2287					match = (x >= p[0] && x <= p[1]);
2288				}
2289				break;
2290
2291			case O_ESTAB:
2292				/* reject packets which have SYN only */
2293				/* XXX should i also check for TH_ACK ? */
2294				match = (proto == IPPROTO_TCP && offset == 0 &&
2295				    (TCP(ulp)->th_flags &
2296				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2297				break;
2298
2299			case O_ALTQ: {
2300				struct pf_mtag *at;
2301				struct m_tag *mtag;
2302				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2303
2304				/*
2305				 * ALTQ uses mbuf tags from another
2306				 * packet filtering system - pf(4).
2307				 * We allocate a tag in its format
2308				 * and fill it in, pretending to be pf(4).
2309				 */
2310				match = 1;
2311				at = pf_find_mtag(m);
2312				if (at != NULL && at->qid != 0)
2313					break;
2314				mtag = m_tag_get(PACKET_TAG_PF,
2315				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2316				if (mtag == NULL) {
2317					/*
2318					 * Let the packet fall back to the
2319					 * default ALTQ.
2320					 */
2321					break;
2322				}
2323				m_tag_prepend(m, mtag);
2324				at = (struct pf_mtag *)(mtag + 1);
2325				at->qid = altq->qid;
2326				at->hdr = ip;
2327				break;
2328			}
2329
2330			case O_LOG:
2331				ipfw_log(chain, f, hlen, args, m,
2332				    oif, offset | ip6f_mf, tablearg, ip);
2333				match = 1;
2334				break;
2335
2336			case O_PROB:
2337				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2338				break;
2339
2340			case O_VERREVPATH:
2341				/* Outgoing packets automatically pass/match */
2342				match = ((oif != NULL) ||
2343				    (m->m_pkthdr.rcvif == NULL) ||
2344				    (
2345#ifdef INET6
2346				    is_ipv6 ?
2347					verify_path6(&(args->f_id.src_ip6),
2348					    m->m_pkthdr.rcvif, args->f_id.fib) :
2349#endif
2350				    verify_path(src_ip, m->m_pkthdr.rcvif,
2351				        args->f_id.fib)));
2352				break;
2353
2354			case O_VERSRCREACH:
2355				/* Outgoing packets automatically pass/match */
2356				match = (hlen > 0 && ((oif != NULL) ||
2357#ifdef INET6
2358				    is_ipv6 ?
2359				        verify_path6(&(args->f_id.src_ip6),
2360				            NULL, args->f_id.fib) :
2361#endif
2362				    verify_path(src_ip, NULL, args->f_id.fib)));
2363				break;
2364
2365			case O_ANTISPOOF:
2366				/* Outgoing packets automatically pass/match */
2367				if (oif == NULL && hlen > 0 &&
2368				    (  (is_ipv4 && in_localaddr(src_ip))
2369#ifdef INET6
2370				    || (is_ipv6 &&
2371				        in6_localaddr(&(args->f_id.src_ip6)))
2372#endif
2373				    ))
2374					match =
2375#ifdef INET6
2376					    is_ipv6 ? verify_path6(
2377					        &(args->f_id.src_ip6),
2378					        m->m_pkthdr.rcvif,
2379						args->f_id.fib) :
2380#endif
2381					    verify_path(src_ip,
2382					    	m->m_pkthdr.rcvif,
2383					        args->f_id.fib);
2384				else
2385					match = 1;
2386				break;
2387
2388			case O_IPSEC:
2389				match = (m_tag_find(m,
2390				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2391				/* otherwise no match */
2392				break;
2393
2394#ifdef INET6
2395			case O_IP6_SRC:
2396				match = is_ipv6 &&
2397				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2398				    &((ipfw_insn_ip6 *)cmd)->addr6);
2399				break;
2400
2401			case O_IP6_DST:
2402				match = is_ipv6 &&
2403				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2404				    &((ipfw_insn_ip6 *)cmd)->addr6);
2405				break;
2406			case O_IP6_SRC_MASK:
2407			case O_IP6_DST_MASK:
2408				if (is_ipv6) {
2409					int i = cmdlen - 1;
2410					struct in6_addr p;
2411					struct in6_addr *d =
2412					    &((ipfw_insn_ip6 *)cmd)->addr6;
2413
2414					for (; !match && i > 0; d += 2,
2415					    i -= F_INSN_SIZE(struct in6_addr)
2416					    * 2) {
2417						p = (cmd->opcode ==
2418						    O_IP6_SRC_MASK) ?
2419						    args->f_id.src_ip6:
2420						    args->f_id.dst_ip6;
2421						APPLY_MASK(&p, &d[1]);
2422						match =
2423						    IN6_ARE_ADDR_EQUAL(&d[0],
2424						    &p);
2425					}
2426				}
2427				break;
2428
2429			case O_FLOW6ID:
2430				match = is_ipv6 &&
2431				    flow6id_match(args->f_id.flow_id6,
2432				    (ipfw_insn_u32 *) cmd);
2433				break;
2434
2435			case O_EXT_HDR:
2436				match = is_ipv6 &&
2437				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2438				break;
2439
2440			case O_IP6:
2441				match = is_ipv6;
2442				break;
2443#endif
2444
2445			case O_IP4:
2446				match = is_ipv4;
2447				break;
2448
2449			case O_TAG: {
2450				struct m_tag *mtag;
2451				uint32_t tag = TARG(cmd->arg1, tag);
2452
2453				/* Packet is already tagged with this tag? */
2454				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2455
2456				/* We have `untag' action when F_NOT flag is
2457				 * present. And we must remove this mtag from
2458				 * mbuf and reset `match' to zero (`match' will
2459				 * be inversed later).
2460				 * Otherwise we should allocate new mtag and
2461				 * push it into mbuf.
2462				 */
2463				if (cmd->len & F_NOT) { /* `untag' action */
2464					if (mtag != NULL)
2465						m_tag_delete(m, mtag);
2466					match = 0;
2467				} else {
2468					if (mtag == NULL) {
2469						mtag = m_tag_alloc( MTAG_IPFW,
2470						    tag, 0, M_NOWAIT);
2471						if (mtag != NULL)
2472							m_tag_prepend(m, mtag);
2473					}
2474					match = 1;
2475				}
2476				break;
2477			}
2478
2479			case O_FIB: /* try match the specified fib */
2480				if (args->f_id.fib == cmd->arg1)
2481					match = 1;
2482				break;
2483
2484			case O_SOCKARG:	{
2485#ifndef USERSPACE	/* not supported in userspace */
2486				struct inpcb *inp = args->inp;
2487				struct inpcbinfo *pi;
2488
2489				if (is_ipv6) /* XXX can we remove this ? */
2490					break;
2491
2492				if (proto == IPPROTO_TCP)
2493					pi = &V_tcbinfo;
2494				else if (proto == IPPROTO_UDP)
2495					pi = &V_udbinfo;
2496				else if (proto == IPPROTO_UDPLITE)
2497					pi = &V_ulitecbinfo;
2498				else
2499					break;
2500
2501				/*
2502				 * XXXRW: so_user_cookie should almost
2503				 * certainly be inp_user_cookie?
2504				 */
2505
2506				/* For incoming packet, lookup up the
2507				inpcb using the src/dest ip/port tuple */
2508				if (inp == NULL) {
2509					inp = in_pcblookup(pi,
2510						src_ip, htons(src_port),
2511						dst_ip, htons(dst_port),
2512						INPLOOKUP_RLOCKPCB, NULL);
2513					if (inp != NULL) {
2514						tablearg =
2515						    inp->inp_socket->so_user_cookie;
2516						if (tablearg)
2517							match = 1;
2518						INP_RUNLOCK(inp);
2519					}
2520				} else {
2521					if (inp->inp_socket) {
2522						tablearg =
2523						    inp->inp_socket->so_user_cookie;
2524						if (tablearg)
2525							match = 1;
2526					}
2527				}
2528#endif /* !USERSPACE */
2529				break;
2530			}
2531
2532			case O_TAGGED: {
2533				struct m_tag *mtag;
2534				uint32_t tag = TARG(cmd->arg1, tag);
2535
2536				if (cmdlen == 1) {
2537					match = m_tag_locate(m, MTAG_IPFW,
2538					    tag, NULL) != NULL;
2539					break;
2540				}
2541
2542				/* we have ranges */
2543				for (mtag = m_tag_first(m);
2544				    mtag != NULL && !match;
2545				    mtag = m_tag_next(m, mtag)) {
2546					uint16_t *p;
2547					int i;
2548
2549					if (mtag->m_tag_cookie != MTAG_IPFW)
2550						continue;
2551
2552					p = ((ipfw_insn_u16 *)cmd)->ports;
2553					i = cmdlen - 1;
2554					for(; !match && i > 0; i--, p += 2)
2555						match =
2556						    mtag->m_tag_id >= p[0] &&
2557						    mtag->m_tag_id <= p[1];
2558				}
2559				break;
2560			}
2561
2562			/*
2563			 * The second set of opcodes represents 'actions',
2564			 * i.e. the terminal part of a rule once the packet
2565			 * matches all previous patterns.
2566			 * Typically there is only one action for each rule,
2567			 * and the opcode is stored at the end of the rule
2568			 * (but there are exceptions -- see below).
2569			 *
2570			 * In general, here we set retval and terminate the
2571			 * outer loop (would be a 'break 3' in some language,
2572			 * but we need to set l=0, done=1)
2573			 *
2574			 * Exceptions:
2575			 * O_COUNT and O_SKIPTO actions:
2576			 *   instead of terminating, we jump to the next rule
2577			 *   (setting l=0), or to the SKIPTO target (setting
2578			 *   f/f_len, cmd and l as needed), respectively.
2579			 *
2580			 * O_TAG, O_LOG and O_ALTQ action parameters:
2581			 *   perform some action and set match = 1;
2582			 *
2583			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2584			 *   not real 'actions', and are stored right
2585			 *   before the 'action' part of the rule (one
2586			 *   exception is O_SKIP_ACTION which could be
2587			 *   between these opcodes and 'action' one).
2588			 *   These opcodes try to install an entry in the
2589			 *   state tables; if successful, we continue with
2590			 *   the next opcode (match=1; break;), otherwise
2591			 *   the packet must be dropped (set retval,
2592			 *   break loops with l=0, done=1)
2593			 *
2594			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2595			 *   cause a lookup of the state table, and a jump
2596			 *   to the 'action' part of the parent rule
2597			 *   if an entry is found, or
2598			 *   (CHECK_STATE only) a jump to the next rule if
2599			 *   the entry is not found.
2600			 *   The result of the lookup is cached so that
2601			 *   further instances of these opcodes become NOPs.
2602			 *   The jump to the next rule is done by setting
2603			 *   l=0, cmdlen=0.
2604			 *
2605			 * O_SKIP_ACTION: this opcode is not a real 'action'
2606			 *  either, and is stored right before the 'action'
2607			 *  part of the rule, right after the O_KEEP_STATE
2608			 *  opcode. It causes match failure so the real
2609			 *  'action' could be executed only if the rule
2610			 *  is checked via dynamic rule from the state
2611			 *  table, as in such case execution starts
2612			 *  from the true 'action' opcode directly.
2613			 *
2614			 */
2615			case O_LIMIT:
2616			case O_KEEP_STATE:
2617				if (ipfw_dyn_install_state(chain, f,
2618				    (ipfw_insn_limit *)cmd, args, ulp,
2619				    pktlen, &dyn_info, tablearg)) {
2620					/* error or limit violation */
2621					retval = IP_FW_DENY;
2622					l = 0;	/* exit inner loop */
2623					done = 1; /* exit outer loop */
2624				}
2625				match = 1;
2626				break;
2627
2628			case O_PROBE_STATE:
2629			case O_CHECK_STATE:
2630				/*
2631				 * dynamic rules are checked at the first
2632				 * keep-state or check-state occurrence,
2633				 * with the result being stored in dyn_info.
2634				 * The compiler introduces a PROBE_STATE
2635				 * instruction for us when we have a
2636				 * KEEP_STATE (because PROBE_STATE needs
2637				 * to be run first).
2638				 */
2639				if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2640				    (q = ipfw_dyn_lookup_state(args, ulp,
2641				    pktlen, cmd, &dyn_info)) != NULL) {
2642					/*
2643					 * Found dynamic entry, jump to the
2644					 * 'action' part of the parent rule
2645					 * by setting f, cmd, l and clearing
2646					 * cmdlen.
2647					 */
2648					f = q;
2649					f_pos = dyn_info.f_pos;
2650					cmd = ACTION_PTR(f);
2651					l = f->cmd_len - f->act_ofs;
2652					cmdlen = 0;
2653					match = 1;
2654					break;
2655				}
2656				/*
2657				 * Dynamic entry not found. If CHECK_STATE,
2658				 * skip to next rule, if PROBE_STATE just
2659				 * ignore and continue with next opcode.
2660				 */
2661				if (cmd->opcode == O_CHECK_STATE)
2662					l = 0;	/* exit inner loop */
2663				match = 1;
2664				break;
2665
2666			case O_SKIP_ACTION:
2667				match = 0;	/* skip to the next rule */
2668				l = 0;		/* exit inner loop */
2669				break;
2670
2671			case O_ACCEPT:
2672				retval = 0;	/* accept */
2673				l = 0;		/* exit inner loop */
2674				done = 1;	/* exit outer loop */
2675				break;
2676
2677			case O_PIPE:
2678			case O_QUEUE:
2679				set_match(args, f_pos, chain);
2680				args->rule.info = TARG(cmd->arg1, pipe);
2681				if (cmd->opcode == O_PIPE)
2682					args->rule.info |= IPFW_IS_PIPE;
2683				if (V_fw_one_pass)
2684					args->rule.info |= IPFW_ONEPASS;
2685				retval = IP_FW_DUMMYNET;
2686				l = 0;          /* exit inner loop */
2687				done = 1;       /* exit outer loop */
2688				break;
2689
2690			case O_DIVERT:
2691			case O_TEE:
2692				if (args->eh) /* not on layer 2 */
2693				    break;
2694				/* otherwise this is terminal */
2695				l = 0;		/* exit inner loop */
2696				done = 1;	/* exit outer loop */
2697				retval = (cmd->opcode == O_DIVERT) ?
2698					IP_FW_DIVERT : IP_FW_TEE;
2699				set_match(args, f_pos, chain);
2700				args->rule.info = TARG(cmd->arg1, divert);
2701				break;
2702
2703			case O_COUNT:
2704				IPFW_INC_RULE_COUNTER(f, pktlen);
2705				l = 0;		/* exit inner loop */
2706				break;
2707
2708			case O_SKIPTO:
2709			    IPFW_INC_RULE_COUNTER(f, pktlen);
2710			    f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0);
2711			    /*
2712			     * Skip disabled rules, and re-enter
2713			     * the inner loop with the correct
2714			     * f_pos, f, l and cmd.
2715			     * Also clear cmdlen and skip_or
2716			     */
2717			    for (; f_pos < chain->n_rules - 1 &&
2718				    (V_set_disable &
2719				     (1 << chain->map[f_pos]->set));
2720				    f_pos++)
2721				;
2722			    /* Re-enter the inner loop at the skipto rule. */
2723			    f = chain->map[f_pos];
2724			    l = f->cmd_len;
2725			    cmd = f->cmd;
2726			    match = 1;
2727			    cmdlen = 0;
2728			    skip_or = 0;
2729			    continue;
2730			    break;	/* not reached */
2731
2732			case O_CALLRETURN: {
2733				/*
2734				 * Implementation of `subroutine' call/return,
2735				 * in the stack carried in an mbuf tag. This
2736				 * is different from `skipto' in that any call
2737				 * address is possible (`skipto' must prevent
2738				 * backward jumps to avoid endless loops).
2739				 * We have `return' action when F_NOT flag is
2740				 * present. The `m_tag_id' field is used as
2741				 * stack pointer.
2742				 */
2743				struct m_tag *mtag;
2744				uint16_t jmpto, *stack;
2745
2746#define	IS_CALL		((cmd->len & F_NOT) == 0)
2747#define	IS_RETURN	((cmd->len & F_NOT) != 0)
2748				/*
2749				 * Hand-rolled version of m_tag_locate() with
2750				 * wildcard `type'.
2751				 * If not already tagged, allocate new tag.
2752				 */
2753				mtag = m_tag_first(m);
2754				while (mtag != NULL) {
2755					if (mtag->m_tag_cookie ==
2756					    MTAG_IPFW_CALL)
2757						break;
2758					mtag = m_tag_next(m, mtag);
2759				}
2760				if (mtag == NULL && IS_CALL) {
2761					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2762					    IPFW_CALLSTACK_SIZE *
2763					    sizeof(uint16_t), M_NOWAIT);
2764					if (mtag != NULL)
2765						m_tag_prepend(m, mtag);
2766				}
2767
2768				/*
2769				 * On error both `call' and `return' just
2770				 * continue with next rule.
2771				 */
2772				if (IS_RETURN && (mtag == NULL ||
2773				    mtag->m_tag_id == 0)) {
2774					l = 0;		/* exit inner loop */
2775					break;
2776				}
2777				if (IS_CALL && (mtag == NULL ||
2778				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2779					printf("ipfw: call stack error, "
2780					    "go to next rule\n");
2781					l = 0;		/* exit inner loop */
2782					break;
2783				}
2784
2785				IPFW_INC_RULE_COUNTER(f, pktlen);
2786				stack = (uint16_t *)(mtag + 1);
2787
2788				/*
2789				 * The `call' action may use cached f_pos
2790				 * (in f->next_rule), whose version is written
2791				 * in f->next_rule.
2792				 * The `return' action, however, doesn't have
2793				 * fixed jump address in cmd->arg1 and can't use
2794				 * cache.
2795				 */
2796				if (IS_CALL) {
2797					stack[mtag->m_tag_id] = f->rulenum;
2798					mtag->m_tag_id++;
2799			    		f_pos = JUMP(chain, f, cmd->arg1,
2800					    tablearg, 1);
2801				} else {	/* `return' action */
2802					mtag->m_tag_id--;
2803					jmpto = stack[mtag->m_tag_id] + 1;
2804					f_pos = ipfw_find_rule(chain, jmpto, 0);
2805				}
2806
2807				/*
2808				 * Skip disabled rules, and re-enter
2809				 * the inner loop with the correct
2810				 * f_pos, f, l and cmd.
2811				 * Also clear cmdlen and skip_or
2812				 */
2813				for (; f_pos < chain->n_rules - 1 &&
2814				    (V_set_disable &
2815				    (1 << chain->map[f_pos]->set)); f_pos++)
2816					;
2817				/* Re-enter the inner loop at the dest rule. */
2818				f = chain->map[f_pos];
2819				l = f->cmd_len;
2820				cmd = f->cmd;
2821				cmdlen = 0;
2822				skip_or = 0;
2823				continue;
2824				break;	/* NOTREACHED */
2825			}
2826#undef IS_CALL
2827#undef IS_RETURN
2828
2829			case O_REJECT:
2830				/*
2831				 * Drop the packet and send a reject notice
2832				 * if the packet is not ICMP (or is an ICMP
2833				 * query), and it is not multicast/broadcast.
2834				 */
2835				if (hlen > 0 && is_ipv4 && offset == 0 &&
2836				    (proto != IPPROTO_ICMP ||
2837				     is_icmp_query(ICMP(ulp))) &&
2838				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2839				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2840					send_reject(args, cmd->arg1, iplen, ip);
2841					m = args->m;
2842				}
2843				/* FALLTHROUGH */
2844#ifdef INET6
2845			case O_UNREACH6:
2846				if (hlen > 0 && is_ipv6 &&
2847				    ((offset & IP6F_OFF_MASK) == 0) &&
2848				    (proto != IPPROTO_ICMPV6 ||
2849				     (is_icmp6_query(icmp6_type) == 1)) &&
2850				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2851				    !IN6_IS_ADDR_MULTICAST(
2852					&args->f_id.dst_ip6)) {
2853					send_reject6(args,
2854					    cmd->opcode == O_REJECT ?
2855					    map_icmp_unreach(cmd->arg1):
2856					    cmd->arg1, hlen,
2857					    (struct ip6_hdr *)ip);
2858					m = args->m;
2859				}
2860				/* FALLTHROUGH */
2861#endif
2862			case O_DENY:
2863				retval = IP_FW_DENY;
2864				l = 0;		/* exit inner loop */
2865				done = 1;	/* exit outer loop */
2866				break;
2867
2868			case O_FORWARD_IP:
2869				if (args->eh)	/* not valid on layer2 pkts */
2870					break;
2871				if (q != f ||
2872				    dyn_info.direction == MATCH_FORWARD) {
2873				    struct sockaddr_in *sa;
2874
2875				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2876				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2877#ifdef INET6
2878					/*
2879					 * We use O_FORWARD_IP opcode for
2880					 * fwd rule with tablearg, but tables
2881					 * now support IPv6 addresses. And
2882					 * when we are inspecting IPv6 packet,
2883					 * we can use nh6 field from
2884					 * table_value as next_hop6 address.
2885					 */
2886					if (is_ipv6) {
2887						struct sockaddr_in6 *sa6;
2888
2889						sa6 = args->next_hop6 =
2890						    &args->hopstore6;
2891						sa6->sin6_family = AF_INET6;
2892						sa6->sin6_len = sizeof(*sa6);
2893						sa6->sin6_addr = TARG_VAL(
2894						    chain, tablearg, nh6);
2895						sa6->sin6_port = sa->sin_port;
2896						/*
2897						 * Set sin6_scope_id only for
2898						 * link-local unicast addresses.
2899						 */
2900						if (IN6_IS_ADDR_LINKLOCAL(
2901						    &sa6->sin6_addr))
2902							sa6->sin6_scope_id =
2903							    TARG_VAL(chain,
2904								tablearg,
2905								zoneid);
2906					} else
2907#endif
2908					{
2909						args->hopstore.sin_port =
2910						    sa->sin_port;
2911						sa = args->next_hop =
2912						    &args->hopstore;
2913						sa->sin_family = AF_INET;
2914						sa->sin_len = sizeof(*sa);
2915						sa->sin_addr.s_addr = htonl(
2916						    TARG_VAL(chain, tablearg,
2917						    nh4));
2918					}
2919				    } else {
2920					args->next_hop = sa;
2921				    }
2922				}
2923				retval = IP_FW_PASS;
2924				l = 0;          /* exit inner loop */
2925				done = 1;       /* exit outer loop */
2926				break;
2927
2928#ifdef INET6
2929			case O_FORWARD_IP6:
2930				if (args->eh)	/* not valid on layer2 pkts */
2931					break;
2932				if (q != f ||
2933				    dyn_info.direction == MATCH_FORWARD) {
2934					struct sockaddr_in6 *sin6;
2935
2936					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2937					args->next_hop6 = sin6;
2938				}
2939				retval = IP_FW_PASS;
2940				l = 0;		/* exit inner loop */
2941				done = 1;	/* exit outer loop */
2942				break;
2943#endif
2944
2945			case O_NETGRAPH:
2946			case O_NGTEE:
2947				set_match(args, f_pos, chain);
2948				args->rule.info = TARG(cmd->arg1, netgraph);
2949				if (V_fw_one_pass)
2950					args->rule.info |= IPFW_ONEPASS;
2951				retval = (cmd->opcode == O_NETGRAPH) ?
2952				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2953				l = 0;          /* exit inner loop */
2954				done = 1;       /* exit outer loop */
2955				break;
2956
2957			case O_SETFIB: {
2958				uint32_t fib;
2959
2960				IPFW_INC_RULE_COUNTER(f, pktlen);
2961				fib = TARG(cmd->arg1, fib) & 0x7FFF;
2962				if (fib >= rt_numfibs)
2963					fib = 0;
2964				M_SETFIB(m, fib);
2965				args->f_id.fib = fib;
2966				l = 0;		/* exit inner loop */
2967				break;
2968		        }
2969
2970			case O_SETDSCP: {
2971				uint16_t code;
2972
2973				code = TARG(cmd->arg1, dscp) & 0x3F;
2974				l = 0;		/* exit inner loop */
2975				if (is_ipv4) {
2976					uint16_t old;
2977
2978					old = *(uint16_t *)ip;
2979					ip->ip_tos = (code << 2) |
2980					    (ip->ip_tos & 0x03);
2981					ip->ip_sum = cksum_adjust(ip->ip_sum,
2982					    old, *(uint16_t *)ip);
2983				} else if (is_ipv6) {
2984					uint8_t *v;
2985
2986					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2987					*v = (*v & 0xF0) | (code >> 2);
2988					v++;
2989					*v = (*v & 0x3F) | ((code & 0x03) << 6);
2990				} else
2991					break;
2992
2993				IPFW_INC_RULE_COUNTER(f, pktlen);
2994				break;
2995			}
2996
2997			case O_NAT:
2998				l = 0;          /* exit inner loop */
2999				done = 1;       /* exit outer loop */
3000				/*
3001				 * Ensure that we do not invoke NAT handler for
3002				 * non IPv4 packets. Libalias expects only IPv4.
3003				 */
3004				if (!is_ipv4 || !IPFW_NAT_LOADED) {
3005				    retval = IP_FW_DENY;
3006				    break;
3007				}
3008
3009				struct cfg_nat *t;
3010				int nat_id;
3011
3012				set_match(args, f_pos, chain);
3013				/* Check if this is 'global' nat rule */
3014				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3015					retval = ipfw_nat_ptr(args, NULL, m);
3016					break;
3017				}
3018				t = ((ipfw_insn_nat *)cmd)->nat;
3019				if (t == NULL) {
3020					nat_id = TARG(cmd->arg1, nat);
3021					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3022
3023					if (t == NULL) {
3024					    retval = IP_FW_DENY;
3025					    break;
3026					}
3027					if (cmd->arg1 != IP_FW_TARG)
3028					    ((ipfw_insn_nat *)cmd)->nat = t;
3029				}
3030				retval = ipfw_nat_ptr(args, t, m);
3031				break;
3032
3033			case O_REASS: {
3034				int ip_off;
3035
3036				l = 0;	/* in any case exit inner loop */
3037				if (is_ipv6) /* IPv6 is not supported yet */
3038					break;
3039				IPFW_INC_RULE_COUNTER(f, pktlen);
3040				ip_off = ntohs(ip->ip_off);
3041
3042				/* if not fragmented, go to next rule */
3043				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3044				    break;
3045
3046				args->m = m = ip_reass(m);
3047
3048				/*
3049				 * do IP header checksum fixup.
3050				 */
3051				if (m == NULL) { /* fragment got swallowed */
3052				    retval = IP_FW_DENY;
3053				} else { /* good, packet complete */
3054				    int hlen;
3055
3056				    ip = mtod(m, struct ip *);
3057				    hlen = ip->ip_hl << 2;
3058				    ip->ip_sum = 0;
3059				    if (hlen == sizeof(struct ip))
3060					ip->ip_sum = in_cksum_hdr(ip);
3061				    else
3062					ip->ip_sum = in_cksum(m, hlen);
3063				    retval = IP_FW_REASS;
3064				    set_match(args, f_pos, chain);
3065				}
3066				done = 1;	/* exit outer loop */
3067				break;
3068			}
3069			case O_EXTERNAL_ACTION:
3070				l = 0; /* in any case exit inner loop */
3071				retval = ipfw_run_eaction(chain, args,
3072				    cmd, &done);
3073				/*
3074				 * If both @retval and @done are zero,
3075				 * consider this as rule matching and
3076				 * update counters.
3077				 */
3078				if (retval == 0 && done == 0) {
3079					IPFW_INC_RULE_COUNTER(f, pktlen);
3080					/*
3081					 * Reset the result of the last
3082					 * dynamic state lookup.
3083					 * External action can change
3084					 * @args content, and it may be
3085					 * used for new state lookup later.
3086					 */
3087					DYN_INFO_INIT(&dyn_info);
3088				}
3089				break;
3090
3091			default:
3092				panic("-- unknown opcode %d\n", cmd->opcode);
3093			} /* end of switch() on opcodes */
3094			/*
3095			 * if we get here with l=0, then match is irrelevant.
3096			 */
3097
3098			if (cmd->len & F_NOT)
3099				match = !match;
3100
3101			if (match) {
3102				if (cmd->len & F_OR)
3103					skip_or = 1;
3104			} else {
3105				if (!(cmd->len & F_OR)) /* not an OR block, */
3106					break;		/* try next rule    */
3107			}
3108
3109		}	/* end of inner loop, scan opcodes */
3110#undef PULLUP_LEN
3111
3112		if (done)
3113			break;
3114
3115/* next_rule:; */	/* try next rule		*/
3116
3117	}		/* end of outer for, scan rules */
3118
3119	if (done) {
3120		struct ip_fw *rule = chain->map[f_pos];
3121		/* Update statistics */
3122		IPFW_INC_RULE_COUNTER(rule, pktlen);
3123	} else {
3124		retval = IP_FW_DENY;
3125		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3126	}
3127	IPFW_PF_RUNLOCK(chain);
3128#ifdef __FreeBSD__
3129	if (ucred_cache != NULL)
3130		crfree(ucred_cache);
3131#endif
3132	return (retval);
3133
3134pullup_failed:
3135	if (V_fw_verbose)
3136		printf("ipfw: pullup failed\n");
3137	return (IP_FW_DENY);
3138}
3139
3140/*
3141 * Set maximum number of tables that can be used in given VNET ipfw instance.
3142 */
3143#ifdef SYSCTL_NODE
3144static int
3145sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3146{
3147	int error;
3148	unsigned int ntables;
3149
3150	ntables = V_fw_tables_max;
3151
3152	error = sysctl_handle_int(oidp, &ntables, 0, req);
3153	/* Read operation or some error */
3154	if ((error != 0) || (req->newptr == NULL))
3155		return (error);
3156
3157	return (ipfw_resize_tables(&V_layer3_chain, ntables));
3158}
3159
3160/*
3161 * Switches table namespace between global and per-set.
3162 */
3163static int
3164sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3165{
3166	int error;
3167	unsigned int sets;
3168
3169	sets = V_fw_tables_sets;
3170
3171	error = sysctl_handle_int(oidp, &sets, 0, req);
3172	/* Read operation or some error */
3173	if ((error != 0) || (req->newptr == NULL))
3174		return (error);
3175
3176	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3177}
3178#endif
3179
3180/*
3181 * Module and VNET glue
3182 */
3183
3184/*
3185 * Stuff that must be initialised only on boot or module load
3186 */
3187static int
3188ipfw_init(void)
3189{
3190	int error = 0;
3191
3192	/*
3193 	 * Only print out this stuff the first time around,
3194	 * when called from the sysinit code.
3195	 */
3196	printf("ipfw2 "
3197#ifdef INET6
3198		"(+ipv6) "
3199#endif
3200		"initialized, divert %s, nat %s, "
3201		"default to %s, logging ",
3202#ifdef IPDIVERT
3203		"enabled",
3204#else
3205		"loadable",
3206#endif
3207#ifdef IPFIREWALL_NAT
3208		"enabled",
3209#else
3210		"loadable",
3211#endif
3212		default_to_accept ? "accept" : "deny");
3213
3214	/*
3215	 * Note: V_xxx variables can be accessed here but the vnet specific
3216	 * initializer may not have been called yet for the VIMAGE case.
3217	 * Tuneables will have been processed. We will print out values for
3218	 * the default vnet.
3219	 * XXX This should all be rationalized AFTER 8.0
3220	 */
3221	if (V_fw_verbose == 0)
3222		printf("disabled\n");
3223	else if (V_verbose_limit == 0)
3224		printf("unlimited\n");
3225	else
3226		printf("limited to %d packets/entry by default\n",
3227		    V_verbose_limit);
3228
3229	/* Check user-supplied table count for validness */
3230	if (default_fw_tables > IPFW_TABLES_MAX)
3231	  default_fw_tables = IPFW_TABLES_MAX;
3232
3233	ipfw_init_sopt_handler();
3234	ipfw_init_obj_rewriter();
3235	ipfw_iface_init();
3236	return (error);
3237}
3238
3239/*
3240 * Called for the removal of the last instance only on module unload.
3241 */
3242static void
3243ipfw_destroy(void)
3244{
3245
3246	ipfw_iface_destroy();
3247	ipfw_destroy_sopt_handler();
3248	ipfw_destroy_obj_rewriter();
3249	printf("IP firewall unloaded\n");
3250}
3251
3252/*
3253 * Stuff that must be initialized for every instance
3254 * (including the first of course).
3255 */
3256static int
3257vnet_ipfw_init(const void *unused)
3258{
3259	int error, first;
3260	struct ip_fw *rule = NULL;
3261	struct ip_fw_chain *chain;
3262
3263	chain = &V_layer3_chain;
3264
3265	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3266
3267	/* First set up some values that are compile time options */
3268	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
3269	V_fw_deny_unknown_exthdrs = 1;
3270#ifdef IPFIREWALL_VERBOSE
3271	V_fw_verbose = 1;
3272#endif
3273#ifdef IPFIREWALL_VERBOSE_LIMIT
3274	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3275#endif
3276#ifdef IPFIREWALL_NAT
3277	LIST_INIT(&chain->nat);
3278#endif
3279
3280	/* Init shared services hash table */
3281	ipfw_init_srv(chain);
3282
3283	ipfw_init_counters();
3284	/* Set initial number of tables */
3285	V_fw_tables_max = default_fw_tables;
3286	error = ipfw_init_tables(chain, first);
3287	if (error) {
3288		printf("ipfw2: setting up tables failed\n");
3289		free(chain->map, M_IPFW);
3290		free(rule, M_IPFW);
3291		return (ENOSPC);
3292	}
3293
3294	IPFW_LOCK_INIT(chain);
3295
3296	/* fill and insert the default rule */
3297	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3298	rule->cmd_len = 1;
3299	rule->cmd[0].len = 1;
3300	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3301	chain->default_rule = rule;
3302	ipfw_add_protected_rule(chain, rule, 0);
3303
3304	ipfw_dyn_init(chain);
3305	ipfw_eaction_init(chain, first);
3306#ifdef LINEAR_SKIPTO
3307	ipfw_init_skipto_cache(chain);
3308#endif
3309	ipfw_bpf_init(first);
3310
3311	/* First set up some values that are compile time options */
3312	V_ipfw_vnet_ready = 1;		/* Open for business */
3313
3314	/*
3315	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3316	 * Even if the latter two fail we still keep the module alive
3317	 * because the sockopt and layer2 paths are still useful.
3318	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3319	 * so we can ignore the exact return value and just set a flag.
3320	 *
3321	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3322	 * changes in the underlying (per-vnet) variables trigger
3323	 * immediate hook()/unhook() calls.
3324	 * In layer2 we have the same behaviour, except that V_ether_ipfw
3325	 * is checked on each packet because there are no pfil hooks.
3326	 */
3327	V_ip_fw_ctl_ptr = ipfw_ctl3;
3328	error = ipfw_attach_hooks(1);
3329	return (error);
3330}
3331
3332/*
3333 * Called for the removal of each instance.
3334 */
3335static int
3336vnet_ipfw_uninit(const void *unused)
3337{
3338	struct ip_fw *reap;
3339	struct ip_fw_chain *chain = &V_layer3_chain;
3340	int i, last;
3341
3342	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3343	/*
3344	 * disconnect from ipv4, ipv6, layer2 and sockopt.
3345	 * Then grab, release and grab again the WLOCK so we make
3346	 * sure the update is propagated and nobody will be in.
3347	 */
3348	(void)ipfw_attach_hooks(0 /* detach */);
3349	V_ip_fw_ctl_ptr = NULL;
3350
3351	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3352
3353	IPFW_UH_WLOCK(chain);
3354	IPFW_UH_WUNLOCK(chain);
3355
3356	ipfw_dyn_uninit(0);	/* run the callout_drain */
3357
3358	IPFW_UH_WLOCK(chain);
3359
3360	reap = NULL;
3361	IPFW_WLOCK(chain);
3362	for (i = 0; i < chain->n_rules; i++)
3363		ipfw_reap_add(chain, &reap, chain->map[i]);
3364	free(chain->map, M_IPFW);
3365#ifdef LINEAR_SKIPTO
3366	ipfw_destroy_skipto_cache(chain);
3367#endif
3368	IPFW_WUNLOCK(chain);
3369	IPFW_UH_WUNLOCK(chain);
3370	ipfw_destroy_tables(chain, last);
3371	ipfw_eaction_uninit(chain, last);
3372	if (reap != NULL)
3373		ipfw_reap_rules(reap);
3374	vnet_ipfw_iface_destroy(chain);
3375	ipfw_destroy_srv(chain);
3376	IPFW_LOCK_DESTROY(chain);
3377	ipfw_dyn_uninit(1);	/* free the remaining parts */
3378	ipfw_destroy_counters();
3379	ipfw_bpf_uninit(last);
3380	return (0);
3381}
3382
3383/*
3384 * Module event handler.
3385 * In general we have the choice of handling most of these events by the
3386 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3387 * use the SYSINIT handlers as they are more capable of expressing the
3388 * flow of control during module and vnet operations, so this is just
3389 * a skeleton. Note there is no SYSINIT equivalent of the module
3390 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3391 */
3392static int
3393ipfw_modevent(module_t mod, int type, void *unused)
3394{
3395	int err = 0;
3396
3397	switch (type) {
3398	case MOD_LOAD:
3399		/* Called once at module load or
3400	 	 * system boot if compiled in. */
3401		break;
3402	case MOD_QUIESCE:
3403		/* Called before unload. May veto unloading. */
3404		break;
3405	case MOD_UNLOAD:
3406		/* Called during unload. */
3407		break;
3408	case MOD_SHUTDOWN:
3409		/* Called during system shutdown. */
3410		break;
3411	default:
3412		err = EOPNOTSUPP;
3413		break;
3414	}
3415	return err;
3416}
3417
3418static moduledata_t ipfwmod = {
3419	"ipfw",
3420	ipfw_modevent,
3421	0
3422};
3423
3424/* Define startup order. */
3425#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
3426#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
3427#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
3428#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
3429
3430DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3431FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3432MODULE_VERSION(ipfw, 3);
3433/* should declare some dependencies here */
3434
3435/*
3436 * Starting up. Done in order after ipfwmod() has been called.
3437 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3438 */
3439SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3440	    ipfw_init, NULL);
3441VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3442	    vnet_ipfw_init, NULL);
3443
3444/*
3445 * Closing up shop. These are done in REVERSE ORDER, but still
3446 * after ipfwmod() has been called. Not called on reboot.
3447 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3448 * or when the module is unloaded.
3449 */
3450SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3451	    ipfw_destroy, NULL);
3452VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3453	    vnet_ipfw_uninit, NULL);
3454/* end of file */
3455