ip_fw2.c revision 326142
1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/11/sys/netpfil/ipfw/ip_fw2.c 326142 2017-11-24 04:42:21Z ae $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdivert.h"
35#include "opt_inet.h"
36#ifndef INET
37#error "IPFIREWALL requires INET"
38#endif /* INET */
39#include "opt_inet6.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/condvar.h>
44#include <sys/counter.h>
45#include <sys/eventhandler.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/jail.h>
51#include <sys/module.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/rwlock.h>
55#include <sys/rmlock.h>
56#include <sys/socket.h>
57#include <sys/socketvar.h>
58#include <sys/sysctl.h>
59#include <sys/syslog.h>
60#include <sys/ucred.h>
61#include <net/ethernet.h> /* for ETHERTYPE_IP */
62#include <net/if.h>
63#include <net/if_var.h>
64#include <net/route.h>
65#include <net/pfil.h>
66#include <net/vnet.h>
67
68#include <netpfil/pf/pf_mtag.h>
69
70#include <netinet/in.h>
71#include <netinet/in_var.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_icmp.h>
76#include <netinet/ip_fw.h>
77#include <netinet/ip_carp.h>
78#include <netinet/pim.h>
79#include <netinet/tcp_var.h>
80#include <netinet/udp.h>
81#include <netinet/udp_var.h>
82#include <netinet/sctp.h>
83
84#include <netinet/ip6.h>
85#include <netinet/icmp6.h>
86#include <netinet/in_fib.h>
87#ifdef INET6
88#include <netinet6/in6_fib.h>
89#include <netinet6/in6_pcb.h>
90#include <netinet6/scope6_var.h>
91#include <netinet6/ip6_var.h>
92#endif
93
94#include <net/if_gre.h> /* for struct grehdr */
95
96#include <netpfil/ipfw/ip_fw_private.h>
97
98#include <machine/in_cksum.h>	/* XXX for in_cksum */
99
100#ifdef MAC
101#include <security/mac/mac_framework.h>
102#endif
103
104/*
105 * static variables followed by global ones.
106 * All ipfw global variables are here.
107 */
108
109static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
110#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
111
112static VNET_DEFINE(int, fw_permit_single_frag6) = 1;
113#define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
114
115#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
116static int default_to_accept = 1;
117#else
118static int default_to_accept;
119#endif
120
121VNET_DEFINE(int, autoinc_step);
122VNET_DEFINE(int, fw_one_pass) = 1;
123
124VNET_DEFINE(unsigned int, fw_tables_max);
125VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
126/* Use 128 tables by default */
127static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
128
129#ifndef LINEAR_SKIPTO
130static int jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
131    int tablearg, int jump_backwards);
132#define	JUMP(ch, f, num, targ, back)	jump_fast(ch, f, num, targ, back)
133#else
134static int jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
135    int tablearg, int jump_backwards);
136#define	JUMP(ch, f, num, targ, back)	jump_linear(ch, f, num, targ, back)
137#endif
138
139/*
140 * Each rule belongs to one of 32 different sets (0..31).
141 * The variable set_disable contains one bit per set.
142 * If the bit is set, all rules in the corresponding set
143 * are disabled. Set RESVD_SET(31) is reserved for the default rule
144 * and rules that are not deleted by the flush command,
145 * and CANNOT be disabled.
146 * Rules in set RESVD_SET can only be deleted individually.
147 */
148VNET_DEFINE(u_int32_t, set_disable);
149#define	V_set_disable			VNET(set_disable)
150
151VNET_DEFINE(int, fw_verbose);
152/* counter for ipfw_log(NULL...) */
153VNET_DEFINE(u_int64_t, norule_counter);
154VNET_DEFINE(int, verbose_limit);
155
156/* layer3_chain contains the list of rules for layer 3 */
157VNET_DEFINE(struct ip_fw_chain, layer3_chain);
158
159/* ipfw_vnet_ready controls when we are open for business */
160VNET_DEFINE(int, ipfw_vnet_ready) = 0;
161
162VNET_DEFINE(int, ipfw_nat_ready) = 0;
163
164ipfw_nat_t *ipfw_nat_ptr = NULL;
165struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
166ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
167ipfw_nat_cfg_t *ipfw_nat_del_ptr;
168ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
169ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
170
171#ifdef SYSCTL_NODE
172uint32_t dummy_def = IPFW_DEFAULT_RULE;
173static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
174static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
175
176SYSBEGIN(f3)
177
178SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
179SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
180    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
181    "Only do a single pass through ipfw when using dummynet(4)");
182SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
183    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
184    "Rule number auto-increment step");
185SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
186    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
187    "Log matches to ipfw rules");
188SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
189    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
190    "Set upper limit of matches of ipfw rules logged");
191SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
192    &dummy_def, 0,
193    "The default/max possible rule number.");
194SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
195    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, 0, 0, sysctl_ipfw_table_num, "IU",
196    "Maximum number of concurrently used tables");
197SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
198    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
199    0, 0, sysctl_ipfw_tables_sets, "IU",
200    "Use per-set namespace for tables");
201SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
202    &default_to_accept, 0,
203    "Make the default rule accept all packets.");
204TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
205SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
206    CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
207    "Number of static rules");
208
209#ifdef INET6
210SYSCTL_DECL(_net_inet6_ip6);
211SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
212SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
213    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
214    &VNET_NAME(fw_deny_unknown_exthdrs), 0,
215    "Deny packets with unknown IPv6 Extension Headers");
216SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
217    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
218    &VNET_NAME(fw_permit_single_frag6), 0,
219    "Permit single packet IPv6 fragments");
220#endif /* INET6 */
221
222SYSEND
223
224#endif /* SYSCTL_NODE */
225
226
227/*
228 * Some macros used in the various matching options.
229 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
230 * Other macros just cast void * into the appropriate type
231 */
232#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
233#define	TCP(p)		((struct tcphdr *)(p))
234#define	SCTP(p)		((struct sctphdr *)(p))
235#define	UDP(p)		((struct udphdr *)(p))
236#define	ICMP(p)		((struct icmphdr *)(p))
237#define	ICMP6(p)	((struct icmp6_hdr *)(p))
238
239static __inline int
240icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
241{
242	int type = icmp->icmp_type;
243
244	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
245}
246
247#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
248    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
249
250static int
251is_icmp_query(struct icmphdr *icmp)
252{
253	int type = icmp->icmp_type;
254
255	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
256}
257#undef TT
258
259/*
260 * The following checks use two arrays of 8 or 16 bits to store the
261 * bits that we want set or clear, respectively. They are in the
262 * low and high half of cmd->arg1 or cmd->d[0].
263 *
264 * We scan options and store the bits we find set. We succeed if
265 *
266 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
267 *
268 * The code is sometimes optimized not to store additional variables.
269 */
270
271static int
272flags_match(ipfw_insn *cmd, u_int8_t bits)
273{
274	u_char want_clear;
275	bits = ~bits;
276
277	if ( ((cmd->arg1 & 0xff) & bits) != 0)
278		return 0; /* some bits we want set were clear */
279	want_clear = (cmd->arg1 >> 8) & 0xff;
280	if ( (want_clear & bits) != want_clear)
281		return 0; /* some bits we want clear were set */
282	return 1;
283}
284
285static int
286ipopts_match(struct ip *ip, ipfw_insn *cmd)
287{
288	int optlen, bits = 0;
289	u_char *cp = (u_char *)(ip + 1);
290	int x = (ip->ip_hl << 2) - sizeof (struct ip);
291
292	for (; x > 0; x -= optlen, cp += optlen) {
293		int opt = cp[IPOPT_OPTVAL];
294
295		if (opt == IPOPT_EOL)
296			break;
297		if (opt == IPOPT_NOP)
298			optlen = 1;
299		else {
300			optlen = cp[IPOPT_OLEN];
301			if (optlen <= 0 || optlen > x)
302				return 0; /* invalid or truncated */
303		}
304		switch (opt) {
305
306		default:
307			break;
308
309		case IPOPT_LSRR:
310			bits |= IP_FW_IPOPT_LSRR;
311			break;
312
313		case IPOPT_SSRR:
314			bits |= IP_FW_IPOPT_SSRR;
315			break;
316
317		case IPOPT_RR:
318			bits |= IP_FW_IPOPT_RR;
319			break;
320
321		case IPOPT_TS:
322			bits |= IP_FW_IPOPT_TS;
323			break;
324		}
325	}
326	return (flags_match(cmd, bits));
327}
328
329static int
330tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
331{
332	int optlen, bits = 0;
333	u_char *cp = (u_char *)(tcp + 1);
334	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
335
336	for (; x > 0; x -= optlen, cp += optlen) {
337		int opt = cp[0];
338		if (opt == TCPOPT_EOL)
339			break;
340		if (opt == TCPOPT_NOP)
341			optlen = 1;
342		else {
343			optlen = cp[1];
344			if (optlen <= 0)
345				break;
346		}
347
348		switch (opt) {
349
350		default:
351			break;
352
353		case TCPOPT_MAXSEG:
354			bits |= IP_FW_TCPOPT_MSS;
355			break;
356
357		case TCPOPT_WINDOW:
358			bits |= IP_FW_TCPOPT_WINDOW;
359			break;
360
361		case TCPOPT_SACK_PERMITTED:
362		case TCPOPT_SACK:
363			bits |= IP_FW_TCPOPT_SACK;
364			break;
365
366		case TCPOPT_TIMESTAMP:
367			bits |= IP_FW_TCPOPT_TS;
368			break;
369
370		}
371	}
372	return (flags_match(cmd, bits));
373}
374
375static int
376iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
377    uint32_t *tablearg)
378{
379
380	if (ifp == NULL)	/* no iface with this packet, match fails */
381		return (0);
382
383	/* Check by name or by IP address */
384	if (cmd->name[0] != '\0') { /* match by name */
385		if (cmd->name[0] == '\1') /* use tablearg to match */
386			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
387			    &ifp->if_index, tablearg);
388		/* Check name */
389		if (cmd->p.glob) {
390			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
391				return(1);
392		} else {
393			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
394				return(1);
395		}
396	} else {
397#if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
398		struct ifaddr *ia;
399
400		if_addr_rlock(ifp);
401		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
402			if (ia->ifa_addr->sa_family != AF_INET)
403				continue;
404			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
405			    (ia->ifa_addr))->sin_addr.s_addr) {
406				if_addr_runlock(ifp);
407				return(1);	/* match */
408			}
409		}
410		if_addr_runlock(ifp);
411#endif /* __FreeBSD__ */
412	}
413	return(0);	/* no match, fail ... */
414}
415
416/*
417 * The verify_path function checks if a route to the src exists and
418 * if it is reachable via ifp (when provided).
419 *
420 * The 'verrevpath' option checks that the interface that an IP packet
421 * arrives on is the same interface that traffic destined for the
422 * packet's source address would be routed out of.
423 * The 'versrcreach' option just checks that the source address is
424 * reachable via any route (except default) in the routing table.
425 * These two are a measure to block forged packets. This is also
426 * commonly known as "anti-spoofing" or Unicast Reverse Path
427 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
428 * is purposely reminiscent of the Cisco IOS command,
429 *
430 *   ip verify unicast reverse-path
431 *   ip verify unicast source reachable-via any
432 *
433 * which implements the same functionality. But note that the syntax
434 * is misleading, and the check may be performed on all IP packets
435 * whether unicast, multicast, or broadcast.
436 */
437static int
438verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
439{
440#if defined(USERSPACE) || !defined(__FreeBSD__)
441	return 0;
442#else
443	struct nhop4_basic nh4;
444
445	if (fib4_lookup_nh_basic(fib, src, NHR_IFAIF, 0, &nh4) != 0)
446		return (0);
447
448	/*
449	 * If ifp is provided, check for equality with rtentry.
450	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
451	 * in order to pass packets injected back by if_simloop():
452	 * routing entry (via lo0) for our own address
453	 * may exist, so we need to handle routing assymetry.
454	 */
455	if (ifp != NULL && ifp != nh4.nh_ifp)
456		return (0);
457
458	/* if no ifp provided, check if rtentry is not default route */
459	if (ifp == NULL && (nh4.nh_flags & NHF_DEFAULT) != 0)
460		return (0);
461
462	/* or if this is a blackhole/reject route */
463	if (ifp == NULL && (nh4.nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
464		return (0);
465
466	/* found valid route */
467	return 1;
468#endif /* __FreeBSD__ */
469}
470
471#ifdef INET6
472/*
473 * ipv6 specific rules here...
474 */
475static __inline int
476icmp6type_match (int type, ipfw_insn_u32 *cmd)
477{
478	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
479}
480
481static int
482flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
483{
484	int i;
485	for (i=0; i <= cmd->o.arg1; ++i )
486		if (curr_flow == cmd->d[i] )
487			return 1;
488	return 0;
489}
490
491/* support for IP6_*_ME opcodes */
492static const struct in6_addr lla_mask = {{{
493	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
494	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
495}}};
496
497static int
498ipfw_localip6(struct in6_addr *in6)
499{
500	struct rm_priotracker in6_ifa_tracker;
501	struct in6_ifaddr *ia;
502
503	if (IN6_IS_ADDR_MULTICAST(in6))
504		return (0);
505
506	if (!IN6_IS_ADDR_LINKLOCAL(in6))
507		return (in6_localip(in6));
508
509	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
510	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
511		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
512			continue;
513		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
514		    in6, &lla_mask)) {
515			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
516			return (1);
517		}
518	}
519	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
520	return (0);
521}
522
523static int
524verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
525{
526	struct nhop6_basic nh6;
527
528	if (IN6_IS_SCOPE_LINKLOCAL(src))
529		return (1);
530
531	if (fib6_lookup_nh_basic(fib, src, 0, NHR_IFAIF, 0, &nh6) != 0)
532		return (0);
533
534	/* If ifp is provided, check for equality with route table. */
535	if (ifp != NULL && ifp != nh6.nh_ifp)
536		return (0);
537
538	/* if no ifp provided, check if rtentry is not default route */
539	if (ifp == NULL && (nh6.nh_flags & NHF_DEFAULT) != 0)
540		return (0);
541
542	/* or if this is a blackhole/reject route */
543	if (ifp == NULL && (nh6.nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
544		return (0);
545
546	/* found valid route */
547	return 1;
548}
549
550static int
551is_icmp6_query(int icmp6_type)
552{
553	if ((icmp6_type <= ICMP6_MAXTYPE) &&
554	    (icmp6_type == ICMP6_ECHO_REQUEST ||
555	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
556	    icmp6_type == ICMP6_WRUREQUEST ||
557	    icmp6_type == ICMP6_FQDN_QUERY ||
558	    icmp6_type == ICMP6_NI_QUERY))
559		return (1);
560
561	return (0);
562}
563
564static void
565send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
566{
567	struct mbuf *m;
568
569	m = args->m;
570	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
571		struct tcphdr *tcp;
572		tcp = (struct tcphdr *)((char *)ip6 + hlen);
573
574		if ((tcp->th_flags & TH_RST) == 0) {
575			struct mbuf *m0;
576			m0 = ipfw_send_pkt(args->m, &(args->f_id),
577			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
578			    tcp->th_flags | TH_RST);
579			if (m0 != NULL)
580				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
581				    NULL);
582		}
583		FREE_PKT(m);
584	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
585#if 0
586		/*
587		 * Unlike above, the mbufs need to line up with the ip6 hdr,
588		 * as the contents are read. We need to m_adj() the
589		 * needed amount.
590		 * The mbuf will however be thrown away so we can adjust it.
591		 * Remember we did an m_pullup on it already so we
592		 * can make some assumptions about contiguousness.
593		 */
594		if (args->L3offset)
595			m_adj(m, args->L3offset);
596#endif
597		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
598	} else
599		FREE_PKT(m);
600
601	args->m = NULL;
602}
603
604#endif /* INET6 */
605
606
607/*
608 * sends a reject message, consuming the mbuf passed as an argument.
609 */
610static void
611send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
612{
613
614#if 0
615	/* XXX When ip is not guaranteed to be at mtod() we will
616	 * need to account for this */
617	 * The mbuf will however be thrown away so we can adjust it.
618	 * Remember we did an m_pullup on it already so we
619	 * can make some assumptions about contiguousness.
620	 */
621	if (args->L3offset)
622		m_adj(m, args->L3offset);
623#endif
624	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
625		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
626	} else if (args->f_id.proto == IPPROTO_TCP) {
627		struct tcphdr *const tcp =
628		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
629		if ( (tcp->th_flags & TH_RST) == 0) {
630			struct mbuf *m;
631			m = ipfw_send_pkt(args->m, &(args->f_id),
632				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
633				tcp->th_flags | TH_RST);
634			if (m != NULL)
635				ip_output(m, NULL, NULL, 0, NULL, NULL);
636		}
637		FREE_PKT(args->m);
638	} else
639		FREE_PKT(args->m);
640	args->m = NULL;
641}
642
643/*
644 * Support for uid/gid/jail lookup. These tests are expensive
645 * (because we may need to look into the list of active sockets)
646 * so we cache the results. ugid_lookupp is 0 if we have not
647 * yet done a lookup, 1 if we succeeded, and -1 if we tried
648 * and failed. The function always returns the match value.
649 * We could actually spare the variable and use *uc, setting
650 * it to '(void *)check_uidgid if we have no info, NULL if
651 * we tried and failed, or any other value if successful.
652 */
653static int
654check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
655    struct ucred **uc)
656{
657#if defined(USERSPACE)
658	return 0;	// not supported in userspace
659#else
660#ifndef __FreeBSD__
661	/* XXX */
662	return cred_check(insn, proto, oif,
663	    dst_ip, dst_port, src_ip, src_port,
664	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
665#else  /* FreeBSD */
666	struct in_addr src_ip, dst_ip;
667	struct inpcbinfo *pi;
668	struct ipfw_flow_id *id;
669	struct inpcb *pcb, *inp;
670	struct ifnet *oif;
671	int lookupflags;
672	int match;
673
674	id = &args->f_id;
675	inp = args->inp;
676	oif = args->oif;
677
678	/*
679	 * Check to see if the UDP or TCP stack supplied us with
680	 * the PCB. If so, rather then holding a lock and looking
681	 * up the PCB, we can use the one that was supplied.
682	 */
683	if (inp && *ugid_lookupp == 0) {
684		INP_LOCK_ASSERT(inp);
685		if (inp->inp_socket != NULL) {
686			*uc = crhold(inp->inp_cred);
687			*ugid_lookupp = 1;
688		} else
689			*ugid_lookupp = -1;
690	}
691	/*
692	 * If we have already been here and the packet has no
693	 * PCB entry associated with it, then we can safely
694	 * assume that this is a no match.
695	 */
696	if (*ugid_lookupp == -1)
697		return (0);
698	if (id->proto == IPPROTO_TCP) {
699		lookupflags = 0;
700		pi = &V_tcbinfo;
701	} else if (id->proto == IPPROTO_UDP) {
702		lookupflags = INPLOOKUP_WILDCARD;
703		pi = &V_udbinfo;
704	} else
705		return 0;
706	lookupflags |= INPLOOKUP_RLOCKPCB;
707	match = 0;
708	if (*ugid_lookupp == 0) {
709		if (id->addr_type == 6) {
710#ifdef INET6
711			if (oif == NULL)
712				pcb = in6_pcblookup_mbuf(pi,
713				    &id->src_ip6, htons(id->src_port),
714				    &id->dst_ip6, htons(id->dst_port),
715				    lookupflags, oif, args->m);
716			else
717				pcb = in6_pcblookup_mbuf(pi,
718				    &id->dst_ip6, htons(id->dst_port),
719				    &id->src_ip6, htons(id->src_port),
720				    lookupflags, oif, args->m);
721#else
722			*ugid_lookupp = -1;
723			return (0);
724#endif
725		} else {
726			src_ip.s_addr = htonl(id->src_ip);
727			dst_ip.s_addr = htonl(id->dst_ip);
728			if (oif == NULL)
729				pcb = in_pcblookup_mbuf(pi,
730				    src_ip, htons(id->src_port),
731				    dst_ip, htons(id->dst_port),
732				    lookupflags, oif, args->m);
733			else
734				pcb = in_pcblookup_mbuf(pi,
735				    dst_ip, htons(id->dst_port),
736				    src_ip, htons(id->src_port),
737				    lookupflags, oif, args->m);
738		}
739		if (pcb != NULL) {
740			INP_RLOCK_ASSERT(pcb);
741			*uc = crhold(pcb->inp_cred);
742			*ugid_lookupp = 1;
743			INP_RUNLOCK(pcb);
744		}
745		if (*ugid_lookupp == 0) {
746			/*
747			 * We tried and failed, set the variable to -1
748			 * so we will not try again on this packet.
749			 */
750			*ugid_lookupp = -1;
751			return (0);
752		}
753	}
754	if (insn->o.opcode == O_UID)
755		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
756	else if (insn->o.opcode == O_GID)
757		match = groupmember((gid_t)insn->d[0], *uc);
758	else if (insn->o.opcode == O_JAIL)
759		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
760	return (match);
761#endif /* __FreeBSD__ */
762#endif /* not supported in userspace */
763}
764
765/*
766 * Helper function to set args with info on the rule after the matching
767 * one. slot is precise, whereas we guess rule_id as they are
768 * assigned sequentially.
769 */
770static inline void
771set_match(struct ip_fw_args *args, int slot,
772	struct ip_fw_chain *chain)
773{
774	args->rule.chain_id = chain->id;
775	args->rule.slot = slot + 1; /* we use 0 as a marker */
776	args->rule.rule_id = 1 + chain->map[slot]->id;
777	args->rule.rulenum = chain->map[slot]->rulenum;
778}
779
780#ifndef LINEAR_SKIPTO
781/*
782 * Helper function to enable cached rule lookups using
783 * cached_id and cached_pos fields in ipfw rule.
784 */
785static int
786jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
787    int tablearg, int jump_backwards)
788{
789	int f_pos;
790
791	/* If possible use cached f_pos (in f->cached_pos),
792	 * whose version is written in f->cached_id
793	 * (horrible hacks to avoid changing the ABI).
794	 */
795	if (num != IP_FW_TARG && f->cached_id == chain->id)
796		f_pos = f->cached_pos;
797	else {
798		int i = IP_FW_ARG_TABLEARG(chain, num, skipto);
799		/* make sure we do not jump backward */
800		if (jump_backwards == 0 && i <= f->rulenum)
801			i = f->rulenum + 1;
802		if (chain->idxmap != NULL)
803			f_pos = chain->idxmap[i];
804		else
805			f_pos = ipfw_find_rule(chain, i, 0);
806		/* update the cache */
807		if (num != IP_FW_TARG) {
808			f->cached_id = chain->id;
809			f->cached_pos = f_pos;
810		}
811	}
812
813	return (f_pos);
814}
815#else
816/*
817 * Helper function to enable real fast rule lookups.
818 */
819static int
820jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
821    int tablearg, int jump_backwards)
822{
823	int f_pos;
824
825	num = IP_FW_ARG_TABLEARG(chain, num, skipto);
826	/* make sure we do not jump backward */
827	if (jump_backwards == 0 && num <= f->rulenum)
828		num = f->rulenum + 1;
829	f_pos = chain->idxmap[num];
830
831	return (f_pos);
832}
833#endif
834
835#define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
836/*
837 * The main check routine for the firewall.
838 *
839 * All arguments are in args so we can modify them and return them
840 * back to the caller.
841 *
842 * Parameters:
843 *
844 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
845 *		Starts with the IP header.
846 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
847 *	args->L3offset	Number of bytes bypassed if we came from L2.
848 *			e.g. often sizeof(eh)  ** NOTYET **
849 *	args->oif	Outgoing interface, NULL if packet is incoming.
850 *		The incoming interface is in the mbuf. (in)
851 *	args->divert_rule (in/out)
852 *		Skip up to the first rule past this rule number;
853 *		upon return, non-zero port number for divert or tee.
854 *
855 *	args->rule	Pointer to the last matching rule (in/out)
856 *	args->next_hop	Socket we are forwarding to (out).
857 *	args->next_hop6	IPv6 next hop we are forwarding to (out).
858 *	args->f_id	Addresses grabbed from the packet (out)
859 * 	args->rule.info	a cookie depending on rule action
860 *
861 * Return value:
862 *
863 *	IP_FW_PASS	the packet must be accepted
864 *	IP_FW_DENY	the packet must be dropped
865 *	IP_FW_DIVERT	divert packet, port in m_tag
866 *	IP_FW_TEE	tee packet, port in m_tag
867 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
868 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
869 *		args->rule contains the matching rule,
870 *		args->rule.info has additional information.
871 *
872 */
873int
874ipfw_chk(struct ip_fw_args *args)
875{
876
877	/*
878	 * Local variables holding state while processing a packet:
879	 *
880	 * IMPORTANT NOTE: to speed up the processing of rules, there
881	 * are some assumption on the values of the variables, which
882	 * are documented here. Should you change them, please check
883	 * the implementation of the various instructions to make sure
884	 * that they still work.
885	 *
886	 * args->eh	The MAC header. It is non-null for a layer2
887	 *	packet, it is NULL for a layer-3 packet.
888	 * **notyet**
889	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
890	 *
891	 * m | args->m	Pointer to the mbuf, as received from the caller.
892	 *	It may change if ipfw_chk() does an m_pullup, or if it
893	 *	consumes the packet because it calls send_reject().
894	 *	XXX This has to change, so that ipfw_chk() never modifies
895	 *	or consumes the buffer.
896	 * ip	is the beginning of the ip(4 or 6) header.
897	 *	Calculated by adding the L3offset to the start of data.
898	 *	(Until we start using L3offset, the packet is
899	 *	supposed to start with the ip header).
900	 */
901	struct mbuf *m = args->m;
902	struct ip *ip = mtod(m, struct ip *);
903
904	/*
905	 * For rules which contain uid/gid or jail constraints, cache
906	 * a copy of the users credentials after the pcb lookup has been
907	 * executed. This will speed up the processing of rules with
908	 * these types of constraints, as well as decrease contention
909	 * on pcb related locks.
910	 */
911#ifndef __FreeBSD__
912	struct bsd_ucred ucred_cache;
913#else
914	struct ucred *ucred_cache = NULL;
915#endif
916	int ucred_lookup = 0;
917
918	/*
919	 * oif | args->oif	If NULL, ipfw_chk has been called on the
920	 *	inbound path (ether_input, ip_input).
921	 *	If non-NULL, ipfw_chk has been called on the outbound path
922	 *	(ether_output, ip_output).
923	 */
924	struct ifnet *oif = args->oif;
925
926	int f_pos = 0;		/* index of current rule in the array */
927	int retval = 0;
928
929	/*
930	 * hlen	The length of the IP header.
931	 */
932	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
933
934	/*
935	 * offset	The offset of a fragment. offset != 0 means that
936	 *	we have a fragment at this offset of an IPv4 packet.
937	 *	offset == 0 means that (if this is an IPv4 packet)
938	 *	this is the first or only fragment.
939	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
940	 *	or there is a single packet fragment (fragment header added
941	 *	without needed).  We will treat a single packet fragment as if
942	 *	there was no fragment header (or log/block depending on the
943	 *	V_fw_permit_single_frag6 sysctl setting).
944	 */
945	u_short offset = 0;
946	u_short ip6f_mf = 0;
947
948	/*
949	 * Local copies of addresses. They are only valid if we have
950	 * an IP packet.
951	 *
952	 * proto	The protocol. Set to 0 for non-ip packets,
953	 *	or to the protocol read from the packet otherwise.
954	 *	proto != 0 means that we have an IPv4 packet.
955	 *
956	 * src_port, dst_port	port numbers, in HOST format. Only
957	 *	valid for TCP and UDP packets.
958	 *
959	 * src_ip, dst_ip	ip addresses, in NETWORK format.
960	 *	Only valid for IPv4 packets.
961	 */
962	uint8_t proto;
963	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
964	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
965	int iplen = 0;
966	int pktlen;
967	uint16_t	etype = 0;	/* Host order stored ether type */
968
969	/*
970	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
971	 * 	MATCH_NONE when checked and not matched (q = NULL),
972	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
973	 */
974	int dyn_dir = MATCH_UNKNOWN;
975	uint16_t dyn_name = 0;
976	ipfw_dyn_rule *q = NULL;
977	struct ip_fw_chain *chain = &V_layer3_chain;
978
979	/*
980	 * We store in ulp a pointer to the upper layer protocol header.
981	 * In the ipv4 case this is easy to determine from the header,
982	 * but for ipv6 we might have some additional headers in the middle.
983	 * ulp is NULL if not found.
984	 */
985	void *ulp = NULL;		/* upper layer protocol pointer. */
986
987	/* XXX ipv6 variables */
988	int is_ipv6 = 0;
989	uint8_t	icmp6_type = 0;
990	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
991	/* end of ipv6 variables */
992
993	int is_ipv4 = 0;
994
995	int done = 0;		/* flag to exit the outer loop */
996
997	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
998		return (IP_FW_PASS);	/* accept */
999
1000	dst_ip.s_addr = 0;		/* make sure it is initialized */
1001	src_ip.s_addr = 0;		/* make sure it is initialized */
1002	pktlen = m->m_pkthdr.len;
1003	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
1004	proto = args->f_id.proto = 0;	/* mark f_id invalid */
1005		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
1006
1007/*
1008 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1009 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1010 * pointer might become stale after other pullups (but we never use it
1011 * this way).
1012 */
1013#define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1014#define PULLUP_LEN(_len, p, T)					\
1015do {								\
1016	int x = (_len) + T;					\
1017	if ((m)->m_len < x) {					\
1018		args->m = m = m_pullup(m, x);			\
1019		if (m == NULL)					\
1020			goto pullup_failed;			\
1021	}							\
1022	p = (mtod(m, char *) + (_len));				\
1023} while (0)
1024
1025	/*
1026	 * if we have an ether header,
1027	 */
1028	if (args->eh)
1029		etype = ntohs(args->eh->ether_type);
1030
1031	/* Identify IP packets and fill up variables. */
1032	if (pktlen >= sizeof(struct ip6_hdr) &&
1033	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
1034		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1035		is_ipv6 = 1;
1036		args->f_id.addr_type = 6;
1037		hlen = sizeof(struct ip6_hdr);
1038		proto = ip6->ip6_nxt;
1039
1040		/* Search extension headers to find upper layer protocols */
1041		while (ulp == NULL && offset == 0) {
1042			switch (proto) {
1043			case IPPROTO_ICMPV6:
1044				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1045				icmp6_type = ICMP6(ulp)->icmp6_type;
1046				break;
1047
1048			case IPPROTO_TCP:
1049				PULLUP_TO(hlen, ulp, struct tcphdr);
1050				dst_port = TCP(ulp)->th_dport;
1051				src_port = TCP(ulp)->th_sport;
1052				/* save flags for dynamic rules */
1053				args->f_id._flags = TCP(ulp)->th_flags;
1054				break;
1055
1056			case IPPROTO_SCTP:
1057				PULLUP_TO(hlen, ulp, struct sctphdr);
1058				src_port = SCTP(ulp)->src_port;
1059				dst_port = SCTP(ulp)->dest_port;
1060				break;
1061
1062			case IPPROTO_UDP:
1063				PULLUP_TO(hlen, ulp, struct udphdr);
1064				dst_port = UDP(ulp)->uh_dport;
1065				src_port = UDP(ulp)->uh_sport;
1066				break;
1067
1068			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1069				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1070				ext_hd |= EXT_HOPOPTS;
1071				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1072				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1073				ulp = NULL;
1074				break;
1075
1076			case IPPROTO_ROUTING:	/* RFC 2460 */
1077				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1078				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1079				case 0:
1080					ext_hd |= EXT_RTHDR0;
1081					break;
1082				case 2:
1083					ext_hd |= EXT_RTHDR2;
1084					break;
1085				default:
1086					if (V_fw_verbose)
1087						printf("IPFW2: IPV6 - Unknown "
1088						    "Routing Header type(%d)\n",
1089						    ((struct ip6_rthdr *)
1090						    ulp)->ip6r_type);
1091					if (V_fw_deny_unknown_exthdrs)
1092					    return (IP_FW_DENY);
1093					break;
1094				}
1095				ext_hd |= EXT_ROUTING;
1096				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1097				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1098				ulp = NULL;
1099				break;
1100
1101			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1102				PULLUP_TO(hlen, ulp, struct ip6_frag);
1103				ext_hd |= EXT_FRAGMENT;
1104				hlen += sizeof (struct ip6_frag);
1105				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1106				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1107					IP6F_OFF_MASK;
1108				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1109					IP6F_MORE_FRAG;
1110				if (V_fw_permit_single_frag6 == 0 &&
1111				    offset == 0 && ip6f_mf == 0) {
1112					if (V_fw_verbose)
1113						printf("IPFW2: IPV6 - Invalid "
1114						    "Fragment Header\n");
1115					if (V_fw_deny_unknown_exthdrs)
1116					    return (IP_FW_DENY);
1117					break;
1118				}
1119				args->f_id.extra =
1120				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1121				ulp = NULL;
1122				break;
1123
1124			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1125				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1126				ext_hd |= EXT_DSTOPTS;
1127				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1128				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1129				ulp = NULL;
1130				break;
1131
1132			case IPPROTO_AH:	/* RFC 2402 */
1133				PULLUP_TO(hlen, ulp, struct ip6_ext);
1134				ext_hd |= EXT_AH;
1135				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1136				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1137				ulp = NULL;
1138				break;
1139
1140			case IPPROTO_ESP:	/* RFC 2406 */
1141				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1142				/* Anything past Seq# is variable length and
1143				 * data past this ext. header is encrypted. */
1144				ext_hd |= EXT_ESP;
1145				break;
1146
1147			case IPPROTO_NONE:	/* RFC 2460 */
1148				/*
1149				 * Packet ends here, and IPv6 header has
1150				 * already been pulled up. If ip6e_len!=0
1151				 * then octets must be ignored.
1152				 */
1153				ulp = ip; /* non-NULL to get out of loop. */
1154				break;
1155
1156			case IPPROTO_OSPFIGP:
1157				/* XXX OSPF header check? */
1158				PULLUP_TO(hlen, ulp, struct ip6_ext);
1159				break;
1160
1161			case IPPROTO_PIM:
1162				/* XXX PIM header check? */
1163				PULLUP_TO(hlen, ulp, struct pim);
1164				break;
1165
1166			case IPPROTO_GRE:	/* RFC 1701 */
1167				/* XXX GRE header check? */
1168				PULLUP_TO(hlen, ulp, struct grehdr);
1169				break;
1170
1171			case IPPROTO_CARP:
1172				PULLUP_TO(hlen, ulp, struct carp_header);
1173				if (((struct carp_header *)ulp)->carp_version !=
1174				    CARP_VERSION)
1175					return (IP_FW_DENY);
1176				if (((struct carp_header *)ulp)->carp_type !=
1177				    CARP_ADVERTISEMENT)
1178					return (IP_FW_DENY);
1179				break;
1180
1181			case IPPROTO_IPV6:	/* RFC 2893 */
1182				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1183				break;
1184
1185			case IPPROTO_IPV4:	/* RFC 2893 */
1186				PULLUP_TO(hlen, ulp, struct ip);
1187				break;
1188
1189			default:
1190				if (V_fw_verbose)
1191					printf("IPFW2: IPV6 - Unknown "
1192					    "Extension Header(%d), ext_hd=%x\n",
1193					     proto, ext_hd);
1194				if (V_fw_deny_unknown_exthdrs)
1195				    return (IP_FW_DENY);
1196				PULLUP_TO(hlen, ulp, struct ip6_ext);
1197				break;
1198			} /*switch */
1199		}
1200		ip = mtod(m, struct ip *);
1201		ip6 = (struct ip6_hdr *)ip;
1202		args->f_id.src_ip6 = ip6->ip6_src;
1203		args->f_id.dst_ip6 = ip6->ip6_dst;
1204		args->f_id.src_ip = 0;
1205		args->f_id.dst_ip = 0;
1206		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1207		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1208	} else if (pktlen >= sizeof(struct ip) &&
1209	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1210	    	is_ipv4 = 1;
1211		hlen = ip->ip_hl << 2;
1212		args->f_id.addr_type = 4;
1213
1214		/*
1215		 * Collect parameters into local variables for faster matching.
1216		 */
1217		proto = ip->ip_p;
1218		src_ip = ip->ip_src;
1219		dst_ip = ip->ip_dst;
1220		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1221		iplen = ntohs(ip->ip_len);
1222
1223		if (offset == 0) {
1224			switch (proto) {
1225			case IPPROTO_TCP:
1226				PULLUP_TO(hlen, ulp, struct tcphdr);
1227				dst_port = TCP(ulp)->th_dport;
1228				src_port = TCP(ulp)->th_sport;
1229				/* save flags for dynamic rules */
1230				args->f_id._flags = TCP(ulp)->th_flags;
1231				break;
1232
1233			case IPPROTO_SCTP:
1234				PULLUP_TO(hlen, ulp, struct sctphdr);
1235				src_port = SCTP(ulp)->src_port;
1236				dst_port = SCTP(ulp)->dest_port;
1237				break;
1238
1239			case IPPROTO_UDP:
1240				PULLUP_TO(hlen, ulp, struct udphdr);
1241				dst_port = UDP(ulp)->uh_dport;
1242				src_port = UDP(ulp)->uh_sport;
1243				break;
1244
1245			case IPPROTO_ICMP:
1246				PULLUP_TO(hlen, ulp, struct icmphdr);
1247				//args->f_id.flags = ICMP(ulp)->icmp_type;
1248				break;
1249
1250			default:
1251				break;
1252			}
1253		}
1254
1255		ip = mtod(m, struct ip *);
1256		args->f_id.src_ip = ntohl(src_ip.s_addr);
1257		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1258	}
1259#undef PULLUP_TO
1260	pktlen = iplen < pktlen ? iplen: pktlen;
1261	if (proto) { /* we may have port numbers, store them */
1262		args->f_id.proto = proto;
1263		args->f_id.src_port = src_port = ntohs(src_port);
1264		args->f_id.dst_port = dst_port = ntohs(dst_port);
1265	}
1266
1267	IPFW_PF_RLOCK(chain);
1268	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1269		IPFW_PF_RUNLOCK(chain);
1270		return (IP_FW_PASS);	/* accept */
1271	}
1272	if (args->rule.slot) {
1273		/*
1274		 * Packet has already been tagged as a result of a previous
1275		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1276		 * REASS, NETGRAPH, DIVERT/TEE...)
1277		 * Validate the slot and continue from the next one
1278		 * if still present, otherwise do a lookup.
1279		 */
1280		f_pos = (args->rule.chain_id == chain->id) ?
1281		    args->rule.slot :
1282		    ipfw_find_rule(chain, args->rule.rulenum,
1283			args->rule.rule_id);
1284	} else {
1285		f_pos = 0;
1286	}
1287
1288	/*
1289	 * Now scan the rules, and parse microinstructions for each rule.
1290	 * We have two nested loops and an inner switch. Sometimes we
1291	 * need to break out of one or both loops, or re-enter one of
1292	 * the loops with updated variables. Loop variables are:
1293	 *
1294	 *	f_pos (outer loop) points to the current rule.
1295	 *		On output it points to the matching rule.
1296	 *	done (outer loop) is used as a flag to break the loop.
1297	 *	l (inner loop)	residual length of current rule.
1298	 *		cmd points to the current microinstruction.
1299	 *
1300	 * We break the inner loop by setting l=0 and possibly
1301	 * cmdlen=0 if we don't want to advance cmd.
1302	 * We break the outer loop by setting done=1
1303	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1304	 * as needed.
1305	 */
1306	for (; f_pos < chain->n_rules; f_pos++) {
1307		ipfw_insn *cmd;
1308		uint32_t tablearg = 0;
1309		int l, cmdlen, skip_or; /* skip rest of OR block */
1310		struct ip_fw *f;
1311
1312		f = chain->map[f_pos];
1313		if (V_set_disable & (1 << f->set) )
1314			continue;
1315
1316		skip_or = 0;
1317		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1318		    l -= cmdlen, cmd += cmdlen) {
1319			int match;
1320
1321			/*
1322			 * check_body is a jump target used when we find a
1323			 * CHECK_STATE, and need to jump to the body of
1324			 * the target rule.
1325			 */
1326
1327/* check_body: */
1328			cmdlen = F_LEN(cmd);
1329			/*
1330			 * An OR block (insn_1 || .. || insn_n) has the
1331			 * F_OR bit set in all but the last instruction.
1332			 * The first match will set "skip_or", and cause
1333			 * the following instructions to be skipped until
1334			 * past the one with the F_OR bit clear.
1335			 */
1336			if (skip_or) {		/* skip this instruction */
1337				if ((cmd->len & F_OR) == 0)
1338					skip_or = 0;	/* next one is good */
1339				continue;
1340			}
1341			match = 0; /* set to 1 if we succeed */
1342
1343			switch (cmd->opcode) {
1344			/*
1345			 * The first set of opcodes compares the packet's
1346			 * fields with some pattern, setting 'match' if a
1347			 * match is found. At the end of the loop there is
1348			 * logic to deal with F_NOT and F_OR flags associated
1349			 * with the opcode.
1350			 */
1351			case O_NOP:
1352				match = 1;
1353				break;
1354
1355			case O_FORWARD_MAC:
1356				printf("ipfw: opcode %d unimplemented\n",
1357				    cmd->opcode);
1358				break;
1359
1360			case O_GID:
1361			case O_UID:
1362			case O_JAIL:
1363				/*
1364				 * We only check offset == 0 && proto != 0,
1365				 * as this ensures that we have a
1366				 * packet with the ports info.
1367				 */
1368				if (offset != 0)
1369					break;
1370				if (proto == IPPROTO_TCP ||
1371				    proto == IPPROTO_UDP)
1372					match = check_uidgid(
1373						    (ipfw_insn_u32 *)cmd,
1374						    args, &ucred_lookup,
1375#ifdef __FreeBSD__
1376						    &ucred_cache);
1377#else
1378						    (void *)&ucred_cache);
1379#endif
1380				break;
1381
1382			case O_RECV:
1383				match = iface_match(m->m_pkthdr.rcvif,
1384				    (ipfw_insn_if *)cmd, chain, &tablearg);
1385				break;
1386
1387			case O_XMIT:
1388				match = iface_match(oif, (ipfw_insn_if *)cmd,
1389				    chain, &tablearg);
1390				break;
1391
1392			case O_VIA:
1393				match = iface_match(oif ? oif :
1394				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd,
1395				    chain, &tablearg);
1396				break;
1397
1398			case O_MACADDR2:
1399				if (args->eh != NULL) {	/* have MAC header */
1400					u_int32_t *want = (u_int32_t *)
1401						((ipfw_insn_mac *)cmd)->addr;
1402					u_int32_t *mask = (u_int32_t *)
1403						((ipfw_insn_mac *)cmd)->mask;
1404					u_int32_t *hdr = (u_int32_t *)args->eh;
1405
1406					match =
1407					    ( want[0] == (hdr[0] & mask[0]) &&
1408					      want[1] == (hdr[1] & mask[1]) &&
1409					      want[2] == (hdr[2] & mask[2]) );
1410				}
1411				break;
1412
1413			case O_MAC_TYPE:
1414				if (args->eh != NULL) {
1415					u_int16_t *p =
1416					    ((ipfw_insn_u16 *)cmd)->ports;
1417					int i;
1418
1419					for (i = cmdlen - 1; !match && i>0;
1420					    i--, p += 2)
1421						match = (etype >= p[0] &&
1422						    etype <= p[1]);
1423				}
1424				break;
1425
1426			case O_FRAG:
1427				match = (offset != 0);
1428				break;
1429
1430			case O_IN:	/* "out" is "not in" */
1431				match = (oif == NULL);
1432				break;
1433
1434			case O_LAYER2:
1435				match = (args->eh != NULL);
1436				break;
1437
1438			case O_DIVERTED:
1439			    {
1440				/* For diverted packets, args->rule.info
1441				 * contains the divert port (in host format)
1442				 * reason and direction.
1443				 */
1444				uint32_t i = args->rule.info;
1445				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1446				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1447			    }
1448				break;
1449
1450			case O_PROTO:
1451				/*
1452				 * We do not allow an arg of 0 so the
1453				 * check of "proto" only suffices.
1454				 */
1455				match = (proto == cmd->arg1);
1456				break;
1457
1458			case O_IP_SRC:
1459				match = is_ipv4 &&
1460				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1461				    src_ip.s_addr);
1462				break;
1463
1464			case O_IP_DST_LOOKUP:
1465			{
1466				void *pkey;
1467				uint32_t vidx, key;
1468				uint16_t keylen;
1469
1470				if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1471					/* Determine lookup key type */
1472					vidx = ((ipfw_insn_u32 *)cmd)->d[1];
1473					if (vidx != 4 /* uid */ &&
1474					    vidx != 5 /* jail */ &&
1475					    is_ipv6 == 0 && is_ipv4 == 0)
1476						break;
1477					/* Determine key length */
1478					if (vidx == 0 /* dst-ip */ ||
1479					    vidx == 1 /* src-ip */)
1480						keylen = is_ipv6 ?
1481						    sizeof(struct in6_addr):
1482						    sizeof(in_addr_t);
1483					else {
1484						keylen = sizeof(key);
1485						pkey = &key;
1486					}
1487					if (vidx == 0 /* dst-ip */)
1488						pkey = is_ipv4 ? (void *)&dst_ip:
1489						    (void *)&args->f_id.dst_ip6;
1490					else if (vidx == 1 /* src-ip */)
1491						pkey = is_ipv4 ? (void *)&src_ip:
1492						    (void *)&args->f_id.src_ip6;
1493					else if (vidx == 6 /* dscp */) {
1494						if (is_ipv4)
1495							key = ip->ip_tos >> 2;
1496						else {
1497							key = args->f_id.flow_id6;
1498							key = (key & 0x0f) << 2 |
1499							    (key & 0xf000) >> 14;
1500						}
1501						key &= 0x3f;
1502					} else if (vidx == 2 /* dst-port */ ||
1503					    vidx == 3 /* src-port */) {
1504						/* Skip fragments */
1505						if (offset != 0)
1506							break;
1507						/* Skip proto without ports */
1508						if (proto != IPPROTO_TCP &&
1509						    proto != IPPROTO_UDP &&
1510						    proto != IPPROTO_SCTP)
1511							break;
1512						if (vidx == 2 /* dst-port */)
1513							key = dst_port;
1514						else
1515							key = src_port;
1516					}
1517#ifndef USERSPACE
1518					else if (vidx == 4 /* uid */ ||
1519					    vidx == 5 /* jail */) {
1520						check_uidgid(
1521						    (ipfw_insn_u32 *)cmd,
1522						    args, &ucred_lookup,
1523#ifdef __FreeBSD__
1524						    &ucred_cache);
1525						if (vidx == 4 /* uid */)
1526							key = ucred_cache->cr_uid;
1527						else if (vidx == 5 /* jail */)
1528							key = ucred_cache->cr_prison->pr_id;
1529#else /* !__FreeBSD__ */
1530						    (void *)&ucred_cache);
1531						if (vidx == 4 /* uid */)
1532							key = ucred_cache.uid;
1533						else if (vidx == 5 /* jail */)
1534							key = ucred_cache.xid;
1535#endif /* !__FreeBSD__ */
1536					}
1537#endif /* !USERSPACE */
1538					else
1539						break;
1540					match = ipfw_lookup_table(chain,
1541					    cmd->arg1, keylen, pkey, &vidx);
1542					if (!match)
1543						break;
1544					tablearg = vidx;
1545					break;
1546				}
1547				/* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */
1548				/* FALLTHROUGH */
1549			}
1550			case O_IP_SRC_LOOKUP:
1551			{
1552				void *pkey;
1553				uint32_t vidx;
1554				uint16_t keylen;
1555
1556				if (is_ipv4) {
1557					keylen = sizeof(in_addr_t);
1558					if (cmd->opcode == O_IP_DST_LOOKUP)
1559						pkey = &dst_ip;
1560					else
1561						pkey = &src_ip;
1562				} else if (is_ipv6) {
1563					keylen = sizeof(struct in6_addr);
1564					if (cmd->opcode == O_IP_DST_LOOKUP)
1565						pkey = &args->f_id.dst_ip6;
1566					else
1567						pkey = &args->f_id.src_ip6;
1568				} else
1569					break;
1570				match = ipfw_lookup_table(chain, cmd->arg1,
1571				    keylen, pkey, &vidx);
1572				if (!match)
1573					break;
1574				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
1575					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
1576					    TARG_VAL(chain, vidx, tag);
1577					if (!match)
1578						break;
1579				}
1580				tablearg = vidx;
1581				break;
1582			}
1583
1584			case O_IP_FLOW_LOOKUP:
1585				{
1586					uint32_t v = 0;
1587					match = ipfw_lookup_table(chain,
1588					    cmd->arg1, 0, &args->f_id, &v);
1589					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1590						match = ((ipfw_insn_u32 *)cmd)->d[0] ==
1591						    TARG_VAL(chain, v, tag);
1592					if (match)
1593						tablearg = v;
1594				}
1595				break;
1596			case O_IP_SRC_MASK:
1597			case O_IP_DST_MASK:
1598				if (is_ipv4) {
1599				    uint32_t a =
1600					(cmd->opcode == O_IP_DST_MASK) ?
1601					    dst_ip.s_addr : src_ip.s_addr;
1602				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1603				    int i = cmdlen-1;
1604
1605				    for (; !match && i>0; i-= 2, p+= 2)
1606					match = (p[0] == (a & p[1]));
1607				}
1608				break;
1609
1610			case O_IP_SRC_ME:
1611				if (is_ipv4) {
1612					match = in_localip(src_ip);
1613					break;
1614				}
1615#ifdef INET6
1616				/* FALLTHROUGH */
1617			case O_IP6_SRC_ME:
1618				match= is_ipv6 && ipfw_localip6(&args->f_id.src_ip6);
1619#endif
1620				break;
1621
1622			case O_IP_DST_SET:
1623			case O_IP_SRC_SET:
1624				if (is_ipv4) {
1625					u_int32_t *d = (u_int32_t *)(cmd+1);
1626					u_int32_t addr =
1627					    cmd->opcode == O_IP_DST_SET ?
1628						args->f_id.dst_ip :
1629						args->f_id.src_ip;
1630
1631					    if (addr < d[0])
1632						    break;
1633					    addr -= d[0]; /* subtract base */
1634					    match = (addr < cmd->arg1) &&
1635						( d[ 1 + (addr>>5)] &
1636						  (1<<(addr & 0x1f)) );
1637				}
1638				break;
1639
1640			case O_IP_DST:
1641				match = is_ipv4 &&
1642				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1643				    dst_ip.s_addr);
1644				break;
1645
1646			case O_IP_DST_ME:
1647				if (is_ipv4) {
1648					match = in_localip(dst_ip);
1649					break;
1650				}
1651#ifdef INET6
1652				/* FALLTHROUGH */
1653			case O_IP6_DST_ME:
1654				match= is_ipv6 && ipfw_localip6(&args->f_id.dst_ip6);
1655#endif
1656				break;
1657
1658
1659			case O_IP_SRCPORT:
1660			case O_IP_DSTPORT:
1661				/*
1662				 * offset == 0 && proto != 0 is enough
1663				 * to guarantee that we have a
1664				 * packet with port info.
1665				 */
1666				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1667				    && offset == 0) {
1668					u_int16_t x =
1669					    (cmd->opcode == O_IP_SRCPORT) ?
1670						src_port : dst_port ;
1671					u_int16_t *p =
1672					    ((ipfw_insn_u16 *)cmd)->ports;
1673					int i;
1674
1675					for (i = cmdlen - 1; !match && i>0;
1676					    i--, p += 2)
1677						match = (x>=p[0] && x<=p[1]);
1678				}
1679				break;
1680
1681			case O_ICMPTYPE:
1682				match = (offset == 0 && proto==IPPROTO_ICMP &&
1683				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1684				break;
1685
1686#ifdef INET6
1687			case O_ICMP6TYPE:
1688				match = is_ipv6 && offset == 0 &&
1689				    proto==IPPROTO_ICMPV6 &&
1690				    icmp6type_match(
1691					ICMP6(ulp)->icmp6_type,
1692					(ipfw_insn_u32 *)cmd);
1693				break;
1694#endif /* INET6 */
1695
1696			case O_IPOPT:
1697				match = (is_ipv4 &&
1698				    ipopts_match(ip, cmd) );
1699				break;
1700
1701			case O_IPVER:
1702				match = (is_ipv4 &&
1703				    cmd->arg1 == ip->ip_v);
1704				break;
1705
1706			case O_IPID:
1707			case O_IPLEN:
1708			case O_IPTTL:
1709				if (is_ipv4) {	/* only for IP packets */
1710				    uint16_t x;
1711				    uint16_t *p;
1712				    int i;
1713
1714				    if (cmd->opcode == O_IPLEN)
1715					x = iplen;
1716				    else if (cmd->opcode == O_IPTTL)
1717					x = ip->ip_ttl;
1718				    else /* must be IPID */
1719					x = ntohs(ip->ip_id);
1720				    if (cmdlen == 1) {
1721					match = (cmd->arg1 == x);
1722					break;
1723				    }
1724				    /* otherwise we have ranges */
1725				    p = ((ipfw_insn_u16 *)cmd)->ports;
1726				    i = cmdlen - 1;
1727				    for (; !match && i>0; i--, p += 2)
1728					match = (x >= p[0] && x <= p[1]);
1729				}
1730				break;
1731
1732			case O_IPPRECEDENCE:
1733				match = (is_ipv4 &&
1734				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1735				break;
1736
1737			case O_IPTOS:
1738				match = (is_ipv4 &&
1739				    flags_match(cmd, ip->ip_tos));
1740				break;
1741
1742			case O_DSCP:
1743			    {
1744				uint32_t *p;
1745				uint16_t x;
1746
1747				p = ((ipfw_insn_u32 *)cmd)->d;
1748
1749				if (is_ipv4)
1750					x = ip->ip_tos >> 2;
1751				else if (is_ipv6) {
1752					uint8_t *v;
1753					v = &((struct ip6_hdr *)ip)->ip6_vfc;
1754					x = (*v & 0x0F) << 2;
1755					v++;
1756					x |= *v >> 6;
1757				} else
1758					break;
1759
1760				/* DSCP bitmask is stored as low_u32 high_u32 */
1761				if (x >= 32)
1762					match = *(p + 1) & (1 << (x - 32));
1763				else
1764					match = *p & (1 << x);
1765			    }
1766				break;
1767
1768			case O_TCPDATALEN:
1769				if (proto == IPPROTO_TCP && offset == 0) {
1770				    struct tcphdr *tcp;
1771				    uint16_t x;
1772				    uint16_t *p;
1773				    int i;
1774#ifdef INET6
1775				    if (is_ipv6) {
1776					    struct ip6_hdr *ip6;
1777
1778					    ip6 = (struct ip6_hdr *)ip;
1779					    if (ip6->ip6_plen == 0) {
1780						    /*
1781						     * Jumbo payload is not
1782						     * supported by this
1783						     * opcode.
1784						     */
1785						    break;
1786					    }
1787					    x = iplen - hlen;
1788				    } else
1789#endif /* INET6 */
1790					    x = iplen - (ip->ip_hl << 2);
1791				    tcp = TCP(ulp);
1792				    x -= tcp->th_off << 2;
1793				    if (cmdlen == 1) {
1794					match = (cmd->arg1 == x);
1795					break;
1796				    }
1797				    /* otherwise we have ranges */
1798				    p = ((ipfw_insn_u16 *)cmd)->ports;
1799				    i = cmdlen - 1;
1800				    for (; !match && i>0; i--, p += 2)
1801					match = (x >= p[0] && x <= p[1]);
1802				}
1803				break;
1804
1805			case O_TCPFLAGS:
1806				match = (proto == IPPROTO_TCP && offset == 0 &&
1807				    flags_match(cmd, TCP(ulp)->th_flags));
1808				break;
1809
1810			case O_TCPOPTS:
1811				if (proto == IPPROTO_TCP && offset == 0 && ulp){
1812					PULLUP_LEN(hlen, ulp,
1813					    (TCP(ulp)->th_off << 2));
1814					match = tcpopts_match(TCP(ulp), cmd);
1815				}
1816				break;
1817
1818			case O_TCPSEQ:
1819				match = (proto == IPPROTO_TCP && offset == 0 &&
1820				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1821					TCP(ulp)->th_seq);
1822				break;
1823
1824			case O_TCPACK:
1825				match = (proto == IPPROTO_TCP && offset == 0 &&
1826				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1827					TCP(ulp)->th_ack);
1828				break;
1829
1830			case O_TCPWIN:
1831				if (proto == IPPROTO_TCP && offset == 0) {
1832				    uint16_t x;
1833				    uint16_t *p;
1834				    int i;
1835
1836				    x = ntohs(TCP(ulp)->th_win);
1837				    if (cmdlen == 1) {
1838					match = (cmd->arg1 == x);
1839					break;
1840				    }
1841				    /* Otherwise we have ranges. */
1842				    p = ((ipfw_insn_u16 *)cmd)->ports;
1843				    i = cmdlen - 1;
1844				    for (; !match && i > 0; i--, p += 2)
1845					match = (x >= p[0] && x <= p[1]);
1846				}
1847				break;
1848
1849			case O_ESTAB:
1850				/* reject packets which have SYN only */
1851				/* XXX should i also check for TH_ACK ? */
1852				match = (proto == IPPROTO_TCP && offset == 0 &&
1853				    (TCP(ulp)->th_flags &
1854				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1855				break;
1856
1857			case O_ALTQ: {
1858				struct pf_mtag *at;
1859				struct m_tag *mtag;
1860				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1861
1862				/*
1863				 * ALTQ uses mbuf tags from another
1864				 * packet filtering system - pf(4).
1865				 * We allocate a tag in its format
1866				 * and fill it in, pretending to be pf(4).
1867				 */
1868				match = 1;
1869				at = pf_find_mtag(m);
1870				if (at != NULL && at->qid != 0)
1871					break;
1872				mtag = m_tag_get(PACKET_TAG_PF,
1873				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
1874				if (mtag == NULL) {
1875					/*
1876					 * Let the packet fall back to the
1877					 * default ALTQ.
1878					 */
1879					break;
1880				}
1881				m_tag_prepend(m, mtag);
1882				at = (struct pf_mtag *)(mtag + 1);
1883				at->qid = altq->qid;
1884				at->hdr = ip;
1885				break;
1886			}
1887
1888			case O_LOG:
1889				ipfw_log(chain, f, hlen, args, m,
1890				    oif, offset | ip6f_mf, tablearg, ip);
1891				match = 1;
1892				break;
1893
1894			case O_PROB:
1895				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1896				break;
1897
1898			case O_VERREVPATH:
1899				/* Outgoing packets automatically pass/match */
1900				match = ((oif != NULL) ||
1901				    (m->m_pkthdr.rcvif == NULL) ||
1902				    (
1903#ifdef INET6
1904				    is_ipv6 ?
1905					verify_path6(&(args->f_id.src_ip6),
1906					    m->m_pkthdr.rcvif, args->f_id.fib) :
1907#endif
1908				    verify_path(src_ip, m->m_pkthdr.rcvif,
1909				        args->f_id.fib)));
1910				break;
1911
1912			case O_VERSRCREACH:
1913				/* Outgoing packets automatically pass/match */
1914				match = (hlen > 0 && ((oif != NULL) ||
1915#ifdef INET6
1916				    is_ipv6 ?
1917				        verify_path6(&(args->f_id.src_ip6),
1918				            NULL, args->f_id.fib) :
1919#endif
1920				    verify_path(src_ip, NULL, args->f_id.fib)));
1921				break;
1922
1923			case O_ANTISPOOF:
1924				/* Outgoing packets automatically pass/match */
1925				if (oif == NULL && hlen > 0 &&
1926				    (  (is_ipv4 && in_localaddr(src_ip))
1927#ifdef INET6
1928				    || (is_ipv6 &&
1929				        in6_localaddr(&(args->f_id.src_ip6)))
1930#endif
1931				    ))
1932					match =
1933#ifdef INET6
1934					    is_ipv6 ? verify_path6(
1935					        &(args->f_id.src_ip6),
1936					        m->m_pkthdr.rcvif,
1937						args->f_id.fib) :
1938#endif
1939					    verify_path(src_ip,
1940					    	m->m_pkthdr.rcvif,
1941					        args->f_id.fib);
1942				else
1943					match = 1;
1944				break;
1945
1946			case O_IPSEC:
1947				match = (m_tag_find(m,
1948				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1949				/* otherwise no match */
1950				break;
1951
1952#ifdef INET6
1953			case O_IP6_SRC:
1954				match = is_ipv6 &&
1955				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1956				    &((ipfw_insn_ip6 *)cmd)->addr6);
1957				break;
1958
1959			case O_IP6_DST:
1960				match = is_ipv6 &&
1961				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1962				    &((ipfw_insn_ip6 *)cmd)->addr6);
1963				break;
1964			case O_IP6_SRC_MASK:
1965			case O_IP6_DST_MASK:
1966				if (is_ipv6) {
1967					int i = cmdlen - 1;
1968					struct in6_addr p;
1969					struct in6_addr *d =
1970					    &((ipfw_insn_ip6 *)cmd)->addr6;
1971
1972					for (; !match && i > 0; d += 2,
1973					    i -= F_INSN_SIZE(struct in6_addr)
1974					    * 2) {
1975						p = (cmd->opcode ==
1976						    O_IP6_SRC_MASK) ?
1977						    args->f_id.src_ip6:
1978						    args->f_id.dst_ip6;
1979						APPLY_MASK(&p, &d[1]);
1980						match =
1981						    IN6_ARE_ADDR_EQUAL(&d[0],
1982						    &p);
1983					}
1984				}
1985				break;
1986
1987			case O_FLOW6ID:
1988				match = is_ipv6 &&
1989				    flow6id_match(args->f_id.flow_id6,
1990				    (ipfw_insn_u32 *) cmd);
1991				break;
1992
1993			case O_EXT_HDR:
1994				match = is_ipv6 &&
1995				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1996				break;
1997
1998			case O_IP6:
1999				match = is_ipv6;
2000				break;
2001#endif
2002
2003			case O_IP4:
2004				match = is_ipv4;
2005				break;
2006
2007			case O_TAG: {
2008				struct m_tag *mtag;
2009				uint32_t tag = TARG(cmd->arg1, tag);
2010
2011				/* Packet is already tagged with this tag? */
2012				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2013
2014				/* We have `untag' action when F_NOT flag is
2015				 * present. And we must remove this mtag from
2016				 * mbuf and reset `match' to zero (`match' will
2017				 * be inversed later).
2018				 * Otherwise we should allocate new mtag and
2019				 * push it into mbuf.
2020				 */
2021				if (cmd->len & F_NOT) { /* `untag' action */
2022					if (mtag != NULL)
2023						m_tag_delete(m, mtag);
2024					match = 0;
2025				} else {
2026					if (mtag == NULL) {
2027						mtag = m_tag_alloc( MTAG_IPFW,
2028						    tag, 0, M_NOWAIT);
2029						if (mtag != NULL)
2030							m_tag_prepend(m, mtag);
2031					}
2032					match = 1;
2033				}
2034				break;
2035			}
2036
2037			case O_FIB: /* try match the specified fib */
2038				if (args->f_id.fib == cmd->arg1)
2039					match = 1;
2040				break;
2041
2042			case O_SOCKARG:	{
2043#ifndef USERSPACE	/* not supported in userspace */
2044				struct inpcb *inp = args->inp;
2045				struct inpcbinfo *pi;
2046
2047				if (is_ipv6) /* XXX can we remove this ? */
2048					break;
2049
2050				if (proto == IPPROTO_TCP)
2051					pi = &V_tcbinfo;
2052				else if (proto == IPPROTO_UDP)
2053					pi = &V_udbinfo;
2054				else
2055					break;
2056
2057				/*
2058				 * XXXRW: so_user_cookie should almost
2059				 * certainly be inp_user_cookie?
2060				 */
2061
2062				/* For incoming packet, lookup up the
2063				inpcb using the src/dest ip/port tuple */
2064				if (inp == NULL) {
2065					inp = in_pcblookup(pi,
2066						src_ip, htons(src_port),
2067						dst_ip, htons(dst_port),
2068						INPLOOKUP_RLOCKPCB, NULL);
2069					if (inp != NULL) {
2070						tablearg =
2071						    inp->inp_socket->so_user_cookie;
2072						if (tablearg)
2073							match = 1;
2074						INP_RUNLOCK(inp);
2075					}
2076				} else {
2077					if (inp->inp_socket) {
2078						tablearg =
2079						    inp->inp_socket->so_user_cookie;
2080						if (tablearg)
2081							match = 1;
2082					}
2083				}
2084#endif /* !USERSPACE */
2085				break;
2086			}
2087
2088			case O_TAGGED: {
2089				struct m_tag *mtag;
2090				uint32_t tag = TARG(cmd->arg1, tag);
2091
2092				if (cmdlen == 1) {
2093					match = m_tag_locate(m, MTAG_IPFW,
2094					    tag, NULL) != NULL;
2095					break;
2096				}
2097
2098				/* we have ranges */
2099				for (mtag = m_tag_first(m);
2100				    mtag != NULL && !match;
2101				    mtag = m_tag_next(m, mtag)) {
2102					uint16_t *p;
2103					int i;
2104
2105					if (mtag->m_tag_cookie != MTAG_IPFW)
2106						continue;
2107
2108					p = ((ipfw_insn_u16 *)cmd)->ports;
2109					i = cmdlen - 1;
2110					for(; !match && i > 0; i--, p += 2)
2111						match =
2112						    mtag->m_tag_id >= p[0] &&
2113						    mtag->m_tag_id <= p[1];
2114				}
2115				break;
2116			}
2117
2118			/*
2119			 * The second set of opcodes represents 'actions',
2120			 * i.e. the terminal part of a rule once the packet
2121			 * matches all previous patterns.
2122			 * Typically there is only one action for each rule,
2123			 * and the opcode is stored at the end of the rule
2124			 * (but there are exceptions -- see below).
2125			 *
2126			 * In general, here we set retval and terminate the
2127			 * outer loop (would be a 'break 3' in some language,
2128			 * but we need to set l=0, done=1)
2129			 *
2130			 * Exceptions:
2131			 * O_COUNT and O_SKIPTO actions:
2132			 *   instead of terminating, we jump to the next rule
2133			 *   (setting l=0), or to the SKIPTO target (setting
2134			 *   f/f_len, cmd and l as needed), respectively.
2135			 *
2136			 * O_TAG, O_LOG and O_ALTQ action parameters:
2137			 *   perform some action and set match = 1;
2138			 *
2139			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2140			 *   not real 'actions', and are stored right
2141			 *   before the 'action' part of the rule.
2142			 *   These opcodes try to install an entry in the
2143			 *   state tables; if successful, we continue with
2144			 *   the next opcode (match=1; break;), otherwise
2145			 *   the packet must be dropped (set retval,
2146			 *   break loops with l=0, done=1)
2147			 *
2148			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2149			 *   cause a lookup of the state table, and a jump
2150			 *   to the 'action' part of the parent rule
2151			 *   if an entry is found, or
2152			 *   (CHECK_STATE only) a jump to the next rule if
2153			 *   the entry is not found.
2154			 *   The result of the lookup is cached so that
2155			 *   further instances of these opcodes become NOPs.
2156			 *   The jump to the next rule is done by setting
2157			 *   l=0, cmdlen=0.
2158			 */
2159			case O_LIMIT:
2160			case O_KEEP_STATE:
2161				if (ipfw_install_state(chain, f,
2162				    (ipfw_insn_limit *)cmd, args, tablearg)) {
2163					/* error or limit violation */
2164					retval = IP_FW_DENY;
2165					l = 0;	/* exit inner loop */
2166					done = 1; /* exit outer loop */
2167				}
2168				match = 1;
2169				break;
2170
2171			case O_PROBE_STATE:
2172			case O_CHECK_STATE:
2173				/*
2174				 * dynamic rules are checked at the first
2175				 * keep-state or check-state occurrence,
2176				 * with the result being stored in dyn_dir
2177				 * and dyn_name.
2178				 * The compiler introduces a PROBE_STATE
2179				 * instruction for us when we have a
2180				 * KEEP_STATE (because PROBE_STATE needs
2181				 * to be run first).
2182				 *
2183				 * (dyn_dir == MATCH_UNKNOWN) means this is
2184				 * first lookup for such f_id. Do lookup.
2185				 *
2186				 * (dyn_dir != MATCH_UNKNOWN &&
2187				 *  dyn_name != 0 && dyn_name != cmd->arg1)
2188				 * means previous lookup didn't find dynamic
2189				 * rule for specific state name and current
2190				 * lookup will search rule with another state
2191				 * name. Redo lookup.
2192				 *
2193				 * (dyn_dir != MATCH_UNKNOWN && dyn_name == 0)
2194				 * means previous lookup was for `any' name
2195				 * and it didn't find rule. No need to do
2196				 * lookup again.
2197				 */
2198				if ((dyn_dir == MATCH_UNKNOWN ||
2199				    (dyn_name != 0 &&
2200				    dyn_name != cmd->arg1)) &&
2201				    (q = ipfw_lookup_dyn_rule(&args->f_id,
2202				     &dyn_dir, proto == IPPROTO_TCP ?
2203				     TCP(ulp): NULL,
2204				     (dyn_name = cmd->arg1))) != NULL) {
2205					/*
2206					 * Found dynamic entry, update stats
2207					 * and jump to the 'action' part of
2208					 * the parent rule by setting
2209					 * f, cmd, l and clearing cmdlen.
2210					 */
2211					IPFW_INC_DYN_COUNTER(q, pktlen);
2212					/* XXX we would like to have f_pos
2213					 * readily accessible in the dynamic
2214				         * rule, instead of having to
2215					 * lookup q->rule.
2216					 */
2217					f = q->rule;
2218					f_pos = ipfw_find_rule(chain,
2219						f->rulenum, f->id);
2220					cmd = ACTION_PTR(f);
2221					l = f->cmd_len - f->act_ofs;
2222					ipfw_dyn_unlock(q);
2223					cmdlen = 0;
2224					match = 1;
2225					break;
2226				}
2227				/*
2228				 * Dynamic entry not found. If CHECK_STATE,
2229				 * skip to next rule, if PROBE_STATE just
2230				 * ignore and continue with next opcode.
2231				 */
2232				if (cmd->opcode == O_CHECK_STATE)
2233					l = 0;	/* exit inner loop */
2234				match = 1;
2235				break;
2236
2237			case O_ACCEPT:
2238				retval = 0;	/* accept */
2239				l = 0;		/* exit inner loop */
2240				done = 1;	/* exit outer loop */
2241				break;
2242
2243			case O_PIPE:
2244			case O_QUEUE:
2245				set_match(args, f_pos, chain);
2246				args->rule.info = TARG(cmd->arg1, pipe);
2247				if (cmd->opcode == O_PIPE)
2248					args->rule.info |= IPFW_IS_PIPE;
2249				if (V_fw_one_pass)
2250					args->rule.info |= IPFW_ONEPASS;
2251				retval = IP_FW_DUMMYNET;
2252				l = 0;          /* exit inner loop */
2253				done = 1;       /* exit outer loop */
2254				break;
2255
2256			case O_DIVERT:
2257			case O_TEE:
2258				if (args->eh) /* not on layer 2 */
2259				    break;
2260				/* otherwise this is terminal */
2261				l = 0;		/* exit inner loop */
2262				done = 1;	/* exit outer loop */
2263				retval = (cmd->opcode == O_DIVERT) ?
2264					IP_FW_DIVERT : IP_FW_TEE;
2265				set_match(args, f_pos, chain);
2266				args->rule.info = TARG(cmd->arg1, divert);
2267				break;
2268
2269			case O_COUNT:
2270				IPFW_INC_RULE_COUNTER(f, pktlen);
2271				l = 0;		/* exit inner loop */
2272				break;
2273
2274			case O_SKIPTO:
2275			    IPFW_INC_RULE_COUNTER(f, pktlen);
2276			    f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0);
2277			    /*
2278			     * Skip disabled rules, and re-enter
2279			     * the inner loop with the correct
2280			     * f_pos, f, l and cmd.
2281			     * Also clear cmdlen and skip_or
2282			     */
2283			    for (; f_pos < chain->n_rules - 1 &&
2284				    (V_set_disable &
2285				     (1 << chain->map[f_pos]->set));
2286				    f_pos++)
2287				;
2288			    /* Re-enter the inner loop at the skipto rule. */
2289			    f = chain->map[f_pos];
2290			    l = f->cmd_len;
2291			    cmd = f->cmd;
2292			    match = 1;
2293			    cmdlen = 0;
2294			    skip_or = 0;
2295			    continue;
2296			    break;	/* not reached */
2297
2298			case O_CALLRETURN: {
2299				/*
2300				 * Implementation of `subroutine' call/return,
2301				 * in the stack carried in an mbuf tag. This
2302				 * is different from `skipto' in that any call
2303				 * address is possible (`skipto' must prevent
2304				 * backward jumps to avoid endless loops).
2305				 * We have `return' action when F_NOT flag is
2306				 * present. The `m_tag_id' field is used as
2307				 * stack pointer.
2308				 */
2309				struct m_tag *mtag;
2310				uint16_t jmpto, *stack;
2311
2312#define	IS_CALL		((cmd->len & F_NOT) == 0)
2313#define	IS_RETURN	((cmd->len & F_NOT) != 0)
2314				/*
2315				 * Hand-rolled version of m_tag_locate() with
2316				 * wildcard `type'.
2317				 * If not already tagged, allocate new tag.
2318				 */
2319				mtag = m_tag_first(m);
2320				while (mtag != NULL) {
2321					if (mtag->m_tag_cookie ==
2322					    MTAG_IPFW_CALL)
2323						break;
2324					mtag = m_tag_next(m, mtag);
2325				}
2326				if (mtag == NULL && IS_CALL) {
2327					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2328					    IPFW_CALLSTACK_SIZE *
2329					    sizeof(uint16_t), M_NOWAIT);
2330					if (mtag != NULL)
2331						m_tag_prepend(m, mtag);
2332				}
2333
2334				/*
2335				 * On error both `call' and `return' just
2336				 * continue with next rule.
2337				 */
2338				if (IS_RETURN && (mtag == NULL ||
2339				    mtag->m_tag_id == 0)) {
2340					l = 0;		/* exit inner loop */
2341					break;
2342				}
2343				if (IS_CALL && (mtag == NULL ||
2344				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2345					printf("ipfw: call stack error, "
2346					    "go to next rule\n");
2347					l = 0;		/* exit inner loop */
2348					break;
2349				}
2350
2351				IPFW_INC_RULE_COUNTER(f, pktlen);
2352				stack = (uint16_t *)(mtag + 1);
2353
2354				/*
2355				 * The `call' action may use cached f_pos
2356				 * (in f->next_rule), whose version is written
2357				 * in f->next_rule.
2358				 * The `return' action, however, doesn't have
2359				 * fixed jump address in cmd->arg1 and can't use
2360				 * cache.
2361				 */
2362				if (IS_CALL) {
2363					stack[mtag->m_tag_id] = f->rulenum;
2364					mtag->m_tag_id++;
2365			    		f_pos = JUMP(chain, f, cmd->arg1,
2366					    tablearg, 1);
2367				} else {	/* `return' action */
2368					mtag->m_tag_id--;
2369					jmpto = stack[mtag->m_tag_id] + 1;
2370					f_pos = ipfw_find_rule(chain, jmpto, 0);
2371				}
2372
2373				/*
2374				 * Skip disabled rules, and re-enter
2375				 * the inner loop with the correct
2376				 * f_pos, f, l and cmd.
2377				 * Also clear cmdlen and skip_or
2378				 */
2379				for (; f_pos < chain->n_rules - 1 &&
2380				    (V_set_disable &
2381				    (1 << chain->map[f_pos]->set)); f_pos++)
2382					;
2383				/* Re-enter the inner loop at the dest rule. */
2384				f = chain->map[f_pos];
2385				l = f->cmd_len;
2386				cmd = f->cmd;
2387				cmdlen = 0;
2388				skip_or = 0;
2389				continue;
2390				break;	/* NOTREACHED */
2391			}
2392#undef IS_CALL
2393#undef IS_RETURN
2394
2395			case O_REJECT:
2396				/*
2397				 * Drop the packet and send a reject notice
2398				 * if the packet is not ICMP (or is an ICMP
2399				 * query), and it is not multicast/broadcast.
2400				 */
2401				if (hlen > 0 && is_ipv4 && offset == 0 &&
2402				    (proto != IPPROTO_ICMP ||
2403				     is_icmp_query(ICMP(ulp))) &&
2404				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2405				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2406					send_reject(args, cmd->arg1, iplen, ip);
2407					m = args->m;
2408				}
2409				/* FALLTHROUGH */
2410#ifdef INET6
2411			case O_UNREACH6:
2412				if (hlen > 0 && is_ipv6 &&
2413				    ((offset & IP6F_OFF_MASK) == 0) &&
2414				    (proto != IPPROTO_ICMPV6 ||
2415				     (is_icmp6_query(icmp6_type) == 1)) &&
2416				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2417				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2418					send_reject6(
2419					    args, cmd->arg1, hlen,
2420					    (struct ip6_hdr *)ip);
2421					m = args->m;
2422				}
2423				/* FALLTHROUGH */
2424#endif
2425			case O_DENY:
2426				retval = IP_FW_DENY;
2427				l = 0;		/* exit inner loop */
2428				done = 1;	/* exit outer loop */
2429				break;
2430
2431			case O_FORWARD_IP:
2432				if (args->eh)	/* not valid on layer2 pkts */
2433					break;
2434				if (q == NULL || q->rule != f ||
2435				    dyn_dir == MATCH_FORWARD) {
2436				    struct sockaddr_in *sa;
2437
2438				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2439				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2440#ifdef INET6
2441					/*
2442					 * We use O_FORWARD_IP opcode for
2443					 * fwd rule with tablearg, but tables
2444					 * now support IPv6 addresses. And
2445					 * when we are inspecting IPv6 packet,
2446					 * we can use nh6 field from
2447					 * table_value as next_hop6 address.
2448					 */
2449					if (is_ipv6) {
2450						struct sockaddr_in6 *sa6;
2451
2452						sa6 = args->next_hop6 =
2453						    &args->hopstore6;
2454						sa6->sin6_family = AF_INET6;
2455						sa6->sin6_len = sizeof(*sa6);
2456						sa6->sin6_addr = TARG_VAL(
2457						    chain, tablearg, nh6);
2458						sa6->sin6_port = sa->sin_port;
2459						/*
2460						 * Set sin6_scope_id only for
2461						 * link-local unicast addresses.
2462						 */
2463						if (IN6_IS_ADDR_LINKLOCAL(
2464						    &sa6->sin6_addr))
2465							sa6->sin6_scope_id =
2466							    TARG_VAL(chain,
2467								tablearg,
2468								zoneid);
2469					} else
2470#endif
2471					{
2472						args->hopstore.sin_port =
2473						    sa->sin_port;
2474						sa = args->next_hop =
2475						    &args->hopstore;
2476						sa->sin_family = AF_INET;
2477						sa->sin_len = sizeof(*sa);
2478						sa->sin_addr.s_addr = htonl(
2479						    TARG_VAL(chain, tablearg,
2480						    nh4));
2481					}
2482				    } else {
2483					args->next_hop = sa;
2484				    }
2485				}
2486				retval = IP_FW_PASS;
2487				l = 0;          /* exit inner loop */
2488				done = 1;       /* exit outer loop */
2489				break;
2490
2491#ifdef INET6
2492			case O_FORWARD_IP6:
2493				if (args->eh)	/* not valid on layer2 pkts */
2494					break;
2495				if (q == NULL || q->rule != f ||
2496				    dyn_dir == MATCH_FORWARD) {
2497					struct sockaddr_in6 *sin6;
2498
2499					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2500					args->next_hop6 = sin6;
2501				}
2502				retval = IP_FW_PASS;
2503				l = 0;		/* exit inner loop */
2504				done = 1;	/* exit outer loop */
2505				break;
2506#endif
2507
2508			case O_NETGRAPH:
2509			case O_NGTEE:
2510				set_match(args, f_pos, chain);
2511				args->rule.info = TARG(cmd->arg1, netgraph);
2512				if (V_fw_one_pass)
2513					args->rule.info |= IPFW_ONEPASS;
2514				retval = (cmd->opcode == O_NETGRAPH) ?
2515				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2516				l = 0;          /* exit inner loop */
2517				done = 1;       /* exit outer loop */
2518				break;
2519
2520			case O_SETFIB: {
2521				uint32_t fib;
2522
2523				IPFW_INC_RULE_COUNTER(f, pktlen);
2524				fib = TARG(cmd->arg1, fib) & 0x7FFF;
2525				if (fib >= rt_numfibs)
2526					fib = 0;
2527				M_SETFIB(m, fib);
2528				args->f_id.fib = fib;
2529				l = 0;		/* exit inner loop */
2530				break;
2531		        }
2532
2533			case O_SETDSCP: {
2534				uint16_t code;
2535
2536				code = TARG(cmd->arg1, dscp) & 0x3F;
2537				l = 0;		/* exit inner loop */
2538				if (is_ipv4) {
2539					uint16_t old;
2540
2541					old = *(uint16_t *)ip;
2542					ip->ip_tos = (code << 2) |
2543					    (ip->ip_tos & 0x03);
2544					ip->ip_sum = cksum_adjust(ip->ip_sum,
2545					    old, *(uint16_t *)ip);
2546				} else if (is_ipv6) {
2547					uint8_t *v;
2548
2549					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2550					*v = (*v & 0xF0) | (code >> 2);
2551					v++;
2552					*v = (*v & 0x3F) | ((code & 0x03) << 6);
2553				} else
2554					break;
2555
2556				IPFW_INC_RULE_COUNTER(f, pktlen);
2557				break;
2558			}
2559
2560			case O_NAT:
2561				l = 0;          /* exit inner loop */
2562				done = 1;       /* exit outer loop */
2563				/*
2564				 * Ensure that we do not invoke NAT handler for
2565				 * non IPv4 packets. Libalias expects only IPv4.
2566				 */
2567				if (!is_ipv4 || !IPFW_NAT_LOADED) {
2568				    retval = IP_FW_DENY;
2569				    break;
2570				}
2571
2572				struct cfg_nat *t;
2573				int nat_id;
2574
2575				set_match(args, f_pos, chain);
2576				/* Check if this is 'global' nat rule */
2577				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
2578					retval = ipfw_nat_ptr(args, NULL, m);
2579					break;
2580				}
2581				t = ((ipfw_insn_nat *)cmd)->nat;
2582				if (t == NULL) {
2583					nat_id = TARG(cmd->arg1, nat);
2584					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2585
2586					if (t == NULL) {
2587					    retval = IP_FW_DENY;
2588					    break;
2589					}
2590					if (cmd->arg1 != IP_FW_TARG)
2591					    ((ipfw_insn_nat *)cmd)->nat = t;
2592				}
2593				retval = ipfw_nat_ptr(args, t, m);
2594				break;
2595
2596			case O_REASS: {
2597				int ip_off;
2598
2599				IPFW_INC_RULE_COUNTER(f, pktlen);
2600				l = 0;	/* in any case exit inner loop */
2601				ip_off = ntohs(ip->ip_off);
2602
2603				/* if not fragmented, go to next rule */
2604				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2605				    break;
2606
2607				args->m = m = ip_reass(m);
2608
2609				/*
2610				 * do IP header checksum fixup.
2611				 */
2612				if (m == NULL) { /* fragment got swallowed */
2613				    retval = IP_FW_DENY;
2614				} else { /* good, packet complete */
2615				    int hlen;
2616
2617				    ip = mtod(m, struct ip *);
2618				    hlen = ip->ip_hl << 2;
2619				    ip->ip_sum = 0;
2620				    if (hlen == sizeof(struct ip))
2621					ip->ip_sum = in_cksum_hdr(ip);
2622				    else
2623					ip->ip_sum = in_cksum(m, hlen);
2624				    retval = IP_FW_REASS;
2625				    set_match(args, f_pos, chain);
2626				}
2627				done = 1;	/* exit outer loop */
2628				break;
2629			}
2630			case O_EXTERNAL_ACTION:
2631				l = 0; /* in any case exit inner loop */
2632				retval = ipfw_run_eaction(chain, args,
2633				    cmd, &done);
2634				/*
2635				 * If both @retval and @done are zero,
2636				 * consider this as rule matching and
2637				 * update counters.
2638				 */
2639				if (retval == 0 && done == 0) {
2640					IPFW_INC_RULE_COUNTER(f, pktlen);
2641					/*
2642					 * Reset the result of the last
2643					 * dynamic state lookup.
2644					 * External action can change
2645					 * @args content, and it may be
2646					 * used for new state lookup later.
2647					 */
2648					dyn_dir = MATCH_UNKNOWN;
2649				}
2650				break;
2651
2652			default:
2653				panic("-- unknown opcode %d\n", cmd->opcode);
2654			} /* end of switch() on opcodes */
2655			/*
2656			 * if we get here with l=0, then match is irrelevant.
2657			 */
2658
2659			if (cmd->len & F_NOT)
2660				match = !match;
2661
2662			if (match) {
2663				if (cmd->len & F_OR)
2664					skip_or = 1;
2665			} else {
2666				if (!(cmd->len & F_OR)) /* not an OR block, */
2667					break;		/* try next rule    */
2668			}
2669
2670		}	/* end of inner loop, scan opcodes */
2671#undef PULLUP_LEN
2672
2673		if (done)
2674			break;
2675
2676/* next_rule:; */	/* try next rule		*/
2677
2678	}		/* end of outer for, scan rules */
2679
2680	if (done) {
2681		struct ip_fw *rule = chain->map[f_pos];
2682		/* Update statistics */
2683		IPFW_INC_RULE_COUNTER(rule, pktlen);
2684	} else {
2685		retval = IP_FW_DENY;
2686		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2687	}
2688	IPFW_PF_RUNLOCK(chain);
2689#ifdef __FreeBSD__
2690	if (ucred_cache != NULL)
2691		crfree(ucred_cache);
2692#endif
2693	return (retval);
2694
2695pullup_failed:
2696	if (V_fw_verbose)
2697		printf("ipfw: pullup failed\n");
2698	return (IP_FW_DENY);
2699}
2700
2701/*
2702 * Set maximum number of tables that can be used in given VNET ipfw instance.
2703 */
2704#ifdef SYSCTL_NODE
2705static int
2706sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
2707{
2708	int error;
2709	unsigned int ntables;
2710
2711	ntables = V_fw_tables_max;
2712
2713	error = sysctl_handle_int(oidp, &ntables, 0, req);
2714	/* Read operation or some error */
2715	if ((error != 0) || (req->newptr == NULL))
2716		return (error);
2717
2718	return (ipfw_resize_tables(&V_layer3_chain, ntables));
2719}
2720
2721/*
2722 * Switches table namespace between global and per-set.
2723 */
2724static int
2725sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
2726{
2727	int error;
2728	unsigned int sets;
2729
2730	sets = V_fw_tables_sets;
2731
2732	error = sysctl_handle_int(oidp, &sets, 0, req);
2733	/* Read operation or some error */
2734	if ((error != 0) || (req->newptr == NULL))
2735		return (error);
2736
2737	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
2738}
2739#endif
2740
2741/*
2742 * Module and VNET glue
2743 */
2744
2745/*
2746 * Stuff that must be initialised only on boot or module load
2747 */
2748static int
2749ipfw_init(void)
2750{
2751	int error = 0;
2752
2753	/*
2754 	 * Only print out this stuff the first time around,
2755	 * when called from the sysinit code.
2756	 */
2757	printf("ipfw2 "
2758#ifdef INET6
2759		"(+ipv6) "
2760#endif
2761		"initialized, divert %s, nat %s, "
2762		"default to %s, logging ",
2763#ifdef IPDIVERT
2764		"enabled",
2765#else
2766		"loadable",
2767#endif
2768#ifdef IPFIREWALL_NAT
2769		"enabled",
2770#else
2771		"loadable",
2772#endif
2773		default_to_accept ? "accept" : "deny");
2774
2775	/*
2776	 * Note: V_xxx variables can be accessed here but the vnet specific
2777	 * initializer may not have been called yet for the VIMAGE case.
2778	 * Tuneables will have been processed. We will print out values for
2779	 * the default vnet.
2780	 * XXX This should all be rationalized AFTER 8.0
2781	 */
2782	if (V_fw_verbose == 0)
2783		printf("disabled\n");
2784	else if (V_verbose_limit == 0)
2785		printf("unlimited\n");
2786	else
2787		printf("limited to %d packets/entry by default\n",
2788		    V_verbose_limit);
2789
2790	/* Check user-supplied table count for validness */
2791	if (default_fw_tables > IPFW_TABLES_MAX)
2792	  default_fw_tables = IPFW_TABLES_MAX;
2793
2794	ipfw_init_sopt_handler();
2795	ipfw_init_obj_rewriter();
2796	ipfw_iface_init();
2797	return (error);
2798}
2799
2800/*
2801 * Called for the removal of the last instance only on module unload.
2802 */
2803static void
2804ipfw_destroy(void)
2805{
2806
2807	ipfw_iface_destroy();
2808	ipfw_destroy_sopt_handler();
2809	ipfw_destroy_obj_rewriter();
2810	printf("IP firewall unloaded\n");
2811}
2812
2813/*
2814 * Stuff that must be initialized for every instance
2815 * (including the first of course).
2816 */
2817static int
2818vnet_ipfw_init(const void *unused)
2819{
2820	int error, first;
2821	struct ip_fw *rule = NULL;
2822	struct ip_fw_chain *chain;
2823
2824	chain = &V_layer3_chain;
2825
2826	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
2827
2828	/* First set up some values that are compile time options */
2829	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2830	V_fw_deny_unknown_exthdrs = 1;
2831#ifdef IPFIREWALL_VERBOSE
2832	V_fw_verbose = 1;
2833#endif
2834#ifdef IPFIREWALL_VERBOSE_LIMIT
2835	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2836#endif
2837#ifdef IPFIREWALL_NAT
2838	LIST_INIT(&chain->nat);
2839#endif
2840
2841	/* Init shared services hash table */
2842	ipfw_init_srv(chain);
2843
2844	ipfw_init_counters();
2845	/* insert the default rule and create the initial map */
2846	chain->n_rules = 1;
2847	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_WAITOK | M_ZERO);
2848	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
2849
2850	/* Set initial number of tables */
2851	V_fw_tables_max = default_fw_tables;
2852	error = ipfw_init_tables(chain, first);
2853	if (error) {
2854		printf("ipfw2: setting up tables failed\n");
2855		free(chain->map, M_IPFW);
2856		free(rule, M_IPFW);
2857		return (ENOSPC);
2858	}
2859
2860	/* fill and insert the default rule */
2861	rule->act_ofs = 0;
2862	rule->rulenum = IPFW_DEFAULT_RULE;
2863	rule->cmd_len = 1;
2864	rule->set = RESVD_SET;
2865	rule->cmd[0].len = 1;
2866	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2867	chain->default_rule = chain->map[0] = rule;
2868	chain->id = rule->id = 1;
2869	/* Pre-calculate rules length for legacy dump format */
2870	chain->static_len = sizeof(struct ip_fw_rule0);
2871
2872	IPFW_LOCK_INIT(chain);
2873	ipfw_dyn_init(chain);
2874	ipfw_eaction_init(chain, first);
2875#ifdef LINEAR_SKIPTO
2876	ipfw_init_skipto_cache(chain);
2877#endif
2878	ipfw_bpf_init(first);
2879
2880	/* First set up some values that are compile time options */
2881	V_ipfw_vnet_ready = 1;		/* Open for business */
2882
2883	/*
2884	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
2885	 * Even if the latter two fail we still keep the module alive
2886	 * because the sockopt and layer2 paths are still useful.
2887	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2888	 * so we can ignore the exact return value and just set a flag.
2889	 *
2890	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2891	 * changes in the underlying (per-vnet) variables trigger
2892	 * immediate hook()/unhook() calls.
2893	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2894	 * is checked on each packet because there are no pfil hooks.
2895	 */
2896	V_ip_fw_ctl_ptr = ipfw_ctl3;
2897	error = ipfw_attach_hooks(1);
2898	return (error);
2899}
2900
2901/*
2902 * Called for the removal of each instance.
2903 */
2904static int
2905vnet_ipfw_uninit(const void *unused)
2906{
2907	struct ip_fw *reap;
2908	struct ip_fw_chain *chain = &V_layer3_chain;
2909	int i, last;
2910
2911	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2912	/*
2913	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2914	 * Then grab, release and grab again the WLOCK so we make
2915	 * sure the update is propagated and nobody will be in.
2916	 */
2917	(void)ipfw_attach_hooks(0 /* detach */);
2918	V_ip_fw_ctl_ptr = NULL;
2919
2920	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
2921
2922	IPFW_UH_WLOCK(chain);
2923	IPFW_UH_WUNLOCK(chain);
2924
2925	ipfw_dyn_uninit(0);	/* run the callout_drain */
2926
2927	IPFW_UH_WLOCK(chain);
2928
2929	reap = NULL;
2930	IPFW_WLOCK(chain);
2931	for (i = 0; i < chain->n_rules; i++)
2932		ipfw_reap_add(chain, &reap, chain->map[i]);
2933	free(chain->map, M_IPFW);
2934#ifdef LINEAR_SKIPTO
2935	ipfw_destroy_skipto_cache(chain);
2936#endif
2937	IPFW_WUNLOCK(chain);
2938	IPFW_UH_WUNLOCK(chain);
2939	ipfw_destroy_tables(chain, last);
2940	ipfw_eaction_uninit(chain, last);
2941	if (reap != NULL)
2942		ipfw_reap_rules(reap);
2943	vnet_ipfw_iface_destroy(chain);
2944	ipfw_destroy_srv(chain);
2945	IPFW_LOCK_DESTROY(chain);
2946	ipfw_dyn_uninit(1);	/* free the remaining parts */
2947	ipfw_destroy_counters();
2948	ipfw_bpf_uninit(last);
2949	return (0);
2950}
2951
2952/*
2953 * Module event handler.
2954 * In general we have the choice of handling most of these events by the
2955 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2956 * use the SYSINIT handlers as they are more capable of expressing the
2957 * flow of control during module and vnet operations, so this is just
2958 * a skeleton. Note there is no SYSINIT equivalent of the module
2959 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2960 */
2961static int
2962ipfw_modevent(module_t mod, int type, void *unused)
2963{
2964	int err = 0;
2965
2966	switch (type) {
2967	case MOD_LOAD:
2968		/* Called once at module load or
2969	 	 * system boot if compiled in. */
2970		break;
2971	case MOD_QUIESCE:
2972		/* Called before unload. May veto unloading. */
2973		break;
2974	case MOD_UNLOAD:
2975		/* Called during unload. */
2976		break;
2977	case MOD_SHUTDOWN:
2978		/* Called during system shutdown. */
2979		break;
2980	default:
2981		err = EOPNOTSUPP;
2982		break;
2983	}
2984	return err;
2985}
2986
2987static moduledata_t ipfwmod = {
2988	"ipfw",
2989	ipfw_modevent,
2990	0
2991};
2992
2993/* Define startup order. */
2994#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
2995#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2996#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2997#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2998
2999DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3000FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3001MODULE_VERSION(ipfw, 3);
3002/* should declare some dependencies here */
3003
3004/*
3005 * Starting up. Done in order after ipfwmod() has been called.
3006 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3007 */
3008SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3009	    ipfw_init, NULL);
3010VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3011	    vnet_ipfw_init, NULL);
3012
3013/*
3014 * Closing up shop. These are done in REVERSE ORDER, but still
3015 * after ipfwmod() has been called. Not called on reboot.
3016 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3017 * or when the module is unloaded.
3018 */
3019SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3020	    ipfw_destroy, NULL);
3021VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3022	    vnet_ipfw_uninit, NULL);
3023/* end of file */
3024