ip_fw2.c revision 316444
1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/11/sys/netpfil/ipfw/ip_fw2.c 316444 2017-04-03 07:30:47Z ae $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdivert.h"
35#include "opt_inet.h"
36#ifndef INET
37#error "IPFIREWALL requires INET"
38#endif /* INET */
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/counter.h>
46#include <sys/eventhandler.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/kernel.h>
50#include <sys/lock.h>
51#include <sys/jail.h>
52#include <sys/module.h>
53#include <sys/priv.h>
54#include <sys/proc.h>
55#include <sys/rwlock.h>
56#include <sys/rmlock.h>
57#include <sys/socket.h>
58#include <sys/socketvar.h>
59#include <sys/sysctl.h>
60#include <sys/syslog.h>
61#include <sys/ucred.h>
62#include <net/ethernet.h> /* for ETHERTYPE_IP */
63#include <net/if.h>
64#include <net/if_var.h>
65#include <net/route.h>
66#include <net/pfil.h>
67#include <net/vnet.h>
68
69#include <netpfil/pf/pf_mtag.h>
70
71#include <netinet/in.h>
72#include <netinet/in_var.h>
73#include <netinet/in_pcb.h>
74#include <netinet/ip.h>
75#include <netinet/ip_var.h>
76#include <netinet/ip_icmp.h>
77#include <netinet/ip_fw.h>
78#include <netinet/ip_carp.h>
79#include <netinet/pim.h>
80#include <netinet/tcp_var.h>
81#include <netinet/udp.h>
82#include <netinet/udp_var.h>
83#include <netinet/sctp.h>
84
85#include <netinet/ip6.h>
86#include <netinet/icmp6.h>
87#include <netinet/in_fib.h>
88#ifdef INET6
89#include <netinet6/in6_fib.h>
90#include <netinet6/in6_pcb.h>
91#include <netinet6/scope6_var.h>
92#include <netinet6/ip6_var.h>
93#endif
94
95#include <netpfil/ipfw/ip_fw_private.h>
96
97#include <machine/in_cksum.h>	/* XXX for in_cksum */
98
99#ifdef MAC
100#include <security/mac/mac_framework.h>
101#endif
102
103/*
104 * static variables followed by global ones.
105 * All ipfw global variables are here.
106 */
107
108static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
109#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
110
111static VNET_DEFINE(int, fw_permit_single_frag6) = 1;
112#define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
113
114#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
115static int default_to_accept = 1;
116#else
117static int default_to_accept;
118#endif
119
120VNET_DEFINE(int, autoinc_step);
121VNET_DEFINE(int, fw_one_pass) = 1;
122
123VNET_DEFINE(unsigned int, fw_tables_max);
124VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
125/* Use 128 tables by default */
126static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
127
128#ifndef LINEAR_SKIPTO
129static int jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
130    int tablearg, int jump_backwards);
131#define	JUMP(ch, f, num, targ, back)	jump_fast(ch, f, num, targ, back)
132#else
133static int jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
134    int tablearg, int jump_backwards);
135#define	JUMP(ch, f, num, targ, back)	jump_linear(ch, f, num, targ, back)
136#endif
137
138/*
139 * Each rule belongs to one of 32 different sets (0..31).
140 * The variable set_disable contains one bit per set.
141 * If the bit is set, all rules in the corresponding set
142 * are disabled. Set RESVD_SET(31) is reserved for the default rule
143 * and rules that are not deleted by the flush command,
144 * and CANNOT be disabled.
145 * Rules in set RESVD_SET can only be deleted individually.
146 */
147VNET_DEFINE(u_int32_t, set_disable);
148#define	V_set_disable			VNET(set_disable)
149
150VNET_DEFINE(int, fw_verbose);
151/* counter for ipfw_log(NULL...) */
152VNET_DEFINE(u_int64_t, norule_counter);
153VNET_DEFINE(int, verbose_limit);
154
155/* layer3_chain contains the list of rules for layer 3 */
156VNET_DEFINE(struct ip_fw_chain, layer3_chain);
157
158/* ipfw_vnet_ready controls when we are open for business */
159VNET_DEFINE(int, ipfw_vnet_ready) = 0;
160
161VNET_DEFINE(int, ipfw_nat_ready) = 0;
162
163ipfw_nat_t *ipfw_nat_ptr = NULL;
164struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
165ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
166ipfw_nat_cfg_t *ipfw_nat_del_ptr;
167ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
168ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
169
170#ifdef SYSCTL_NODE
171uint32_t dummy_def = IPFW_DEFAULT_RULE;
172static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
173static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
174
175SYSBEGIN(f3)
176
177SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
178SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
179    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
180    "Only do a single pass through ipfw when using dummynet(4)");
181SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
182    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
183    "Rule number auto-increment step");
184SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
185    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
186    "Log matches to ipfw rules");
187SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
188    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
189    "Set upper limit of matches of ipfw rules logged");
190SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
191    &dummy_def, 0,
192    "The default/max possible rule number.");
193SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
194    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, 0, 0, sysctl_ipfw_table_num, "IU",
195    "Maximum number of concurrently used tables");
196SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
197    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
198    0, 0, sysctl_ipfw_tables_sets, "IU",
199    "Use per-set namespace for tables");
200SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
201    &default_to_accept, 0,
202    "Make the default rule accept all packets.");
203TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
204SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
205    CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
206    "Number of static rules");
207
208#ifdef INET6
209SYSCTL_DECL(_net_inet6_ip6);
210SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
211SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
212    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
213    &VNET_NAME(fw_deny_unknown_exthdrs), 0,
214    "Deny packets with unknown IPv6 Extension Headers");
215SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
216    CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
217    &VNET_NAME(fw_permit_single_frag6), 0,
218    "Permit single packet IPv6 fragments");
219#endif /* INET6 */
220
221SYSEND
222
223#endif /* SYSCTL_NODE */
224
225
226/*
227 * Some macros used in the various matching options.
228 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
229 * Other macros just cast void * into the appropriate type
230 */
231#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
232#define	TCP(p)		((struct tcphdr *)(p))
233#define	SCTP(p)		((struct sctphdr *)(p))
234#define	UDP(p)		((struct udphdr *)(p))
235#define	ICMP(p)		((struct icmphdr *)(p))
236#define	ICMP6(p)	((struct icmp6_hdr *)(p))
237
238static __inline int
239icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
240{
241	int type = icmp->icmp_type;
242
243	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
244}
245
246#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
247    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
248
249static int
250is_icmp_query(struct icmphdr *icmp)
251{
252	int type = icmp->icmp_type;
253
254	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
255}
256#undef TT
257
258/*
259 * The following checks use two arrays of 8 or 16 bits to store the
260 * bits that we want set or clear, respectively. They are in the
261 * low and high half of cmd->arg1 or cmd->d[0].
262 *
263 * We scan options and store the bits we find set. We succeed if
264 *
265 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
266 *
267 * The code is sometimes optimized not to store additional variables.
268 */
269
270static int
271flags_match(ipfw_insn *cmd, u_int8_t bits)
272{
273	u_char want_clear;
274	bits = ~bits;
275
276	if ( ((cmd->arg1 & 0xff) & bits) != 0)
277		return 0; /* some bits we want set were clear */
278	want_clear = (cmd->arg1 >> 8) & 0xff;
279	if ( (want_clear & bits) != want_clear)
280		return 0; /* some bits we want clear were set */
281	return 1;
282}
283
284static int
285ipopts_match(struct ip *ip, ipfw_insn *cmd)
286{
287	int optlen, bits = 0;
288	u_char *cp = (u_char *)(ip + 1);
289	int x = (ip->ip_hl << 2) - sizeof (struct ip);
290
291	for (; x > 0; x -= optlen, cp += optlen) {
292		int opt = cp[IPOPT_OPTVAL];
293
294		if (opt == IPOPT_EOL)
295			break;
296		if (opt == IPOPT_NOP)
297			optlen = 1;
298		else {
299			optlen = cp[IPOPT_OLEN];
300			if (optlen <= 0 || optlen > x)
301				return 0; /* invalid or truncated */
302		}
303		switch (opt) {
304
305		default:
306			break;
307
308		case IPOPT_LSRR:
309			bits |= IP_FW_IPOPT_LSRR;
310			break;
311
312		case IPOPT_SSRR:
313			bits |= IP_FW_IPOPT_SSRR;
314			break;
315
316		case IPOPT_RR:
317			bits |= IP_FW_IPOPT_RR;
318			break;
319
320		case IPOPT_TS:
321			bits |= IP_FW_IPOPT_TS;
322			break;
323		}
324	}
325	return (flags_match(cmd, bits));
326}
327
328static int
329tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
330{
331	int optlen, bits = 0;
332	u_char *cp = (u_char *)(tcp + 1);
333	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
334
335	for (; x > 0; x -= optlen, cp += optlen) {
336		int opt = cp[0];
337		if (opt == TCPOPT_EOL)
338			break;
339		if (opt == TCPOPT_NOP)
340			optlen = 1;
341		else {
342			optlen = cp[1];
343			if (optlen <= 0)
344				break;
345		}
346
347		switch (opt) {
348
349		default:
350			break;
351
352		case TCPOPT_MAXSEG:
353			bits |= IP_FW_TCPOPT_MSS;
354			break;
355
356		case TCPOPT_WINDOW:
357			bits |= IP_FW_TCPOPT_WINDOW;
358			break;
359
360		case TCPOPT_SACK_PERMITTED:
361		case TCPOPT_SACK:
362			bits |= IP_FW_TCPOPT_SACK;
363			break;
364
365		case TCPOPT_TIMESTAMP:
366			bits |= IP_FW_TCPOPT_TS;
367			break;
368
369		}
370	}
371	return (flags_match(cmd, bits));
372}
373
374static int
375iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
376    uint32_t *tablearg)
377{
378
379	if (ifp == NULL)	/* no iface with this packet, match fails */
380		return (0);
381
382	/* Check by name or by IP address */
383	if (cmd->name[0] != '\0') { /* match by name */
384		if (cmd->name[0] == '\1') /* use tablearg to match */
385			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
386			    &ifp->if_index, tablearg);
387		/* Check name */
388		if (cmd->p.glob) {
389			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
390				return(1);
391		} else {
392			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
393				return(1);
394		}
395	} else {
396#if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
397		struct ifaddr *ia;
398
399		if_addr_rlock(ifp);
400		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
401			if (ia->ifa_addr->sa_family != AF_INET)
402				continue;
403			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
404			    (ia->ifa_addr))->sin_addr.s_addr) {
405				if_addr_runlock(ifp);
406				return(1);	/* match */
407			}
408		}
409		if_addr_runlock(ifp);
410#endif /* __FreeBSD__ */
411	}
412	return(0);	/* no match, fail ... */
413}
414
415/*
416 * The verify_path function checks if a route to the src exists and
417 * if it is reachable via ifp (when provided).
418 *
419 * The 'verrevpath' option checks that the interface that an IP packet
420 * arrives on is the same interface that traffic destined for the
421 * packet's source address would be routed out of.
422 * The 'versrcreach' option just checks that the source address is
423 * reachable via any route (except default) in the routing table.
424 * These two are a measure to block forged packets. This is also
425 * commonly known as "anti-spoofing" or Unicast Reverse Path
426 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
427 * is purposely reminiscent of the Cisco IOS command,
428 *
429 *   ip verify unicast reverse-path
430 *   ip verify unicast source reachable-via any
431 *
432 * which implements the same functionality. But note that the syntax
433 * is misleading, and the check may be performed on all IP packets
434 * whether unicast, multicast, or broadcast.
435 */
436static int
437verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
438{
439#if defined(USERSPACE) || !defined(__FreeBSD__)
440	return 0;
441#else
442	struct nhop4_basic nh4;
443
444	if (fib4_lookup_nh_basic(fib, src, NHR_IFAIF, 0, &nh4) != 0)
445		return (0);
446
447	/*
448	 * If ifp is provided, check for equality with rtentry.
449	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
450	 * in order to pass packets injected back by if_simloop():
451	 * routing entry (via lo0) for our own address
452	 * may exist, so we need to handle routing assymetry.
453	 */
454	if (ifp != NULL && ifp != nh4.nh_ifp)
455		return (0);
456
457	/* if no ifp provided, check if rtentry is not default route */
458	if (ifp == NULL && (nh4.nh_flags & NHF_DEFAULT) != 0)
459		return (0);
460
461	/* or if this is a blackhole/reject route */
462	if (ifp == NULL && (nh4.nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
463		return (0);
464
465	/* found valid route */
466	return 1;
467#endif /* __FreeBSD__ */
468}
469
470#ifdef INET6
471/*
472 * ipv6 specific rules here...
473 */
474static __inline int
475icmp6type_match (int type, ipfw_insn_u32 *cmd)
476{
477	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
478}
479
480static int
481flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
482{
483	int i;
484	for (i=0; i <= cmd->o.arg1; ++i )
485		if (curr_flow == cmd->d[i] )
486			return 1;
487	return 0;
488}
489
490/* support for IP6_*_ME opcodes */
491static const struct in6_addr lla_mask = {{{
492	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
493	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
494}}};
495
496static int
497ipfw_localip6(struct in6_addr *in6)
498{
499	struct rm_priotracker in6_ifa_tracker;
500	struct in6_ifaddr *ia;
501
502	if (IN6_IS_ADDR_MULTICAST(in6))
503		return (0);
504
505	if (!IN6_IS_ADDR_LINKLOCAL(in6))
506		return (in6_localip(in6));
507
508	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
509	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
510		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
511			continue;
512		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
513		    in6, &lla_mask)) {
514			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
515			return (1);
516		}
517	}
518	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
519	return (0);
520}
521
522static int
523verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
524{
525	struct nhop6_basic nh6;
526
527	if (IN6_IS_SCOPE_LINKLOCAL(src))
528		return (1);
529
530	if (fib6_lookup_nh_basic(fib, src, 0, NHR_IFAIF, 0, &nh6) != 0)
531		return (0);
532
533	/* If ifp is provided, check for equality with route table. */
534	if (ifp != NULL && ifp != nh6.nh_ifp)
535		return (0);
536
537	/* if no ifp provided, check if rtentry is not default route */
538	if (ifp == NULL && (nh6.nh_flags & NHF_DEFAULT) != 0)
539		return (0);
540
541	/* or if this is a blackhole/reject route */
542	if (ifp == NULL && (nh6.nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
543		return (0);
544
545	/* found valid route */
546	return 1;
547}
548
549static int
550is_icmp6_query(int icmp6_type)
551{
552	if ((icmp6_type <= ICMP6_MAXTYPE) &&
553	    (icmp6_type == ICMP6_ECHO_REQUEST ||
554	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
555	    icmp6_type == ICMP6_WRUREQUEST ||
556	    icmp6_type == ICMP6_FQDN_QUERY ||
557	    icmp6_type == ICMP6_NI_QUERY))
558		return (1);
559
560	return (0);
561}
562
563static void
564send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
565{
566	struct mbuf *m;
567
568	m = args->m;
569	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
570		struct tcphdr *tcp;
571		tcp = (struct tcphdr *)((char *)ip6 + hlen);
572
573		if ((tcp->th_flags & TH_RST) == 0) {
574			struct mbuf *m0;
575			m0 = ipfw_send_pkt(args->m, &(args->f_id),
576			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
577			    tcp->th_flags | TH_RST);
578			if (m0 != NULL)
579				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
580				    NULL);
581		}
582		FREE_PKT(m);
583	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
584#if 0
585		/*
586		 * Unlike above, the mbufs need to line up with the ip6 hdr,
587		 * as the contents are read. We need to m_adj() the
588		 * needed amount.
589		 * The mbuf will however be thrown away so we can adjust it.
590		 * Remember we did an m_pullup on it already so we
591		 * can make some assumptions about contiguousness.
592		 */
593		if (args->L3offset)
594			m_adj(m, args->L3offset);
595#endif
596		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
597	} else
598		FREE_PKT(m);
599
600	args->m = NULL;
601}
602
603#endif /* INET6 */
604
605
606/*
607 * sends a reject message, consuming the mbuf passed as an argument.
608 */
609static void
610send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
611{
612
613#if 0
614	/* XXX When ip is not guaranteed to be at mtod() we will
615	 * need to account for this */
616	 * The mbuf will however be thrown away so we can adjust it.
617	 * Remember we did an m_pullup on it already so we
618	 * can make some assumptions about contiguousness.
619	 */
620	if (args->L3offset)
621		m_adj(m, args->L3offset);
622#endif
623	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
624		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
625	} else if (args->f_id.proto == IPPROTO_TCP) {
626		struct tcphdr *const tcp =
627		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
628		if ( (tcp->th_flags & TH_RST) == 0) {
629			struct mbuf *m;
630			m = ipfw_send_pkt(args->m, &(args->f_id),
631				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
632				tcp->th_flags | TH_RST);
633			if (m != NULL)
634				ip_output(m, NULL, NULL, 0, NULL, NULL);
635		}
636		FREE_PKT(args->m);
637	} else
638		FREE_PKT(args->m);
639	args->m = NULL;
640}
641
642/*
643 * Support for uid/gid/jail lookup. These tests are expensive
644 * (because we may need to look into the list of active sockets)
645 * so we cache the results. ugid_lookupp is 0 if we have not
646 * yet done a lookup, 1 if we succeeded, and -1 if we tried
647 * and failed. The function always returns the match value.
648 * We could actually spare the variable and use *uc, setting
649 * it to '(void *)check_uidgid if we have no info, NULL if
650 * we tried and failed, or any other value if successful.
651 */
652static int
653check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
654    struct ucred **uc)
655{
656#if defined(USERSPACE)
657	return 0;	// not supported in userspace
658#else
659#ifndef __FreeBSD__
660	/* XXX */
661	return cred_check(insn, proto, oif,
662	    dst_ip, dst_port, src_ip, src_port,
663	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
664#else  /* FreeBSD */
665	struct in_addr src_ip, dst_ip;
666	struct inpcbinfo *pi;
667	struct ipfw_flow_id *id;
668	struct inpcb *pcb, *inp;
669	struct ifnet *oif;
670	int lookupflags;
671	int match;
672
673	id = &args->f_id;
674	inp = args->inp;
675	oif = args->oif;
676
677	/*
678	 * Check to see if the UDP or TCP stack supplied us with
679	 * the PCB. If so, rather then holding a lock and looking
680	 * up the PCB, we can use the one that was supplied.
681	 */
682	if (inp && *ugid_lookupp == 0) {
683		INP_LOCK_ASSERT(inp);
684		if (inp->inp_socket != NULL) {
685			*uc = crhold(inp->inp_cred);
686			*ugid_lookupp = 1;
687		} else
688			*ugid_lookupp = -1;
689	}
690	/*
691	 * If we have already been here and the packet has no
692	 * PCB entry associated with it, then we can safely
693	 * assume that this is a no match.
694	 */
695	if (*ugid_lookupp == -1)
696		return (0);
697	if (id->proto == IPPROTO_TCP) {
698		lookupflags = 0;
699		pi = &V_tcbinfo;
700	} else if (id->proto == IPPROTO_UDP) {
701		lookupflags = INPLOOKUP_WILDCARD;
702		pi = &V_udbinfo;
703	} else
704		return 0;
705	lookupflags |= INPLOOKUP_RLOCKPCB;
706	match = 0;
707	if (*ugid_lookupp == 0) {
708		if (id->addr_type == 6) {
709#ifdef INET6
710			if (oif == NULL)
711				pcb = in6_pcblookup_mbuf(pi,
712				    &id->src_ip6, htons(id->src_port),
713				    &id->dst_ip6, htons(id->dst_port),
714				    lookupflags, oif, args->m);
715			else
716				pcb = in6_pcblookup_mbuf(pi,
717				    &id->dst_ip6, htons(id->dst_port),
718				    &id->src_ip6, htons(id->src_port),
719				    lookupflags, oif, args->m);
720#else
721			*ugid_lookupp = -1;
722			return (0);
723#endif
724		} else {
725			src_ip.s_addr = htonl(id->src_ip);
726			dst_ip.s_addr = htonl(id->dst_ip);
727			if (oif == NULL)
728				pcb = in_pcblookup_mbuf(pi,
729				    src_ip, htons(id->src_port),
730				    dst_ip, htons(id->dst_port),
731				    lookupflags, oif, args->m);
732			else
733				pcb = in_pcblookup_mbuf(pi,
734				    dst_ip, htons(id->dst_port),
735				    src_ip, htons(id->src_port),
736				    lookupflags, oif, args->m);
737		}
738		if (pcb != NULL) {
739			INP_RLOCK_ASSERT(pcb);
740			*uc = crhold(pcb->inp_cred);
741			*ugid_lookupp = 1;
742			INP_RUNLOCK(pcb);
743		}
744		if (*ugid_lookupp == 0) {
745			/*
746			 * We tried and failed, set the variable to -1
747			 * so we will not try again on this packet.
748			 */
749			*ugid_lookupp = -1;
750			return (0);
751		}
752	}
753	if (insn->o.opcode == O_UID)
754		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
755	else if (insn->o.opcode == O_GID)
756		match = groupmember((gid_t)insn->d[0], *uc);
757	else if (insn->o.opcode == O_JAIL)
758		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
759	return (match);
760#endif /* __FreeBSD__ */
761#endif /* not supported in userspace */
762}
763
764/*
765 * Helper function to set args with info on the rule after the matching
766 * one. slot is precise, whereas we guess rule_id as they are
767 * assigned sequentially.
768 */
769static inline void
770set_match(struct ip_fw_args *args, int slot,
771	struct ip_fw_chain *chain)
772{
773	args->rule.chain_id = chain->id;
774	args->rule.slot = slot + 1; /* we use 0 as a marker */
775	args->rule.rule_id = 1 + chain->map[slot]->id;
776	args->rule.rulenum = chain->map[slot]->rulenum;
777}
778
779#ifndef LINEAR_SKIPTO
780/*
781 * Helper function to enable cached rule lookups using
782 * cached_id and cached_pos fields in ipfw rule.
783 */
784static int
785jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
786    int tablearg, int jump_backwards)
787{
788	int f_pos;
789
790	/* If possible use cached f_pos (in f->cached_pos),
791	 * whose version is written in f->cached_id
792	 * (horrible hacks to avoid changing the ABI).
793	 */
794	if (num != IP_FW_TARG && f->cached_id == chain->id)
795		f_pos = f->cached_pos;
796	else {
797		int i = IP_FW_ARG_TABLEARG(chain, num, skipto);
798		/* make sure we do not jump backward */
799		if (jump_backwards == 0 && i <= f->rulenum)
800			i = f->rulenum + 1;
801		if (chain->idxmap != NULL)
802			f_pos = chain->idxmap[i];
803		else
804			f_pos = ipfw_find_rule(chain, i, 0);
805		/* update the cache */
806		if (num != IP_FW_TARG) {
807			f->cached_id = chain->id;
808			f->cached_pos = f_pos;
809		}
810	}
811
812	return (f_pos);
813}
814#else
815/*
816 * Helper function to enable real fast rule lookups.
817 */
818static int
819jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
820    int tablearg, int jump_backwards)
821{
822	int f_pos;
823
824	num = IP_FW_ARG_TABLEARG(chain, num, skipto);
825	/* make sure we do not jump backward */
826	if (jump_backwards == 0 && num <= f->rulenum)
827		num = f->rulenum + 1;
828	f_pos = chain->idxmap[num];
829
830	return (f_pos);
831}
832#endif
833
834#define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
835/*
836 * The main check routine for the firewall.
837 *
838 * All arguments are in args so we can modify them and return them
839 * back to the caller.
840 *
841 * Parameters:
842 *
843 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
844 *		Starts with the IP header.
845 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
846 *	args->L3offset	Number of bytes bypassed if we came from L2.
847 *			e.g. often sizeof(eh)  ** NOTYET **
848 *	args->oif	Outgoing interface, NULL if packet is incoming.
849 *		The incoming interface is in the mbuf. (in)
850 *	args->divert_rule (in/out)
851 *		Skip up to the first rule past this rule number;
852 *		upon return, non-zero port number for divert or tee.
853 *
854 *	args->rule	Pointer to the last matching rule (in/out)
855 *	args->next_hop	Socket we are forwarding to (out).
856 *	args->next_hop6	IPv6 next hop we are forwarding to (out).
857 *	args->f_id	Addresses grabbed from the packet (out)
858 * 	args->rule.info	a cookie depending on rule action
859 *
860 * Return value:
861 *
862 *	IP_FW_PASS	the packet must be accepted
863 *	IP_FW_DENY	the packet must be dropped
864 *	IP_FW_DIVERT	divert packet, port in m_tag
865 *	IP_FW_TEE	tee packet, port in m_tag
866 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
867 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
868 *		args->rule contains the matching rule,
869 *		args->rule.info has additional information.
870 *
871 */
872int
873ipfw_chk(struct ip_fw_args *args)
874{
875
876	/*
877	 * Local variables holding state while processing a packet:
878	 *
879	 * IMPORTANT NOTE: to speed up the processing of rules, there
880	 * are some assumption on the values of the variables, which
881	 * are documented here. Should you change them, please check
882	 * the implementation of the various instructions to make sure
883	 * that they still work.
884	 *
885	 * args->eh	The MAC header. It is non-null for a layer2
886	 *	packet, it is NULL for a layer-3 packet.
887	 * **notyet**
888	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
889	 *
890	 * m | args->m	Pointer to the mbuf, as received from the caller.
891	 *	It may change if ipfw_chk() does an m_pullup, or if it
892	 *	consumes the packet because it calls send_reject().
893	 *	XXX This has to change, so that ipfw_chk() never modifies
894	 *	or consumes the buffer.
895	 * ip	is the beginning of the ip(4 or 6) header.
896	 *	Calculated by adding the L3offset to the start of data.
897	 *	(Until we start using L3offset, the packet is
898	 *	supposed to start with the ip header).
899	 */
900	struct mbuf *m = args->m;
901	struct ip *ip = mtod(m, struct ip *);
902
903	/*
904	 * For rules which contain uid/gid or jail constraints, cache
905	 * a copy of the users credentials after the pcb lookup has been
906	 * executed. This will speed up the processing of rules with
907	 * these types of constraints, as well as decrease contention
908	 * on pcb related locks.
909	 */
910#ifndef __FreeBSD__
911	struct bsd_ucred ucred_cache;
912#else
913	struct ucred *ucred_cache = NULL;
914#endif
915	int ucred_lookup = 0;
916
917	/*
918	 * oif | args->oif	If NULL, ipfw_chk has been called on the
919	 *	inbound path (ether_input, ip_input).
920	 *	If non-NULL, ipfw_chk has been called on the outbound path
921	 *	(ether_output, ip_output).
922	 */
923	struct ifnet *oif = args->oif;
924
925	int f_pos = 0;		/* index of current rule in the array */
926	int retval = 0;
927
928	/*
929	 * hlen	The length of the IP header.
930	 */
931	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
932
933	/*
934	 * offset	The offset of a fragment. offset != 0 means that
935	 *	we have a fragment at this offset of an IPv4 packet.
936	 *	offset == 0 means that (if this is an IPv4 packet)
937	 *	this is the first or only fragment.
938	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
939	 *	or there is a single packet fragment (fragment header added
940	 *	without needed).  We will treat a single packet fragment as if
941	 *	there was no fragment header (or log/block depending on the
942	 *	V_fw_permit_single_frag6 sysctl setting).
943	 */
944	u_short offset = 0;
945	u_short ip6f_mf = 0;
946
947	/*
948	 * Local copies of addresses. They are only valid if we have
949	 * an IP packet.
950	 *
951	 * proto	The protocol. Set to 0 for non-ip packets,
952	 *	or to the protocol read from the packet otherwise.
953	 *	proto != 0 means that we have an IPv4 packet.
954	 *
955	 * src_port, dst_port	port numbers, in HOST format. Only
956	 *	valid for TCP and UDP packets.
957	 *
958	 * src_ip, dst_ip	ip addresses, in NETWORK format.
959	 *	Only valid for IPv4 packets.
960	 */
961	uint8_t proto;
962	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
963	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
964	uint16_t iplen=0;
965	int pktlen;
966	uint16_t	etype = 0;	/* Host order stored ether type */
967
968	/*
969	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
970	 * 	MATCH_NONE when checked and not matched (q = NULL),
971	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
972	 */
973	int dyn_dir = MATCH_UNKNOWN;
974	uint16_t dyn_name = 0;
975	ipfw_dyn_rule *q = NULL;
976	struct ip_fw_chain *chain = &V_layer3_chain;
977
978	/*
979	 * We store in ulp a pointer to the upper layer protocol header.
980	 * In the ipv4 case this is easy to determine from the header,
981	 * but for ipv6 we might have some additional headers in the middle.
982	 * ulp is NULL if not found.
983	 */
984	void *ulp = NULL;		/* upper layer protocol pointer. */
985
986	/* XXX ipv6 variables */
987	int is_ipv6 = 0;
988	uint8_t	icmp6_type = 0;
989	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
990	/* end of ipv6 variables */
991
992	int is_ipv4 = 0;
993
994	int done = 0;		/* flag to exit the outer loop */
995	IPFW_RLOCK_TRACKER;
996
997	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
998		return (IP_FW_PASS);	/* accept */
999
1000	dst_ip.s_addr = 0;		/* make sure it is initialized */
1001	src_ip.s_addr = 0;		/* make sure it is initialized */
1002	pktlen = m->m_pkthdr.len;
1003	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
1004	proto = args->f_id.proto = 0;	/* mark f_id invalid */
1005		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
1006
1007/*
1008 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1009 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1010 * pointer might become stale after other pullups (but we never use it
1011 * this way).
1012 */
1013#define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1014#define PULLUP_LEN(_len, p, T)					\
1015do {								\
1016	int x = (_len) + T;					\
1017	if ((m)->m_len < x) {					\
1018		args->m = m = m_pullup(m, x);			\
1019		if (m == NULL)					\
1020			goto pullup_failed;			\
1021	}							\
1022	p = (mtod(m, char *) + (_len));				\
1023} while (0)
1024
1025	/*
1026	 * if we have an ether header,
1027	 */
1028	if (args->eh)
1029		etype = ntohs(args->eh->ether_type);
1030
1031	/* Identify IP packets and fill up variables. */
1032	if (pktlen >= sizeof(struct ip6_hdr) &&
1033	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
1034		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1035		is_ipv6 = 1;
1036		args->f_id.addr_type = 6;
1037		hlen = sizeof(struct ip6_hdr);
1038		proto = ip6->ip6_nxt;
1039
1040		/* Search extension headers to find upper layer protocols */
1041		while (ulp == NULL && offset == 0) {
1042			switch (proto) {
1043			case IPPROTO_ICMPV6:
1044				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1045				icmp6_type = ICMP6(ulp)->icmp6_type;
1046				break;
1047
1048			case IPPROTO_TCP:
1049				PULLUP_TO(hlen, ulp, struct tcphdr);
1050				dst_port = TCP(ulp)->th_dport;
1051				src_port = TCP(ulp)->th_sport;
1052				/* save flags for dynamic rules */
1053				args->f_id._flags = TCP(ulp)->th_flags;
1054				break;
1055
1056			case IPPROTO_SCTP:
1057				PULLUP_TO(hlen, ulp, struct sctphdr);
1058				src_port = SCTP(ulp)->src_port;
1059				dst_port = SCTP(ulp)->dest_port;
1060				break;
1061
1062			case IPPROTO_UDP:
1063				PULLUP_TO(hlen, ulp, struct udphdr);
1064				dst_port = UDP(ulp)->uh_dport;
1065				src_port = UDP(ulp)->uh_sport;
1066				break;
1067
1068			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1069				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1070				ext_hd |= EXT_HOPOPTS;
1071				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1072				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1073				ulp = NULL;
1074				break;
1075
1076			case IPPROTO_ROUTING:	/* RFC 2460 */
1077				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1078				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1079				case 0:
1080					ext_hd |= EXT_RTHDR0;
1081					break;
1082				case 2:
1083					ext_hd |= EXT_RTHDR2;
1084					break;
1085				default:
1086					if (V_fw_verbose)
1087						printf("IPFW2: IPV6 - Unknown "
1088						    "Routing Header type(%d)\n",
1089						    ((struct ip6_rthdr *)
1090						    ulp)->ip6r_type);
1091					if (V_fw_deny_unknown_exthdrs)
1092					    return (IP_FW_DENY);
1093					break;
1094				}
1095				ext_hd |= EXT_ROUTING;
1096				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1097				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1098				ulp = NULL;
1099				break;
1100
1101			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1102				PULLUP_TO(hlen, ulp, struct ip6_frag);
1103				ext_hd |= EXT_FRAGMENT;
1104				hlen += sizeof (struct ip6_frag);
1105				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1106				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1107					IP6F_OFF_MASK;
1108				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1109					IP6F_MORE_FRAG;
1110				if (V_fw_permit_single_frag6 == 0 &&
1111				    offset == 0 && ip6f_mf == 0) {
1112					if (V_fw_verbose)
1113						printf("IPFW2: IPV6 - Invalid "
1114						    "Fragment Header\n");
1115					if (V_fw_deny_unknown_exthdrs)
1116					    return (IP_FW_DENY);
1117					break;
1118				}
1119				args->f_id.extra =
1120				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1121				ulp = NULL;
1122				break;
1123
1124			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1125				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1126				ext_hd |= EXT_DSTOPTS;
1127				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1128				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1129				ulp = NULL;
1130				break;
1131
1132			case IPPROTO_AH:	/* RFC 2402 */
1133				PULLUP_TO(hlen, ulp, struct ip6_ext);
1134				ext_hd |= EXT_AH;
1135				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1136				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1137				ulp = NULL;
1138				break;
1139
1140			case IPPROTO_ESP:	/* RFC 2406 */
1141				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1142				/* Anything past Seq# is variable length and
1143				 * data past this ext. header is encrypted. */
1144				ext_hd |= EXT_ESP;
1145				break;
1146
1147			case IPPROTO_NONE:	/* RFC 2460 */
1148				/*
1149				 * Packet ends here, and IPv6 header has
1150				 * already been pulled up. If ip6e_len!=0
1151				 * then octets must be ignored.
1152				 */
1153				ulp = ip; /* non-NULL to get out of loop. */
1154				break;
1155
1156			case IPPROTO_OSPFIGP:
1157				/* XXX OSPF header check? */
1158				PULLUP_TO(hlen, ulp, struct ip6_ext);
1159				break;
1160
1161			case IPPROTO_PIM:
1162				/* XXX PIM header check? */
1163				PULLUP_TO(hlen, ulp, struct pim);
1164				break;
1165
1166			case IPPROTO_CARP:
1167				PULLUP_TO(hlen, ulp, struct carp_header);
1168				if (((struct carp_header *)ulp)->carp_version !=
1169				    CARP_VERSION)
1170					return (IP_FW_DENY);
1171				if (((struct carp_header *)ulp)->carp_type !=
1172				    CARP_ADVERTISEMENT)
1173					return (IP_FW_DENY);
1174				break;
1175
1176			case IPPROTO_IPV6:	/* RFC 2893 */
1177				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1178				break;
1179
1180			case IPPROTO_IPV4:	/* RFC 2893 */
1181				PULLUP_TO(hlen, ulp, struct ip);
1182				break;
1183
1184			default:
1185				if (V_fw_verbose)
1186					printf("IPFW2: IPV6 - Unknown "
1187					    "Extension Header(%d), ext_hd=%x\n",
1188					     proto, ext_hd);
1189				if (V_fw_deny_unknown_exthdrs)
1190				    return (IP_FW_DENY);
1191				PULLUP_TO(hlen, ulp, struct ip6_ext);
1192				break;
1193			} /*switch */
1194		}
1195		ip = mtod(m, struct ip *);
1196		ip6 = (struct ip6_hdr *)ip;
1197		args->f_id.src_ip6 = ip6->ip6_src;
1198		args->f_id.dst_ip6 = ip6->ip6_dst;
1199		args->f_id.src_ip = 0;
1200		args->f_id.dst_ip = 0;
1201		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1202	} else if (pktlen >= sizeof(struct ip) &&
1203	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1204	    	is_ipv4 = 1;
1205		hlen = ip->ip_hl << 2;
1206		args->f_id.addr_type = 4;
1207
1208		/*
1209		 * Collect parameters into local variables for faster matching.
1210		 */
1211		proto = ip->ip_p;
1212		src_ip = ip->ip_src;
1213		dst_ip = ip->ip_dst;
1214		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1215		iplen = ntohs(ip->ip_len);
1216		pktlen = iplen < pktlen ? iplen : pktlen;
1217
1218		if (offset == 0) {
1219			switch (proto) {
1220			case IPPROTO_TCP:
1221				PULLUP_TO(hlen, ulp, struct tcphdr);
1222				dst_port = TCP(ulp)->th_dport;
1223				src_port = TCP(ulp)->th_sport;
1224				/* save flags for dynamic rules */
1225				args->f_id._flags = TCP(ulp)->th_flags;
1226				break;
1227
1228			case IPPROTO_SCTP:
1229				PULLUP_TO(hlen, ulp, struct sctphdr);
1230				src_port = SCTP(ulp)->src_port;
1231				dst_port = SCTP(ulp)->dest_port;
1232				break;
1233
1234			case IPPROTO_UDP:
1235				PULLUP_TO(hlen, ulp, struct udphdr);
1236				dst_port = UDP(ulp)->uh_dport;
1237				src_port = UDP(ulp)->uh_sport;
1238				break;
1239
1240			case IPPROTO_ICMP:
1241				PULLUP_TO(hlen, ulp, struct icmphdr);
1242				//args->f_id.flags = ICMP(ulp)->icmp_type;
1243				break;
1244
1245			default:
1246				break;
1247			}
1248		}
1249
1250		ip = mtod(m, struct ip *);
1251		args->f_id.src_ip = ntohl(src_ip.s_addr);
1252		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1253	}
1254#undef PULLUP_TO
1255	if (proto) { /* we may have port numbers, store them */
1256		args->f_id.proto = proto;
1257		args->f_id.src_port = src_port = ntohs(src_port);
1258		args->f_id.dst_port = dst_port = ntohs(dst_port);
1259	}
1260
1261	IPFW_PF_RLOCK(chain);
1262	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1263		IPFW_PF_RUNLOCK(chain);
1264		return (IP_FW_PASS);	/* accept */
1265	}
1266	if (args->rule.slot) {
1267		/*
1268		 * Packet has already been tagged as a result of a previous
1269		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1270		 * REASS, NETGRAPH, DIVERT/TEE...)
1271		 * Validate the slot and continue from the next one
1272		 * if still present, otherwise do a lookup.
1273		 */
1274		f_pos = (args->rule.chain_id == chain->id) ?
1275		    args->rule.slot :
1276		    ipfw_find_rule(chain, args->rule.rulenum,
1277			args->rule.rule_id);
1278	} else {
1279		f_pos = 0;
1280	}
1281
1282	/*
1283	 * Now scan the rules, and parse microinstructions for each rule.
1284	 * We have two nested loops and an inner switch. Sometimes we
1285	 * need to break out of one or both loops, or re-enter one of
1286	 * the loops with updated variables. Loop variables are:
1287	 *
1288	 *	f_pos (outer loop) points to the current rule.
1289	 *		On output it points to the matching rule.
1290	 *	done (outer loop) is used as a flag to break the loop.
1291	 *	l (inner loop)	residual length of current rule.
1292	 *		cmd points to the current microinstruction.
1293	 *
1294	 * We break the inner loop by setting l=0 and possibly
1295	 * cmdlen=0 if we don't want to advance cmd.
1296	 * We break the outer loop by setting done=1
1297	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1298	 * as needed.
1299	 */
1300	for (; f_pos < chain->n_rules; f_pos++) {
1301		ipfw_insn *cmd;
1302		uint32_t tablearg = 0;
1303		int l, cmdlen, skip_or; /* skip rest of OR block */
1304		struct ip_fw *f;
1305
1306		f = chain->map[f_pos];
1307		if (V_set_disable & (1 << f->set) )
1308			continue;
1309
1310		skip_or = 0;
1311		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1312		    l -= cmdlen, cmd += cmdlen) {
1313			int match;
1314
1315			/*
1316			 * check_body is a jump target used when we find a
1317			 * CHECK_STATE, and need to jump to the body of
1318			 * the target rule.
1319			 */
1320
1321/* check_body: */
1322			cmdlen = F_LEN(cmd);
1323			/*
1324			 * An OR block (insn_1 || .. || insn_n) has the
1325			 * F_OR bit set in all but the last instruction.
1326			 * The first match will set "skip_or", and cause
1327			 * the following instructions to be skipped until
1328			 * past the one with the F_OR bit clear.
1329			 */
1330			if (skip_or) {		/* skip this instruction */
1331				if ((cmd->len & F_OR) == 0)
1332					skip_or = 0;	/* next one is good */
1333				continue;
1334			}
1335			match = 0; /* set to 1 if we succeed */
1336
1337			switch (cmd->opcode) {
1338			/*
1339			 * The first set of opcodes compares the packet's
1340			 * fields with some pattern, setting 'match' if a
1341			 * match is found. At the end of the loop there is
1342			 * logic to deal with F_NOT and F_OR flags associated
1343			 * with the opcode.
1344			 */
1345			case O_NOP:
1346				match = 1;
1347				break;
1348
1349			case O_FORWARD_MAC:
1350				printf("ipfw: opcode %d unimplemented\n",
1351				    cmd->opcode);
1352				break;
1353
1354			case O_GID:
1355			case O_UID:
1356			case O_JAIL:
1357				/*
1358				 * We only check offset == 0 && proto != 0,
1359				 * as this ensures that we have a
1360				 * packet with the ports info.
1361				 */
1362				if (offset != 0)
1363					break;
1364				if (proto == IPPROTO_TCP ||
1365				    proto == IPPROTO_UDP)
1366					match = check_uidgid(
1367						    (ipfw_insn_u32 *)cmd,
1368						    args, &ucred_lookup,
1369#ifdef __FreeBSD__
1370						    &ucred_cache);
1371#else
1372						    (void *)&ucred_cache);
1373#endif
1374				break;
1375
1376			case O_RECV:
1377				match = iface_match(m->m_pkthdr.rcvif,
1378				    (ipfw_insn_if *)cmd, chain, &tablearg);
1379				break;
1380
1381			case O_XMIT:
1382				match = iface_match(oif, (ipfw_insn_if *)cmd,
1383				    chain, &tablearg);
1384				break;
1385
1386			case O_VIA:
1387				match = iface_match(oif ? oif :
1388				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd,
1389				    chain, &tablearg);
1390				break;
1391
1392			case O_MACADDR2:
1393				if (args->eh != NULL) {	/* have MAC header */
1394					u_int32_t *want = (u_int32_t *)
1395						((ipfw_insn_mac *)cmd)->addr;
1396					u_int32_t *mask = (u_int32_t *)
1397						((ipfw_insn_mac *)cmd)->mask;
1398					u_int32_t *hdr = (u_int32_t *)args->eh;
1399
1400					match =
1401					    ( want[0] == (hdr[0] & mask[0]) &&
1402					      want[1] == (hdr[1] & mask[1]) &&
1403					      want[2] == (hdr[2] & mask[2]) );
1404				}
1405				break;
1406
1407			case O_MAC_TYPE:
1408				if (args->eh != NULL) {
1409					u_int16_t *p =
1410					    ((ipfw_insn_u16 *)cmd)->ports;
1411					int i;
1412
1413					for (i = cmdlen - 1; !match && i>0;
1414					    i--, p += 2)
1415						match = (etype >= p[0] &&
1416						    etype <= p[1]);
1417				}
1418				break;
1419
1420			case O_FRAG:
1421				match = (offset != 0);
1422				break;
1423
1424			case O_IN:	/* "out" is "not in" */
1425				match = (oif == NULL);
1426				break;
1427
1428			case O_LAYER2:
1429				match = (args->eh != NULL);
1430				break;
1431
1432			case O_DIVERTED:
1433			    {
1434				/* For diverted packets, args->rule.info
1435				 * contains the divert port (in host format)
1436				 * reason and direction.
1437				 */
1438				uint32_t i = args->rule.info;
1439				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1440				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1441			    }
1442				break;
1443
1444			case O_PROTO:
1445				/*
1446				 * We do not allow an arg of 0 so the
1447				 * check of "proto" only suffices.
1448				 */
1449				match = (proto == cmd->arg1);
1450				break;
1451
1452			case O_IP_SRC:
1453				match = is_ipv4 &&
1454				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1455				    src_ip.s_addr);
1456				break;
1457
1458			case O_IP_DST_LOOKUP:
1459			{
1460				void *pkey;
1461				uint32_t vidx, key;
1462				uint16_t keylen;
1463
1464				if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1465					/* Determine lookup key type */
1466					vidx = ((ipfw_insn_u32 *)cmd)->d[1];
1467					if (vidx != 4 /* uid */ &&
1468					    vidx != 5 /* jail */ &&
1469					    is_ipv6 == 0 && is_ipv4 == 0)
1470						break;
1471					/* Determine key length */
1472					if (vidx == 0 /* dst-ip */ ||
1473					    vidx == 1 /* src-ip */)
1474						keylen = is_ipv6 ?
1475						    sizeof(struct in6_addr):
1476						    sizeof(in_addr_t);
1477					else {
1478						keylen = sizeof(key);
1479						pkey = &key;
1480					}
1481					if (vidx == 0 /* dst-ip */)
1482						pkey = is_ipv4 ? (void *)&dst_ip:
1483						    (void *)&args->f_id.dst_ip6;
1484					else if (vidx == 1 /* src-ip */)
1485						pkey = is_ipv4 ? (void *)&src_ip:
1486						    (void *)&args->f_id.src_ip6;
1487					else if (vidx == 6 /* dscp */) {
1488						if (is_ipv4)
1489							key = ip->ip_tos >> 2;
1490						else {
1491							key = args->f_id.flow_id6;
1492							key = (key & 0x0f) << 2 |
1493							    (key & 0xf000) >> 14;
1494						}
1495						key &= 0x3f;
1496					} else if (vidx == 2 /* dst-port */ ||
1497					    vidx == 3 /* src-port */) {
1498						/* Skip fragments */
1499						if (offset != 0)
1500							break;
1501						/* Skip proto without ports */
1502						if (proto != IPPROTO_TCP &&
1503						    proto != IPPROTO_UDP &&
1504						    proto != IPPROTO_SCTP)
1505							break;
1506						if (vidx == 2 /* dst-port */)
1507							key = dst_port;
1508						else
1509							key = src_port;
1510					}
1511#ifndef USERSPACE
1512					else if (vidx == 4 /* uid */ ||
1513					    vidx == 5 /* jail */) {
1514						check_uidgid(
1515						    (ipfw_insn_u32 *)cmd,
1516						    args, &ucred_lookup,
1517#ifdef __FreeBSD__
1518						    &ucred_cache);
1519						if (vidx == 4 /* uid */)
1520							key = ucred_cache->cr_uid;
1521						else if (vidx == 5 /* jail */)
1522							key = ucred_cache->cr_prison->pr_id;
1523#else /* !__FreeBSD__ */
1524						    (void *)&ucred_cache);
1525						if (vidx == 4 /* uid */)
1526							key = ucred_cache.uid;
1527						else if (vidx == 5 /* jail */)
1528							key = ucred_cache.xid;
1529#endif /* !__FreeBSD__ */
1530					}
1531#endif /* !USERSPACE */
1532					else
1533						break;
1534					match = ipfw_lookup_table(chain,
1535					    cmd->arg1, keylen, pkey, &vidx);
1536					if (!match)
1537						break;
1538					tablearg = vidx;
1539					break;
1540				}
1541				/* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */
1542				/* FALLTHROUGH */
1543			}
1544			case O_IP_SRC_LOOKUP:
1545			{
1546				void *pkey;
1547				uint32_t vidx;
1548				uint16_t keylen;
1549
1550				if (is_ipv4) {
1551					keylen = sizeof(in_addr_t);
1552					if (cmd->opcode == O_IP_DST_LOOKUP)
1553						pkey = &dst_ip;
1554					else
1555						pkey = &src_ip;
1556				} else if (is_ipv6) {
1557					keylen = sizeof(struct in6_addr);
1558					if (cmd->opcode == O_IP_DST_LOOKUP)
1559						pkey = &args->f_id.dst_ip6;
1560					else
1561						pkey = &args->f_id.src_ip6;
1562				} else
1563					break;
1564				match = ipfw_lookup_table(chain, cmd->arg1,
1565				    keylen, pkey, &vidx);
1566				if (!match)
1567					break;
1568				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
1569					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
1570					    TARG_VAL(chain, vidx, tag);
1571					if (!match)
1572						break;
1573				}
1574				tablearg = vidx;
1575				break;
1576			}
1577
1578			case O_IP_FLOW_LOOKUP:
1579				{
1580					uint32_t v = 0;
1581					match = ipfw_lookup_table(chain,
1582					    cmd->arg1, 0, &args->f_id, &v);
1583					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1584						match = ((ipfw_insn_u32 *)cmd)->d[0] ==
1585						    TARG_VAL(chain, v, tag);
1586					if (match)
1587						tablearg = v;
1588				}
1589				break;
1590			case O_IP_SRC_MASK:
1591			case O_IP_DST_MASK:
1592				if (is_ipv4) {
1593				    uint32_t a =
1594					(cmd->opcode == O_IP_DST_MASK) ?
1595					    dst_ip.s_addr : src_ip.s_addr;
1596				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1597				    int i = cmdlen-1;
1598
1599				    for (; !match && i>0; i-= 2, p+= 2)
1600					match = (p[0] == (a & p[1]));
1601				}
1602				break;
1603
1604			case O_IP_SRC_ME:
1605				if (is_ipv4) {
1606					struct ifnet *tif;
1607
1608					INADDR_TO_IFP(src_ip, tif);
1609					match = (tif != NULL);
1610					break;
1611				}
1612#ifdef INET6
1613				/* FALLTHROUGH */
1614			case O_IP6_SRC_ME:
1615				match= is_ipv6 && ipfw_localip6(&args->f_id.src_ip6);
1616#endif
1617				break;
1618
1619			case O_IP_DST_SET:
1620			case O_IP_SRC_SET:
1621				if (is_ipv4) {
1622					u_int32_t *d = (u_int32_t *)(cmd+1);
1623					u_int32_t addr =
1624					    cmd->opcode == O_IP_DST_SET ?
1625						args->f_id.dst_ip :
1626						args->f_id.src_ip;
1627
1628					    if (addr < d[0])
1629						    break;
1630					    addr -= d[0]; /* subtract base */
1631					    match = (addr < cmd->arg1) &&
1632						( d[ 1 + (addr>>5)] &
1633						  (1<<(addr & 0x1f)) );
1634				}
1635				break;
1636
1637			case O_IP_DST:
1638				match = is_ipv4 &&
1639				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1640				    dst_ip.s_addr);
1641				break;
1642
1643			case O_IP_DST_ME:
1644				if (is_ipv4) {
1645					struct ifnet *tif;
1646
1647					INADDR_TO_IFP(dst_ip, tif);
1648					match = (tif != NULL);
1649					break;
1650				}
1651#ifdef INET6
1652				/* FALLTHROUGH */
1653			case O_IP6_DST_ME:
1654				match= is_ipv6 && ipfw_localip6(&args->f_id.dst_ip6);
1655#endif
1656				break;
1657
1658
1659			case O_IP_SRCPORT:
1660			case O_IP_DSTPORT:
1661				/*
1662				 * offset == 0 && proto != 0 is enough
1663				 * to guarantee that we have a
1664				 * packet with port info.
1665				 */
1666				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1667				    && offset == 0) {
1668					u_int16_t x =
1669					    (cmd->opcode == O_IP_SRCPORT) ?
1670						src_port : dst_port ;
1671					u_int16_t *p =
1672					    ((ipfw_insn_u16 *)cmd)->ports;
1673					int i;
1674
1675					for (i = cmdlen - 1; !match && i>0;
1676					    i--, p += 2)
1677						match = (x>=p[0] && x<=p[1]);
1678				}
1679				break;
1680
1681			case O_ICMPTYPE:
1682				match = (offset == 0 && proto==IPPROTO_ICMP &&
1683				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1684				break;
1685
1686#ifdef INET6
1687			case O_ICMP6TYPE:
1688				match = is_ipv6 && offset == 0 &&
1689				    proto==IPPROTO_ICMPV6 &&
1690				    icmp6type_match(
1691					ICMP6(ulp)->icmp6_type,
1692					(ipfw_insn_u32 *)cmd);
1693				break;
1694#endif /* INET6 */
1695
1696			case O_IPOPT:
1697				match = (is_ipv4 &&
1698				    ipopts_match(ip, cmd) );
1699				break;
1700
1701			case O_IPVER:
1702				match = (is_ipv4 &&
1703				    cmd->arg1 == ip->ip_v);
1704				break;
1705
1706			case O_IPID:
1707			case O_IPLEN:
1708			case O_IPTTL:
1709				if (is_ipv4) {	/* only for IP packets */
1710				    uint16_t x;
1711				    uint16_t *p;
1712				    int i;
1713
1714				    if (cmd->opcode == O_IPLEN)
1715					x = iplen;
1716				    else if (cmd->opcode == O_IPTTL)
1717					x = ip->ip_ttl;
1718				    else /* must be IPID */
1719					x = ntohs(ip->ip_id);
1720				    if (cmdlen == 1) {
1721					match = (cmd->arg1 == x);
1722					break;
1723				    }
1724				    /* otherwise we have ranges */
1725				    p = ((ipfw_insn_u16 *)cmd)->ports;
1726				    i = cmdlen - 1;
1727				    for (; !match && i>0; i--, p += 2)
1728					match = (x >= p[0] && x <= p[1]);
1729				}
1730				break;
1731
1732			case O_IPPRECEDENCE:
1733				match = (is_ipv4 &&
1734				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1735				break;
1736
1737			case O_IPTOS:
1738				match = (is_ipv4 &&
1739				    flags_match(cmd, ip->ip_tos));
1740				break;
1741
1742			case O_DSCP:
1743			    {
1744				uint32_t *p;
1745				uint16_t x;
1746
1747				p = ((ipfw_insn_u32 *)cmd)->d;
1748
1749				if (is_ipv4)
1750					x = ip->ip_tos >> 2;
1751				else if (is_ipv6) {
1752					uint8_t *v;
1753					v = &((struct ip6_hdr *)ip)->ip6_vfc;
1754					x = (*v & 0x0F) << 2;
1755					v++;
1756					x |= *v >> 6;
1757				} else
1758					break;
1759
1760				/* DSCP bitmask is stored as low_u32 high_u32 */
1761				if (x >= 32)
1762					match = *(p + 1) & (1 << (x - 32));
1763				else
1764					match = *p & (1 << x);
1765			    }
1766				break;
1767
1768			case O_TCPDATALEN:
1769				if (proto == IPPROTO_TCP && offset == 0) {
1770				    struct tcphdr *tcp;
1771				    uint16_t x;
1772				    uint16_t *p;
1773				    int i;
1774
1775				    tcp = TCP(ulp);
1776				    x = iplen -
1777					((ip->ip_hl + tcp->th_off) << 2);
1778				    if (cmdlen == 1) {
1779					match = (cmd->arg1 == x);
1780					break;
1781				    }
1782				    /* otherwise we have ranges */
1783				    p = ((ipfw_insn_u16 *)cmd)->ports;
1784				    i = cmdlen - 1;
1785				    for (; !match && i>0; i--, p += 2)
1786					match = (x >= p[0] && x <= p[1]);
1787				}
1788				break;
1789
1790			case O_TCPFLAGS:
1791				match = (proto == IPPROTO_TCP && offset == 0 &&
1792				    flags_match(cmd, TCP(ulp)->th_flags));
1793				break;
1794
1795			case O_TCPOPTS:
1796				if (proto == IPPROTO_TCP && offset == 0 && ulp){
1797					PULLUP_LEN(hlen, ulp,
1798					    (TCP(ulp)->th_off << 2));
1799					match = tcpopts_match(TCP(ulp), cmd);
1800				}
1801				break;
1802
1803			case O_TCPSEQ:
1804				match = (proto == IPPROTO_TCP && offset == 0 &&
1805				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1806					TCP(ulp)->th_seq);
1807				break;
1808
1809			case O_TCPACK:
1810				match = (proto == IPPROTO_TCP && offset == 0 &&
1811				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1812					TCP(ulp)->th_ack);
1813				break;
1814
1815			case O_TCPWIN:
1816				if (proto == IPPROTO_TCP && offset == 0) {
1817				    uint16_t x;
1818				    uint16_t *p;
1819				    int i;
1820
1821				    x = ntohs(TCP(ulp)->th_win);
1822				    if (cmdlen == 1) {
1823					match = (cmd->arg1 == x);
1824					break;
1825				    }
1826				    /* Otherwise we have ranges. */
1827				    p = ((ipfw_insn_u16 *)cmd)->ports;
1828				    i = cmdlen - 1;
1829				    for (; !match && i > 0; i--, p += 2)
1830					match = (x >= p[0] && x <= p[1]);
1831				}
1832				break;
1833
1834			case O_ESTAB:
1835				/* reject packets which have SYN only */
1836				/* XXX should i also check for TH_ACK ? */
1837				match = (proto == IPPROTO_TCP && offset == 0 &&
1838				    (TCP(ulp)->th_flags &
1839				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1840				break;
1841
1842			case O_ALTQ: {
1843				struct pf_mtag *at;
1844				struct m_tag *mtag;
1845				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1846
1847				/*
1848				 * ALTQ uses mbuf tags from another
1849				 * packet filtering system - pf(4).
1850				 * We allocate a tag in its format
1851				 * and fill it in, pretending to be pf(4).
1852				 */
1853				match = 1;
1854				at = pf_find_mtag(m);
1855				if (at != NULL && at->qid != 0)
1856					break;
1857				mtag = m_tag_get(PACKET_TAG_PF,
1858				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
1859				if (mtag == NULL) {
1860					/*
1861					 * Let the packet fall back to the
1862					 * default ALTQ.
1863					 */
1864					break;
1865				}
1866				m_tag_prepend(m, mtag);
1867				at = (struct pf_mtag *)(mtag + 1);
1868				at->qid = altq->qid;
1869				at->hdr = ip;
1870				break;
1871			}
1872
1873			case O_LOG:
1874				ipfw_log(chain, f, hlen, args, m,
1875				    oif, offset | ip6f_mf, tablearg, ip);
1876				match = 1;
1877				break;
1878
1879			case O_PROB:
1880				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1881				break;
1882
1883			case O_VERREVPATH:
1884				/* Outgoing packets automatically pass/match */
1885				match = ((oif != NULL) ||
1886				    (m->m_pkthdr.rcvif == NULL) ||
1887				    (
1888#ifdef INET6
1889				    is_ipv6 ?
1890					verify_path6(&(args->f_id.src_ip6),
1891					    m->m_pkthdr.rcvif, args->f_id.fib) :
1892#endif
1893				    verify_path(src_ip, m->m_pkthdr.rcvif,
1894				        args->f_id.fib)));
1895				break;
1896
1897			case O_VERSRCREACH:
1898				/* Outgoing packets automatically pass/match */
1899				match = (hlen > 0 && ((oif != NULL) ||
1900#ifdef INET6
1901				    is_ipv6 ?
1902				        verify_path6(&(args->f_id.src_ip6),
1903				            NULL, args->f_id.fib) :
1904#endif
1905				    verify_path(src_ip, NULL, args->f_id.fib)));
1906				break;
1907
1908			case O_ANTISPOOF:
1909				/* Outgoing packets automatically pass/match */
1910				if (oif == NULL && hlen > 0 &&
1911				    (  (is_ipv4 && in_localaddr(src_ip))
1912#ifdef INET6
1913				    || (is_ipv6 &&
1914				        in6_localaddr(&(args->f_id.src_ip6)))
1915#endif
1916				    ))
1917					match =
1918#ifdef INET6
1919					    is_ipv6 ? verify_path6(
1920					        &(args->f_id.src_ip6),
1921					        m->m_pkthdr.rcvif,
1922						args->f_id.fib) :
1923#endif
1924					    verify_path(src_ip,
1925					    	m->m_pkthdr.rcvif,
1926					        args->f_id.fib);
1927				else
1928					match = 1;
1929				break;
1930
1931			case O_IPSEC:
1932#ifdef IPSEC
1933				match = (m_tag_find(m,
1934				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1935#endif
1936				/* otherwise no match */
1937				break;
1938
1939#ifdef INET6
1940			case O_IP6_SRC:
1941				match = is_ipv6 &&
1942				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1943				    &((ipfw_insn_ip6 *)cmd)->addr6);
1944				break;
1945
1946			case O_IP6_DST:
1947				match = is_ipv6 &&
1948				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1949				    &((ipfw_insn_ip6 *)cmd)->addr6);
1950				break;
1951			case O_IP6_SRC_MASK:
1952			case O_IP6_DST_MASK:
1953				if (is_ipv6) {
1954					int i = cmdlen - 1;
1955					struct in6_addr p;
1956					struct in6_addr *d =
1957					    &((ipfw_insn_ip6 *)cmd)->addr6;
1958
1959					for (; !match && i > 0; d += 2,
1960					    i -= F_INSN_SIZE(struct in6_addr)
1961					    * 2) {
1962						p = (cmd->opcode ==
1963						    O_IP6_SRC_MASK) ?
1964						    args->f_id.src_ip6:
1965						    args->f_id.dst_ip6;
1966						APPLY_MASK(&p, &d[1]);
1967						match =
1968						    IN6_ARE_ADDR_EQUAL(&d[0],
1969						    &p);
1970					}
1971				}
1972				break;
1973
1974			case O_FLOW6ID:
1975				match = is_ipv6 &&
1976				    flow6id_match(args->f_id.flow_id6,
1977				    (ipfw_insn_u32 *) cmd);
1978				break;
1979
1980			case O_EXT_HDR:
1981				match = is_ipv6 &&
1982				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1983				break;
1984
1985			case O_IP6:
1986				match = is_ipv6;
1987				break;
1988#endif
1989
1990			case O_IP4:
1991				match = is_ipv4;
1992				break;
1993
1994			case O_TAG: {
1995				struct m_tag *mtag;
1996				uint32_t tag = TARG(cmd->arg1, tag);
1997
1998				/* Packet is already tagged with this tag? */
1999				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2000
2001				/* We have `untag' action when F_NOT flag is
2002				 * present. And we must remove this mtag from
2003				 * mbuf and reset `match' to zero (`match' will
2004				 * be inversed later).
2005				 * Otherwise we should allocate new mtag and
2006				 * push it into mbuf.
2007				 */
2008				if (cmd->len & F_NOT) { /* `untag' action */
2009					if (mtag != NULL)
2010						m_tag_delete(m, mtag);
2011					match = 0;
2012				} else {
2013					if (mtag == NULL) {
2014						mtag = m_tag_alloc( MTAG_IPFW,
2015						    tag, 0, M_NOWAIT);
2016						if (mtag != NULL)
2017							m_tag_prepend(m, mtag);
2018					}
2019					match = 1;
2020				}
2021				break;
2022			}
2023
2024			case O_FIB: /* try match the specified fib */
2025				if (args->f_id.fib == cmd->arg1)
2026					match = 1;
2027				break;
2028
2029			case O_SOCKARG:	{
2030#ifndef USERSPACE	/* not supported in userspace */
2031				struct inpcb *inp = args->inp;
2032				struct inpcbinfo *pi;
2033
2034				if (is_ipv6) /* XXX can we remove this ? */
2035					break;
2036
2037				if (proto == IPPROTO_TCP)
2038					pi = &V_tcbinfo;
2039				else if (proto == IPPROTO_UDP)
2040					pi = &V_udbinfo;
2041				else
2042					break;
2043
2044				/*
2045				 * XXXRW: so_user_cookie should almost
2046				 * certainly be inp_user_cookie?
2047				 */
2048
2049				/* For incoming packet, lookup up the
2050				inpcb using the src/dest ip/port tuple */
2051				if (inp == NULL) {
2052					inp = in_pcblookup(pi,
2053						src_ip, htons(src_port),
2054						dst_ip, htons(dst_port),
2055						INPLOOKUP_RLOCKPCB, NULL);
2056					if (inp != NULL) {
2057						tablearg =
2058						    inp->inp_socket->so_user_cookie;
2059						if (tablearg)
2060							match = 1;
2061						INP_RUNLOCK(inp);
2062					}
2063				} else {
2064					if (inp->inp_socket) {
2065						tablearg =
2066						    inp->inp_socket->so_user_cookie;
2067						if (tablearg)
2068							match = 1;
2069					}
2070				}
2071#endif /* !USERSPACE */
2072				break;
2073			}
2074
2075			case O_TAGGED: {
2076				struct m_tag *mtag;
2077				uint32_t tag = TARG(cmd->arg1, tag);
2078
2079				if (cmdlen == 1) {
2080					match = m_tag_locate(m, MTAG_IPFW,
2081					    tag, NULL) != NULL;
2082					break;
2083				}
2084
2085				/* we have ranges */
2086				for (mtag = m_tag_first(m);
2087				    mtag != NULL && !match;
2088				    mtag = m_tag_next(m, mtag)) {
2089					uint16_t *p;
2090					int i;
2091
2092					if (mtag->m_tag_cookie != MTAG_IPFW)
2093						continue;
2094
2095					p = ((ipfw_insn_u16 *)cmd)->ports;
2096					i = cmdlen - 1;
2097					for(; !match && i > 0; i--, p += 2)
2098						match =
2099						    mtag->m_tag_id >= p[0] &&
2100						    mtag->m_tag_id <= p[1];
2101				}
2102				break;
2103			}
2104
2105			/*
2106			 * The second set of opcodes represents 'actions',
2107			 * i.e. the terminal part of a rule once the packet
2108			 * matches all previous patterns.
2109			 * Typically there is only one action for each rule,
2110			 * and the opcode is stored at the end of the rule
2111			 * (but there are exceptions -- see below).
2112			 *
2113			 * In general, here we set retval and terminate the
2114			 * outer loop (would be a 'break 3' in some language,
2115			 * but we need to set l=0, done=1)
2116			 *
2117			 * Exceptions:
2118			 * O_COUNT and O_SKIPTO actions:
2119			 *   instead of terminating, we jump to the next rule
2120			 *   (setting l=0), or to the SKIPTO target (setting
2121			 *   f/f_len, cmd and l as needed), respectively.
2122			 *
2123			 * O_TAG, O_LOG and O_ALTQ action parameters:
2124			 *   perform some action and set match = 1;
2125			 *
2126			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2127			 *   not real 'actions', and are stored right
2128			 *   before the 'action' part of the rule.
2129			 *   These opcodes try to install an entry in the
2130			 *   state tables; if successful, we continue with
2131			 *   the next opcode (match=1; break;), otherwise
2132			 *   the packet must be dropped (set retval,
2133			 *   break loops with l=0, done=1)
2134			 *
2135			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2136			 *   cause a lookup of the state table, and a jump
2137			 *   to the 'action' part of the parent rule
2138			 *   if an entry is found, or
2139			 *   (CHECK_STATE only) a jump to the next rule if
2140			 *   the entry is not found.
2141			 *   The result of the lookup is cached so that
2142			 *   further instances of these opcodes become NOPs.
2143			 *   The jump to the next rule is done by setting
2144			 *   l=0, cmdlen=0.
2145			 */
2146			case O_LIMIT:
2147			case O_KEEP_STATE:
2148				if (ipfw_install_state(chain, f,
2149				    (ipfw_insn_limit *)cmd, args, tablearg)) {
2150					/* error or limit violation */
2151					retval = IP_FW_DENY;
2152					l = 0;	/* exit inner loop */
2153					done = 1; /* exit outer loop */
2154				}
2155				match = 1;
2156				break;
2157
2158			case O_PROBE_STATE:
2159			case O_CHECK_STATE:
2160				/*
2161				 * dynamic rules are checked at the first
2162				 * keep-state or check-state occurrence,
2163				 * with the result being stored in dyn_dir
2164				 * and dyn_name.
2165				 * The compiler introduces a PROBE_STATE
2166				 * instruction for us when we have a
2167				 * KEEP_STATE (because PROBE_STATE needs
2168				 * to be run first).
2169				 *
2170				 * (dyn_dir == MATCH_UNKNOWN) means this is
2171				 * first lookup for such f_id. Do lookup.
2172				 *
2173				 * (dyn_dir != MATCH_UNKNOWN &&
2174				 *  dyn_name != 0 && dyn_name != cmd->arg1)
2175				 * means previous lookup didn't find dynamic
2176				 * rule for specific state name and current
2177				 * lookup will search rule with another state
2178				 * name. Redo lookup.
2179				 *
2180				 * (dyn_dir != MATCH_UNKNOWN && dyn_name == 0)
2181				 * means previous lookup was for `any' name
2182				 * and it didn't find rule. No need to do
2183				 * lookup again.
2184				 */
2185				if ((dyn_dir == MATCH_UNKNOWN ||
2186				    (dyn_name != 0 &&
2187				    dyn_name != cmd->arg1)) &&
2188				    (q = ipfw_lookup_dyn_rule(&args->f_id,
2189				     &dyn_dir, proto == IPPROTO_TCP ?
2190				     TCP(ulp): NULL,
2191				     (dyn_name = cmd->arg1))) != NULL) {
2192					/*
2193					 * Found dynamic entry, update stats
2194					 * and jump to the 'action' part of
2195					 * the parent rule by setting
2196					 * f, cmd, l and clearing cmdlen.
2197					 */
2198					IPFW_INC_DYN_COUNTER(q, pktlen);
2199					/* XXX we would like to have f_pos
2200					 * readily accessible in the dynamic
2201				         * rule, instead of having to
2202					 * lookup q->rule.
2203					 */
2204					f = q->rule;
2205					f_pos = ipfw_find_rule(chain,
2206						f->rulenum, f->id);
2207					cmd = ACTION_PTR(f);
2208					l = f->cmd_len - f->act_ofs;
2209					ipfw_dyn_unlock(q);
2210					cmdlen = 0;
2211					match = 1;
2212					break;
2213				}
2214				/*
2215				 * Dynamic entry not found. If CHECK_STATE,
2216				 * skip to next rule, if PROBE_STATE just
2217				 * ignore and continue with next opcode.
2218				 */
2219				if (cmd->opcode == O_CHECK_STATE)
2220					l = 0;	/* exit inner loop */
2221				match = 1;
2222				break;
2223
2224			case O_ACCEPT:
2225				retval = 0;	/* accept */
2226				l = 0;		/* exit inner loop */
2227				done = 1;	/* exit outer loop */
2228				break;
2229
2230			case O_PIPE:
2231			case O_QUEUE:
2232				set_match(args, f_pos, chain);
2233				args->rule.info = TARG(cmd->arg1, pipe);
2234				if (cmd->opcode == O_PIPE)
2235					args->rule.info |= IPFW_IS_PIPE;
2236				if (V_fw_one_pass)
2237					args->rule.info |= IPFW_ONEPASS;
2238				retval = IP_FW_DUMMYNET;
2239				l = 0;          /* exit inner loop */
2240				done = 1;       /* exit outer loop */
2241				break;
2242
2243			case O_DIVERT:
2244			case O_TEE:
2245				if (args->eh) /* not on layer 2 */
2246				    break;
2247				/* otherwise this is terminal */
2248				l = 0;		/* exit inner loop */
2249				done = 1;	/* exit outer loop */
2250				retval = (cmd->opcode == O_DIVERT) ?
2251					IP_FW_DIVERT : IP_FW_TEE;
2252				set_match(args, f_pos, chain);
2253				args->rule.info = TARG(cmd->arg1, divert);
2254				break;
2255
2256			case O_COUNT:
2257				IPFW_INC_RULE_COUNTER(f, pktlen);
2258				l = 0;		/* exit inner loop */
2259				break;
2260
2261			case O_SKIPTO:
2262			    IPFW_INC_RULE_COUNTER(f, pktlen);
2263			    f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0);
2264			    /*
2265			     * Skip disabled rules, and re-enter
2266			     * the inner loop with the correct
2267			     * f_pos, f, l and cmd.
2268			     * Also clear cmdlen and skip_or
2269			     */
2270			    for (; f_pos < chain->n_rules - 1 &&
2271				    (V_set_disable &
2272				     (1 << chain->map[f_pos]->set));
2273				    f_pos++)
2274				;
2275			    /* Re-enter the inner loop at the skipto rule. */
2276			    f = chain->map[f_pos];
2277			    l = f->cmd_len;
2278			    cmd = f->cmd;
2279			    match = 1;
2280			    cmdlen = 0;
2281			    skip_or = 0;
2282			    continue;
2283			    break;	/* not reached */
2284
2285			case O_CALLRETURN: {
2286				/*
2287				 * Implementation of `subroutine' call/return,
2288				 * in the stack carried in an mbuf tag. This
2289				 * is different from `skipto' in that any call
2290				 * address is possible (`skipto' must prevent
2291				 * backward jumps to avoid endless loops).
2292				 * We have `return' action when F_NOT flag is
2293				 * present. The `m_tag_id' field is used as
2294				 * stack pointer.
2295				 */
2296				struct m_tag *mtag;
2297				uint16_t jmpto, *stack;
2298
2299#define	IS_CALL		((cmd->len & F_NOT) == 0)
2300#define	IS_RETURN	((cmd->len & F_NOT) != 0)
2301				/*
2302				 * Hand-rolled version of m_tag_locate() with
2303				 * wildcard `type'.
2304				 * If not already tagged, allocate new tag.
2305				 */
2306				mtag = m_tag_first(m);
2307				while (mtag != NULL) {
2308					if (mtag->m_tag_cookie ==
2309					    MTAG_IPFW_CALL)
2310						break;
2311					mtag = m_tag_next(m, mtag);
2312				}
2313				if (mtag == NULL && IS_CALL) {
2314					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2315					    IPFW_CALLSTACK_SIZE *
2316					    sizeof(uint16_t), M_NOWAIT);
2317					if (mtag != NULL)
2318						m_tag_prepend(m, mtag);
2319				}
2320
2321				/*
2322				 * On error both `call' and `return' just
2323				 * continue with next rule.
2324				 */
2325				if (IS_RETURN && (mtag == NULL ||
2326				    mtag->m_tag_id == 0)) {
2327					l = 0;		/* exit inner loop */
2328					break;
2329				}
2330				if (IS_CALL && (mtag == NULL ||
2331				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2332					printf("ipfw: call stack error, "
2333					    "go to next rule\n");
2334					l = 0;		/* exit inner loop */
2335					break;
2336				}
2337
2338				IPFW_INC_RULE_COUNTER(f, pktlen);
2339				stack = (uint16_t *)(mtag + 1);
2340
2341				/*
2342				 * The `call' action may use cached f_pos
2343				 * (in f->next_rule), whose version is written
2344				 * in f->next_rule.
2345				 * The `return' action, however, doesn't have
2346				 * fixed jump address in cmd->arg1 and can't use
2347				 * cache.
2348				 */
2349				if (IS_CALL) {
2350					stack[mtag->m_tag_id] = f->rulenum;
2351					mtag->m_tag_id++;
2352			    		f_pos = JUMP(chain, f, cmd->arg1,
2353					    tablearg, 1);
2354				} else {	/* `return' action */
2355					mtag->m_tag_id--;
2356					jmpto = stack[mtag->m_tag_id] + 1;
2357					f_pos = ipfw_find_rule(chain, jmpto, 0);
2358				}
2359
2360				/*
2361				 * Skip disabled rules, and re-enter
2362				 * the inner loop with the correct
2363				 * f_pos, f, l and cmd.
2364				 * Also clear cmdlen and skip_or
2365				 */
2366				for (; f_pos < chain->n_rules - 1 &&
2367				    (V_set_disable &
2368				    (1 << chain->map[f_pos]->set)); f_pos++)
2369					;
2370				/* Re-enter the inner loop at the dest rule. */
2371				f = chain->map[f_pos];
2372				l = f->cmd_len;
2373				cmd = f->cmd;
2374				cmdlen = 0;
2375				skip_or = 0;
2376				continue;
2377				break;	/* NOTREACHED */
2378			}
2379#undef IS_CALL
2380#undef IS_RETURN
2381
2382			case O_REJECT:
2383				/*
2384				 * Drop the packet and send a reject notice
2385				 * if the packet is not ICMP (or is an ICMP
2386				 * query), and it is not multicast/broadcast.
2387				 */
2388				if (hlen > 0 && is_ipv4 && offset == 0 &&
2389				    (proto != IPPROTO_ICMP ||
2390				     is_icmp_query(ICMP(ulp))) &&
2391				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2392				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2393					send_reject(args, cmd->arg1, iplen, ip);
2394					m = args->m;
2395				}
2396				/* FALLTHROUGH */
2397#ifdef INET6
2398			case O_UNREACH6:
2399				if (hlen > 0 && is_ipv6 &&
2400				    ((offset & IP6F_OFF_MASK) == 0) &&
2401				    (proto != IPPROTO_ICMPV6 ||
2402				     (is_icmp6_query(icmp6_type) == 1)) &&
2403				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2404				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2405					send_reject6(
2406					    args, cmd->arg1, hlen,
2407					    (struct ip6_hdr *)ip);
2408					m = args->m;
2409				}
2410				/* FALLTHROUGH */
2411#endif
2412			case O_DENY:
2413				retval = IP_FW_DENY;
2414				l = 0;		/* exit inner loop */
2415				done = 1;	/* exit outer loop */
2416				break;
2417
2418			case O_FORWARD_IP:
2419				if (args->eh)	/* not valid on layer2 pkts */
2420					break;
2421				if (q == NULL || q->rule != f ||
2422				    dyn_dir == MATCH_FORWARD) {
2423				    struct sockaddr_in *sa;
2424
2425				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2426				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2427#ifdef INET6
2428					/*
2429					 * We use O_FORWARD_IP opcode for
2430					 * fwd rule with tablearg, but tables
2431					 * now support IPv6 addresses. And
2432					 * when we are inspecting IPv6 packet,
2433					 * we can use nh6 field from
2434					 * table_value as next_hop6 address.
2435					 */
2436					if (is_ipv6) {
2437						struct sockaddr_in6 *sa6;
2438
2439						sa6 = args->next_hop6 =
2440						    &args->hopstore6;
2441						sa6->sin6_family = AF_INET6;
2442						sa6->sin6_len = sizeof(*sa6);
2443						sa6->sin6_addr = TARG_VAL(
2444						    chain, tablearg, nh6);
2445						/*
2446						 * Set sin6_scope_id only for
2447						 * link-local unicast addresses.
2448						 */
2449						if (IN6_IS_ADDR_LINKLOCAL(
2450						    &sa6->sin6_addr))
2451							sa6->sin6_scope_id =
2452							    TARG_VAL(chain,
2453								tablearg,
2454								zoneid);
2455					} else
2456#endif
2457					{
2458						sa = args->next_hop =
2459						    &args->hopstore;
2460						sa->sin_family = AF_INET;
2461						sa->sin_len = sizeof(*sa);
2462						sa->sin_addr.s_addr = htonl(
2463						    TARG_VAL(chain, tablearg,
2464						    nh4));
2465					}
2466				    } else {
2467					args->next_hop = sa;
2468				    }
2469				}
2470				retval = IP_FW_PASS;
2471				l = 0;          /* exit inner loop */
2472				done = 1;       /* exit outer loop */
2473				break;
2474
2475#ifdef INET6
2476			case O_FORWARD_IP6:
2477				if (args->eh)	/* not valid on layer2 pkts */
2478					break;
2479				if (q == NULL || q->rule != f ||
2480				    dyn_dir == MATCH_FORWARD) {
2481					struct sockaddr_in6 *sin6;
2482
2483					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2484					args->next_hop6 = sin6;
2485				}
2486				retval = IP_FW_PASS;
2487				l = 0;		/* exit inner loop */
2488				done = 1;	/* exit outer loop */
2489				break;
2490#endif
2491
2492			case O_NETGRAPH:
2493			case O_NGTEE:
2494				set_match(args, f_pos, chain);
2495				args->rule.info = TARG(cmd->arg1, netgraph);
2496				if (V_fw_one_pass)
2497					args->rule.info |= IPFW_ONEPASS;
2498				retval = (cmd->opcode == O_NETGRAPH) ?
2499				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2500				l = 0;          /* exit inner loop */
2501				done = 1;       /* exit outer loop */
2502				break;
2503
2504			case O_SETFIB: {
2505				uint32_t fib;
2506
2507				IPFW_INC_RULE_COUNTER(f, pktlen);
2508				fib = TARG(cmd->arg1, fib) & 0x7FFF;
2509				if (fib >= rt_numfibs)
2510					fib = 0;
2511				M_SETFIB(m, fib);
2512				args->f_id.fib = fib;
2513				l = 0;		/* exit inner loop */
2514				break;
2515		        }
2516
2517			case O_SETDSCP: {
2518				uint16_t code;
2519
2520				code = TARG(cmd->arg1, dscp) & 0x3F;
2521				l = 0;		/* exit inner loop */
2522				if (is_ipv4) {
2523					uint16_t old;
2524
2525					old = *(uint16_t *)ip;
2526					ip->ip_tos = (code << 2) |
2527					    (ip->ip_tos & 0x03);
2528					ip->ip_sum = cksum_adjust(ip->ip_sum,
2529					    old, *(uint16_t *)ip);
2530				} else if (is_ipv6) {
2531					uint8_t *v;
2532
2533					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2534					*v = (*v & 0xF0) | (code >> 2);
2535					v++;
2536					*v = (*v & 0x3F) | ((code & 0x03) << 6);
2537				} else
2538					break;
2539
2540				IPFW_INC_RULE_COUNTER(f, pktlen);
2541				break;
2542			}
2543
2544			case O_NAT:
2545				l = 0;          /* exit inner loop */
2546				done = 1;       /* exit outer loop */
2547 				if (!IPFW_NAT_LOADED) {
2548				    retval = IP_FW_DENY;
2549				    break;
2550				}
2551
2552				struct cfg_nat *t;
2553				int nat_id;
2554
2555				set_match(args, f_pos, chain);
2556				/* Check if this is 'global' nat rule */
2557				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
2558					retval = ipfw_nat_ptr(args, NULL, m);
2559					break;
2560				}
2561				t = ((ipfw_insn_nat *)cmd)->nat;
2562				if (t == NULL) {
2563					nat_id = TARG(cmd->arg1, nat);
2564					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2565
2566					if (t == NULL) {
2567					    retval = IP_FW_DENY;
2568					    break;
2569					}
2570					if (cmd->arg1 != IP_FW_TARG)
2571					    ((ipfw_insn_nat *)cmd)->nat = t;
2572				}
2573				retval = ipfw_nat_ptr(args, t, m);
2574				break;
2575
2576			case O_REASS: {
2577				int ip_off;
2578
2579				IPFW_INC_RULE_COUNTER(f, pktlen);
2580				l = 0;	/* in any case exit inner loop */
2581				ip_off = ntohs(ip->ip_off);
2582
2583				/* if not fragmented, go to next rule */
2584				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2585				    break;
2586
2587				args->m = m = ip_reass(m);
2588
2589				/*
2590				 * do IP header checksum fixup.
2591				 */
2592				if (m == NULL) { /* fragment got swallowed */
2593				    retval = IP_FW_DENY;
2594				} else { /* good, packet complete */
2595				    int hlen;
2596
2597				    ip = mtod(m, struct ip *);
2598				    hlen = ip->ip_hl << 2;
2599				    ip->ip_sum = 0;
2600				    if (hlen == sizeof(struct ip))
2601					ip->ip_sum = in_cksum_hdr(ip);
2602				    else
2603					ip->ip_sum = in_cksum(m, hlen);
2604				    retval = IP_FW_REASS;
2605				    set_match(args, f_pos, chain);
2606				}
2607				done = 1;	/* exit outer loop */
2608				break;
2609			}
2610			case O_EXTERNAL_ACTION:
2611				l = 0; /* in any case exit inner loop */
2612				retval = ipfw_run_eaction(chain, args,
2613				    cmd, &done);
2614				/*
2615				 * If both @retval and @done are zero,
2616				 * consider this as rule matching and
2617				 * update counters.
2618				 */
2619				if (retval == 0 && done == 0)
2620					IPFW_INC_RULE_COUNTER(f, pktlen);
2621				break;
2622
2623			default:
2624				panic("-- unknown opcode %d\n", cmd->opcode);
2625			} /* end of switch() on opcodes */
2626			/*
2627			 * if we get here with l=0, then match is irrelevant.
2628			 */
2629
2630			if (cmd->len & F_NOT)
2631				match = !match;
2632
2633			if (match) {
2634				if (cmd->len & F_OR)
2635					skip_or = 1;
2636			} else {
2637				if (!(cmd->len & F_OR)) /* not an OR block, */
2638					break;		/* try next rule    */
2639			}
2640
2641		}	/* end of inner loop, scan opcodes */
2642#undef PULLUP_LEN
2643
2644		if (done)
2645			break;
2646
2647/* next_rule:; */	/* try next rule		*/
2648
2649	}		/* end of outer for, scan rules */
2650
2651	if (done) {
2652		struct ip_fw *rule = chain->map[f_pos];
2653		/* Update statistics */
2654		IPFW_INC_RULE_COUNTER(rule, pktlen);
2655	} else {
2656		retval = IP_FW_DENY;
2657		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2658	}
2659	IPFW_PF_RUNLOCK(chain);
2660#ifdef __FreeBSD__
2661	if (ucred_cache != NULL)
2662		crfree(ucred_cache);
2663#endif
2664	return (retval);
2665
2666pullup_failed:
2667	if (V_fw_verbose)
2668		printf("ipfw: pullup failed\n");
2669	return (IP_FW_DENY);
2670}
2671
2672/*
2673 * Set maximum number of tables that can be used in given VNET ipfw instance.
2674 */
2675#ifdef SYSCTL_NODE
2676static int
2677sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
2678{
2679	int error;
2680	unsigned int ntables;
2681
2682	ntables = V_fw_tables_max;
2683
2684	error = sysctl_handle_int(oidp, &ntables, 0, req);
2685	/* Read operation or some error */
2686	if ((error != 0) || (req->newptr == NULL))
2687		return (error);
2688
2689	return (ipfw_resize_tables(&V_layer3_chain, ntables));
2690}
2691
2692/*
2693 * Switches table namespace between global and per-set.
2694 */
2695static int
2696sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
2697{
2698	int error;
2699	unsigned int sets;
2700
2701	sets = V_fw_tables_sets;
2702
2703	error = sysctl_handle_int(oidp, &sets, 0, req);
2704	/* Read operation or some error */
2705	if ((error != 0) || (req->newptr == NULL))
2706		return (error);
2707
2708	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
2709}
2710#endif
2711
2712/*
2713 * Module and VNET glue
2714 */
2715
2716/*
2717 * Stuff that must be initialised only on boot or module load
2718 */
2719static int
2720ipfw_init(void)
2721{
2722	int error = 0;
2723
2724	/*
2725 	 * Only print out this stuff the first time around,
2726	 * when called from the sysinit code.
2727	 */
2728	printf("ipfw2 "
2729#ifdef INET6
2730		"(+ipv6) "
2731#endif
2732		"initialized, divert %s, nat %s, "
2733		"default to %s, logging ",
2734#ifdef IPDIVERT
2735		"enabled",
2736#else
2737		"loadable",
2738#endif
2739#ifdef IPFIREWALL_NAT
2740		"enabled",
2741#else
2742		"loadable",
2743#endif
2744		default_to_accept ? "accept" : "deny");
2745
2746	/*
2747	 * Note: V_xxx variables can be accessed here but the vnet specific
2748	 * initializer may not have been called yet for the VIMAGE case.
2749	 * Tuneables will have been processed. We will print out values for
2750	 * the default vnet.
2751	 * XXX This should all be rationalized AFTER 8.0
2752	 */
2753	if (V_fw_verbose == 0)
2754		printf("disabled\n");
2755	else if (V_verbose_limit == 0)
2756		printf("unlimited\n");
2757	else
2758		printf("limited to %d packets/entry by default\n",
2759		    V_verbose_limit);
2760
2761	/* Check user-supplied table count for validness */
2762	if (default_fw_tables > IPFW_TABLES_MAX)
2763	  default_fw_tables = IPFW_TABLES_MAX;
2764
2765	ipfw_init_sopt_handler();
2766	ipfw_init_obj_rewriter();
2767	ipfw_iface_init();
2768	return (error);
2769}
2770
2771/*
2772 * Called for the removal of the last instance only on module unload.
2773 */
2774static void
2775ipfw_destroy(void)
2776{
2777
2778	ipfw_iface_destroy();
2779	ipfw_destroy_sopt_handler();
2780	ipfw_destroy_obj_rewriter();
2781	printf("IP firewall unloaded\n");
2782}
2783
2784/*
2785 * Stuff that must be initialized for every instance
2786 * (including the first of course).
2787 */
2788static int
2789vnet_ipfw_init(const void *unused)
2790{
2791	int error, first;
2792	struct ip_fw *rule = NULL;
2793	struct ip_fw_chain *chain;
2794
2795	chain = &V_layer3_chain;
2796
2797	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
2798
2799	/* First set up some values that are compile time options */
2800	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2801	V_fw_deny_unknown_exthdrs = 1;
2802#ifdef IPFIREWALL_VERBOSE
2803	V_fw_verbose = 1;
2804#endif
2805#ifdef IPFIREWALL_VERBOSE_LIMIT
2806	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2807#endif
2808#ifdef IPFIREWALL_NAT
2809	LIST_INIT(&chain->nat);
2810#endif
2811
2812	/* Init shared services hash table */
2813	ipfw_init_srv(chain);
2814
2815	ipfw_init_counters();
2816	/* insert the default rule and create the initial map */
2817	chain->n_rules = 1;
2818	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_WAITOK | M_ZERO);
2819	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
2820
2821	/* Set initial number of tables */
2822	V_fw_tables_max = default_fw_tables;
2823	error = ipfw_init_tables(chain, first);
2824	if (error) {
2825		printf("ipfw2: setting up tables failed\n");
2826		free(chain->map, M_IPFW);
2827		free(rule, M_IPFW);
2828		return (ENOSPC);
2829	}
2830
2831	/* fill and insert the default rule */
2832	rule->act_ofs = 0;
2833	rule->rulenum = IPFW_DEFAULT_RULE;
2834	rule->cmd_len = 1;
2835	rule->set = RESVD_SET;
2836	rule->cmd[0].len = 1;
2837	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2838	chain->default_rule = chain->map[0] = rule;
2839	chain->id = rule->id = 1;
2840	/* Pre-calculate rules length for legacy dump format */
2841	chain->static_len = sizeof(struct ip_fw_rule0);
2842
2843	IPFW_LOCK_INIT(chain);
2844	ipfw_dyn_init(chain);
2845	ipfw_eaction_init(chain, first);
2846#ifdef LINEAR_SKIPTO
2847	ipfw_init_skipto_cache(chain);
2848#endif
2849
2850	/* First set up some values that are compile time options */
2851	V_ipfw_vnet_ready = 1;		/* Open for business */
2852
2853	/*
2854	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
2855	 * Even if the latter two fail we still keep the module alive
2856	 * because the sockopt and layer2 paths are still useful.
2857	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2858	 * so we can ignore the exact return value and just set a flag.
2859	 *
2860	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2861	 * changes in the underlying (per-vnet) variables trigger
2862	 * immediate hook()/unhook() calls.
2863	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2864	 * is checked on each packet because there are no pfil hooks.
2865	 */
2866	V_ip_fw_ctl_ptr = ipfw_ctl3;
2867	ipfw_log_bpf(1); /* init */
2868	error = ipfw_attach_hooks(1);
2869	return (error);
2870}
2871
2872/*
2873 * Called for the removal of each instance.
2874 */
2875static int
2876vnet_ipfw_uninit(const void *unused)
2877{
2878	struct ip_fw *reap;
2879	struct ip_fw_chain *chain = &V_layer3_chain;
2880	int i, last;
2881
2882	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2883	/*
2884	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2885	 * Then grab, release and grab again the WLOCK so we make
2886	 * sure the update is propagated and nobody will be in.
2887	 */
2888	(void)ipfw_attach_hooks(0 /* detach */);
2889	V_ip_fw_ctl_ptr = NULL;
2890
2891	ipfw_log_bpf(0); /* uninit */
2892
2893	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
2894
2895	IPFW_UH_WLOCK(chain);
2896	IPFW_UH_WUNLOCK(chain);
2897
2898	ipfw_dyn_uninit(0);	/* run the callout_drain */
2899
2900	IPFW_UH_WLOCK(chain);
2901
2902	reap = NULL;
2903	IPFW_WLOCK(chain);
2904	for (i = 0; i < chain->n_rules; i++)
2905		ipfw_reap_add(chain, &reap, chain->map[i]);
2906	free(chain->map, M_IPFW);
2907#ifdef LINEAR_SKIPTO
2908	ipfw_destroy_skipto_cache(chain);
2909#endif
2910	IPFW_WUNLOCK(chain);
2911	IPFW_UH_WUNLOCK(chain);
2912	ipfw_destroy_tables(chain, last);
2913	ipfw_eaction_uninit(chain, last);
2914	if (reap != NULL)
2915		ipfw_reap_rules(reap);
2916	vnet_ipfw_iface_destroy(chain);
2917	ipfw_destroy_srv(chain);
2918	IPFW_LOCK_DESTROY(chain);
2919	ipfw_dyn_uninit(1);	/* free the remaining parts */
2920	ipfw_destroy_counters();
2921	return (0);
2922}
2923
2924/*
2925 * Module event handler.
2926 * In general we have the choice of handling most of these events by the
2927 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2928 * use the SYSINIT handlers as they are more capable of expressing the
2929 * flow of control during module and vnet operations, so this is just
2930 * a skeleton. Note there is no SYSINIT equivalent of the module
2931 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2932 */
2933static int
2934ipfw_modevent(module_t mod, int type, void *unused)
2935{
2936	int err = 0;
2937
2938	switch (type) {
2939	case MOD_LOAD:
2940		/* Called once at module load or
2941	 	 * system boot if compiled in. */
2942		break;
2943	case MOD_QUIESCE:
2944		/* Called before unload. May veto unloading. */
2945		break;
2946	case MOD_UNLOAD:
2947		/* Called during unload. */
2948		break;
2949	case MOD_SHUTDOWN:
2950		/* Called during system shutdown. */
2951		break;
2952	default:
2953		err = EOPNOTSUPP;
2954		break;
2955	}
2956	return err;
2957}
2958
2959static moduledata_t ipfwmod = {
2960	"ipfw",
2961	ipfw_modevent,
2962	0
2963};
2964
2965/* Define startup order. */
2966#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
2967#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2968#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2969#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2970
2971DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2972FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
2973MODULE_VERSION(ipfw, 3);
2974/* should declare some dependencies here */
2975
2976/*
2977 * Starting up. Done in order after ipfwmod() has been called.
2978 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2979 */
2980SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2981	    ipfw_init, NULL);
2982VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2983	    vnet_ipfw_init, NULL);
2984
2985/*
2986 * Closing up shop. These are done in REVERSE ORDER, but still
2987 * after ipfwmod() has been called. Not called on reboot.
2988 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2989 * or when the module is unloaded.
2990 */
2991SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2992	    ipfw_destroy, NULL);
2993VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2994	    vnet_ipfw_uninit, NULL);
2995/* end of file */
2996