ip_dn_io.c revision 325730
1/*-
2 * Copyright (c) 2010 Luigi Rizzo, Riccardo Panicucci, Universita` di Pisa
3 * All rights reserved
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * Dummynet portions related to packet handling.
29 */
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/netpfil/ipfw/ip_dn_io.c 325730 2017-11-12 01:26:43Z truckman $");
32
33#include "opt_inet6.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/priv.h>
44#include <sys/proc.h>
45#include <sys/rwlock.h>
46#include <sys/socket.h>
47#include <sys/time.h>
48#include <sys/sysctl.h>
49
50#include <net/if.h>	/* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
51#include <net/netisr.h>
52#include <net/vnet.h>
53
54#include <netinet/in.h>
55#include <netinet/ip.h>		/* ip_len, ip_off */
56#include <netinet/ip_var.h>	/* ip_output(), IP_FORWARDING */
57#include <netinet/ip_fw.h>
58#include <netinet/ip_dummynet.h>
59#include <netinet/if_ether.h> /* various ether_* routines */
60#include <netinet/ip6.h>       /* for ip6_input, ip6_output prototypes */
61#include <netinet6/ip6_var.h>
62
63#include <netpfil/ipfw/ip_fw_private.h>
64#include <netpfil/ipfw/dn_heap.h>
65#include <netpfil/ipfw/ip_dn_private.h>
66#ifdef NEW_AQM
67#include <netpfil/ipfw/dn_aqm.h>
68#endif
69#include <netpfil/ipfw/dn_sched.h>
70
71/*
72 * We keep a private variable for the simulation time, but we could
73 * probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
74 * instead of dn_cfg.curr_time
75 */
76
77struct dn_parms dn_cfg;
78//VNET_DEFINE(struct dn_parms, _base_dn_cfg);
79
80static long tick_last;		/* Last tick duration (usec). */
81static long tick_delta;		/* Last vs standard tick diff (usec). */
82static long tick_delta_sum;	/* Accumulated tick difference (usec).*/
83static long tick_adjustment;	/* Tick adjustments done. */
84static long tick_lost;		/* Lost(coalesced) ticks number. */
85/* Adjusted vs non-adjusted curr_time difference (ticks). */
86static long tick_diff;
87
88static unsigned long	io_pkt;
89static unsigned long	io_pkt_fast;
90
91#ifdef NEW_AQM
92unsigned long	io_pkt_drop;
93#else
94static unsigned long	io_pkt_drop;
95#endif
96/*
97 * We use a heap to store entities for which we have pending timer events.
98 * The heap is checked at every tick and all entities with expired events
99 * are extracted.
100 */
101
102MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
103
104extern	void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
105
106#ifdef SYSCTL_NODE
107
108/*
109 * Because of the way the SYSBEGIN/SYSEND macros work on other
110 * platforms, there should not be functions between them.
111 * So keep the handlers outside the block.
112 */
113static int
114sysctl_hash_size(SYSCTL_HANDLER_ARGS)
115{
116	int error, value;
117
118	value = dn_cfg.hash_size;
119	error = sysctl_handle_int(oidp, &value, 0, req);
120	if (error != 0 || req->newptr == NULL)
121		return (error);
122	if (value < 16 || value > 65536)
123		return (EINVAL);
124	dn_cfg.hash_size = value;
125	return (0);
126}
127
128static int
129sysctl_limits(SYSCTL_HANDLER_ARGS)
130{
131	int error;
132	long value;
133
134	if (arg2 != 0)
135		value = dn_cfg.slot_limit;
136	else
137		value = dn_cfg.byte_limit;
138	error = sysctl_handle_long(oidp, &value, 0, req);
139
140	if (error != 0 || req->newptr == NULL)
141		return (error);
142	if (arg2 != 0) {
143		if (value < 1)
144			return (EINVAL);
145		dn_cfg.slot_limit = value;
146	} else {
147		if (value < 1500)
148			return (EINVAL);
149		dn_cfg.byte_limit = value;
150	}
151	return (0);
152}
153
154SYSBEGIN(f4)
155
156SYSCTL_DECL(_net_inet);
157SYSCTL_DECL(_net_inet_ip);
158#ifdef NEW_AQM
159SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet");
160#else
161static SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet");
162#endif
163
164/* wrapper to pass dn_cfg fields to SYSCTL_* */
165//#define DC(x)	(&(VNET_NAME(_base_dn_cfg).x))
166#define DC(x)	(&(dn_cfg.x))
167/* parameters */
168
169
170SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hash_size,
171    CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_hash_size,
172    "I", "Default hash table size");
173
174
175SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
176    CTLTYPE_LONG | CTLFLAG_RW, 0, 1, sysctl_limits,
177    "L", "Upper limit in slots for pipe queue.");
178SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
179    CTLTYPE_LONG | CTLFLAG_RW, 0, 0, sysctl_limits,
180    "L", "Upper limit in bytes for pipe queue.");
181SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
182    CTLFLAG_RW, DC(io_fast), 0, "Enable fast dummynet io.");
183SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug,
184    CTLFLAG_RW, DC(debug), 0, "Dummynet debug level");
185
186/* RED parameters */
187SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
188    CTLFLAG_RD, DC(red_lookup_depth), 0, "Depth of RED lookup table");
189SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
190    CTLFLAG_RD, DC(red_avg_pkt_size), 0, "RED Medium packet size");
191SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
192    CTLFLAG_RD, DC(red_max_pkt_size), 0, "RED Max packet size");
193
194/* time adjustment */
195SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
196    CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec).");
197SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
198    CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec).");
199SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
200    CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done.");
201SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
202    CTLFLAG_RD, &tick_diff, 0,
203    "Adjusted vs non-adjusted curr_time difference (ticks).");
204SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
205    CTLFLAG_RD, &tick_lost, 0,
206    "Number of ticks coalesced by dummynet taskqueue.");
207
208/* Drain parameters */
209SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire,
210    CTLFLAG_RW, DC(expire), 0, "Expire empty queues/pipes");
211SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire_cycle,
212    CTLFLAG_RD, DC(expire_cycle), 0, "Expire cycle for queues/pipes");
213
214/* statistics */
215SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, schk_count,
216    CTLFLAG_RD, DC(schk_count), 0, "Number of schedulers");
217SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, si_count,
218    CTLFLAG_RD, DC(si_count), 0, "Number of scheduler instances");
219SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, fsk_count,
220    CTLFLAG_RD, DC(fsk_count), 0, "Number of flowsets");
221SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, queue_count,
222    CTLFLAG_RD, DC(queue_count), 0, "Number of queues");
223SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
224    CTLFLAG_RD, &io_pkt, 0,
225    "Number of packets passed to dummynet.");
226SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
227    CTLFLAG_RD, &io_pkt_fast, 0,
228    "Number of packets bypassed dummynet scheduler.");
229SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
230    CTLFLAG_RD, &io_pkt_drop, 0,
231    "Number of packets dropped by dummynet.");
232#undef DC
233SYSEND
234
235#endif
236
237static void	dummynet_send(struct mbuf *);
238
239/*
240 * Return the mbuf tag holding the dummynet state (it should
241 * be the first one on the list).
242 */
243struct dn_pkt_tag *
244dn_tag_get(struct mbuf *m)
245{
246	struct m_tag *mtag = m_tag_first(m);
247#ifdef NEW_AQM
248	/* XXX: to skip ts m_tag. For Debugging only*/
249	if (mtag != NULL && mtag->m_tag_id == DN_AQM_MTAG_TS) {
250		m_tag_delete(m,mtag);
251		mtag = m_tag_first(m);
252		D("skip TS tag");
253	}
254#endif
255	KASSERT(mtag != NULL &&
256	    mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
257	    mtag->m_tag_id == PACKET_TAG_DUMMYNET,
258	    ("packet on dummynet queue w/o dummynet tag!"));
259	return (struct dn_pkt_tag *)(mtag+1);
260}
261
262#ifndef NEW_AQM
263static inline void
264mq_append(struct mq *q, struct mbuf *m)
265{
266#ifdef USERSPACE
267	// buffers from netmap need to be copied
268	// XXX note that the routine is not expected to fail
269	ND("append %p to %p", m, q);
270	if (m->m_flags & M_STACK) {
271		struct mbuf *m_new;
272		void *p;
273		int l, ofs;
274
275		ofs = m->m_data - m->__m_extbuf;
276		// XXX allocate
277		MGETHDR(m_new, M_NOWAIT, MT_DATA);
278		ND("*** WARNING, volatile buf %p ext %p %d dofs %d m_new %p",
279			m, m->__m_extbuf, m->__m_extlen, ofs, m_new);
280		p = m_new->__m_extbuf;	/* new pointer */
281		l = m_new->__m_extlen;	/* new len */
282		if (l <= m->__m_extlen) {
283			panic("extlen too large");
284		}
285
286		*m_new = *m;	// copy
287		m_new->m_flags &= ~M_STACK;
288		m_new->__m_extbuf = p; // point to new buffer
289		_pkt_copy(m->__m_extbuf, p, m->__m_extlen);
290		m_new->m_data = p + ofs;
291		m = m_new;
292	}
293#endif /* USERSPACE */
294	if (q->head == NULL)
295		q->head = m;
296	else
297		q->tail->m_nextpkt = m;
298	q->count++;
299	q->tail = m;
300	m->m_nextpkt = NULL;
301}
302#endif
303
304/*
305 * Dispose a list of packet. Use a functions so if we need to do
306 * more work, this is a central point to do it.
307 */
308void dn_free_pkts(struct mbuf *mnext)
309{
310        struct mbuf *m;
311
312        while ((m = mnext) != NULL) {
313                mnext = m->m_nextpkt;
314                FREE_PKT(m);
315        }
316}
317
318static int
319red_drops (struct dn_queue *q, int len)
320{
321	/*
322	 * RED algorithm
323	 *
324	 * RED calculates the average queue size (avg) using a low-pass filter
325	 * with an exponential weighted (w_q) moving average:
326	 * 	avg  <-  (1-w_q) * avg + w_q * q_size
327	 * where q_size is the queue length (measured in bytes or * packets).
328	 *
329	 * If q_size == 0, we compute the idle time for the link, and set
330	 *	avg = (1 - w_q)^(idle/s)
331	 * where s is the time needed for transmitting a medium-sized packet.
332	 *
333	 * Now, if avg < min_th the packet is enqueued.
334	 * If avg > max_th the packet is dropped. Otherwise, the packet is
335	 * dropped with probability P function of avg.
336	 */
337
338	struct dn_fsk *fs = q->fs;
339	int64_t p_b = 0;
340
341	/* Queue in bytes or packets? */
342	uint32_t q_size = (fs->fs.flags & DN_QSIZE_BYTES) ?
343	    q->ni.len_bytes : q->ni.length;
344
345	/* Average queue size estimation. */
346	if (q_size != 0) {
347		/* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
348		int diff = SCALE(q_size) - q->avg;
349		int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
350
351		q->avg += (int)v;
352	} else {
353		/*
354		 * Queue is empty, find for how long the queue has been
355		 * empty and use a lookup table for computing
356		 * (1 - * w_q)^(idle_time/s) where s is the time to send a
357		 * (small) packet.
358		 * XXX check wraps...
359		 */
360		if (q->avg) {
361			u_int t = div64((dn_cfg.curr_time - q->q_time), fs->lookup_step);
362
363			q->avg = (t < fs->lookup_depth) ?
364			    SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
365		}
366	}
367
368	/* Should i drop? */
369	if (q->avg < fs->min_th) {
370		q->count = -1;
371		return (0);	/* accept packet */
372	}
373	if (q->avg >= fs->max_th) {	/* average queue >=  max threshold */
374		if (fs->fs.flags & DN_IS_ECN)
375			return (1);
376		if (fs->fs.flags & DN_IS_GENTLE_RED) {
377			/*
378			 * According to Gentle-RED, if avg is greater than
379			 * max_th the packet is dropped with a probability
380			 *	 p_b = c_3 * avg - c_4
381			 * where c_3 = (1 - max_p) / max_th
382			 *       c_4 = 1 - 2 * max_p
383			 */
384			p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
385			    fs->c_4;
386		} else {
387			q->count = -1;
388			return (1);
389		}
390	} else if (q->avg > fs->min_th) {
391		if (fs->fs.flags & DN_IS_ECN)
392			return (1);
393		/*
394		 * We compute p_b using the linear dropping function
395		 *	 p_b = c_1 * avg - c_2
396		 * where c_1 = max_p / (max_th - min_th)
397		 * 	 c_2 = max_p * min_th / (max_th - min_th)
398		 */
399		p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
400	}
401
402	if (fs->fs.flags & DN_QSIZE_BYTES)
403		p_b = div64((p_b * len) , fs->max_pkt_size);
404	if (++q->count == 0)
405		q->random = random() & 0xffff;
406	else {
407		/*
408		 * q->count counts packets arrived since last drop, so a greater
409		 * value of q->count means a greater packet drop probability.
410		 */
411		if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
412			q->count = 0;
413			/* After a drop we calculate a new random value. */
414			q->random = random() & 0xffff;
415			return (1);	/* drop */
416		}
417	}
418	/* End of RED algorithm. */
419
420	return (0);	/* accept */
421
422}
423
424/*
425 * ECN/ECT Processing (partially adopted from altq)
426 */
427#ifndef NEW_AQM
428static
429#endif
430int
431ecn_mark(struct mbuf* m)
432{
433	struct ip *ip;
434	ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off);
435
436	switch (ip->ip_v) {
437	case IPVERSION:
438	{
439		uint16_t old;
440
441		if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_NOTECT)
442			return (0);	/* not-ECT */
443		if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_CE)
444			return (1);	/* already marked */
445
446		/*
447		 * ecn-capable but not marked,
448		 * mark CE and update checksum
449		 */
450		old = *(uint16_t *)ip;
451		ip->ip_tos |= IPTOS_ECN_CE;
452		ip->ip_sum = cksum_adjust(ip->ip_sum, old, *(uint16_t *)ip);
453		return (1);
454	}
455#ifdef INET6
456	case (IPV6_VERSION >> 4):
457	{
458		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
459		u_int32_t flowlabel;
460
461		flowlabel = ntohl(ip6->ip6_flow);
462		if ((flowlabel >> 28) != 6)
463			return (0);	/* version mismatch! */
464		if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
465		    (IPTOS_ECN_NOTECT << 20))
466			return (0);	/* not-ECT */
467		if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
468		    (IPTOS_ECN_CE << 20))
469			return (1);	/* already marked */
470		/*
471		 * ecn-capable but not marked, mark CE
472		 */
473		flowlabel |= (IPTOS_ECN_CE << 20);
474		ip6->ip6_flow = htonl(flowlabel);
475		return (1);
476	}
477#endif
478	}
479	return (0);
480}
481
482/*
483 * Enqueue a packet in q, subject to space and queue management policy
484 * (whose parameters are in q->fs).
485 * Update stats for the queue and the scheduler.
486 * Return 0 on success, 1 on drop. The packet is consumed anyways.
487 */
488int
489dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop)
490{
491	struct dn_fs *f;
492	struct dn_flow *ni;	/* stats for scheduler instance */
493	uint64_t len;
494
495	if (q->fs == NULL || q->_si == NULL) {
496		printf("%s fs %p si %p, dropping\n",
497			__FUNCTION__, q->fs, q->_si);
498		FREE_PKT(m);
499		return 1;
500	}
501	f = &(q->fs->fs);
502	ni = &q->_si->ni;
503	len = m->m_pkthdr.len;
504	/* Update statistics, then check reasons to drop pkt. */
505	q->ni.tot_bytes += len;
506	q->ni.tot_pkts++;
507	ni->tot_bytes += len;
508	ni->tot_pkts++;
509	if (drop)
510		goto drop;
511	if (f->plr && random() < f->plr)
512		goto drop;
513#ifdef NEW_AQM
514	/* Call AQM enqueue function */
515	if (q->fs->aqmfp)
516		return q->fs->aqmfp->enqueue(q ,m);
517#endif
518	if (f->flags & DN_IS_RED && red_drops(q, m->m_pkthdr.len)) {
519		if (!(f->flags & DN_IS_ECN) || !ecn_mark(m))
520			goto drop;
521	}
522	if (f->flags & DN_QSIZE_BYTES) {
523		if (q->ni.len_bytes > f->qsize)
524			goto drop;
525	} else if (q->ni.length >= f->qsize) {
526		goto drop;
527	}
528	mq_append(&q->mq, m);
529	q->ni.length++;
530	q->ni.len_bytes += len;
531	ni->length++;
532	ni->len_bytes += len;
533	return (0);
534
535drop:
536	io_pkt_drop++;
537	q->ni.drops++;
538	ni->drops++;
539	FREE_PKT(m);
540	return (1);
541}
542
543/*
544 * Fetch packets from the delay line which are due now. If there are
545 * leftover packets, reinsert the delay line in the heap.
546 * Runs under scheduler lock.
547 */
548static void
549transmit_event(struct mq *q, struct delay_line *dline, uint64_t now)
550{
551	struct mbuf *m;
552	struct dn_pkt_tag *pkt = NULL;
553
554	dline->oid.subtype = 0; /* not in heap */
555	while ((m = dline->mq.head) != NULL) {
556		pkt = dn_tag_get(m);
557		if (!DN_KEY_LEQ(pkt->output_time, now))
558			break;
559		dline->mq.head = m->m_nextpkt;
560		dline->mq.count--;
561		mq_append(q, m);
562	}
563	if (m != NULL) {
564		dline->oid.subtype = 1; /* in heap */
565		heap_insert(&dn_cfg.evheap, pkt->output_time, dline);
566	}
567}
568
569/*
570 * Convert the additional MAC overheads/delays into an equivalent
571 * number of bits for the given data rate. The samples are
572 * in milliseconds so we need to divide by 1000.
573 */
574static uint64_t
575extra_bits(struct mbuf *m, struct dn_schk *s)
576{
577	int index;
578	uint64_t bits;
579	struct dn_profile *pf = s->profile;
580
581	if (!pf || pf->samples_no == 0)
582		return 0;
583	index  = random() % pf->samples_no;
584	bits = div64((uint64_t)pf->samples[index] * s->link.bandwidth, 1000);
585	if (index >= pf->loss_level) {
586		struct dn_pkt_tag *dt = dn_tag_get(m);
587		if (dt)
588			dt->dn_dir = DIR_DROP;
589	}
590	return bits;
591}
592
593/*
594 * Send traffic from a scheduler instance due by 'now'.
595 * Return a pointer to the head of the queue.
596 */
597static struct mbuf *
598serve_sched(struct mq *q, struct dn_sch_inst *si, uint64_t now)
599{
600	struct mq def_q;
601	struct dn_schk *s = si->sched;
602	struct mbuf *m = NULL;
603	int delay_line_idle = (si->dline.mq.head == NULL);
604	int done, bw;
605
606	if (q == NULL) {
607		q = &def_q;
608		q->head = NULL;
609	}
610
611	bw = s->link.bandwidth;
612	si->kflags &= ~DN_ACTIVE;
613
614	if (bw > 0)
615		si->credit += (now - si->sched_time) * bw;
616	else
617		si->credit = 0;
618	si->sched_time = now;
619	done = 0;
620	while (si->credit >= 0 && (m = s->fp->dequeue(si)) != NULL) {
621		uint64_t len_scaled;
622
623		done++;
624		len_scaled = (bw == 0) ? 0 : hz *
625			(m->m_pkthdr.len * 8 + extra_bits(m, s));
626		si->credit -= len_scaled;
627		/* Move packet in the delay line */
628		dn_tag_get(m)->output_time = dn_cfg.curr_time + s->link.delay ;
629		mq_append(&si->dline.mq, m);
630	}
631
632	/*
633	 * If credit >= 0 the instance is idle, mark time.
634	 * Otherwise put back in the heap, and adjust the output
635	 * time of the last inserted packet, m, which was too early.
636	 */
637	if (si->credit >= 0) {
638		si->idle_time = now;
639	} else {
640		uint64_t t;
641		KASSERT (bw > 0, ("bw=0 and credit<0 ?"));
642		t = div64(bw - 1 - si->credit, bw);
643		if (m)
644			dn_tag_get(m)->output_time += t;
645		si->kflags |= DN_ACTIVE;
646		heap_insert(&dn_cfg.evheap, now + t, si);
647	}
648	if (delay_line_idle && done)
649		transmit_event(q, &si->dline, now);
650	return q->head;
651}
652
653/*
654 * The timer handler for dummynet. Time is computed in ticks, but
655 * but the code is tolerant to the actual rate at which this is called.
656 * Once complete, the function reschedules itself for the next tick.
657 */
658void
659dummynet_task(void *context, int pending)
660{
661	struct timeval t;
662	struct mq q = { NULL, NULL }; /* queue to accumulate results */
663
664	CURVNET_SET((struct vnet *)context);
665
666	DN_BH_WLOCK();
667
668	/* Update number of lost(coalesced) ticks. */
669	tick_lost += pending - 1;
670
671	getmicrouptime(&t);
672	/* Last tick duration (usec). */
673	tick_last = (t.tv_sec - dn_cfg.prev_t.tv_sec) * 1000000 +
674	(t.tv_usec - dn_cfg.prev_t.tv_usec);
675	/* Last tick vs standard tick difference (usec). */
676	tick_delta = (tick_last * hz - 1000000) / hz;
677	/* Accumulated tick difference (usec). */
678	tick_delta_sum += tick_delta;
679
680	dn_cfg.prev_t = t;
681
682	/*
683	* Adjust curr_time if the accumulated tick difference is
684	* greater than the 'standard' tick. Since curr_time should
685	* be monotonically increasing, we do positive adjustments
686	* as required, and throttle curr_time in case of negative
687	* adjustment.
688	*/
689	dn_cfg.curr_time++;
690	if (tick_delta_sum - tick >= 0) {
691		int diff = tick_delta_sum / tick;
692
693		dn_cfg.curr_time += diff;
694		tick_diff += diff;
695		tick_delta_sum %= tick;
696		tick_adjustment++;
697	} else if (tick_delta_sum + tick <= 0) {
698		dn_cfg.curr_time--;
699		tick_diff--;
700		tick_delta_sum += tick;
701		tick_adjustment++;
702	}
703
704	/* serve pending events, accumulate in q */
705	for (;;) {
706		struct dn_id *p;    /* generic parameter to handler */
707
708		if (dn_cfg.evheap.elements == 0 ||
709		    DN_KEY_LT(dn_cfg.curr_time, HEAP_TOP(&dn_cfg.evheap)->key))
710			break;
711		p = HEAP_TOP(&dn_cfg.evheap)->object;
712		heap_extract(&dn_cfg.evheap, NULL);
713
714		if (p->type == DN_SCH_I) {
715			serve_sched(&q, (struct dn_sch_inst *)p, dn_cfg.curr_time);
716		} else { /* extracted a delay line */
717			transmit_event(&q, (struct delay_line *)p, dn_cfg.curr_time);
718		}
719	}
720	if (dn_cfg.expire && ++dn_cfg.expire_cycle >= dn_cfg.expire) {
721		dn_cfg.expire_cycle = 0;
722		dn_drain_scheduler();
723		dn_drain_queue();
724	}
725
726	dn_reschedule();
727	DN_BH_WUNLOCK();
728	if (q.head != NULL)
729		dummynet_send(q.head);
730	CURVNET_RESTORE();
731}
732
733/*
734 * forward a chain of packets to the proper destination.
735 * This runs outside the dummynet lock.
736 */
737static void
738dummynet_send(struct mbuf *m)
739{
740	struct mbuf *n;
741
742	for (; m != NULL; m = n) {
743		struct ifnet *ifp = NULL;	/* gcc 3.4.6 complains */
744        	struct m_tag *tag;
745		int dst;
746
747		n = m->m_nextpkt;
748		m->m_nextpkt = NULL;
749		tag = m_tag_first(m);
750		if (tag == NULL) { /* should not happen */
751			dst = DIR_DROP;
752		} else {
753			struct dn_pkt_tag *pkt = dn_tag_get(m);
754			/* extract the dummynet info, rename the tag
755			 * to carry reinject info.
756			 */
757			if (pkt->dn_dir == (DIR_OUT | PROTO_LAYER2) &&
758				pkt->ifp == NULL) {
759				dst = DIR_DROP;
760			} else {
761				dst = pkt->dn_dir;
762				ifp = pkt->ifp;
763				tag->m_tag_cookie = MTAG_IPFW_RULE;
764				tag->m_tag_id = 0;
765			}
766		}
767
768		switch (dst) {
769		case DIR_OUT:
770			ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
771			break ;
772
773		case DIR_IN :
774			netisr_dispatch(NETISR_IP, m);
775			break;
776
777#ifdef INET6
778		case DIR_IN | PROTO_IPV6:
779			netisr_dispatch(NETISR_IPV6, m);
780			break;
781
782		case DIR_OUT | PROTO_IPV6:
783			ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
784			break;
785#endif
786
787		case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */
788			if (bridge_dn_p != NULL)
789				((*bridge_dn_p)(m, ifp));
790			else
791				printf("dummynet: if_bridge not loaded\n");
792
793			break;
794
795		case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */
796			/*
797			 * The Ethernet code assumes the Ethernet header is
798			 * contiguous in the first mbuf header.
799			 * Insure this is true.
800			 */
801			if (m->m_len < ETHER_HDR_LEN &&
802			    (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
803				printf("dummynet/ether: pullup failed, "
804				    "dropping packet\n");
805				break;
806			}
807			ether_demux(m->m_pkthdr.rcvif, m);
808			break;
809
810		case DIR_OUT | PROTO_LAYER2: /* N_TO_ETH_OUT: */
811			ether_output_frame(ifp, m);
812			break;
813
814		case DIR_DROP:
815			/* drop the packet after some time */
816			FREE_PKT(m);
817			break;
818
819		default:
820			printf("dummynet: bad switch %d!\n", dst);
821			FREE_PKT(m);
822			break;
823		}
824	}
825}
826
827static inline int
828tag_mbuf(struct mbuf *m, int dir, struct ip_fw_args *fwa)
829{
830	struct dn_pkt_tag *dt;
831	struct m_tag *mtag;
832
833	mtag = m_tag_get(PACKET_TAG_DUMMYNET,
834		    sizeof(*dt), M_NOWAIT | M_ZERO);
835	if (mtag == NULL)
836		return 1;		/* Cannot allocate packet header. */
837	m_tag_prepend(m, mtag);		/* Attach to mbuf chain. */
838	dt = (struct dn_pkt_tag *)(mtag + 1);
839	dt->rule = fwa->rule;
840	dt->rule.info &= IPFW_ONEPASS;	/* only keep this info */
841	dt->dn_dir = dir;
842	dt->ifp = fwa->oif;
843	/* dt->output tame is updated as we move through */
844	dt->output_time = dn_cfg.curr_time;
845	dt->iphdr_off = (dir & PROTO_LAYER2) ? ETHER_HDR_LEN : 0;
846	return 0;
847}
848
849
850/*
851 * dummynet hook for packets.
852 * We use the argument to locate the flowset fs and the sched_set sch
853 * associated to it. The we apply flow_mask and sched_mask to
854 * determine the queue and scheduler instances.
855 *
856 * dir		where shall we send the packet after dummynet.
857 * *m0		the mbuf with the packet
858 * ifp		the 'ifp' parameter from the caller.
859 *		NULL in ip_input, destination interface in ip_output,
860 */
861int
862dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa)
863{
864	struct mbuf *m = *m0;
865	struct dn_fsk *fs = NULL;
866	struct dn_sch_inst *si;
867	struct dn_queue *q = NULL;	/* default */
868
869	int fs_id = (fwa->rule.info & IPFW_INFO_MASK) +
870		((fwa->rule.info & IPFW_IS_PIPE) ? 2*DN_MAX_ID : 0);
871	DN_BH_WLOCK();
872	io_pkt++;
873	/* we could actually tag outside the lock, but who cares... */
874	if (tag_mbuf(m, dir, fwa))
875		goto dropit;
876	if (dn_cfg.busy) {
877		/* if the upper half is busy doing something expensive,
878		 * lets queue the packet and move forward
879		 */
880		mq_append(&dn_cfg.pending, m);
881		m = *m0 = NULL; /* consumed */
882		goto done; /* already active, nothing to do */
883	}
884	/* XXX locate_flowset could be optimised with a direct ref. */
885	fs = dn_ht_find(dn_cfg.fshash, fs_id, 0, NULL);
886	if (fs == NULL)
887		goto dropit;	/* This queue/pipe does not exist! */
888	if (fs->sched == NULL)	/* should not happen */
889		goto dropit;
890	/* find scheduler instance, possibly applying sched_mask */
891	si = ipdn_si_find(fs->sched, &(fwa->f_id));
892	if (si == NULL)
893		goto dropit;
894	/*
895	 * If the scheduler supports multiple queues, find the right one
896	 * (otherwise it will be ignored by enqueue).
897	 */
898	if (fs->sched->fp->flags & DN_MULTIQUEUE) {
899		q = ipdn_q_find(fs, si, &(fwa->f_id));
900		if (q == NULL)
901			goto dropit;
902	}
903	if (fs->sched->fp->enqueue(si, q, m)) {
904		/* packet was dropped by enqueue() */
905		m = *m0 = NULL;
906
907		/* dn_enqueue already increases io_pkt_drop */
908		io_pkt_drop--;
909
910		goto dropit;
911	}
912
913	if (si->kflags & DN_ACTIVE) {
914		m = *m0 = NULL; /* consumed */
915		goto done; /* already active, nothing to do */
916	}
917
918	/* compute the initial allowance */
919	if (si->idle_time < dn_cfg.curr_time) {
920	    /* Do this only on the first packet on an idle pipe */
921	    struct dn_link *p = &fs->sched->link;
922
923	    si->sched_time = dn_cfg.curr_time;
924	    si->credit = dn_cfg.io_fast ? p->bandwidth : 0;
925	    if (p->burst) {
926		uint64_t burst = (dn_cfg.curr_time - si->idle_time) * p->bandwidth;
927		if (burst > p->burst)
928			burst = p->burst;
929		si->credit += burst;
930	    }
931	}
932	/* pass through scheduler and delay line */
933	m = serve_sched(NULL, si, dn_cfg.curr_time);
934
935	/* optimization -- pass it back to ipfw for immediate send */
936	/* XXX Don't call dummynet_send() if scheduler return the packet
937	 *     just enqueued. This avoid a lock order reversal.
938	 *
939	 */
940	if (/*dn_cfg.io_fast &&*/ m == *m0 && (dir & PROTO_LAYER2) == 0 ) {
941		/* fast io, rename the tag * to carry reinject info. */
942		struct m_tag *tag = m_tag_first(m);
943
944		tag->m_tag_cookie = MTAG_IPFW_RULE;
945		tag->m_tag_id = 0;
946		io_pkt_fast++;
947		if (m->m_nextpkt != NULL) {
948			printf("dummynet: fast io: pkt chain detected!\n");
949			m->m_nextpkt = NULL;
950		}
951		m = NULL;
952	} else {
953		*m0 = NULL;
954	}
955done:
956	DN_BH_WUNLOCK();
957	if (m)
958		dummynet_send(m);
959	return 0;
960
961dropit:
962	io_pkt_drop++;
963	DN_BH_WUNLOCK();
964	if (m)
965		FREE_PKT(m);
966	*m0 = NULL;
967	return (fs && (fs->fs.flags & DN_NOERROR)) ? 0 : ENOBUFS;
968}
969