nd6.c revision 303698
1133105Srwatson/*-
2133105Srwatson * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3133105Srwatson * All rights reserved.
4133105Srwatson *
5133105Srwatson * Redistribution and use in source and binary forms, with or without
6133105Srwatson * modification, are permitted provided that the following conditions
7133105Srwatson * are met:
8133105Srwatson * 1. Redistributions of source code must retain the above copyright
9133105Srwatson *    notice, this list of conditions and the following disclaimer.
10133105Srwatson * 2. Redistributions in binary form must reproduce the above copyright
11133105Srwatson *    notice, this list of conditions and the following disclaimer in the
12133105Srwatson *    documentation and/or other materials provided with the distribution.
13133105Srwatson * 3. Neither the name of the project nor the names of its contributors
14133105Srwatson *    may be used to endorse or promote products derived from this software
15133105Srwatson *    without specific prior written permission.
16133105Srwatson *
17133105Srwatson * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18133105Srwatson * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19133105Srwatson * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20133105Srwatson * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21133105Srwatson * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22133105Srwatson * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23133105Srwatson * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24133105Srwatson * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25133105Srwatson * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26133105Srwatson * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27133105Srwatson * SUCH DAMAGE.
28133105Srwatson *
29133105Srwatson *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30133105Srwatson */
31133105Srwatson
32133105Srwatson#include <sys/cdefs.h>
33133105Srwatson__FBSDID("$FreeBSD: stable/11/sys/netinet6/nd6.c 303698 2016-08-03 06:32:44Z karels $");
34133105Srwatson
35133105Srwatson#include "opt_inet.h"
36133105Srwatson#include "opt_inet6.h"
37133105Srwatson
38133105Srwatson#include <sys/param.h>
39133105Srwatson#include <sys/systm.h>
40133105Srwatson#include <sys/callout.h>
41133105Srwatson#include <sys/malloc.h>
42133105Srwatson#include <sys/mbuf.h>
43133105Srwatson#include <sys/socket.h>
44133105Srwatson#include <sys/sockio.h>
45133105Srwatson#include <sys/time.h>
46133105Srwatson#include <sys/kernel.h>
47133105Srwatson#include <sys/protosw.h>
48133105Srwatson#include <sys/errno.h>
49133105Srwatson#include <sys/syslog.h>
50281974Sngie#include <sys/lock.h>
51133105Srwatson#include <sys/rwlock.h>
52168278Sjhb#include <sys/queue.h>
53133105Srwatson#include <sys/sdt.h>
54133105Srwatson#include <sys/sysctl.h>
55133105Srwatson
56133105Srwatson#include <net/if.h>
57133105Srwatson#include <net/if_var.h>
58133105Srwatson#include <net/if_arc.h>
59133105Srwatson#include <net/if_dl.h>
60133105Srwatson#include <net/if_types.h>
61133105Srwatson#include <net/iso88025.h>
62133105Srwatson#include <net/fddi.h>
63133105Srwatson#include <net/route.h>
64133105Srwatson#include <net/vnet.h>
65133105Srwatson
66133105Srwatson#include <netinet/in.h>
67133105Srwatson#include <netinet/in_kdtrace.h>
68133105Srwatson#include <net/if_llatbl.h>
69133105Srwatson#include <netinet/if_ether.h>
70133105Srwatson#include <netinet6/in6_var.h>
71133105Srwatson#include <netinet/ip6.h>
72133105Srwatson#include <netinet6/ip6_var.h>
73133105Srwatson#include <netinet6/scope6_var.h>
74133105Srwatson#include <netinet6/nd6.h>
75133105Srwatson#include <netinet6/in6_ifattach.h>
76133105Srwatson#include <netinet/icmp6.h>
77133105Srwatson#include <netinet6/send.h>
78133105Srwatson
79133105Srwatson#include <sys/limits.h>
80133105Srwatson
81133105Srwatson#include <security/mac/mac_framework.h>
82133105Srwatson
83133105Srwatson#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
84133105Srwatson#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
85133105Srwatson
86133105Srwatson#define SIN6(s) ((const struct sockaddr_in6 *)(s))
87133105Srwatson
88133105SrwatsonMALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
89133105Srwatson
90133105Srwatson/* timer values */
91133105SrwatsonVNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
92133105SrwatsonVNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
93133105SrwatsonVNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
94133105SrwatsonVNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
95133105SrwatsonVNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
96133105Srwatson					 * local traffic */
97133105SrwatsonVNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
98133105Srwatson					 * collection timer */
99133105Srwatson
100133105Srwatson/* preventing too many loops in ND option parsing */
101133105Srwatsonstatic VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
102133105Srwatson
103133105SrwatsonVNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
104133105Srwatson					 * layer hints */
105133105Srwatsonstatic VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
106133105Srwatson					 * ND entries */
107133105Srwatson#define	V_nd6_maxndopt			VNET(nd6_maxndopt)
108133105Srwatson#define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
109133105Srwatson
110133105Srwatson#ifdef ND6_DEBUG
111133105SrwatsonVNET_DEFINE(int, nd6_debug) = 1;
112133105Srwatson#else
113133105SrwatsonVNET_DEFINE(int, nd6_debug) = 0;
114133105Srwatson#endif
115133105Srwatson
116133105Srwatsonstatic eventhandler_tag lle_event_eh, iflladdr_event_eh;
117133105Srwatson
118133105SrwatsonVNET_DEFINE(struct nd_drhead, nd_defrouter);
119133105SrwatsonVNET_DEFINE(struct nd_prhead, nd_prefix);
120133105SrwatsonVNET_DEFINE(struct rwlock, nd6_lock);
121133105Srwatson
122133105SrwatsonVNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
123133105Srwatson#define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
124133105Srwatson
125133105Srwatsonint	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
126133105Srwatson
127168278Sjhbstatic int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
128168278Sjhb	struct ifnet *);
129168278Sjhbstatic void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
130168278Sjhbstatic void nd6_slowtimo(void *);
131168278Sjhbstatic int regen_tmpaddr(struct in6_ifaddr *);
132168278Sjhbstatic void nd6_free(struct llentry **, int);
133168278Sjhbstatic void nd6_free_redirect(const struct llentry *);
134168278Sjhbstatic void nd6_llinfo_timer(void *);
135168278Sjhbstatic void nd6_llinfo_settimer_locked(struct llentry *, long);
136168278Sjhbstatic void clear_llinfo_pqueue(struct llentry *);
137168278Sjhbstatic void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
138168278Sjhbstatic int nd6_resolve_slow(struct ifnet *, int, struct mbuf *,
139168278Sjhb    const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
140168278Sjhbstatic int nd6_need_cache(struct ifnet *);
141168278Sjhb
142168278Sjhb
143168278Sjhbstatic VNET_DEFINE(struct callout, nd6_slowtimo_ch);
144168278Sjhb#define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
145168278Sjhb
146168278SjhbVNET_DEFINE(struct callout, nd6_timer_ch);
147168278Sjhb#define	V_nd6_timer_ch			VNET(nd6_timer_ch)
148168278Sjhb
149168278Sjhbstatic void
150168278Sjhbnd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
151168278Sjhb{
152168278Sjhb	struct rt_addrinfo rtinfo;
153168278Sjhb	struct sockaddr_in6 dst;
154168278Sjhb	struct sockaddr_dl gw;
155168278Sjhb	struct ifnet *ifp;
156168278Sjhb	int type;
157168278Sjhb
158168278Sjhb	LLE_WLOCK_ASSERT(lle);
159133105Srwatson
160133105Srwatson	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
161133105Srwatson		return;
162
163	switch (evt) {
164	case LLENTRY_RESOLVED:
165		type = RTM_ADD;
166		KASSERT(lle->la_flags & LLE_VALID,
167		    ("%s: %p resolved but not valid?", __func__, lle));
168		break;
169	case LLENTRY_EXPIRED:
170		type = RTM_DELETE;
171		break;
172	default:
173		return;
174	}
175
176	ifp = lltable_get_ifp(lle->lle_tbl);
177
178	bzero(&dst, sizeof(dst));
179	bzero(&gw, sizeof(gw));
180	bzero(&rtinfo, sizeof(rtinfo));
181	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
182	dst.sin6_scope_id = in6_getscopezone(ifp,
183	    in6_addrscope(&dst.sin6_addr));
184	gw.sdl_len = sizeof(struct sockaddr_dl);
185	gw.sdl_family = AF_LINK;
186	gw.sdl_alen = ifp->if_addrlen;
187	gw.sdl_index = ifp->if_index;
188	gw.sdl_type = ifp->if_type;
189	if (evt == LLENTRY_RESOLVED)
190		bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
191	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
192	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
193	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
194	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
195	    type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB);
196}
197
198/*
199 * A handler for interface link layer address change event.
200 */
201static void
202nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
203{
204
205	lltable_update_ifaddr(LLTABLE6(ifp));
206}
207
208void
209nd6_init(void)
210{
211
212	rw_init(&V_nd6_lock, "nd6");
213
214	LIST_INIT(&V_nd_prefix);
215
216	/* initialization of the default router list */
217	TAILQ_INIT(&V_nd_defrouter);
218
219	/* Start timers. */
220	callout_init(&V_nd6_slowtimo_ch, 0);
221	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
222	    nd6_slowtimo, curvnet);
223
224	callout_init(&V_nd6_timer_ch, 0);
225	callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
226
227	nd6_dad_init();
228	if (IS_DEFAULT_VNET(curvnet)) {
229		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
230		    NULL, EVENTHANDLER_PRI_ANY);
231		iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
232		    nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
233	}
234}
235
236#ifdef VIMAGE
237void
238nd6_destroy()
239{
240
241	callout_drain(&V_nd6_slowtimo_ch);
242	callout_drain(&V_nd6_timer_ch);
243	if (IS_DEFAULT_VNET(curvnet)) {
244		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
245		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
246	}
247	rw_destroy(&V_nd6_lock);
248}
249#endif
250
251struct nd_ifinfo *
252nd6_ifattach(struct ifnet *ifp)
253{
254	struct nd_ifinfo *nd;
255
256	nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
257	nd->initialized = 1;
258
259	nd->chlim = IPV6_DEFHLIM;
260	nd->basereachable = REACHABLE_TIME;
261	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
262	nd->retrans = RETRANS_TIMER;
263
264	nd->flags = ND6_IFF_PERFORMNUD;
265
266	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
267	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
268	 * default regardless of the V_ip6_auto_linklocal configuration to
269	 * give a reasonable default behavior.
270	 */
271	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
272	    (ifp->if_flags & IFF_LOOPBACK))
273		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
274	/*
275	 * A loopback interface does not need to accept RTADV.
276	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
277	 * default regardless of the V_ip6_accept_rtadv configuration to
278	 * prevent the interface from accepting RA messages arrived
279	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
280	 */
281	if (V_ip6_accept_rtadv &&
282	    !(ifp->if_flags & IFF_LOOPBACK) &&
283	    (ifp->if_type != IFT_BRIDGE))
284			nd->flags |= ND6_IFF_ACCEPT_RTADV;
285	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
286		nd->flags |= ND6_IFF_NO_RADR;
287
288	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
289	nd6_setmtu0(ifp, nd);
290
291	return nd;
292}
293
294void
295nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
296{
297	struct ifaddr *ifa, *next;
298
299	IF_ADDR_RLOCK(ifp);
300	TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
301		if (ifa->ifa_addr->sa_family != AF_INET6)
302			continue;
303
304		/* stop DAD processing */
305		nd6_dad_stop(ifa);
306	}
307	IF_ADDR_RUNLOCK(ifp);
308
309	free(nd, M_IP6NDP);
310}
311
312/*
313 * Reset ND level link MTU. This function is called when the physical MTU
314 * changes, which means we might have to adjust the ND level MTU.
315 */
316void
317nd6_setmtu(struct ifnet *ifp)
318{
319	if (ifp->if_afdata[AF_INET6] == NULL)
320		return;
321
322	nd6_setmtu0(ifp, ND_IFINFO(ifp));
323}
324
325/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
326void
327nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
328{
329	u_int32_t omaxmtu;
330
331	omaxmtu = ndi->maxmtu;
332
333	switch (ifp->if_type) {
334	case IFT_ARCNET:
335		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
336		break;
337	case IFT_FDDI:
338		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
339		break;
340	case IFT_ISO88025:
341		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
342		 break;
343	default:
344		ndi->maxmtu = ifp->if_mtu;
345		break;
346	}
347
348	/*
349	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
350	 * undesirable situation.  We thus notify the operator of the change
351	 * explicitly.  The check for omaxmtu is necessary to restrict the
352	 * log to the case of changing the MTU, not initializing it.
353	 */
354	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
355		log(LOG_NOTICE, "nd6_setmtu0: "
356		    "new link MTU on %s (%lu) is too small for IPv6\n",
357		    if_name(ifp), (unsigned long)ndi->maxmtu);
358	}
359
360	if (ndi->maxmtu > V_in6_maxmtu)
361		in6_setmaxmtu(); /* check all interfaces just in case */
362
363}
364
365void
366nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
367{
368
369	bzero(ndopts, sizeof(*ndopts));
370	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
371	ndopts->nd_opts_last
372		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
373
374	if (icmp6len == 0) {
375		ndopts->nd_opts_done = 1;
376		ndopts->nd_opts_search = NULL;
377	}
378}
379
380/*
381 * Take one ND option.
382 */
383struct nd_opt_hdr *
384nd6_option(union nd_opts *ndopts)
385{
386	struct nd_opt_hdr *nd_opt;
387	int olen;
388
389	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
390	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
391	    __func__));
392	if (ndopts->nd_opts_search == NULL)
393		return NULL;
394	if (ndopts->nd_opts_done)
395		return NULL;
396
397	nd_opt = ndopts->nd_opts_search;
398
399	/* make sure nd_opt_len is inside the buffer */
400	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
401		bzero(ndopts, sizeof(*ndopts));
402		return NULL;
403	}
404
405	olen = nd_opt->nd_opt_len << 3;
406	if (olen == 0) {
407		/*
408		 * Message validation requires that all included
409		 * options have a length that is greater than zero.
410		 */
411		bzero(ndopts, sizeof(*ndopts));
412		return NULL;
413	}
414
415	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
416	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
417		/* option overruns the end of buffer, invalid */
418		bzero(ndopts, sizeof(*ndopts));
419		return NULL;
420	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
421		/* reached the end of options chain */
422		ndopts->nd_opts_done = 1;
423		ndopts->nd_opts_search = NULL;
424	}
425	return nd_opt;
426}
427
428/*
429 * Parse multiple ND options.
430 * This function is much easier to use, for ND routines that do not need
431 * multiple options of the same type.
432 */
433int
434nd6_options(union nd_opts *ndopts)
435{
436	struct nd_opt_hdr *nd_opt;
437	int i = 0;
438
439	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
440	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
441	    __func__));
442	if (ndopts->nd_opts_search == NULL)
443		return 0;
444
445	while (1) {
446		nd_opt = nd6_option(ndopts);
447		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
448			/*
449			 * Message validation requires that all included
450			 * options have a length that is greater than zero.
451			 */
452			ICMP6STAT_INC(icp6s_nd_badopt);
453			bzero(ndopts, sizeof(*ndopts));
454			return -1;
455		}
456
457		if (nd_opt == NULL)
458			goto skip1;
459
460		switch (nd_opt->nd_opt_type) {
461		case ND_OPT_SOURCE_LINKADDR:
462		case ND_OPT_TARGET_LINKADDR:
463		case ND_OPT_MTU:
464		case ND_OPT_REDIRECTED_HEADER:
465		case ND_OPT_NONCE:
466			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
467				nd6log((LOG_INFO,
468				    "duplicated ND6 option found (type=%d)\n",
469				    nd_opt->nd_opt_type));
470				/* XXX bark? */
471			} else {
472				ndopts->nd_opt_array[nd_opt->nd_opt_type]
473					= nd_opt;
474			}
475			break;
476		case ND_OPT_PREFIX_INFORMATION:
477			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
478				ndopts->nd_opt_array[nd_opt->nd_opt_type]
479					= nd_opt;
480			}
481			ndopts->nd_opts_pi_end =
482				(struct nd_opt_prefix_info *)nd_opt;
483			break;
484		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
485		case ND_OPT_RDNSS:	/* RFC 6106 */
486		case ND_OPT_DNSSL:	/* RFC 6106 */
487			/*
488			 * Silently ignore options we know and do not care about
489			 * in the kernel.
490			 */
491			break;
492		default:
493			/*
494			 * Unknown options must be silently ignored,
495			 * to accommodate future extension to the protocol.
496			 */
497			nd6log((LOG_DEBUG,
498			    "nd6_options: unsupported option %d - "
499			    "option ignored\n", nd_opt->nd_opt_type));
500		}
501
502skip1:
503		i++;
504		if (i > V_nd6_maxndopt) {
505			ICMP6STAT_INC(icp6s_nd_toomanyopt);
506			nd6log((LOG_INFO, "too many loop in nd opt\n"));
507			break;
508		}
509
510		if (ndopts->nd_opts_done)
511			break;
512	}
513
514	return 0;
515}
516
517/*
518 * ND6 timer routine to handle ND6 entries
519 */
520static void
521nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
522{
523	int canceled;
524
525	LLE_WLOCK_ASSERT(ln);
526
527	if (tick < 0) {
528		ln->la_expire = 0;
529		ln->ln_ntick = 0;
530		canceled = callout_stop(&ln->lle_timer);
531	} else {
532		ln->la_expire = time_uptime + tick / hz;
533		LLE_ADDREF(ln);
534		if (tick > INT_MAX) {
535			ln->ln_ntick = tick - INT_MAX;
536			canceled = callout_reset(&ln->lle_timer, INT_MAX,
537			    nd6_llinfo_timer, ln);
538		} else {
539			ln->ln_ntick = 0;
540			canceled = callout_reset(&ln->lle_timer, tick,
541			    nd6_llinfo_timer, ln);
542		}
543	}
544	if (canceled > 0)
545		LLE_REMREF(ln);
546}
547
548/*
549 * Gets source address of the first packet in hold queue
550 * and stores it in @src.
551 * Returns pointer to @src (if hold queue is not empty) or NULL.
552 *
553 * Set noinline to be dtrace-friendly
554 */
555static __noinline struct in6_addr *
556nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
557{
558	struct ip6_hdr hdr;
559	struct mbuf *m;
560
561	if (ln->la_hold == NULL)
562		return (NULL);
563
564	/*
565	 * assume every packet in la_hold has the same IP header
566	 */
567	m = ln->la_hold;
568	if (sizeof(hdr) > m->m_len)
569		return (NULL);
570
571	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
572	*src = hdr.ip6_src;
573
574	return (src);
575}
576
577/*
578 * Checks if we need to switch from STALE state.
579 *
580 * RFC 4861 requires switching from STALE to DELAY state
581 * on first packet matching entry, waiting V_nd6_delay and
582 * transition to PROBE state (if upper layer confirmation was
583 * not received).
584 *
585 * This code performs a bit differently:
586 * On packet hit we don't change state (but desired state
587 * can be guessed by control plane). However, after V_nd6_delay
588 * seconds code will transition to PROBE state (so DELAY state
589 * is kinda skipped in most situations).
590 *
591 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
592 * we perform the following upon entering STALE state:
593 *
594 * 1) Arm timer to run each V_nd6_delay seconds to make sure that
595 * if packet was transmitted at the start of given interval, we
596 * would be able to switch to PROBE state in V_nd6_delay seconds
597 * as user expects.
598 *
599 * 2) Reschedule timer until original V_nd6_gctimer expires keeping
600 * lle in STALE state (remaining timer value stored in lle_remtime).
601 *
602 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
603 * seconds ago.
604 *
605 * Returns non-zero value if the entry is still STALE (storing
606 * the next timer interval in @pdelay).
607 *
608 * Returns zero value if original timer expired or we need to switch to
609 * PROBE (store that in @do_switch variable).
610 */
611static int
612nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
613{
614	int nd_delay, nd_gctimer, r_skip_req;
615	time_t lle_hittime;
616	long delay;
617
618	*do_switch = 0;
619	nd_gctimer = V_nd6_gctimer;
620	nd_delay = V_nd6_delay;
621
622	LLE_REQ_LOCK(lle);
623	r_skip_req = lle->r_skip_req;
624	lle_hittime = lle->lle_hittime;
625	LLE_REQ_UNLOCK(lle);
626
627	if (r_skip_req > 0) {
628
629		/*
630		 * Nonzero r_skip_req value was set upon entering
631		 * STALE state. Since value was not changed, no
632		 * packets were passed using this lle. Ask for
633		 * timer reschedule and keep STALE state.
634		 */
635		delay = (long)(MIN(nd_gctimer, nd_delay));
636		delay *= hz;
637		if (lle->lle_remtime > delay)
638			lle->lle_remtime -= delay;
639		else {
640			delay = lle->lle_remtime;
641			lle->lle_remtime = 0;
642		}
643
644		if (delay == 0) {
645
646			/*
647			 * The original ng6_gctime timeout ended,
648			 * no more rescheduling.
649			 */
650			return (0);
651		}
652
653		*pdelay = delay;
654		return (1);
655	}
656
657	/*
658	 * Packet received. Verify timestamp
659	 */
660	delay = (long)(time_uptime - lle_hittime);
661	if (delay < nd_delay) {
662
663		/*
664		 * V_nd6_delay still not passed since the first
665		 * hit in STALE state.
666		 * Reshedule timer and return.
667		 */
668		*pdelay = (long)(nd_delay - delay) * hz;
669		return (1);
670	}
671
672	/* Request switching to probe */
673	*do_switch = 1;
674	return (0);
675}
676
677
678/*
679 * Switch @lle state to new state optionally arming timers.
680 *
681 * Set noinline to be dtrace-friendly
682 */
683__noinline void
684nd6_llinfo_setstate(struct llentry *lle, int newstate)
685{
686	struct ifnet *ifp;
687	int nd_gctimer, nd_delay;
688	long delay, remtime;
689
690	delay = 0;
691	remtime = 0;
692
693	switch (newstate) {
694	case ND6_LLINFO_INCOMPLETE:
695		ifp = lle->lle_tbl->llt_ifp;
696		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
697		break;
698	case ND6_LLINFO_REACHABLE:
699		if (!ND6_LLINFO_PERMANENT(lle)) {
700			ifp = lle->lle_tbl->llt_ifp;
701			delay = (long)ND_IFINFO(ifp)->reachable * hz;
702		}
703		break;
704	case ND6_LLINFO_STALE:
705
706		/*
707		 * Notify fast path that we want to know if any packet
708		 * is transmitted by setting r_skip_req.
709		 */
710		LLE_REQ_LOCK(lle);
711		lle->r_skip_req = 1;
712		LLE_REQ_UNLOCK(lle);
713		nd_delay = V_nd6_delay;
714		nd_gctimer = V_nd6_gctimer;
715
716		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
717		remtime = (long)nd_gctimer * hz - delay;
718		break;
719	case ND6_LLINFO_DELAY:
720		lle->la_asked = 0;
721		delay = (long)V_nd6_delay * hz;
722		break;
723	}
724
725	if (delay > 0)
726		nd6_llinfo_settimer_locked(lle, delay);
727
728	lle->lle_remtime = remtime;
729	lle->ln_state = newstate;
730}
731
732/*
733 * Timer-dependent part of nd state machine.
734 *
735 * Set noinline to be dtrace-friendly
736 */
737static __noinline void
738nd6_llinfo_timer(void *arg)
739{
740	struct llentry *ln;
741	struct in6_addr *dst, *pdst, *psrc, src;
742	struct ifnet *ifp;
743	struct nd_ifinfo *ndi;
744	int do_switch, send_ns;
745	long delay;
746
747	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
748	ln = (struct llentry *)arg;
749	ifp = lltable_get_ifp(ln->lle_tbl);
750	CURVNET_SET(ifp->if_vnet);
751
752	ND6_RLOCK();
753	LLE_WLOCK(ln);
754	if (callout_pending(&ln->lle_timer)) {
755		/*
756		 * Here we are a bit odd here in the treatment of
757		 * active/pending. If the pending bit is set, it got
758		 * rescheduled before I ran. The active
759		 * bit we ignore, since if it was stopped
760		 * in ll_tablefree() and was currently running
761		 * it would have return 0 so the code would
762		 * not have deleted it since the callout could
763		 * not be stopped so we want to go through
764		 * with the delete here now. If the callout
765		 * was restarted, the pending bit will be back on and
766		 * we just want to bail since the callout_reset would
767		 * return 1 and our reference would have been removed
768		 * by nd6_llinfo_settimer_locked above since canceled
769		 * would have been 1.
770		 */
771		LLE_WUNLOCK(ln);
772		ND6_RUNLOCK();
773		CURVNET_RESTORE();
774		return;
775	}
776	ndi = ND_IFINFO(ifp);
777	send_ns = 0;
778	dst = &ln->r_l3addr.addr6;
779	pdst = dst;
780
781	if (ln->ln_ntick > 0) {
782		if (ln->ln_ntick > INT_MAX) {
783			ln->ln_ntick -= INT_MAX;
784			nd6_llinfo_settimer_locked(ln, INT_MAX);
785		} else {
786			ln->ln_ntick = 0;
787			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
788		}
789		goto done;
790	}
791
792	if (ln->la_flags & LLE_STATIC) {
793		goto done;
794	}
795
796	if (ln->la_flags & LLE_DELETED) {
797		nd6_free(&ln, 0);
798		goto done;
799	}
800
801	switch (ln->ln_state) {
802	case ND6_LLINFO_INCOMPLETE:
803		if (ln->la_asked < V_nd6_mmaxtries) {
804			ln->la_asked++;
805			send_ns = 1;
806			/* Send NS to multicast address */
807			pdst = NULL;
808		} else {
809			struct mbuf *m = ln->la_hold;
810			if (m) {
811				struct mbuf *m0;
812
813				/*
814				 * assuming every packet in la_hold has the
815				 * same IP header.  Send error after unlock.
816				 */
817				m0 = m->m_nextpkt;
818				m->m_nextpkt = NULL;
819				ln->la_hold = m0;
820				clear_llinfo_pqueue(ln);
821			}
822			nd6_free(&ln, 0);
823			if (m != NULL)
824				icmp6_error2(m, ICMP6_DST_UNREACH,
825				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
826		}
827		break;
828	case ND6_LLINFO_REACHABLE:
829		if (!ND6_LLINFO_PERMANENT(ln))
830			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
831		break;
832
833	case ND6_LLINFO_STALE:
834		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
835
836			/*
837			 * No packet has used this entry and GC timeout
838			 * has not been passed. Reshedule timer and
839			 * return.
840			 */
841			nd6_llinfo_settimer_locked(ln, delay);
842			break;
843		}
844
845		if (do_switch == 0) {
846
847			/*
848			 * GC timer has ended and entry hasn't been used.
849			 * Run Garbage collector (RFC 4861, 5.3)
850			 */
851			if (!ND6_LLINFO_PERMANENT(ln))
852				nd6_free(&ln, 1);
853			break;
854		}
855
856		/* Entry has been used AND delay timer has ended. */
857
858		/* FALLTHROUGH */
859
860	case ND6_LLINFO_DELAY:
861		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
862			/* We need NUD */
863			ln->la_asked = 1;
864			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
865			send_ns = 1;
866		} else
867			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
868		break;
869	case ND6_LLINFO_PROBE:
870		if (ln->la_asked < V_nd6_umaxtries) {
871			ln->la_asked++;
872			send_ns = 1;
873		} else {
874			nd6_free(&ln, 0);
875		}
876		break;
877	default:
878		panic("%s: paths in a dark night can be confusing: %d",
879		    __func__, ln->ln_state);
880	}
881done:
882	if (ln != NULL)
883		ND6_RUNLOCK();
884	if (send_ns != 0) {
885		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
886		psrc = nd6_llinfo_get_holdsrc(ln, &src);
887		LLE_FREE_LOCKED(ln);
888		ln = NULL;
889		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
890	}
891
892	if (ln != NULL)
893		LLE_FREE_LOCKED(ln);
894	CURVNET_RESTORE();
895}
896
897
898/*
899 * ND6 timer routine to expire default route list and prefix list
900 */
901void
902nd6_timer(void *arg)
903{
904	CURVNET_SET((struct vnet *) arg);
905	struct nd_drhead drq;
906	struct nd_defrouter *dr, *ndr;
907	struct nd_prefix *pr, *npr;
908	struct in6_ifaddr *ia6, *nia6;
909
910	TAILQ_INIT(&drq);
911
912	/* expire default router list */
913	ND6_WLOCK();
914	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr)
915		if (dr->expire && dr->expire < time_uptime)
916			defrouter_unlink(dr, &drq);
917	ND6_WUNLOCK();
918
919	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
920		TAILQ_REMOVE(&drq, dr, dr_entry);
921		defrouter_del(dr);
922	}
923
924	/*
925	 * expire interface addresses.
926	 * in the past the loop was inside prefix expiry processing.
927	 * However, from a stricter speci-confrmance standpoint, we should
928	 * rather separate address lifetimes and prefix lifetimes.
929	 *
930	 * XXXRW: in6_ifaddrhead locking.
931	 */
932  addrloop:
933	TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
934		/* check address lifetime */
935		if (IFA6_IS_INVALID(ia6)) {
936			int regen = 0;
937
938			/*
939			 * If the expiring address is temporary, try
940			 * regenerating a new one.  This would be useful when
941			 * we suspended a laptop PC, then turned it on after a
942			 * period that could invalidate all temporary
943			 * addresses.  Although we may have to restart the
944			 * loop (see below), it must be after purging the
945			 * address.  Otherwise, we'd see an infinite loop of
946			 * regeneration.
947			 */
948			if (V_ip6_use_tempaddr &&
949			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
950				if (regen_tmpaddr(ia6) == 0)
951					regen = 1;
952			}
953
954			in6_purgeaddr(&ia6->ia_ifa);
955
956			if (regen)
957				goto addrloop; /* XXX: see below */
958		} else if (IFA6_IS_DEPRECATED(ia6)) {
959			int oldflags = ia6->ia6_flags;
960
961			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
962
963			/*
964			 * If a temporary address has just become deprecated,
965			 * regenerate a new one if possible.
966			 */
967			if (V_ip6_use_tempaddr &&
968			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
969			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
970
971				if (regen_tmpaddr(ia6) == 0) {
972					/*
973					 * A new temporary address is
974					 * generated.
975					 * XXX: this means the address chain
976					 * has changed while we are still in
977					 * the loop.  Although the change
978					 * would not cause disaster (because
979					 * it's not a deletion, but an
980					 * addition,) we'd rather restart the
981					 * loop just for safety.  Or does this
982					 * significantly reduce performance??
983					 */
984					goto addrloop;
985				}
986			}
987		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
988			/*
989			 * Schedule DAD for a tentative address.  This happens
990			 * if the interface was down or not running
991			 * when the address was configured.
992			 */
993			int delay;
994
995			delay = arc4random() %
996			    (MAX_RTR_SOLICITATION_DELAY * hz);
997			nd6_dad_start((struct ifaddr *)ia6, delay);
998		} else {
999			/*
1000			 * Check status of the interface.  If it is down,
1001			 * mark the address as tentative for future DAD.
1002			 */
1003			if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 ||
1004			    (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING)
1005				== 0 ||
1006			    (ND_IFINFO(ia6->ia_ifp)->flags &
1007				ND6_IFF_IFDISABLED) != 0) {
1008				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
1009				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
1010			}
1011			/*
1012			 * A new RA might have made a deprecated address
1013			 * preferred.
1014			 */
1015			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
1016		}
1017	}
1018
1019	/* expire prefix list */
1020	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1021		/*
1022		 * check prefix lifetime.
1023		 * since pltime is just for autoconf, pltime processing for
1024		 * prefix is not necessary.
1025		 */
1026		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
1027		    time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
1028
1029			/*
1030			 * address expiration and prefix expiration are
1031			 * separate.  NEVER perform in6_purgeaddr here.
1032			 */
1033			prelist_remove(pr);
1034		}
1035	}
1036
1037	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
1038	    nd6_timer, curvnet);
1039
1040	CURVNET_RESTORE();
1041}
1042
1043/*
1044 * ia6 - deprecated/invalidated temporary address
1045 */
1046static int
1047regen_tmpaddr(struct in6_ifaddr *ia6)
1048{
1049	struct ifaddr *ifa;
1050	struct ifnet *ifp;
1051	struct in6_ifaddr *public_ifa6 = NULL;
1052
1053	ifp = ia6->ia_ifa.ifa_ifp;
1054	IF_ADDR_RLOCK(ifp);
1055	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1056		struct in6_ifaddr *it6;
1057
1058		if (ifa->ifa_addr->sa_family != AF_INET6)
1059			continue;
1060
1061		it6 = (struct in6_ifaddr *)ifa;
1062
1063		/* ignore no autoconf addresses. */
1064		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1065			continue;
1066
1067		/* ignore autoconf addresses with different prefixes. */
1068		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
1069			continue;
1070
1071		/*
1072		 * Now we are looking at an autoconf address with the same
1073		 * prefix as ours.  If the address is temporary and is still
1074		 * preferred, do not create another one.  It would be rare, but
1075		 * could happen, for example, when we resume a laptop PC after
1076		 * a long period.
1077		 */
1078		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
1079		    !IFA6_IS_DEPRECATED(it6)) {
1080			public_ifa6 = NULL;
1081			break;
1082		}
1083
1084		/*
1085		 * This is a public autoconf address that has the same prefix
1086		 * as ours.  If it is preferred, keep it.  We can't break the
1087		 * loop here, because there may be a still-preferred temporary
1088		 * address with the prefix.
1089		 */
1090		if (!IFA6_IS_DEPRECATED(it6))
1091			public_ifa6 = it6;
1092	}
1093	if (public_ifa6 != NULL)
1094		ifa_ref(&public_ifa6->ia_ifa);
1095	IF_ADDR_RUNLOCK(ifp);
1096
1097	if (public_ifa6 != NULL) {
1098		int e;
1099
1100		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
1101			ifa_free(&public_ifa6->ia_ifa);
1102			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
1103			    " tmp addr,errno=%d\n", e);
1104			return (-1);
1105		}
1106		ifa_free(&public_ifa6->ia_ifa);
1107		return (0);
1108	}
1109
1110	return (-1);
1111}
1112
1113/*
1114 * Remove prefix and default router list entries corresponding to ifp. Neighbor
1115 * cache entries are freed in in6_domifdetach().
1116 */
1117void
1118nd6_purge(struct ifnet *ifp)
1119{
1120	struct nd_drhead drq;
1121	struct nd_defrouter *dr, *ndr;
1122	struct nd_prefix *pr, *npr;
1123
1124	TAILQ_INIT(&drq);
1125
1126	/*
1127	 * Nuke default router list entries toward ifp.
1128	 * We defer removal of default router list entries that is installed
1129	 * in the routing table, in order to keep additional side effects as
1130	 * small as possible.
1131	 */
1132	ND6_WLOCK();
1133	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1134		if (dr->installed)
1135			continue;
1136		if (dr->ifp == ifp)
1137			defrouter_unlink(dr, &drq);
1138	}
1139
1140	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1141		if (!dr->installed)
1142			continue;
1143		if (dr->ifp == ifp)
1144			defrouter_unlink(dr, &drq);
1145	}
1146	ND6_WUNLOCK();
1147
1148	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1149		TAILQ_REMOVE(&drq, dr, dr_entry);
1150		defrouter_del(dr);
1151	}
1152
1153	/* Nuke prefix list entries toward ifp */
1154	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1155		if (pr->ndpr_ifp == ifp) {
1156			/*
1157			 * Because if_detach() does *not* release prefixes
1158			 * while purging addresses the reference count will
1159			 * still be above zero. We therefore reset it to
1160			 * make sure that the prefix really gets purged.
1161			 */
1162			pr->ndpr_refcnt = 0;
1163
1164			prelist_remove(pr);
1165		}
1166	}
1167
1168	/* cancel default outgoing interface setting */
1169	if (V_nd6_defifindex == ifp->if_index)
1170		nd6_setdefaultiface(0);
1171
1172	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1173		/* Refresh default router list. */
1174		defrouter_select();
1175	}
1176}
1177
1178/*
1179 * the caller acquires and releases the lock on the lltbls
1180 * Returns the llentry locked
1181 */
1182struct llentry *
1183nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1184{
1185	struct sockaddr_in6 sin6;
1186	struct llentry *ln;
1187
1188	bzero(&sin6, sizeof(sin6));
1189	sin6.sin6_len = sizeof(struct sockaddr_in6);
1190	sin6.sin6_family = AF_INET6;
1191	sin6.sin6_addr = *addr6;
1192
1193	IF_AFDATA_LOCK_ASSERT(ifp);
1194
1195	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1196
1197	return (ln);
1198}
1199
1200struct llentry *
1201nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1202{
1203	struct sockaddr_in6 sin6;
1204	struct llentry *ln;
1205
1206	bzero(&sin6, sizeof(sin6));
1207	sin6.sin6_len = sizeof(struct sockaddr_in6);
1208	sin6.sin6_family = AF_INET6;
1209	sin6.sin6_addr = *addr6;
1210
1211	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1212	if (ln != NULL)
1213		ln->ln_state = ND6_LLINFO_NOSTATE;
1214
1215	return (ln);
1216}
1217
1218/*
1219 * Test whether a given IPv6 address is a neighbor or not, ignoring
1220 * the actual neighbor cache.  The neighbor cache is ignored in order
1221 * to not reenter the routing code from within itself.
1222 */
1223static int
1224nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1225{
1226	struct nd_prefix *pr;
1227	struct ifaddr *dstaddr;
1228	struct rt_addrinfo info;
1229	struct sockaddr_in6 rt_key;
1230	struct sockaddr *dst6;
1231	int fibnum;
1232
1233	/*
1234	 * A link-local address is always a neighbor.
1235	 * XXX: a link does not necessarily specify a single interface.
1236	 */
1237	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1238		struct sockaddr_in6 sin6_copy;
1239		u_int32_t zone;
1240
1241		/*
1242		 * We need sin6_copy since sa6_recoverscope() may modify the
1243		 * content (XXX).
1244		 */
1245		sin6_copy = *addr;
1246		if (sa6_recoverscope(&sin6_copy))
1247			return (0); /* XXX: should be impossible */
1248		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1249			return (0);
1250		if (sin6_copy.sin6_scope_id == zone)
1251			return (1);
1252		else
1253			return (0);
1254	}
1255
1256	bzero(&rt_key, sizeof(rt_key));
1257	bzero(&info, sizeof(info));
1258	info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
1259
1260	/* Always use the default FIB here. XXME - why? */
1261	fibnum = RT_DEFAULT_FIB;
1262
1263	/*
1264	 * If the address matches one of our addresses,
1265	 * it should be a neighbor.
1266	 * If the address matches one of our on-link prefixes, it should be a
1267	 * neighbor.
1268	 */
1269	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1270		if (pr->ndpr_ifp != ifp)
1271			continue;
1272
1273		if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
1274
1275			/* Always use the default FIB here. */
1276			dst6 = (struct sockaddr *)&pr->ndpr_prefix;
1277
1278			/* Restore length field before retrying lookup */
1279			rt_key.sin6_len = sizeof(rt_key);
1280			if (rib_lookup_info(fibnum, dst6, 0, 0, &info) != 0)
1281				continue;
1282			/*
1283			 * This is the case where multiple interfaces
1284			 * have the same prefix, but only one is installed
1285			 * into the routing table and that prefix entry
1286			 * is not the one being examined here. In the case
1287			 * where RADIX_MPATH is enabled, multiple route
1288			 * entries (of the same rt_key value) will be
1289			 * installed because the interface addresses all
1290			 * differ.
1291			 */
1292			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1293			       &rt_key.sin6_addr))
1294				continue;
1295		}
1296
1297		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1298		    &addr->sin6_addr, &pr->ndpr_mask))
1299			return (1);
1300	}
1301
1302	/*
1303	 * If the address is assigned on the node of the other side of
1304	 * a p2p interface, the address should be a neighbor.
1305	 */
1306	dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS);
1307	if (dstaddr != NULL) {
1308		if (dstaddr->ifa_ifp == ifp) {
1309			ifa_free(dstaddr);
1310			return (1);
1311		}
1312		ifa_free(dstaddr);
1313	}
1314
1315	/*
1316	 * If the default router list is empty, all addresses are regarded
1317	 * as on-link, and thus, as a neighbor.
1318	 */
1319	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1320	    TAILQ_EMPTY(&V_nd_defrouter) &&
1321	    V_nd6_defifindex == ifp->if_index) {
1322		return (1);
1323	}
1324
1325	return (0);
1326}
1327
1328
1329/*
1330 * Detect if a given IPv6 address identifies a neighbor on a given link.
1331 * XXX: should take care of the destination of a p2p link?
1332 */
1333int
1334nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1335{
1336	struct llentry *lle;
1337	int rc = 0;
1338
1339	IF_AFDATA_UNLOCK_ASSERT(ifp);
1340	if (nd6_is_new_addr_neighbor(addr, ifp))
1341		return (1);
1342
1343	/*
1344	 * Even if the address matches none of our addresses, it might be
1345	 * in the neighbor cache.
1346	 */
1347	IF_AFDATA_RLOCK(ifp);
1348	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1349		LLE_RUNLOCK(lle);
1350		rc = 1;
1351	}
1352	IF_AFDATA_RUNLOCK(ifp);
1353	return (rc);
1354}
1355
1356/*
1357 * Free an nd6 llinfo entry.
1358 * Since the function would cause significant changes in the kernel, DO NOT
1359 * make it global, unless you have a strong reason for the change, and are sure
1360 * that the change is safe.
1361 *
1362 * Set noinline to be dtrace-friendly
1363 */
1364static __noinline void
1365nd6_free(struct llentry **lnp, int gc)
1366{
1367	struct ifnet *ifp;
1368	struct llentry *ln;
1369	struct nd_defrouter *dr;
1370
1371	ln = *lnp;
1372	*lnp = NULL;
1373
1374	LLE_WLOCK_ASSERT(ln);
1375	ND6_RLOCK_ASSERT();
1376
1377	ifp = lltable_get_ifp(ln->lle_tbl);
1378	if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
1379		dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
1380	else
1381		dr = NULL;
1382	ND6_RUNLOCK();
1383
1384	if ((ln->la_flags & LLE_DELETED) == 0)
1385		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
1386
1387	/*
1388	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1389	 * even though it is not harmful, it was not really necessary.
1390	 */
1391
1392	/* cancel timer */
1393	nd6_llinfo_settimer_locked(ln, -1);
1394
1395	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1396		if (dr != NULL && dr->expire &&
1397		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1398			/*
1399			 * If the reason for the deletion is just garbage
1400			 * collection, and the neighbor is an active default
1401			 * router, do not delete it.  Instead, reset the GC
1402			 * timer using the router's lifetime.
1403			 * Simply deleting the entry would affect default
1404			 * router selection, which is not necessarily a good
1405			 * thing, especially when we're using router preference
1406			 * values.
1407			 * XXX: the check for ln_state would be redundant,
1408			 *      but we intentionally keep it just in case.
1409			 */
1410			if (dr->expire > time_uptime)
1411				nd6_llinfo_settimer_locked(ln,
1412				    (dr->expire - time_uptime) * hz);
1413			else
1414				nd6_llinfo_settimer_locked(ln,
1415				    (long)V_nd6_gctimer * hz);
1416
1417			LLE_REMREF(ln);
1418			LLE_WUNLOCK(ln);
1419			defrouter_rele(dr);
1420			return;
1421		}
1422
1423		if (dr) {
1424			/*
1425			 * Unreachablity of a router might affect the default
1426			 * router selection and on-link detection of advertised
1427			 * prefixes.
1428			 */
1429
1430			/*
1431			 * Temporarily fake the state to choose a new default
1432			 * router and to perform on-link determination of
1433			 * prefixes correctly.
1434			 * Below the state will be set correctly,
1435			 * or the entry itself will be deleted.
1436			 */
1437			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1438		}
1439
1440		if (ln->ln_router || dr) {
1441
1442			/*
1443			 * We need to unlock to avoid a LOR with rt6_flush() with the
1444			 * rnh and for the calls to pfxlist_onlink_check() and
1445			 * defrouter_select() in the block further down for calls
1446			 * into nd6_lookup().  We still hold a ref.
1447			 */
1448			LLE_WUNLOCK(ln);
1449
1450			/*
1451			 * rt6_flush must be called whether or not the neighbor
1452			 * is in the Default Router List.
1453			 * See a corresponding comment in nd6_na_input().
1454			 */
1455			rt6_flush(&ln->r_l3addr.addr6, ifp);
1456		}
1457
1458		if (dr) {
1459			/*
1460			 * Since defrouter_select() does not affect the
1461			 * on-link determination and MIP6 needs the check
1462			 * before the default router selection, we perform
1463			 * the check now.
1464			 */
1465			pfxlist_onlink_check();
1466
1467			/*
1468			 * Refresh default router list.
1469			 */
1470			defrouter_select();
1471		}
1472
1473		/*
1474		 * If this entry was added by an on-link redirect, remove the
1475		 * corresponding host route.
1476		 */
1477		if (ln->la_flags & LLE_REDIRECT)
1478			nd6_free_redirect(ln);
1479
1480		if (ln->ln_router || dr)
1481			LLE_WLOCK(ln);
1482	}
1483
1484	/*
1485	 * Save to unlock. We still hold an extra reference and will not
1486	 * free(9) in llentry_free() if someone else holds one as well.
1487	 */
1488	LLE_WUNLOCK(ln);
1489	IF_AFDATA_LOCK(ifp);
1490	LLE_WLOCK(ln);
1491	/* Guard against race with other llentry_free(). */
1492	if (ln->la_flags & LLE_LINKED) {
1493		/* Remove callout reference */
1494		LLE_REMREF(ln);
1495		lltable_unlink_entry(ln->lle_tbl, ln);
1496	}
1497	IF_AFDATA_UNLOCK(ifp);
1498
1499	llentry_free(ln);
1500	if (dr != NULL)
1501		defrouter_rele(dr);
1502}
1503
1504static int
1505nd6_isdynrte(const struct rtentry *rt, void *xap)
1506{
1507
1508	if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC))
1509		return (1);
1510
1511	return (0);
1512}
1513/*
1514 * Remove the rtentry for the given llentry,
1515 * both of which were installed by a redirect.
1516 */
1517static void
1518nd6_free_redirect(const struct llentry *ln)
1519{
1520	int fibnum;
1521	struct sockaddr_in6 sin6;
1522	struct rt_addrinfo info;
1523
1524	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1525	memset(&info, 0, sizeof(info));
1526	info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
1527	info.rti_filter = nd6_isdynrte;
1528
1529	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
1530		rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum);
1531}
1532
1533/*
1534 * Rejuvenate this function for routing operations related
1535 * processing.
1536 */
1537void
1538nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1539{
1540	struct sockaddr_in6 *gateway;
1541	struct nd_defrouter *dr;
1542	struct ifnet *ifp;
1543
1544	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1545	ifp = rt->rt_ifp;
1546
1547	switch (req) {
1548	case RTM_ADD:
1549		break;
1550
1551	case RTM_DELETE:
1552		if (!ifp)
1553			return;
1554		/*
1555		 * Only indirect routes are interesting.
1556		 */
1557		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1558			return;
1559		/*
1560		 * check for default route
1561		 */
1562		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1563		    &SIN6(rt_key(rt))->sin6_addr)) {
1564			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1565			if (dr != NULL) {
1566				dr->installed = 0;
1567				defrouter_rele(dr);
1568			}
1569		}
1570		break;
1571	}
1572}
1573
1574
1575int
1576nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1577{
1578	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1579	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1580	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1581	int error = 0;
1582
1583	if (ifp->if_afdata[AF_INET6] == NULL)
1584		return (EPFNOSUPPORT);
1585	switch (cmd) {
1586	case OSIOCGIFINFO_IN6:
1587#define ND	ndi->ndi
1588		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1589		bzero(&ND, sizeof(ND));
1590		ND.linkmtu = IN6_LINKMTU(ifp);
1591		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1592		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1593		ND.reachable = ND_IFINFO(ifp)->reachable;
1594		ND.retrans = ND_IFINFO(ifp)->retrans;
1595		ND.flags = ND_IFINFO(ifp)->flags;
1596		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1597		ND.chlim = ND_IFINFO(ifp)->chlim;
1598		break;
1599	case SIOCGIFINFO_IN6:
1600		ND = *ND_IFINFO(ifp);
1601		break;
1602	case SIOCSIFINFO_IN6:
1603		/*
1604		 * used to change host variables from userland.
1605		 * intended for a use on router to reflect RA configurations.
1606		 */
1607		/* 0 means 'unspecified' */
1608		if (ND.linkmtu != 0) {
1609			if (ND.linkmtu < IPV6_MMTU ||
1610			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1611				error = EINVAL;
1612				break;
1613			}
1614			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1615		}
1616
1617		if (ND.basereachable != 0) {
1618			int obasereachable = ND_IFINFO(ifp)->basereachable;
1619
1620			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1621			if (ND.basereachable != obasereachable)
1622				ND_IFINFO(ifp)->reachable =
1623				    ND_COMPUTE_RTIME(ND.basereachable);
1624		}
1625		if (ND.retrans != 0)
1626			ND_IFINFO(ifp)->retrans = ND.retrans;
1627		if (ND.chlim != 0)
1628			ND_IFINFO(ifp)->chlim = ND.chlim;
1629		/* FALLTHROUGH */
1630	case SIOCSIFINFO_FLAGS:
1631	{
1632		struct ifaddr *ifa;
1633		struct in6_ifaddr *ia;
1634
1635		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1636		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1637			/* ifdisabled 1->0 transision */
1638
1639			/*
1640			 * If the interface is marked as ND6_IFF_IFDISABLED and
1641			 * has an link-local address with IN6_IFF_DUPLICATED,
1642			 * do not clear ND6_IFF_IFDISABLED.
1643			 * See RFC 4862, Section 5.4.5.
1644			 */
1645			IF_ADDR_RLOCK(ifp);
1646			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1647				if (ifa->ifa_addr->sa_family != AF_INET6)
1648					continue;
1649				ia = (struct in6_ifaddr *)ifa;
1650				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1651				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1652					break;
1653			}
1654			IF_ADDR_RUNLOCK(ifp);
1655
1656			if (ifa != NULL) {
1657				/* LLA is duplicated. */
1658				ND.flags |= ND6_IFF_IFDISABLED;
1659				log(LOG_ERR, "Cannot enable an interface"
1660				    " with a link-local address marked"
1661				    " duplicate.\n");
1662			} else {
1663				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1664				if (ifp->if_flags & IFF_UP)
1665					in6_if_up(ifp);
1666			}
1667		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1668			    (ND.flags & ND6_IFF_IFDISABLED)) {
1669			/* ifdisabled 0->1 transision */
1670			/* Mark all IPv6 address as tentative. */
1671
1672			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1673			if (V_ip6_dad_count > 0 &&
1674			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1675				IF_ADDR_RLOCK(ifp);
1676				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1677				    ifa_link) {
1678					if (ifa->ifa_addr->sa_family !=
1679					    AF_INET6)
1680						continue;
1681					ia = (struct in6_ifaddr *)ifa;
1682					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1683				}
1684				IF_ADDR_RUNLOCK(ifp);
1685			}
1686		}
1687
1688		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1689			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1690				/* auto_linklocal 0->1 transision */
1691
1692				/* If no link-local address on ifp, configure */
1693				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1694				in6_ifattach(ifp, NULL);
1695			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1696			    ifp->if_flags & IFF_UP) {
1697				/*
1698				 * When the IF already has
1699				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1700				 * address is assigned, and IFF_UP, try to
1701				 * assign one.
1702				 */
1703				IF_ADDR_RLOCK(ifp);
1704				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1705				    ifa_link) {
1706					if (ifa->ifa_addr->sa_family !=
1707					    AF_INET6)
1708						continue;
1709					ia = (struct in6_ifaddr *)ifa;
1710					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1711						break;
1712				}
1713				IF_ADDR_RUNLOCK(ifp);
1714				if (ifa != NULL)
1715					/* No LLA is configured. */
1716					in6_ifattach(ifp, NULL);
1717			}
1718		}
1719	}
1720		ND_IFINFO(ifp)->flags = ND.flags;
1721		break;
1722#undef ND
1723	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1724		/* sync kernel routing table with the default router list */
1725		defrouter_reset();
1726		defrouter_select();
1727		break;
1728	case SIOCSPFXFLUSH_IN6:
1729	{
1730		/* flush all the prefix advertised by routers */
1731		struct nd_prefix *pr, *next;
1732
1733		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1734			struct in6_ifaddr *ia, *ia_next;
1735
1736			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1737				continue; /* XXX */
1738
1739			/* do we really have to remove addresses as well? */
1740			/* XXXRW: in6_ifaddrhead locking. */
1741			TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1742			    ia_next) {
1743				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1744					continue;
1745
1746				if (ia->ia6_ndpr == pr)
1747					in6_purgeaddr(&ia->ia_ifa);
1748			}
1749			prelist_remove(pr);
1750		}
1751		break;
1752	}
1753	case SIOCSRTRFLUSH_IN6:
1754	{
1755		/* flush all the default routers */
1756		struct nd_drhead drq;
1757		struct nd_defrouter *dr;
1758
1759		TAILQ_INIT(&drq);
1760
1761		defrouter_reset();
1762
1763		ND6_WLOCK();
1764		while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL)
1765			defrouter_unlink(dr, &drq);
1766		ND6_WUNLOCK();
1767		while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1768			TAILQ_REMOVE(&drq, dr, dr_entry);
1769			defrouter_del(dr);
1770		}
1771
1772		defrouter_select();
1773		break;
1774	}
1775	case SIOCGNBRINFO_IN6:
1776	{
1777		struct llentry *ln;
1778		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1779
1780		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1781			return (error);
1782
1783		IF_AFDATA_RLOCK(ifp);
1784		ln = nd6_lookup(&nb_addr, 0, ifp);
1785		IF_AFDATA_RUNLOCK(ifp);
1786
1787		if (ln == NULL) {
1788			error = EINVAL;
1789			break;
1790		}
1791		nbi->state = ln->ln_state;
1792		nbi->asked = ln->la_asked;
1793		nbi->isrouter = ln->ln_router;
1794		if (ln->la_expire == 0)
1795			nbi->expire = 0;
1796		else
1797			nbi->expire = ln->la_expire + ln->lle_remtime / hz +
1798			    (time_second - time_uptime);
1799		LLE_RUNLOCK(ln);
1800		break;
1801	}
1802	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1803		ndif->ifindex = V_nd6_defifindex;
1804		break;
1805	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1806		return (nd6_setdefaultiface(ndif->ifindex));
1807	}
1808	return (error);
1809}
1810
1811/*
1812 * Calculates new isRouter value based on provided parameters and
1813 * returns it.
1814 */
1815static int
1816nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1817    int ln_router)
1818{
1819
1820	/*
1821	 * ICMP6 type dependent behavior.
1822	 *
1823	 * NS: clear IsRouter if new entry
1824	 * RS: clear IsRouter
1825	 * RA: set IsRouter if there's lladdr
1826	 * redir: clear IsRouter if new entry
1827	 *
1828	 * RA case, (1):
1829	 * The spec says that we must set IsRouter in the following cases:
1830	 * - If lladdr exist, set IsRouter.  This means (1-5).
1831	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1832	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1833	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1834	 * neighbor cache, this is similar to (6).
1835	 * This case is rare but we figured that we MUST NOT set IsRouter.
1836	 *
1837	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1838	 *							D R
1839	 *	0	n	n	(1)	c   ?     s
1840	 *	0	y	n	(2)	c   s     s
1841	 *	0	n	y	(3)	c   s     s
1842	 *	0	y	y	(4)	c   s     s
1843	 *	0	y	y	(5)	c   s     s
1844	 *	1	--	n	(6) c	c	c s
1845	 *	1	--	y	(7) c	c   s	c s
1846	 *
1847	 *					(c=clear s=set)
1848	 */
1849	switch (type & 0xff) {
1850	case ND_NEIGHBOR_SOLICIT:
1851		/*
1852		 * New entry must have is_router flag cleared.
1853		 */
1854		if (is_new)					/* (6-7) */
1855			ln_router = 0;
1856		break;
1857	case ND_REDIRECT:
1858		/*
1859		 * If the icmp is a redirect to a better router, always set the
1860		 * is_router flag.  Otherwise, if the entry is newly created,
1861		 * clear the flag.  [RFC 2461, sec 8.3]
1862		 */
1863		if (code == ND_REDIRECT_ROUTER)
1864			ln_router = 1;
1865		else {
1866			if (is_new)				/* (6-7) */
1867				ln_router = 0;
1868		}
1869		break;
1870	case ND_ROUTER_SOLICIT:
1871		/*
1872		 * is_router flag must always be cleared.
1873		 */
1874		ln_router = 0;
1875		break;
1876	case ND_ROUTER_ADVERT:
1877		/*
1878		 * Mark an entry with lladdr as a router.
1879		 */
1880		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1881		    (is_new && new_addr)) {			/* (7) */
1882			ln_router = 1;
1883		}
1884		break;
1885	}
1886
1887	return (ln_router);
1888}
1889
1890/*
1891 * Create neighbor cache entry and cache link-layer address,
1892 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1893 *
1894 * type - ICMP6 type
1895 * code - type dependent information
1896 *
1897 */
1898void
1899nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1900    int lladdrlen, int type, int code)
1901{
1902	struct llentry *ln = NULL, *ln_tmp;
1903	int is_newentry;
1904	int do_update;
1905	int olladdr;
1906	int llchange;
1907	int flags;
1908	uint16_t router = 0;
1909	struct sockaddr_in6 sin6;
1910	struct mbuf *chain = NULL;
1911	u_char linkhdr[LLE_MAX_LINKHDR];
1912	size_t linkhdrsize;
1913	int lladdr_off;
1914
1915	IF_AFDATA_UNLOCK_ASSERT(ifp);
1916
1917	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1918	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1919
1920	/* nothing must be updated for unspecified address */
1921	if (IN6_IS_ADDR_UNSPECIFIED(from))
1922		return;
1923
1924	/*
1925	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1926	 * the caller.
1927	 *
1928	 * XXX If the link does not have link-layer adderss, what should
1929	 * we do? (ifp->if_addrlen == 0)
1930	 * Spec says nothing in sections for RA, RS and NA.  There's small
1931	 * description on it in NS section (RFC 2461 7.2.3).
1932	 */
1933	flags = lladdr ? LLE_EXCLUSIVE : 0;
1934	IF_AFDATA_RLOCK(ifp);
1935	ln = nd6_lookup(from, flags, ifp);
1936	IF_AFDATA_RUNLOCK(ifp);
1937	is_newentry = 0;
1938	if (ln == NULL) {
1939		flags |= LLE_EXCLUSIVE;
1940		ln = nd6_alloc(from, 0, ifp);
1941		if (ln == NULL)
1942			return;
1943
1944		/*
1945		 * Since we already know all the data for the new entry,
1946		 * fill it before insertion.
1947		 */
1948		if (lladdr != NULL) {
1949			linkhdrsize = sizeof(linkhdr);
1950			if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
1951			    linkhdr, &linkhdrsize, &lladdr_off) != 0)
1952				return;
1953			lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
1954			    lladdr_off);
1955		}
1956
1957		IF_AFDATA_WLOCK(ifp);
1958		LLE_WLOCK(ln);
1959		/* Prefer any existing lle over newly-created one */
1960		ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
1961		if (ln_tmp == NULL)
1962			lltable_link_entry(LLTABLE6(ifp), ln);
1963		IF_AFDATA_WUNLOCK(ifp);
1964		if (ln_tmp == NULL) {
1965			/* No existing lle, mark as new entry (6,7) */
1966			is_newentry = 1;
1967			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
1968			if (lladdr != NULL)	/* (7) */
1969				EVENTHANDLER_INVOKE(lle_event, ln,
1970				    LLENTRY_RESOLVED);
1971		} else {
1972			lltable_free_entry(LLTABLE6(ifp), ln);
1973			ln = ln_tmp;
1974			ln_tmp = NULL;
1975		}
1976	}
1977	/* do nothing if static ndp is set */
1978	if ((ln->la_flags & LLE_STATIC)) {
1979		if (flags & LLE_EXCLUSIVE)
1980			LLE_WUNLOCK(ln);
1981		else
1982			LLE_RUNLOCK(ln);
1983		return;
1984	}
1985
1986	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1987	if (olladdr && lladdr) {
1988		llchange = bcmp(lladdr, ln->ll_addr,
1989		    ifp->if_addrlen);
1990	} else if (!olladdr && lladdr)
1991		llchange = 1;
1992	else
1993		llchange = 0;
1994
1995	/*
1996	 * newentry olladdr  lladdr  llchange	(*=record)
1997	 *	0	n	n	--	(1)
1998	 *	0	y	n	--	(2)
1999	 *	0	n	y	y	(3) * STALE
2000	 *	0	y	y	n	(4) *
2001	 *	0	y	y	y	(5) * STALE
2002	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
2003	 *	1	--	y	--	(7) * STALE
2004	 */
2005
2006	do_update = 0;
2007	if (is_newentry == 0 && llchange != 0) {
2008		do_update = 1;	/* (3,5) */
2009
2010		/*
2011		 * Record source link-layer address
2012		 * XXX is it dependent to ifp->if_type?
2013		 */
2014		linkhdrsize = sizeof(linkhdr);
2015		if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2016		    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2017			return;
2018
2019		if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2020		    lladdr_off) == 0) {
2021			/* Entry was deleted */
2022			return;
2023		}
2024
2025		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2026
2027		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2028
2029		if (ln->la_hold != NULL)
2030			nd6_grab_holdchain(ln, &chain, &sin6);
2031	}
2032
2033	/* Calculates new router status */
2034	router = nd6_is_router(type, code, is_newentry, olladdr,
2035	    lladdr != NULL ? 1 : 0, ln->ln_router);
2036
2037	ln->ln_router = router;
2038	/* Mark non-router redirects with special flag */
2039	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
2040		ln->la_flags |= LLE_REDIRECT;
2041
2042	if (flags & LLE_EXCLUSIVE)
2043		LLE_WUNLOCK(ln);
2044	else
2045		LLE_RUNLOCK(ln);
2046
2047	if (chain != NULL)
2048		nd6_flush_holdchain(ifp, ifp, chain, &sin6);
2049
2050	/*
2051	 * When the link-layer address of a router changes, select the
2052	 * best router again.  In particular, when the neighbor entry is newly
2053	 * created, it might affect the selection policy.
2054	 * Question: can we restrict the first condition to the "is_newentry"
2055	 * case?
2056	 * XXX: when we hear an RA from a new router with the link-layer
2057	 * address option, defrouter_select() is called twice, since
2058	 * defrtrlist_update called the function as well.  However, I believe
2059	 * we can compromise the overhead, since it only happens the first
2060	 * time.
2061	 * XXX: although defrouter_select() should not have a bad effect
2062	 * for those are not autoconfigured hosts, we explicitly avoid such
2063	 * cases for safety.
2064	 */
2065	if ((do_update || is_newentry) && router &&
2066	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
2067		/*
2068		 * guaranteed recursion
2069		 */
2070		defrouter_select();
2071	}
2072}
2073
2074static void
2075nd6_slowtimo(void *arg)
2076{
2077	CURVNET_SET((struct vnet *) arg);
2078	struct nd_ifinfo *nd6if;
2079	struct ifnet *ifp;
2080
2081	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2082	    nd6_slowtimo, curvnet);
2083	IFNET_RLOCK_NOSLEEP();
2084	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2085		if (ifp->if_afdata[AF_INET6] == NULL)
2086			continue;
2087		nd6if = ND_IFINFO(ifp);
2088		if (nd6if->basereachable && /* already initialized */
2089		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2090			/*
2091			 * Since reachable time rarely changes by router
2092			 * advertisements, we SHOULD insure that a new random
2093			 * value gets recomputed at least once every few hours.
2094			 * (RFC 2461, 6.3.4)
2095			 */
2096			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
2097			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2098		}
2099	}
2100	IFNET_RUNLOCK_NOSLEEP();
2101	CURVNET_RESTORE();
2102}
2103
2104void
2105nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
2106    struct sockaddr_in6 *sin6)
2107{
2108
2109	LLE_WLOCK_ASSERT(ln);
2110
2111	*chain = ln->la_hold;
2112	ln->la_hold = NULL;
2113	lltable_fill_sa_entry(ln, (struct sockaddr *)sin6);
2114
2115	if (ln->ln_state == ND6_LLINFO_STALE) {
2116
2117		/*
2118		 * The first time we send a packet to a
2119		 * neighbor whose entry is STALE, we have
2120		 * to change the state to DELAY and a sets
2121		 * a timer to expire in DELAY_FIRST_PROBE_TIME
2122		 * seconds to ensure do neighbor unreachability
2123		 * detection on expiration.
2124		 * (RFC 2461 7.3.3)
2125		 */
2126		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
2127	}
2128}
2129
2130int
2131nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2132    struct sockaddr_in6 *dst, struct route *ro)
2133{
2134	int error;
2135	int ip6len;
2136	struct ip6_hdr *ip6;
2137	struct m_tag *mtag;
2138
2139#ifdef MAC
2140	mac_netinet6_nd6_send(ifp, m);
2141#endif
2142
2143	/*
2144	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2145	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2146	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2147	 * to be diverted to user space.  When re-injected into the kernel,
2148	 * send_output() will directly dispatch them to the outgoing interface.
2149	 */
2150	if (send_sendso_input_hook != NULL) {
2151		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2152		if (mtag != NULL) {
2153			ip6 = mtod(m, struct ip6_hdr *);
2154			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2155			/* Use the SEND socket */
2156			error = send_sendso_input_hook(m, ifp, SND_OUT,
2157			    ip6len);
2158			/* -1 == no app on SEND socket */
2159			if (error == 0 || error != -1)
2160			    return (error);
2161		}
2162	}
2163
2164	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2165	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2166	    mtod(m, struct ip6_hdr *));
2167
2168	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2169		origifp = ifp;
2170
2171	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
2172	return (error);
2173}
2174
2175/*
2176 * Lookup link headerfor @sa_dst address. Stores found
2177 * data in @desten buffer. Copy of lle ln_flags can be also
2178 * saved in @pflags if @pflags is non-NULL.
2179 *
2180 * If destination LLE does not exists or lle state modification
2181 * is required, call "slow" version.
2182 *
2183 * Return values:
2184 * - 0 on success (address copied to buffer).
2185 * - EWOULDBLOCK (no local error, but address is still unresolved)
2186 * - other errors (alloc failure, etc)
2187 */
2188int
2189nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
2190    const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
2191    struct llentry **plle)
2192{
2193	struct llentry *ln = NULL;
2194	const struct sockaddr_in6 *dst6;
2195
2196	if (pflags != NULL)
2197		*pflags = 0;
2198
2199	dst6 = (const struct sockaddr_in6 *)sa_dst;
2200
2201	/* discard the packet if IPv6 operation is disabled on the interface */
2202	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2203		m_freem(m);
2204		return (ENETDOWN); /* better error? */
2205	}
2206
2207	if (m != NULL && m->m_flags & M_MCAST) {
2208		switch (ifp->if_type) {
2209		case IFT_ETHER:
2210		case IFT_FDDI:
2211		case IFT_L2VLAN:
2212		case IFT_IEEE80211:
2213		case IFT_BRIDGE:
2214		case IFT_ISO88025:
2215			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2216						 desten);
2217			return (0);
2218		default:
2219			m_freem(m);
2220			return (EAFNOSUPPORT);
2221		}
2222	}
2223
2224	IF_AFDATA_RLOCK(ifp);
2225	ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED,
2226	    ifp);
2227	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
2228		/* Entry found, let's copy lle info */
2229		bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
2230		if (pflags != NULL)
2231			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
2232		/* Check if we have feedback request from nd6 timer */
2233		if (ln->r_skip_req != 0) {
2234			LLE_REQ_LOCK(ln);
2235			ln->r_skip_req = 0; /* Notify that entry was used */
2236			ln->lle_hittime = time_uptime;
2237			LLE_REQ_UNLOCK(ln);
2238		}
2239		if (plle) {
2240			LLE_ADDREF(ln);
2241			*plle = ln;
2242			LLE_WUNLOCK(ln);
2243		}
2244		IF_AFDATA_RUNLOCK(ifp);
2245		return (0);
2246	} else if (plle && ln)
2247		LLE_WUNLOCK(ln);
2248	IF_AFDATA_RUNLOCK(ifp);
2249
2250	return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle));
2251}
2252
2253
2254/*
2255 * Do L2 address resolution for @sa_dst address. Stores found
2256 * address in @desten buffer. Copy of lle ln_flags can be also
2257 * saved in @pflags if @pflags is non-NULL.
2258 *
2259 * Heavy version.
2260 * Function assume that destination LLE does not exist,
2261 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2262 *
2263 * Set noinline to be dtrace-friendly
2264 */
2265static __noinline int
2266nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m,
2267    const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
2268    struct llentry **plle)
2269{
2270	struct llentry *lle = NULL, *lle_tmp;
2271	struct in6_addr *psrc, src;
2272	int send_ns, ll_len;
2273	char *lladdr;
2274
2275	/*
2276	 * Address resolution or Neighbor Unreachability Detection
2277	 * for the next hop.
2278	 * At this point, the destination of the packet must be a unicast
2279	 * or an anycast address(i.e. not a multicast).
2280	 */
2281	if (lle == NULL) {
2282		IF_AFDATA_RLOCK(ifp);
2283		lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2284		IF_AFDATA_RUNLOCK(ifp);
2285		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2286			/*
2287			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2288			 * the condition below is not very efficient.  But we believe
2289			 * it is tolerable, because this should be a rare case.
2290			 */
2291			lle = nd6_alloc(&dst->sin6_addr, 0, ifp);
2292			if (lle == NULL) {
2293				char ip6buf[INET6_ADDRSTRLEN];
2294				log(LOG_DEBUG,
2295				    "nd6_output: can't allocate llinfo for %s "
2296				    "(ln=%p)\n",
2297				    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
2298				m_freem(m);
2299				return (ENOBUFS);
2300			}
2301
2302			IF_AFDATA_WLOCK(ifp);
2303			LLE_WLOCK(lle);
2304			/* Prefer any existing entry over newly-created one */
2305			lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2306			if (lle_tmp == NULL)
2307				lltable_link_entry(LLTABLE6(ifp), lle);
2308			IF_AFDATA_WUNLOCK(ifp);
2309			if (lle_tmp != NULL) {
2310				lltable_free_entry(LLTABLE6(ifp), lle);
2311				lle = lle_tmp;
2312				lle_tmp = NULL;
2313			}
2314		}
2315	}
2316	if (lle == NULL) {
2317		if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2318			m_freem(m);
2319			return (ENOBUFS);
2320		}
2321
2322		if (m != NULL)
2323			m_freem(m);
2324		return (ENOBUFS);
2325	}
2326
2327	LLE_WLOCK_ASSERT(lle);
2328
2329	/*
2330	 * The first time we send a packet to a neighbor whose entry is
2331	 * STALE, we have to change the state to DELAY and a sets a timer to
2332	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2333	 * neighbor unreachability detection on expiration.
2334	 * (RFC 2461 7.3.3)
2335	 */
2336	if (lle->ln_state == ND6_LLINFO_STALE)
2337		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2338
2339	/*
2340	 * If the neighbor cache entry has a state other than INCOMPLETE
2341	 * (i.e. its link-layer address is already resolved), just
2342	 * send the packet.
2343	 */
2344	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2345		if (flags & LLE_ADDRONLY) {
2346			lladdr = lle->ll_addr;
2347			ll_len = ifp->if_addrlen;
2348		} else {
2349			lladdr = lle->r_linkdata;
2350			ll_len = lle->r_hdrlen;
2351		}
2352		bcopy(lladdr, desten, ll_len);
2353		if (pflags != NULL)
2354			*pflags = lle->la_flags;
2355		if (plle) {
2356			LLE_ADDREF(lle);
2357			*plle = lle;
2358		}
2359		LLE_WUNLOCK(lle);
2360		return (0);
2361	}
2362
2363	/*
2364	 * There is a neighbor cache entry, but no ethernet address
2365	 * response yet.  Append this latest packet to the end of the
2366	 * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
2367	 * the oldest packet in the queue will be removed.
2368	 */
2369
2370	if (lle->la_hold != NULL) {
2371		struct mbuf *m_hold;
2372		int i;
2373
2374		i = 0;
2375		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2376			i++;
2377			if (m_hold->m_nextpkt == NULL) {
2378				m_hold->m_nextpkt = m;
2379				break;
2380			}
2381		}
2382		while (i >= V_nd6_maxqueuelen) {
2383			m_hold = lle->la_hold;
2384			lle->la_hold = lle->la_hold->m_nextpkt;
2385			m_freem(m_hold);
2386			i--;
2387		}
2388	} else {
2389		lle->la_hold = m;
2390	}
2391
2392	/*
2393	 * If there has been no NS for the neighbor after entering the
2394	 * INCOMPLETE state, send the first solicitation.
2395	 * Note that for newly-created lle la_asked will be 0,
2396	 * so we will transition from ND6_LLINFO_NOSTATE to
2397	 * ND6_LLINFO_INCOMPLETE state here.
2398	 */
2399	psrc = NULL;
2400	send_ns = 0;
2401	if (lle->la_asked == 0) {
2402		lle->la_asked++;
2403		send_ns = 1;
2404		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2405
2406		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2407	}
2408	LLE_WUNLOCK(lle);
2409	if (send_ns != 0)
2410		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2411
2412	return (EWOULDBLOCK);
2413}
2414
2415/*
2416 * Do L2 address resolution for @sa_dst address. Stores found
2417 * address in @desten buffer. Copy of lle ln_flags can be also
2418 * saved in @pflags if @pflags is non-NULL.
2419 *
2420 * Return values:
2421 * - 0 on success (address copied to buffer).
2422 * - EWOULDBLOCK (no local error, but address is still unresolved)
2423 * - other errors (alloc failure, etc)
2424 */
2425int
2426nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
2427    char *desten, uint32_t *pflags)
2428{
2429	int error;
2430
2431	flags |= LLE_ADDRONLY;
2432	error = nd6_resolve_slow(ifp, flags, NULL,
2433	    (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
2434	return (error);
2435}
2436
2437int
2438nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain,
2439    struct sockaddr_in6 *dst)
2440{
2441	struct mbuf *m, *m_head;
2442	struct ifnet *outifp;
2443	int error = 0;
2444
2445	m_head = chain;
2446	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2447		outifp = origifp;
2448	else
2449		outifp = ifp;
2450
2451	while (m_head) {
2452		m = m_head;
2453		m_head = m_head->m_nextpkt;
2454		error = nd6_output_ifp(ifp, origifp, m, dst, NULL);
2455	}
2456
2457	/*
2458	 * XXX
2459	 * note that intermediate errors are blindly ignored
2460	 */
2461	return (error);
2462}
2463
2464static int
2465nd6_need_cache(struct ifnet *ifp)
2466{
2467	/*
2468	 * XXX: we currently do not make neighbor cache on any interface
2469	 * other than ARCnet, Ethernet, FDDI and GIF.
2470	 *
2471	 * RFC2893 says:
2472	 * - unidirectional tunnels needs no ND
2473	 */
2474	switch (ifp->if_type) {
2475	case IFT_ARCNET:
2476	case IFT_ETHER:
2477	case IFT_FDDI:
2478	case IFT_IEEE1394:
2479	case IFT_L2VLAN:
2480	case IFT_IEEE80211:
2481	case IFT_INFINIBAND:
2482	case IFT_BRIDGE:
2483	case IFT_PROPVIRTUAL:
2484		return (1);
2485	default:
2486		return (0);
2487	}
2488}
2489
2490/*
2491 * Add pernament ND6 link-layer record for given
2492 * interface address.
2493 *
2494 * Very similar to IPv4 arp_ifinit(), but:
2495 * 1) IPv6 DAD is performed in different place
2496 * 2) It is called by IPv6 protocol stack in contrast to
2497 * arp_ifinit() which is typically called in SIOCSIFADDR
2498 * driver ioctl handler.
2499 *
2500 */
2501int
2502nd6_add_ifa_lle(struct in6_ifaddr *ia)
2503{
2504	struct ifnet *ifp;
2505	struct llentry *ln, *ln_tmp;
2506	struct sockaddr *dst;
2507
2508	ifp = ia->ia_ifa.ifa_ifp;
2509	if (nd6_need_cache(ifp) == 0)
2510		return (0);
2511
2512	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2513	dst = (struct sockaddr *)&ia->ia_addr;
2514	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2515	if (ln == NULL)
2516		return (ENOBUFS);
2517
2518	IF_AFDATA_WLOCK(ifp);
2519	LLE_WLOCK(ln);
2520	/* Unlink any entry if exists */
2521	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
2522	if (ln_tmp != NULL)
2523		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2524	lltable_link_entry(LLTABLE6(ifp), ln);
2525	IF_AFDATA_WUNLOCK(ifp);
2526
2527	if (ln_tmp != NULL)
2528		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2529	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2530
2531	LLE_WUNLOCK(ln);
2532	if (ln_tmp != NULL)
2533		llentry_free(ln_tmp);
2534
2535	return (0);
2536}
2537
2538/*
2539 * Removes either all lle entries for given @ia, or lle
2540 * corresponding to @ia address.
2541 */
2542void
2543nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2544{
2545	struct sockaddr_in6 mask, addr;
2546	struct sockaddr *saddr, *smask;
2547	struct ifnet *ifp;
2548
2549	ifp = ia->ia_ifa.ifa_ifp;
2550	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2551	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2552	saddr = (struct sockaddr *)&addr;
2553	smask = (struct sockaddr *)&mask;
2554
2555	if (all != 0)
2556		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2557	else
2558		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2559}
2560
2561static void
2562clear_llinfo_pqueue(struct llentry *ln)
2563{
2564	struct mbuf *m_hold, *m_hold_next;
2565
2566	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2567		m_hold_next = m_hold->m_nextpkt;
2568		m_freem(m_hold);
2569	}
2570
2571	ln->la_hold = NULL;
2572}
2573
2574static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2575static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2576
2577SYSCTL_DECL(_net_inet6_icmp6);
2578SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2579	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2580	NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter",
2581	"NDP default router list");
2582SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2583	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2584	NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
2585	"NDP prefix list");
2586SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2587	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2588SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2589	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2590
2591static int
2592nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2593{
2594	struct in6_defrouter d;
2595	struct nd_defrouter *dr;
2596	int error;
2597
2598	if (req->newptr != NULL)
2599		return (EPERM);
2600
2601	error = sysctl_wire_old_buffer(req, 0);
2602	if (error != 0)
2603		return (error);
2604
2605	bzero(&d, sizeof(d));
2606	d.rtaddr.sin6_family = AF_INET6;
2607	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2608
2609	ND6_RLOCK();
2610	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2611		d.rtaddr.sin6_addr = dr->rtaddr;
2612		error = sa6_recoverscope(&d.rtaddr);
2613		if (error != 0)
2614			break;
2615		d.flags = dr->raflags;
2616		d.rtlifetime = dr->rtlifetime;
2617		d.expire = dr->expire + (time_second - time_uptime);
2618		d.if_index = dr->ifp->if_index;
2619		error = SYSCTL_OUT(req, &d, sizeof(d));
2620		if (error != 0)
2621			break;
2622	}
2623	ND6_RUNLOCK();
2624	return (error);
2625}
2626
2627static int
2628nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2629{
2630	struct in6_prefix p;
2631	struct sockaddr_in6 s6;
2632	struct nd_prefix *pr;
2633	struct nd_pfxrouter *pfr;
2634	time_t maxexpire;
2635	int error;
2636	char ip6buf[INET6_ADDRSTRLEN];
2637
2638	if (req->newptr)
2639		return (EPERM);
2640
2641	error = sysctl_wire_old_buffer(req, 0);
2642	if (error != 0)
2643		return (error);
2644
2645	bzero(&p, sizeof(p));
2646	p.origin = PR_ORIG_RA;
2647	bzero(&s6, sizeof(s6));
2648	s6.sin6_family = AF_INET6;
2649	s6.sin6_len = sizeof(s6);
2650
2651	ND6_RLOCK();
2652	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2653		p.prefix = pr->ndpr_prefix;
2654		if (sa6_recoverscope(&p.prefix)) {
2655			log(LOG_ERR, "scope error in prefix list (%s)\n",
2656			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2657			/* XXX: press on... */
2658		}
2659		p.raflags = pr->ndpr_raf;
2660		p.prefixlen = pr->ndpr_plen;
2661		p.vltime = pr->ndpr_vltime;
2662		p.pltime = pr->ndpr_pltime;
2663		p.if_index = pr->ndpr_ifp->if_index;
2664		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2665			p.expire = 0;
2666		else {
2667			/* XXX: we assume time_t is signed. */
2668			maxexpire = (-1) &
2669			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2670			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2671				p.expire = pr->ndpr_lastupdate +
2672				    pr->ndpr_vltime +
2673				    (time_second - time_uptime);
2674			else
2675				p.expire = maxexpire;
2676		}
2677		p.refcnt = pr->ndpr_refcnt;
2678		p.flags = pr->ndpr_stateflags;
2679		p.advrtrs = 0;
2680		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2681			p.advrtrs++;
2682		error = SYSCTL_OUT(req, &p, sizeof(p));
2683		if (error != 0)
2684			break;
2685		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2686			s6.sin6_addr = pfr->router->rtaddr;
2687			if (sa6_recoverscope(&s6))
2688				log(LOG_ERR,
2689				    "scope error in prefix list (%s)\n",
2690				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2691			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2692			if (error != 0)
2693				break;
2694		}
2695	}
2696	ND6_RUNLOCK();
2697	return (error);
2698}
2699