mld6.c revision 331722
1/*-
2 * Copyright (c) 2009 Bruce Simpson.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote
13 *    products derived from this software without specific prior written
14 *    permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	$KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $
29 */
30
31/*-
32 * Copyright (c) 1988 Stephen Deering.
33 * Copyright (c) 1992, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * This code is derived from software contributed to Berkeley by
37 * Stephen Deering of Stanford University.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 *    notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in the
46 *    documentation and/or other materials provided with the distribution.
47 * 4. Neither the name of the University nor the names of its contributors
48 *    may be used to endorse or promote products derived from this software
49 *    without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 *	@(#)igmp.c	8.1 (Berkeley) 7/19/93
64 */
65
66#include <sys/cdefs.h>
67__FBSDID("$FreeBSD: stable/11/sys/netinet6/mld6.c 331722 2018-03-29 02:50:57Z eadler $");
68
69#include "opt_inet.h"
70#include "opt_inet6.h"
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/mbuf.h>
75#include <sys/socket.h>
76#include <sys/protosw.h>
77#include <sys/sysctl.h>
78#include <sys/kernel.h>
79#include <sys/callout.h>
80#include <sys/malloc.h>
81#include <sys/module.h>
82#include <sys/ktr.h>
83
84#include <net/if.h>
85#include <net/if_var.h>
86#include <net/route.h>
87#include <net/vnet.h>
88
89#include <netinet/in.h>
90#include <netinet/in_var.h>
91#include <netinet6/in6_var.h>
92#include <netinet/ip6.h>
93#include <netinet6/ip6_var.h>
94#include <netinet6/scope6_var.h>
95#include <netinet/icmp6.h>
96#include <netinet6/mld6.h>
97#include <netinet6/mld6_var.h>
98
99#include <security/mac/mac_framework.h>
100
101#ifndef KTR_MLD
102#define KTR_MLD KTR_INET6
103#endif
104
105static struct mld_ifsoftc *
106		mli_alloc_locked(struct ifnet *);
107static void	mli_delete_locked(const struct ifnet *);
108static void	mld_dispatch_packet(struct mbuf *);
109static void	mld_dispatch_queue(struct mbufq *, int);
110static void	mld_final_leave(struct in6_multi *, struct mld_ifsoftc *);
111static void	mld_fasttimo_vnet(void);
112static int	mld_handle_state_change(struct in6_multi *,
113		    struct mld_ifsoftc *);
114static int	mld_initial_join(struct in6_multi *, struct mld_ifsoftc *,
115		    const int);
116#ifdef KTR
117static char *	mld_rec_type_to_str(const int);
118#endif
119static void	mld_set_version(struct mld_ifsoftc *, const int);
120static void	mld_slowtimo_vnet(void);
121static int	mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
122		    /*const*/ struct mld_hdr *);
123static int	mld_v1_input_report(struct ifnet *, const struct ip6_hdr *,
124		    /*const*/ struct mld_hdr *);
125static void	mld_v1_process_group_timer(struct mld_ifsoftc *,
126		    struct in6_multi *);
127static void	mld_v1_process_querier_timers(struct mld_ifsoftc *);
128static int	mld_v1_transmit_report(struct in6_multi *, const int);
129static void	mld_v1_update_group(struct in6_multi *, const int);
130static void	mld_v2_cancel_link_timers(struct mld_ifsoftc *);
131static void	mld_v2_dispatch_general_query(struct mld_ifsoftc *);
132static struct mbuf *
133		mld_v2_encap_report(struct ifnet *, struct mbuf *);
134static int	mld_v2_enqueue_filter_change(struct mbufq *,
135		    struct in6_multi *);
136static int	mld_v2_enqueue_group_record(struct mbufq *,
137		    struct in6_multi *, const int, const int, const int,
138		    const int);
139static int	mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
140		    struct mbuf *, const int, const int);
141static int	mld_v2_merge_state_changes(struct in6_multi *,
142		    struct mbufq *);
143static void	mld_v2_process_group_timers(struct mld_ifsoftc *,
144		    struct mbufq *, struct mbufq *,
145		    struct in6_multi *, const int);
146static int	mld_v2_process_group_query(struct in6_multi *,
147		    struct mld_ifsoftc *mli, int, struct mbuf *, const int);
148static int	sysctl_mld_gsr(SYSCTL_HANDLER_ARGS);
149static int	sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS);
150
151/*
152 * Normative references: RFC 2710, RFC 3590, RFC 3810.
153 *
154 * Locking:
155 *  * The MLD subsystem lock ends up being system-wide for the moment,
156 *    but could be per-VIMAGE later on.
157 *  * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
158 *    Any may be taken independently; if any are held at the same
159 *    time, the above lock order must be followed.
160 *  * IN6_MULTI_LOCK covers in_multi.
161 *  * MLD_LOCK covers per-link state and any global variables in this file.
162 *  * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of
163 *    per-link state iterators.
164 *
165 *  XXX LOR PREVENTION
166 *  A special case for IPv6 is the in6_setscope() routine. ip6_output()
167 *  will not accept an ifp; it wants an embedded scope ID, unlike
168 *  ip_output(), which happily takes the ifp given to it. The embedded
169 *  scope ID is only used by MLD to select the outgoing interface.
170 *
171 *  During interface attach and detach, MLD will take MLD_LOCK *after*
172 *  the IF_AFDATA_LOCK.
173 *  As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call
174 *  it with MLD_LOCK held without triggering an LOR. A netisr with indirect
175 *  dispatch could work around this, but we'd rather not do that, as it
176 *  can introduce other races.
177 *
178 *  As such, we exploit the fact that the scope ID is just the interface
179 *  index, and embed it in the IPv6 destination address accordingly.
180 *  This is potentially NOT VALID for MLDv1 reports, as they
181 *  are always sent to the multicast group itself; as MLDv2
182 *  reports are always sent to ff02::16, this is not an issue
183 *  when MLDv2 is in use.
184 *
185 *  This does not however eliminate the LOR when ip6_output() itself
186 *  calls in6_setscope() internally whilst MLD_LOCK is held. This will
187 *  trigger a LOR warning in WITNESS when the ifnet is detached.
188 *
189 *  The right answer is probably to make IF_AFDATA_LOCK an rwlock, given
190 *  how it's used across the network stack. Here we're simply exploiting
191 *  the fact that MLD runs at a similar layer in the stack to scope6.c.
192 *
193 * VIMAGE:
194 *  * Each in6_multi corresponds to an ifp, and each ifp corresponds
195 *    to a vnet in ifp->if_vnet.
196 */
197static struct mtx		 mld_mtx;
198static MALLOC_DEFINE(M_MLD, "mld", "mld state");
199
200#define	MLD_EMBEDSCOPE(pin6, zoneid)					\
201	if (IN6_IS_SCOPE_LINKLOCAL(pin6) ||				\
202	    IN6_IS_ADDR_MC_INTFACELOCAL(pin6))				\
203		(pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF)		\
204
205/*
206 * VIMAGE-wide globals.
207 */
208static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0};
209static VNET_DEFINE(LIST_HEAD(, mld_ifsoftc), mli_head);
210static VNET_DEFINE(int, interface_timers_running6);
211static VNET_DEFINE(int, state_change_timers_running6);
212static VNET_DEFINE(int, current_state_timers_running6);
213
214#define	V_mld_gsrdelay			VNET(mld_gsrdelay)
215#define	V_mli_head			VNET(mli_head)
216#define	V_interface_timers_running6	VNET(interface_timers_running6)
217#define	V_state_change_timers_running6	VNET(state_change_timers_running6)
218#define	V_current_state_timers_running6	VNET(current_state_timers_running6)
219
220SYSCTL_DECL(_net_inet6);	/* Note: Not in any common header. */
221
222SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0,
223    "IPv6 Multicast Listener Discovery");
224
225/*
226 * Virtualized sysctls.
227 */
228SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
229    CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
230    &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I",
231    "Rate limit for MLDv2 Group-and-Source queries in seconds");
232
233/*
234 * Non-virtualized sysctls.
235 */
236static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo,
237    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo,
238    "Per-interface MLDv2 state");
239
240static int	mld_v1enable = 1;
241SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN,
242    &mld_v1enable, 0, "Enable fallback to MLDv1");
243
244static int	mld_use_allow = 1;
245SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN,
246    &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
247
248/*
249 * Packed Router Alert option structure declaration.
250 */
251struct mld_raopt {
252	struct ip6_hbh		hbh;
253	struct ip6_opt		pad;
254	struct ip6_opt_router	ra;
255} __packed;
256
257/*
258 * Router Alert hop-by-hop option header.
259 */
260static struct mld_raopt mld_ra = {
261	.hbh = { 0, 0 },
262	.pad = { .ip6o_type = IP6OPT_PADN, 0 },
263	.ra = {
264	    .ip6or_type = IP6OPT_ROUTER_ALERT,
265	    .ip6or_len = IP6OPT_RTALERT_LEN - 2,
266	    .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
267	    .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF)
268	}
269};
270static struct ip6_pktopts mld_po;
271
272static __inline void
273mld_save_context(struct mbuf *m, struct ifnet *ifp)
274{
275
276#ifdef VIMAGE
277	m->m_pkthdr.PH_loc.ptr = ifp->if_vnet;
278#endif /* VIMAGE */
279	m->m_pkthdr.flowid = ifp->if_index;
280}
281
282static __inline void
283mld_scrub_context(struct mbuf *m)
284{
285
286	m->m_pkthdr.PH_loc.ptr = NULL;
287	m->m_pkthdr.flowid = 0;
288}
289
290/*
291 * Restore context from a queued output chain.
292 * Return saved ifindex.
293 *
294 * VIMAGE: The assertion is there to make sure that we
295 * actually called CURVNET_SET() with what's in the mbuf chain.
296 */
297static __inline uint32_t
298mld_restore_context(struct mbuf *m)
299{
300
301#if defined(VIMAGE) && defined(INVARIANTS)
302	KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr,
303	    ("%s: called when curvnet was not restored: cuvnet %p m ptr %p",
304	    __func__, curvnet, m->m_pkthdr.PH_loc.ptr));
305#endif
306	return (m->m_pkthdr.flowid);
307}
308
309/*
310 * Retrieve or set threshold between group-source queries in seconds.
311 *
312 * VIMAGE: Assume curvnet set by caller.
313 * SMPng: NOTE: Serialized by MLD lock.
314 */
315static int
316sysctl_mld_gsr(SYSCTL_HANDLER_ARGS)
317{
318	int error;
319	int i;
320
321	error = sysctl_wire_old_buffer(req, sizeof(int));
322	if (error)
323		return (error);
324
325	MLD_LOCK();
326
327	i = V_mld_gsrdelay.tv_sec;
328
329	error = sysctl_handle_int(oidp, &i, 0, req);
330	if (error || !req->newptr)
331		goto out_locked;
332
333	if (i < -1 || i >= 60) {
334		error = EINVAL;
335		goto out_locked;
336	}
337
338	CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d",
339	     V_mld_gsrdelay.tv_sec, i);
340	V_mld_gsrdelay.tv_sec = i;
341
342out_locked:
343	MLD_UNLOCK();
344	return (error);
345}
346
347/*
348 * Expose struct mld_ifsoftc to userland, keyed by ifindex.
349 * For use by ifmcstat(8).
350 *
351 * SMPng: NOTE: Does an unlocked ifindex space read.
352 * VIMAGE: Assume curvnet set by caller. The node handler itself
353 * is not directly virtualized.
354 */
355static int
356sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS)
357{
358	int			*name;
359	int			 error;
360	u_int			 namelen;
361	struct ifnet		*ifp;
362	struct mld_ifsoftc	*mli;
363
364	name = (int *)arg1;
365	namelen = arg2;
366
367	if (req->newptr != NULL)
368		return (EPERM);
369
370	if (namelen != 1)
371		return (EINVAL);
372
373	error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo));
374	if (error)
375		return (error);
376
377	IN6_MULTI_LOCK();
378	MLD_LOCK();
379
380	if (name[0] <= 0 || name[0] > V_if_index) {
381		error = ENOENT;
382		goto out_locked;
383	}
384
385	error = ENOENT;
386
387	ifp = ifnet_byindex(name[0]);
388	if (ifp == NULL)
389		goto out_locked;
390
391	LIST_FOREACH(mli, &V_mli_head, mli_link) {
392		if (ifp == mli->mli_ifp) {
393			struct mld_ifinfo info;
394
395			info.mli_version = mli->mli_version;
396			info.mli_v1_timer = mli->mli_v1_timer;
397			info.mli_v2_timer = mli->mli_v2_timer;
398			info.mli_flags = mli->mli_flags;
399			info.mli_rv = mli->mli_rv;
400			info.mli_qi = mli->mli_qi;
401			info.mli_qri = mli->mli_qri;
402			info.mli_uri = mli->mli_uri;
403			error = SYSCTL_OUT(req, &info, sizeof(info));
404			break;
405		}
406	}
407
408out_locked:
409	MLD_UNLOCK();
410	IN6_MULTI_UNLOCK();
411	return (error);
412}
413
414/*
415 * Dispatch an entire queue of pending packet chains.
416 * VIMAGE: Assumes the vnet pointer has been set.
417 */
418static void
419mld_dispatch_queue(struct mbufq *mq, int limit)
420{
421	struct mbuf *m;
422
423	while ((m = mbufq_dequeue(mq)) != NULL) {
424		CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m);
425		mld_dispatch_packet(m);
426		if (--limit == 0)
427			break;
428	}
429}
430
431/*
432 * Filter outgoing MLD report state by group.
433 *
434 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
435 * and node-local addresses. However, kernel and socket consumers
436 * always embed the KAME scope ID in the address provided, so strip it
437 * when performing comparison.
438 * Note: This is not the same as the *multicast* scope.
439 *
440 * Return zero if the given group is one for which MLD reports
441 * should be suppressed, or non-zero if reports should be issued.
442 */
443static __inline int
444mld_is_addr_reported(const struct in6_addr *addr)
445{
446
447	KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__));
448
449	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
450		return (0);
451
452	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
453		struct in6_addr tmp = *addr;
454		in6_clearscope(&tmp);
455		if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
456			return (0);
457	}
458
459	return (1);
460}
461
462/*
463 * Attach MLD when PF_INET6 is attached to an interface.
464 *
465 * SMPng: Normally called with IF_AFDATA_LOCK held.
466 */
467struct mld_ifsoftc *
468mld_domifattach(struct ifnet *ifp)
469{
470	struct mld_ifsoftc *mli;
471
472	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
473	    __func__, ifp, if_name(ifp));
474
475	MLD_LOCK();
476
477	mli = mli_alloc_locked(ifp);
478	if (!(ifp->if_flags & IFF_MULTICAST))
479		mli->mli_flags |= MLIF_SILENT;
480	if (mld_use_allow)
481		mli->mli_flags |= MLIF_USEALLOW;
482
483	MLD_UNLOCK();
484
485	return (mli);
486}
487
488/*
489 * VIMAGE: assume curvnet set by caller.
490 */
491static struct mld_ifsoftc *
492mli_alloc_locked(/*const*/ struct ifnet *ifp)
493{
494	struct mld_ifsoftc *mli;
495
496	MLD_LOCK_ASSERT();
497
498	mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_NOWAIT|M_ZERO);
499	if (mli == NULL)
500		goto out;
501
502	mli->mli_ifp = ifp;
503	mli->mli_version = MLD_VERSION_2;
504	mli->mli_flags = 0;
505	mli->mli_rv = MLD_RV_INIT;
506	mli->mli_qi = MLD_QI_INIT;
507	mli->mli_qri = MLD_QRI_INIT;
508	mli->mli_uri = MLD_URI_INIT;
509	SLIST_INIT(&mli->mli_relinmhead);
510	mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS);
511
512	LIST_INSERT_HEAD(&V_mli_head, mli, mli_link);
513
514	CTR2(KTR_MLD, "allocate mld_ifsoftc for ifp %p(%s)",
515	     ifp, if_name(ifp));
516
517out:
518	return (mli);
519}
520
521/*
522 * Hook for ifdetach.
523 *
524 * NOTE: Some finalization tasks need to run before the protocol domain
525 * is detached, but also before the link layer does its cleanup.
526 * Run before link-layer cleanup; cleanup groups, but do not free MLD state.
527 *
528 * SMPng: Caller must hold IN6_MULTI_LOCK().
529 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator.
530 * XXX This routine is also bitten by unlocked ifma_protospec access.
531 */
532void
533mld_ifdetach(struct ifnet *ifp)
534{
535	struct mld_ifsoftc	*mli;
536	struct ifmultiaddr	*ifma;
537	struct in6_multi	*inm, *tinm;
538
539	CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp,
540	    if_name(ifp));
541
542	IN6_MULTI_LOCK_ASSERT();
543	MLD_LOCK();
544
545	mli = MLD_IFINFO(ifp);
546	if (mli->mli_version == MLD_VERSION_2) {
547		IF_ADDR_RLOCK(ifp);
548		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
549			if (ifma->ifma_addr->sa_family != AF_INET6 ||
550			    ifma->ifma_protospec == NULL)
551				continue;
552			inm = (struct in6_multi *)ifma->ifma_protospec;
553			if (inm->in6m_state == MLD_LEAVING_MEMBER) {
554				SLIST_INSERT_HEAD(&mli->mli_relinmhead,
555				    inm, in6m_nrele);
556			}
557			in6m_clear_recorded(inm);
558		}
559		IF_ADDR_RUNLOCK(ifp);
560		SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele,
561		    tinm) {
562			SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
563			in6m_release_locked(inm);
564		}
565	}
566
567	MLD_UNLOCK();
568}
569
570/*
571 * Hook for domifdetach.
572 * Runs after link-layer cleanup; free MLD state.
573 *
574 * SMPng: Normally called with IF_AFDATA_LOCK held.
575 */
576void
577mld_domifdetach(struct ifnet *ifp)
578{
579
580	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
581	    __func__, ifp, if_name(ifp));
582
583	MLD_LOCK();
584	mli_delete_locked(ifp);
585	MLD_UNLOCK();
586}
587
588static void
589mli_delete_locked(const struct ifnet *ifp)
590{
591	struct mld_ifsoftc *mli, *tmli;
592
593	CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)",
594	    __func__, ifp, if_name(ifp));
595
596	MLD_LOCK_ASSERT();
597
598	LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) {
599		if (mli->mli_ifp == ifp) {
600			/*
601			 * Free deferred General Query responses.
602			 */
603			mbufq_drain(&mli->mli_gq);
604
605			LIST_REMOVE(mli, mli_link);
606
607			KASSERT(SLIST_EMPTY(&mli->mli_relinmhead),
608			    ("%s: there are dangling in_multi references",
609			    __func__));
610
611			free(mli, M_MLD);
612			return;
613		}
614	}
615}
616
617/*
618 * Process a received MLDv1 general or address-specific query.
619 * Assumes that the query header has been pulled up to sizeof(mld_hdr).
620 *
621 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
622 * mld_addr. This is OK as we own the mbuf chain.
623 */
624static int
625mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
626    /*const*/ struct mld_hdr *mld)
627{
628	struct ifmultiaddr	*ifma;
629	struct mld_ifsoftc	*mli;
630	struct in6_multi	*inm;
631	int			 is_general_query;
632	uint16_t		 timer;
633#ifdef KTR
634	char			 ip6tbuf[INET6_ADDRSTRLEN];
635#endif
636
637	is_general_query = 0;
638
639	if (!mld_v1enable) {
640		CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)",
641		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
642		    ifp, if_name(ifp));
643		return (0);
644	}
645
646	/*
647	 * RFC3810 Section 6.2: MLD queries must originate from
648	 * a router's link-local address.
649	 */
650	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
651		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
652		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
653		    ifp, if_name(ifp));
654		return (0);
655	}
656
657	/*
658	 * Do address field validation upfront before we accept
659	 * the query.
660	 */
661	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
662		/*
663		 * MLDv1 General Query.
664		 * If this was not sent to the all-nodes group, ignore it.
665		 */
666		struct in6_addr		 dst;
667
668		dst = ip6->ip6_dst;
669		in6_clearscope(&dst);
670		if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes))
671			return (EINVAL);
672		is_general_query = 1;
673	} else {
674		/*
675		 * Embed scope ID of receiving interface in MLD query for
676		 * lookup whilst we don't hold other locks.
677		 */
678		in6_setscope(&mld->mld_addr, ifp, NULL);
679	}
680
681	IN6_MULTI_LOCK();
682	MLD_LOCK();
683
684	/*
685	 * Switch to MLDv1 host compatibility mode.
686	 */
687	mli = MLD_IFINFO(ifp);
688	KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp));
689	mld_set_version(mli, MLD_VERSION_1);
690
691	timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE;
692	if (timer == 0)
693		timer = 1;
694
695	IF_ADDR_RLOCK(ifp);
696	if (is_general_query) {
697		/*
698		 * For each reporting group joined on this
699		 * interface, kick the report timer.
700		 */
701		CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)",
702		    ifp, if_name(ifp));
703		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
704			if (ifma->ifma_addr->sa_family != AF_INET6 ||
705			    ifma->ifma_protospec == NULL)
706				continue;
707			inm = (struct in6_multi *)ifma->ifma_protospec;
708			mld_v1_update_group(inm, timer);
709		}
710	} else {
711		/*
712		 * MLDv1 Group-Specific Query.
713		 * If this is a group-specific MLDv1 query, we need only
714		 * look up the single group to process it.
715		 */
716		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
717		if (inm != NULL) {
718			CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)",
719			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
720			    ifp, if_name(ifp));
721			mld_v1_update_group(inm, timer);
722		}
723		/* XXX Clear embedded scope ID as userland won't expect it. */
724		in6_clearscope(&mld->mld_addr);
725	}
726
727	IF_ADDR_RUNLOCK(ifp);
728	MLD_UNLOCK();
729	IN6_MULTI_UNLOCK();
730
731	return (0);
732}
733
734/*
735 * Update the report timer on a group in response to an MLDv1 query.
736 *
737 * If we are becoming the reporting member for this group, start the timer.
738 * If we already are the reporting member for this group, and timer is
739 * below the threshold, reset it.
740 *
741 * We may be updating the group for the first time since we switched
742 * to MLDv2. If we are, then we must clear any recorded source lists,
743 * and transition to REPORTING state; the group timer is overloaded
744 * for group and group-source query responses.
745 *
746 * Unlike MLDv2, the delay per group should be jittered
747 * to avoid bursts of MLDv1 reports.
748 */
749static void
750mld_v1_update_group(struct in6_multi *inm, const int timer)
751{
752#ifdef KTR
753	char			 ip6tbuf[INET6_ADDRSTRLEN];
754#endif
755
756	CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__,
757	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
758	    if_name(inm->in6m_ifp), timer);
759
760	IN6_MULTI_LOCK_ASSERT();
761
762	switch (inm->in6m_state) {
763	case MLD_NOT_MEMBER:
764	case MLD_SILENT_MEMBER:
765		break;
766	case MLD_REPORTING_MEMBER:
767		if (inm->in6m_timer != 0 &&
768		    inm->in6m_timer <= timer) {
769			CTR1(KTR_MLD, "%s: REPORTING and timer running, "
770			    "skipping.", __func__);
771			break;
772		}
773		/* FALLTHROUGH */
774	case MLD_SG_QUERY_PENDING_MEMBER:
775	case MLD_G_QUERY_PENDING_MEMBER:
776	case MLD_IDLE_MEMBER:
777	case MLD_LAZY_MEMBER:
778	case MLD_AWAKENING_MEMBER:
779		CTR1(KTR_MLD, "%s: ->REPORTING", __func__);
780		inm->in6m_state = MLD_REPORTING_MEMBER;
781		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
782		V_current_state_timers_running6 = 1;
783		break;
784	case MLD_SLEEPING_MEMBER:
785		CTR1(KTR_MLD, "%s: ->AWAKENING", __func__);
786		inm->in6m_state = MLD_AWAKENING_MEMBER;
787		break;
788	case MLD_LEAVING_MEMBER:
789		break;
790	}
791}
792
793/*
794 * Process a received MLDv2 general, group-specific or
795 * group-and-source-specific query.
796 *
797 * Assumes that the query header has been pulled up to sizeof(mldv2_query).
798 *
799 * Return 0 if successful, otherwise an appropriate error code is returned.
800 */
801static int
802mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
803    struct mbuf *m, const int off, const int icmp6len)
804{
805	struct mld_ifsoftc	*mli;
806	struct mldv2_query	*mld;
807	struct in6_multi	*inm;
808	uint32_t		 maxdelay, nsrc, qqi;
809	int			 is_general_query;
810	uint16_t		 timer;
811	uint8_t			 qrv;
812#ifdef KTR
813	char			 ip6tbuf[INET6_ADDRSTRLEN];
814#endif
815
816	is_general_query = 0;
817
818	/*
819	 * RFC3810 Section 6.2: MLD queries must originate from
820	 * a router's link-local address.
821	 */
822	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
823		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
824		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
825		    ifp, if_name(ifp));
826		return (0);
827	}
828
829	CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp));
830
831	mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off);
832
833	maxdelay = ntohs(mld->mld_maxdelay);	/* in 1/10ths of a second */
834	if (maxdelay >= 32768) {
835		maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
836			   (MLD_MRC_EXP(maxdelay) + 3);
837	}
838	timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE;
839	if (timer == 0)
840		timer = 1;
841
842	qrv = MLD_QRV(mld->mld_misc);
843	if (qrv < 2) {
844		CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__,
845		    qrv, MLD_RV_INIT);
846		qrv = MLD_RV_INIT;
847	}
848
849	qqi = mld->mld_qqi;
850	if (qqi >= 128) {
851		qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
852		     (MLD_QQIC_EXP(mld->mld_qqi) + 3);
853	}
854
855	nsrc = ntohs(mld->mld_numsrc);
856	if (nsrc > MLD_MAX_GS_SOURCES)
857		return (EMSGSIZE);
858	if (icmp6len < sizeof(struct mldv2_query) +
859	    (nsrc * sizeof(struct in6_addr)))
860		return (EMSGSIZE);
861
862	/*
863	 * Do further input validation upfront to avoid resetting timers
864	 * should we need to discard this query.
865	 */
866	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
867		/*
868		 * A general query with a source list has undefined
869		 * behaviour; discard it.
870		 */
871		if (nsrc > 0)
872			return (EINVAL);
873		is_general_query = 1;
874	} else {
875		/*
876		 * Embed scope ID of receiving interface in MLD query for
877		 * lookup whilst we don't hold other locks (due to KAME
878		 * locking lameness). We own this mbuf chain just now.
879		 */
880		in6_setscope(&mld->mld_addr, ifp, NULL);
881	}
882
883	IN6_MULTI_LOCK();
884	MLD_LOCK();
885
886	mli = MLD_IFINFO(ifp);
887	KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp));
888
889	/*
890	 * Discard the v2 query if we're in Compatibility Mode.
891	 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
892	 * until the Old Version Querier Present timer expires.
893	 */
894	if (mli->mli_version != MLD_VERSION_2)
895		goto out_locked;
896
897	mld_set_version(mli, MLD_VERSION_2);
898	mli->mli_rv = qrv;
899	mli->mli_qi = qqi;
900	mli->mli_qri = maxdelay;
901
902	CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi,
903	    maxdelay);
904
905	if (is_general_query) {
906		/*
907		 * MLDv2 General Query.
908		 *
909		 * Schedule a current-state report on this ifp for
910		 * all groups, possibly containing source lists.
911		 *
912		 * If there is a pending General Query response
913		 * scheduled earlier than the selected delay, do
914		 * not schedule any other reports.
915		 * Otherwise, reset the interface timer.
916		 */
917		CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)",
918		    ifp, if_name(ifp));
919		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
920			mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
921			V_interface_timers_running6 = 1;
922		}
923	} else {
924		/*
925		 * MLDv2 Group-specific or Group-and-source-specific Query.
926		 *
927		 * Group-source-specific queries are throttled on
928		 * a per-group basis to defeat denial-of-service attempts.
929		 * Queries for groups we are not a member of on this
930		 * link are simply ignored.
931		 */
932		IF_ADDR_RLOCK(ifp);
933		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
934		if (inm == NULL) {
935			IF_ADDR_RUNLOCK(ifp);
936			goto out_locked;
937		}
938		if (nsrc > 0) {
939			if (!ratecheck(&inm->in6m_lastgsrtv,
940			    &V_mld_gsrdelay)) {
941				CTR1(KTR_MLD, "%s: GS query throttled.",
942				    __func__);
943				IF_ADDR_RUNLOCK(ifp);
944				goto out_locked;
945			}
946		}
947		CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)",
948		     ifp, if_name(ifp));
949		/*
950		 * If there is a pending General Query response
951		 * scheduled sooner than the selected delay, no
952		 * further report need be scheduled.
953		 * Otherwise, prepare to respond to the
954		 * group-specific or group-and-source query.
955		 */
956		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer)
957			mld_v2_process_group_query(inm, mli, timer, m, off);
958
959		/* XXX Clear embedded scope ID as userland won't expect it. */
960		in6_clearscope(&mld->mld_addr);
961		IF_ADDR_RUNLOCK(ifp);
962	}
963
964out_locked:
965	MLD_UNLOCK();
966	IN6_MULTI_UNLOCK();
967
968	return (0);
969}
970
971/*
972 * Process a received MLDv2 group-specific or group-and-source-specific
973 * query.
974 * Return <0 if any error occurred. Currently this is ignored.
975 */
976static int
977mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli,
978    int timer, struct mbuf *m0, const int off)
979{
980	struct mldv2_query	*mld;
981	int			 retval;
982	uint16_t		 nsrc;
983
984	IN6_MULTI_LOCK_ASSERT();
985	MLD_LOCK_ASSERT();
986
987	retval = 0;
988	mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off);
989
990	switch (inm->in6m_state) {
991	case MLD_NOT_MEMBER:
992	case MLD_SILENT_MEMBER:
993	case MLD_SLEEPING_MEMBER:
994	case MLD_LAZY_MEMBER:
995	case MLD_AWAKENING_MEMBER:
996	case MLD_IDLE_MEMBER:
997	case MLD_LEAVING_MEMBER:
998		return (retval);
999		break;
1000	case MLD_REPORTING_MEMBER:
1001	case MLD_G_QUERY_PENDING_MEMBER:
1002	case MLD_SG_QUERY_PENDING_MEMBER:
1003		break;
1004	}
1005
1006	nsrc = ntohs(mld->mld_numsrc);
1007
1008	/*
1009	 * Deal with group-specific queries upfront.
1010	 * If any group query is already pending, purge any recorded
1011	 * source-list state if it exists, and schedule a query response
1012	 * for this group-specific query.
1013	 */
1014	if (nsrc == 0) {
1015		if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
1016		    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
1017			in6m_clear_recorded(inm);
1018			timer = min(inm->in6m_timer, timer);
1019		}
1020		inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
1021		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1022		V_current_state_timers_running6 = 1;
1023		return (retval);
1024	}
1025
1026	/*
1027	 * Deal with the case where a group-and-source-specific query has
1028	 * been received but a group-specific query is already pending.
1029	 */
1030	if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
1031		timer = min(inm->in6m_timer, timer);
1032		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1033		V_current_state_timers_running6 = 1;
1034		return (retval);
1035	}
1036
1037	/*
1038	 * Finally, deal with the case where a group-and-source-specific
1039	 * query has been received, where a response to a previous g-s-r
1040	 * query exists, or none exists.
1041	 * In this case, we need to parse the source-list which the Querier
1042	 * has provided us with and check if we have any source list filter
1043	 * entries at T1 for these sources. If we do not, there is no need
1044	 * schedule a report and the query may be dropped.
1045	 * If we do, we must record them and schedule a current-state
1046	 * report for those sources.
1047	 */
1048	if (inm->in6m_nsrc > 0) {
1049		struct mbuf		*m;
1050		uint8_t			*sp;
1051		int			 i, nrecorded;
1052		int			 soff;
1053
1054		m = m0;
1055		soff = off + sizeof(struct mldv2_query);
1056		nrecorded = 0;
1057		for (i = 0; i < nsrc; i++) {
1058			sp = mtod(m, uint8_t *) + soff;
1059			retval = in6m_record_source(inm,
1060			    (const struct in6_addr *)sp);
1061			if (retval < 0)
1062				break;
1063			nrecorded += retval;
1064			soff += sizeof(struct in6_addr);
1065			if (soff >= m->m_len) {
1066				soff = soff - m->m_len;
1067				m = m->m_next;
1068				if (m == NULL)
1069					break;
1070			}
1071		}
1072		if (nrecorded > 0) {
1073			CTR1(KTR_MLD,
1074			    "%s: schedule response to SG query", __func__);
1075			inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
1076			inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1077			V_current_state_timers_running6 = 1;
1078		}
1079	}
1080
1081	return (retval);
1082}
1083
1084/*
1085 * Process a received MLDv1 host membership report.
1086 * Assumes mld points to mld_hdr in pulled up mbuf chain.
1087 *
1088 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1089 * mld_addr. This is OK as we own the mbuf chain.
1090 */
1091static int
1092mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6,
1093    /*const*/ struct mld_hdr *mld)
1094{
1095	struct in6_addr		 src, dst;
1096	struct in6_ifaddr	*ia;
1097	struct in6_multi	*inm;
1098#ifdef KTR
1099	char			 ip6tbuf[INET6_ADDRSTRLEN];
1100#endif
1101
1102	if (!mld_v1enable) {
1103		CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)",
1104		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1105		    ifp, if_name(ifp));
1106		return (0);
1107	}
1108
1109	if (ifp->if_flags & IFF_LOOPBACK)
1110		return (0);
1111
1112	/*
1113	 * MLDv1 reports must originate from a host's link-local address,
1114	 * or the unspecified address (when booting).
1115	 */
1116	src = ip6->ip6_src;
1117	in6_clearscope(&src);
1118	if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
1119		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
1120		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
1121		    ifp, if_name(ifp));
1122		return (EINVAL);
1123	}
1124
1125	/*
1126	 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1127	 * group, and must be directed to the group itself.
1128	 */
1129	dst = ip6->ip6_dst;
1130	in6_clearscope(&dst);
1131	if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
1132	    !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
1133		CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)",
1134		    ip6_sprintf(ip6tbuf, &ip6->ip6_dst),
1135		    ifp, if_name(ifp));
1136		return (EINVAL);
1137	}
1138
1139	/*
1140	 * Make sure we don't hear our own membership report, as fast
1141	 * leave requires knowing that we are the only member of a
1142	 * group. Assume we used the link-local address if available,
1143	 * otherwise look for ::.
1144	 *
1145	 * XXX Note that scope ID comparison is needed for the address
1146	 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1147	 * performed for the on-wire address.
1148	 */
1149	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1150	if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) ||
1151	    (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) {
1152		if (ia != NULL)
1153			ifa_free(&ia->ia_ifa);
1154		return (0);
1155	}
1156	if (ia != NULL)
1157		ifa_free(&ia->ia_ifa);
1158
1159	CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)",
1160	    ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp));
1161
1162	/*
1163	 * Embed scope ID of receiving interface in MLD query for lookup
1164	 * whilst we don't hold other locks (due to KAME locking lameness).
1165	 */
1166	if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
1167		in6_setscope(&mld->mld_addr, ifp, NULL);
1168
1169	IN6_MULTI_LOCK();
1170	MLD_LOCK();
1171	IF_ADDR_RLOCK(ifp);
1172
1173	/*
1174	 * MLDv1 report suppression.
1175	 * If we are a member of this group, and our membership should be
1176	 * reported, and our group timer is pending or about to be reset,
1177	 * stop our group timer by transitioning to the 'lazy' state.
1178	 */
1179	inm = in6m_lookup_locked(ifp, &mld->mld_addr);
1180	if (inm != NULL) {
1181		struct mld_ifsoftc *mli;
1182
1183		mli = inm->in6m_mli;
1184		KASSERT(mli != NULL,
1185		    ("%s: no mli for ifp %p", __func__, ifp));
1186
1187		/*
1188		 * If we are in MLDv2 host mode, do not allow the
1189		 * other host's MLDv1 report to suppress our reports.
1190		 */
1191		if (mli->mli_version == MLD_VERSION_2)
1192			goto out_locked;
1193
1194		inm->in6m_timer = 0;
1195
1196		switch (inm->in6m_state) {
1197		case MLD_NOT_MEMBER:
1198		case MLD_SILENT_MEMBER:
1199		case MLD_SLEEPING_MEMBER:
1200			break;
1201		case MLD_REPORTING_MEMBER:
1202		case MLD_IDLE_MEMBER:
1203		case MLD_AWAKENING_MEMBER:
1204			CTR3(KTR_MLD,
1205			    "report suppressed for %s on ifp %p(%s)",
1206			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1207			    ifp, if_name(ifp));
1208		case MLD_LAZY_MEMBER:
1209			inm->in6m_state = MLD_LAZY_MEMBER;
1210			break;
1211		case MLD_G_QUERY_PENDING_MEMBER:
1212		case MLD_SG_QUERY_PENDING_MEMBER:
1213		case MLD_LEAVING_MEMBER:
1214			break;
1215		}
1216	}
1217
1218out_locked:
1219	IF_ADDR_RUNLOCK(ifp);
1220	MLD_UNLOCK();
1221	IN6_MULTI_UNLOCK();
1222
1223	/* XXX Clear embedded scope ID as userland won't expect it. */
1224	in6_clearscope(&mld->mld_addr);
1225
1226	return (0);
1227}
1228
1229/*
1230 * MLD input path.
1231 *
1232 * Assume query messages which fit in a single ICMPv6 message header
1233 * have been pulled up.
1234 * Assume that userland will want to see the message, even if it
1235 * otherwise fails kernel input validation; do not free it.
1236 * Pullup may however free the mbuf chain m if it fails.
1237 *
1238 * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1239 */
1240int
1241mld_input(struct mbuf *m, int off, int icmp6len)
1242{
1243	struct ifnet	*ifp;
1244	struct ip6_hdr	*ip6;
1245	struct mld_hdr	*mld;
1246	int		 mldlen;
1247
1248	CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off);
1249
1250	ifp = m->m_pkthdr.rcvif;
1251
1252	ip6 = mtod(m, struct ip6_hdr *);
1253
1254	/* Pullup to appropriate size. */
1255	mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1256	if (mld->mld_type == MLD_LISTENER_QUERY &&
1257	    icmp6len >= sizeof(struct mldv2_query)) {
1258		mldlen = sizeof(struct mldv2_query);
1259	} else {
1260		mldlen = sizeof(struct mld_hdr);
1261	}
1262	IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen);
1263	if (mld == NULL) {
1264		ICMP6STAT_INC(icp6s_badlen);
1265		return (IPPROTO_DONE);
1266	}
1267
1268	/*
1269	 * Userland needs to see all of this traffic for implementing
1270	 * the endpoint discovery portion of multicast routing.
1271	 */
1272	switch (mld->mld_type) {
1273	case MLD_LISTENER_QUERY:
1274		icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
1275		if (icmp6len == sizeof(struct mld_hdr)) {
1276			if (mld_v1_input_query(ifp, ip6, mld) != 0)
1277				return (0);
1278		} else if (icmp6len >= sizeof(struct mldv2_query)) {
1279			if (mld_v2_input_query(ifp, ip6, m, off,
1280			    icmp6len) != 0)
1281				return (0);
1282		}
1283		break;
1284	case MLD_LISTENER_REPORT:
1285		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1286		if (mld_v1_input_report(ifp, ip6, mld) != 0)
1287			return (0);
1288		break;
1289	case MLDV2_LISTENER_REPORT:
1290		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1291		break;
1292	case MLD_LISTENER_DONE:
1293		icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
1294		break;
1295	default:
1296		break;
1297	}
1298
1299	return (0);
1300}
1301
1302/*
1303 * Fast timeout handler (global).
1304 * VIMAGE: Timeout handlers are expected to service all vimages.
1305 */
1306void
1307mld_fasttimo(void)
1308{
1309	VNET_ITERATOR_DECL(vnet_iter);
1310
1311	VNET_LIST_RLOCK_NOSLEEP();
1312	VNET_FOREACH(vnet_iter) {
1313		CURVNET_SET(vnet_iter);
1314		mld_fasttimo_vnet();
1315		CURVNET_RESTORE();
1316	}
1317	VNET_LIST_RUNLOCK_NOSLEEP();
1318}
1319
1320/*
1321 * Fast timeout handler (per-vnet).
1322 *
1323 * VIMAGE: Assume caller has set up our curvnet.
1324 */
1325static void
1326mld_fasttimo_vnet(void)
1327{
1328	struct mbufq		 scq;	/* State-change packets */
1329	struct mbufq		 qrq;	/* Query response packets */
1330	struct ifnet		*ifp;
1331	struct mld_ifsoftc	*mli;
1332	struct ifmultiaddr	*ifma;
1333	struct in6_multi	*inm, *tinm;
1334	int			 uri_fasthz;
1335
1336	uri_fasthz = 0;
1337
1338	/*
1339	 * Quick check to see if any work needs to be done, in order to
1340	 * minimize the overhead of fasttimo processing.
1341	 * SMPng: XXX Unlocked reads.
1342	 */
1343	if (!V_current_state_timers_running6 &&
1344	    !V_interface_timers_running6 &&
1345	    !V_state_change_timers_running6)
1346		return;
1347
1348	IN6_MULTI_LOCK();
1349	MLD_LOCK();
1350
1351	/*
1352	 * MLDv2 General Query response timer processing.
1353	 */
1354	if (V_interface_timers_running6) {
1355		CTR1(KTR_MLD, "%s: interface timers running", __func__);
1356
1357		V_interface_timers_running6 = 0;
1358		LIST_FOREACH(mli, &V_mli_head, mli_link) {
1359			if (mli->mli_v2_timer == 0) {
1360				/* Do nothing. */
1361			} else if (--mli->mli_v2_timer == 0) {
1362				mld_v2_dispatch_general_query(mli);
1363			} else {
1364				V_interface_timers_running6 = 1;
1365			}
1366		}
1367	}
1368
1369	if (!V_current_state_timers_running6 &&
1370	    !V_state_change_timers_running6)
1371		goto out_locked;
1372
1373	V_current_state_timers_running6 = 0;
1374	V_state_change_timers_running6 = 0;
1375
1376	CTR1(KTR_MLD, "%s: state change timers running", __func__);
1377
1378	/*
1379	 * MLD host report and state-change timer processing.
1380	 * Note: Processing a v2 group timer may remove a node.
1381	 */
1382	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1383		ifp = mli->mli_ifp;
1384
1385		if (mli->mli_version == MLD_VERSION_2) {
1386			uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri *
1387			    PR_FASTHZ);
1388			mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS);
1389			mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS);
1390		}
1391
1392		IF_ADDR_RLOCK(ifp);
1393		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1394			if (ifma->ifma_addr->sa_family != AF_INET6 ||
1395			    ifma->ifma_protospec == NULL)
1396				continue;
1397			inm = (struct in6_multi *)ifma->ifma_protospec;
1398			switch (mli->mli_version) {
1399			case MLD_VERSION_1:
1400				mld_v1_process_group_timer(mli, inm);
1401				break;
1402			case MLD_VERSION_2:
1403				mld_v2_process_group_timers(mli, &qrq,
1404				    &scq, inm, uri_fasthz);
1405				break;
1406			}
1407		}
1408		IF_ADDR_RUNLOCK(ifp);
1409
1410		switch (mli->mli_version) {
1411		case MLD_VERSION_1:
1412			/*
1413			 * Transmit reports for this lifecycle.  This
1414			 * is done while not holding IF_ADDR_LOCK
1415			 * since this can call
1416			 * in6ifa_ifpforlinklocal() which locks
1417			 * IF_ADDR_LOCK internally as well as
1418			 * ip6_output() to transmit a packet.
1419			 */
1420			SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead,
1421			    in6m_nrele, tinm) {
1422				SLIST_REMOVE_HEAD(&mli->mli_relinmhead,
1423				    in6m_nrele);
1424				(void)mld_v1_transmit_report(inm,
1425				    MLD_LISTENER_REPORT);
1426			}
1427			break;
1428		case MLD_VERSION_2:
1429			mld_dispatch_queue(&qrq, 0);
1430			mld_dispatch_queue(&scq, 0);
1431
1432			/*
1433			 * Free the in_multi reference(s) for
1434			 * this lifecycle.
1435			 */
1436			SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead,
1437			    in6m_nrele, tinm) {
1438				SLIST_REMOVE_HEAD(&mli->mli_relinmhead,
1439				    in6m_nrele);
1440				in6m_release_locked(inm);
1441			}
1442			break;
1443		}
1444	}
1445
1446out_locked:
1447	MLD_UNLOCK();
1448	IN6_MULTI_UNLOCK();
1449}
1450
1451/*
1452 * Update host report group timer.
1453 * Will update the global pending timer flags.
1454 */
1455static void
1456mld_v1_process_group_timer(struct mld_ifsoftc *mli, struct in6_multi *inm)
1457{
1458	int report_timer_expired;
1459
1460	IN6_MULTI_LOCK_ASSERT();
1461	MLD_LOCK_ASSERT();
1462
1463	if (inm->in6m_timer == 0) {
1464		report_timer_expired = 0;
1465	} else if (--inm->in6m_timer == 0) {
1466		report_timer_expired = 1;
1467	} else {
1468		V_current_state_timers_running6 = 1;
1469		return;
1470	}
1471
1472	switch (inm->in6m_state) {
1473	case MLD_NOT_MEMBER:
1474	case MLD_SILENT_MEMBER:
1475	case MLD_IDLE_MEMBER:
1476	case MLD_LAZY_MEMBER:
1477	case MLD_SLEEPING_MEMBER:
1478	case MLD_AWAKENING_MEMBER:
1479		break;
1480	case MLD_REPORTING_MEMBER:
1481		if (report_timer_expired) {
1482			inm->in6m_state = MLD_IDLE_MEMBER;
1483			SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
1484			    in6m_nrele);
1485		}
1486		break;
1487	case MLD_G_QUERY_PENDING_MEMBER:
1488	case MLD_SG_QUERY_PENDING_MEMBER:
1489	case MLD_LEAVING_MEMBER:
1490		break;
1491	}
1492}
1493
1494/*
1495 * Update a group's timers for MLDv2.
1496 * Will update the global pending timer flags.
1497 * Note: Unlocked read from mli.
1498 */
1499static void
1500mld_v2_process_group_timers(struct mld_ifsoftc *mli,
1501    struct mbufq *qrq, struct mbufq *scq,
1502    struct in6_multi *inm, const int uri_fasthz)
1503{
1504	int query_response_timer_expired;
1505	int state_change_retransmit_timer_expired;
1506#ifdef KTR
1507	char ip6tbuf[INET6_ADDRSTRLEN];
1508#endif
1509
1510	IN6_MULTI_LOCK_ASSERT();
1511	MLD_LOCK_ASSERT();
1512
1513	query_response_timer_expired = 0;
1514	state_change_retransmit_timer_expired = 0;
1515
1516	/*
1517	 * During a transition from compatibility mode back to MLDv2,
1518	 * a group record in REPORTING state may still have its group
1519	 * timer active. This is a no-op in this function; it is easier
1520	 * to deal with it here than to complicate the slow-timeout path.
1521	 */
1522	if (inm->in6m_timer == 0) {
1523		query_response_timer_expired = 0;
1524	} else if (--inm->in6m_timer == 0) {
1525		query_response_timer_expired = 1;
1526	} else {
1527		V_current_state_timers_running6 = 1;
1528	}
1529
1530	if (inm->in6m_sctimer == 0) {
1531		state_change_retransmit_timer_expired = 0;
1532	} else if (--inm->in6m_sctimer == 0) {
1533		state_change_retransmit_timer_expired = 1;
1534	} else {
1535		V_state_change_timers_running6 = 1;
1536	}
1537
1538	/* We are in fasttimo, so be quick about it. */
1539	if (!state_change_retransmit_timer_expired &&
1540	    !query_response_timer_expired)
1541		return;
1542
1543	switch (inm->in6m_state) {
1544	case MLD_NOT_MEMBER:
1545	case MLD_SILENT_MEMBER:
1546	case MLD_SLEEPING_MEMBER:
1547	case MLD_LAZY_MEMBER:
1548	case MLD_AWAKENING_MEMBER:
1549	case MLD_IDLE_MEMBER:
1550		break;
1551	case MLD_G_QUERY_PENDING_MEMBER:
1552	case MLD_SG_QUERY_PENDING_MEMBER:
1553		/*
1554		 * Respond to a previously pending Group-Specific
1555		 * or Group-and-Source-Specific query by enqueueing
1556		 * the appropriate Current-State report for
1557		 * immediate transmission.
1558		 */
1559		if (query_response_timer_expired) {
1560			int retval;
1561
1562			retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
1563			    (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
1564			    0);
1565			CTR2(KTR_MLD, "%s: enqueue record = %d",
1566			    __func__, retval);
1567			inm->in6m_state = MLD_REPORTING_MEMBER;
1568			in6m_clear_recorded(inm);
1569		}
1570		/* FALLTHROUGH */
1571	case MLD_REPORTING_MEMBER:
1572	case MLD_LEAVING_MEMBER:
1573		if (state_change_retransmit_timer_expired) {
1574			/*
1575			 * State-change retransmission timer fired.
1576			 * If there are any further pending retransmissions,
1577			 * set the global pending state-change flag, and
1578			 * reset the timer.
1579			 */
1580			if (--inm->in6m_scrv > 0) {
1581				inm->in6m_sctimer = uri_fasthz;
1582				V_state_change_timers_running6 = 1;
1583			}
1584			/*
1585			 * Retransmit the previously computed state-change
1586			 * report. If there are no further pending
1587			 * retransmissions, the mbuf queue will be consumed.
1588			 * Update T0 state to T1 as we have now sent
1589			 * a state-change.
1590			 */
1591			(void)mld_v2_merge_state_changes(inm, scq);
1592
1593			in6m_commit(inm);
1594			CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
1595			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1596			    if_name(inm->in6m_ifp));
1597
1598			/*
1599			 * If we are leaving the group for good, make sure
1600			 * we release MLD's reference to it.
1601			 * This release must be deferred using a SLIST,
1602			 * as we are called from a loop which traverses
1603			 * the in_ifmultiaddr TAILQ.
1604			 */
1605			if (inm->in6m_state == MLD_LEAVING_MEMBER &&
1606			    inm->in6m_scrv == 0) {
1607				inm->in6m_state = MLD_NOT_MEMBER;
1608				SLIST_INSERT_HEAD(&mli->mli_relinmhead,
1609				    inm, in6m_nrele);
1610			}
1611		}
1612		break;
1613	}
1614}
1615
1616/*
1617 * Switch to a different version on the given interface,
1618 * as per Section 9.12.
1619 */
1620static void
1621mld_set_version(struct mld_ifsoftc *mli, const int version)
1622{
1623	int old_version_timer;
1624
1625	MLD_LOCK_ASSERT();
1626
1627	CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__,
1628	    version, mli->mli_ifp, if_name(mli->mli_ifp));
1629
1630	if (version == MLD_VERSION_1) {
1631		/*
1632		 * Compute the "Older Version Querier Present" timer as per
1633		 * Section 9.12.
1634		 */
1635		old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
1636		old_version_timer *= PR_SLOWHZ;
1637		mli->mli_v1_timer = old_version_timer;
1638	}
1639
1640	if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
1641		mli->mli_version = MLD_VERSION_1;
1642		mld_v2_cancel_link_timers(mli);
1643	}
1644}
1645
1646/*
1647 * Cancel pending MLDv2 timers for the given link and all groups
1648 * joined on it; state-change, general-query, and group-query timers.
1649 */
1650static void
1651mld_v2_cancel_link_timers(struct mld_ifsoftc *mli)
1652{
1653	struct ifmultiaddr	*ifma;
1654	struct ifnet		*ifp;
1655	struct in6_multi	*inm, *tinm;
1656
1657	CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__,
1658	    mli->mli_ifp, if_name(mli->mli_ifp));
1659
1660	IN6_MULTI_LOCK_ASSERT();
1661	MLD_LOCK_ASSERT();
1662
1663	/*
1664	 * Fast-track this potentially expensive operation
1665	 * by checking all the global 'timer pending' flags.
1666	 */
1667	if (!V_interface_timers_running6 &&
1668	    !V_state_change_timers_running6 &&
1669	    !V_current_state_timers_running6)
1670		return;
1671
1672	mli->mli_v2_timer = 0;
1673
1674	ifp = mli->mli_ifp;
1675
1676	IF_ADDR_RLOCK(ifp);
1677	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1678		if (ifma->ifma_addr->sa_family != AF_INET6)
1679			continue;
1680		inm = (struct in6_multi *)ifma->ifma_protospec;
1681		switch (inm->in6m_state) {
1682		case MLD_NOT_MEMBER:
1683		case MLD_SILENT_MEMBER:
1684		case MLD_IDLE_MEMBER:
1685		case MLD_LAZY_MEMBER:
1686		case MLD_SLEEPING_MEMBER:
1687		case MLD_AWAKENING_MEMBER:
1688			break;
1689		case MLD_LEAVING_MEMBER:
1690			/*
1691			 * If we are leaving the group and switching
1692			 * version, we need to release the final
1693			 * reference held for issuing the INCLUDE {}.
1694			 */
1695			SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
1696			    in6m_nrele);
1697			/* FALLTHROUGH */
1698		case MLD_G_QUERY_PENDING_MEMBER:
1699		case MLD_SG_QUERY_PENDING_MEMBER:
1700			in6m_clear_recorded(inm);
1701			/* FALLTHROUGH */
1702		case MLD_REPORTING_MEMBER:
1703			inm->in6m_sctimer = 0;
1704			inm->in6m_timer = 0;
1705			inm->in6m_state = MLD_REPORTING_MEMBER;
1706			/*
1707			 * Free any pending MLDv2 state-change records.
1708			 */
1709			mbufq_drain(&inm->in6m_scq);
1710			break;
1711		}
1712	}
1713	IF_ADDR_RUNLOCK(ifp);
1714	SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) {
1715		SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
1716		in6m_release_locked(inm);
1717	}
1718}
1719
1720/*
1721 * Global slowtimo handler.
1722 * VIMAGE: Timeout handlers are expected to service all vimages.
1723 */
1724void
1725mld_slowtimo(void)
1726{
1727	VNET_ITERATOR_DECL(vnet_iter);
1728
1729	VNET_LIST_RLOCK_NOSLEEP();
1730	VNET_FOREACH(vnet_iter) {
1731		CURVNET_SET(vnet_iter);
1732		mld_slowtimo_vnet();
1733		CURVNET_RESTORE();
1734	}
1735	VNET_LIST_RUNLOCK_NOSLEEP();
1736}
1737
1738/*
1739 * Per-vnet slowtimo handler.
1740 */
1741static void
1742mld_slowtimo_vnet(void)
1743{
1744	struct mld_ifsoftc *mli;
1745
1746	MLD_LOCK();
1747
1748	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1749		mld_v1_process_querier_timers(mli);
1750	}
1751
1752	MLD_UNLOCK();
1753}
1754
1755/*
1756 * Update the Older Version Querier Present timers for a link.
1757 * See Section 9.12 of RFC 3810.
1758 */
1759static void
1760mld_v1_process_querier_timers(struct mld_ifsoftc *mli)
1761{
1762
1763	MLD_LOCK_ASSERT();
1764
1765	if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) {
1766		/*
1767		 * MLDv1 Querier Present timer expired; revert to MLDv2.
1768		 */
1769		CTR5(KTR_MLD,
1770		    "%s: transition from v%d -> v%d on %p(%s)",
1771		    __func__, mli->mli_version, MLD_VERSION_2,
1772		    mli->mli_ifp, if_name(mli->mli_ifp));
1773		mli->mli_version = MLD_VERSION_2;
1774	}
1775}
1776
1777/*
1778 * Transmit an MLDv1 report immediately.
1779 */
1780static int
1781mld_v1_transmit_report(struct in6_multi *in6m, const int type)
1782{
1783	struct ifnet		*ifp;
1784	struct in6_ifaddr	*ia;
1785	struct ip6_hdr		*ip6;
1786	struct mbuf		*mh, *md;
1787	struct mld_hdr		*mld;
1788
1789	IN6_MULTI_LOCK_ASSERT();
1790	MLD_LOCK_ASSERT();
1791
1792	ifp = in6m->in6m_ifp;
1793	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1794	/* ia may be NULL if link-local address is tentative. */
1795
1796	mh = m_gethdr(M_NOWAIT, MT_DATA);
1797	if (mh == NULL) {
1798		if (ia != NULL)
1799			ifa_free(&ia->ia_ifa);
1800		return (ENOMEM);
1801	}
1802	md = m_get(M_NOWAIT, MT_DATA);
1803	if (md == NULL) {
1804		m_free(mh);
1805		if (ia != NULL)
1806			ifa_free(&ia->ia_ifa);
1807		return (ENOMEM);
1808	}
1809	mh->m_next = md;
1810
1811	/*
1812	 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
1813	 * that ether_output() does not need to allocate another mbuf
1814	 * for the header in the most common case.
1815	 */
1816	M_ALIGN(mh, sizeof(struct ip6_hdr));
1817	mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
1818	mh->m_len = sizeof(struct ip6_hdr);
1819
1820	ip6 = mtod(mh, struct ip6_hdr *);
1821	ip6->ip6_flow = 0;
1822	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
1823	ip6->ip6_vfc |= IPV6_VERSION;
1824	ip6->ip6_nxt = IPPROTO_ICMPV6;
1825	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
1826	ip6->ip6_dst = in6m->in6m_addr;
1827
1828	md->m_len = sizeof(struct mld_hdr);
1829	mld = mtod(md, struct mld_hdr *);
1830	mld->mld_type = type;
1831	mld->mld_code = 0;
1832	mld->mld_cksum = 0;
1833	mld->mld_maxdelay = 0;
1834	mld->mld_reserved = 0;
1835	mld->mld_addr = in6m->in6m_addr;
1836	in6_clearscope(&mld->mld_addr);
1837	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
1838	    sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
1839
1840	mld_save_context(mh, ifp);
1841	mh->m_flags |= M_MLDV1;
1842
1843	mld_dispatch_packet(mh);
1844
1845	if (ia != NULL)
1846		ifa_free(&ia->ia_ifa);
1847	return (0);
1848}
1849
1850/*
1851 * Process a state change from the upper layer for the given IPv6 group.
1852 *
1853 * Each socket holds a reference on the in_multi in its own ip_moptions.
1854 * The socket layer will have made the necessary updates to.the group
1855 * state, it is now up to MLD to issue a state change report if there
1856 * has been any change between T0 (when the last state-change was issued)
1857 * and T1 (now).
1858 *
1859 * We use the MLDv2 state machine at group level. The MLd module
1860 * however makes the decision as to which MLD protocol version to speak.
1861 * A state change *from* INCLUDE {} always means an initial join.
1862 * A state change *to* INCLUDE {} always means a final leave.
1863 *
1864 * If delay is non-zero, and the state change is an initial multicast
1865 * join, the state change report will be delayed by 'delay' ticks
1866 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise
1867 * the initial MLDv2 state change report will be delayed by whichever
1868 * is sooner, a pending state-change timer or delay itself.
1869 *
1870 * VIMAGE: curvnet should have been set by caller, as this routine
1871 * is called from the socket option handlers.
1872 */
1873int
1874mld_change_state(struct in6_multi *inm, const int delay)
1875{
1876	struct mld_ifsoftc *mli;
1877	struct ifnet *ifp;
1878	int error;
1879
1880	IN6_MULTI_LOCK_ASSERT();
1881
1882	error = 0;
1883
1884	/*
1885	 * Try to detect if the upper layer just asked us to change state
1886	 * for an interface which has now gone away.
1887	 */
1888	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
1889	ifp = inm->in6m_ifma->ifma_ifp;
1890	if (ifp != NULL) {
1891		/*
1892		 * Sanity check that netinet6's notion of ifp is the
1893		 * same as net's.
1894		 */
1895		KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
1896	}
1897
1898	MLD_LOCK();
1899
1900	mli = MLD_IFINFO(ifp);
1901	KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp));
1902
1903	/*
1904	 * If we detect a state transition to or from MCAST_UNDEFINED
1905	 * for this group, then we are starting or finishing an MLD
1906	 * life cycle for this group.
1907	 */
1908	if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
1909		CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__,
1910		    inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode);
1911		if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
1912			CTR1(KTR_MLD, "%s: initial join", __func__);
1913			error = mld_initial_join(inm, mli, delay);
1914			goto out_locked;
1915		} else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
1916			CTR1(KTR_MLD, "%s: final leave", __func__);
1917			mld_final_leave(inm, mli);
1918			goto out_locked;
1919		}
1920	} else {
1921		CTR1(KTR_MLD, "%s: filter set change", __func__);
1922	}
1923
1924	error = mld_handle_state_change(inm, mli);
1925
1926out_locked:
1927	MLD_UNLOCK();
1928	return (error);
1929}
1930
1931/*
1932 * Perform the initial join for an MLD group.
1933 *
1934 * When joining a group:
1935 *  If the group should have its MLD traffic suppressed, do nothing.
1936 *  MLDv1 starts sending MLDv1 host membership reports.
1937 *  MLDv2 will schedule an MLDv2 state-change report containing the
1938 *  initial state of the membership.
1939 *
1940 * If the delay argument is non-zero, then we must delay sending the
1941 * initial state change for delay ticks (in units of PR_FASTHZ).
1942 */
1943static int
1944mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli,
1945    const int delay)
1946{
1947	struct ifnet		*ifp;
1948	struct mbufq		*mq;
1949	int			 error, retval, syncstates;
1950	int			 odelay;
1951#ifdef KTR
1952	char			 ip6tbuf[INET6_ADDRSTRLEN];
1953#endif
1954
1955	CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)",
1956	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1957	    inm->in6m_ifp, if_name(inm->in6m_ifp));
1958
1959	error = 0;
1960	syncstates = 1;
1961
1962	ifp = inm->in6m_ifp;
1963
1964	IN6_MULTI_LOCK_ASSERT();
1965	MLD_LOCK_ASSERT();
1966
1967	KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__));
1968
1969	/*
1970	 * Groups joined on loopback or marked as 'not reported',
1971	 * enter the MLD_SILENT_MEMBER state and
1972	 * are never reported in any protocol exchanges.
1973	 * All other groups enter the appropriate state machine
1974	 * for the version in use on this link.
1975	 * A link marked as MLIF_SILENT causes MLD to be completely
1976	 * disabled for the link.
1977	 */
1978	if ((ifp->if_flags & IFF_LOOPBACK) ||
1979	    (mli->mli_flags & MLIF_SILENT) ||
1980	    !mld_is_addr_reported(&inm->in6m_addr)) {
1981		CTR1(KTR_MLD,
1982"%s: not kicking state machine for silent group", __func__);
1983		inm->in6m_state = MLD_SILENT_MEMBER;
1984		inm->in6m_timer = 0;
1985	} else {
1986		/*
1987		 * Deal with overlapping in_multi lifecycle.
1988		 * If this group was LEAVING, then make sure
1989		 * we drop the reference we picked up to keep the
1990		 * group around for the final INCLUDE {} enqueue.
1991		 */
1992		if (mli->mli_version == MLD_VERSION_2 &&
1993		    inm->in6m_state == MLD_LEAVING_MEMBER)
1994			in6m_release_locked(inm);
1995
1996		inm->in6m_state = MLD_REPORTING_MEMBER;
1997
1998		switch (mli->mli_version) {
1999		case MLD_VERSION_1:
2000			/*
2001			 * If a delay was provided, only use it if
2002			 * it is greater than the delay normally
2003			 * used for an MLDv1 state change report,
2004			 * and delay sending the initial MLDv1 report
2005			 * by not transitioning to the IDLE state.
2006			 */
2007			odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ);
2008			if (delay) {
2009				inm->in6m_timer = max(delay, odelay);
2010				V_current_state_timers_running6 = 1;
2011			} else {
2012				inm->in6m_state = MLD_IDLE_MEMBER;
2013				error = mld_v1_transmit_report(inm,
2014				     MLD_LISTENER_REPORT);
2015				if (error == 0) {
2016					inm->in6m_timer = odelay;
2017					V_current_state_timers_running6 = 1;
2018				}
2019			}
2020			break;
2021
2022		case MLD_VERSION_2:
2023			/*
2024			 * Defer update of T0 to T1, until the first copy
2025			 * of the state change has been transmitted.
2026			 */
2027			syncstates = 0;
2028
2029			/*
2030			 * Immediately enqueue a State-Change Report for
2031			 * this interface, freeing any previous reports.
2032			 * Don't kick the timers if there is nothing to do,
2033			 * or if an error occurred.
2034			 */
2035			mq = &inm->in6m_scq;
2036			mbufq_drain(mq);
2037			retval = mld_v2_enqueue_group_record(mq, inm, 1,
2038			    0, 0, (mli->mli_flags & MLIF_USEALLOW));
2039			CTR2(KTR_MLD, "%s: enqueue record = %d",
2040			    __func__, retval);
2041			if (retval <= 0) {
2042				error = retval * -1;
2043				break;
2044			}
2045
2046			/*
2047			 * Schedule transmission of pending state-change
2048			 * report up to RV times for this link. The timer
2049			 * will fire at the next mld_fasttimo (~200ms),
2050			 * giving us an opportunity to merge the reports.
2051			 *
2052			 * If a delay was provided to this function, only
2053			 * use this delay if sooner than the existing one.
2054			 */
2055			KASSERT(mli->mli_rv > 1,
2056			   ("%s: invalid robustness %d", __func__,
2057			    mli->mli_rv));
2058			inm->in6m_scrv = mli->mli_rv;
2059			if (delay) {
2060				if (inm->in6m_sctimer > 1) {
2061					inm->in6m_sctimer =
2062					    min(inm->in6m_sctimer, delay);
2063				} else
2064					inm->in6m_sctimer = delay;
2065			} else
2066				inm->in6m_sctimer = 1;
2067			V_state_change_timers_running6 = 1;
2068
2069			error = 0;
2070			break;
2071		}
2072	}
2073
2074	/*
2075	 * Only update the T0 state if state change is atomic,
2076	 * i.e. we don't need to wait for a timer to fire before we
2077	 * can consider the state change to have been communicated.
2078	 */
2079	if (syncstates) {
2080		in6m_commit(inm);
2081		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2082		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2083		    if_name(inm->in6m_ifp));
2084	}
2085
2086	return (error);
2087}
2088
2089/*
2090 * Issue an intermediate state change during the life-cycle.
2091 */
2092static int
2093mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli)
2094{
2095	struct ifnet		*ifp;
2096	int			 retval;
2097#ifdef KTR
2098	char			 ip6tbuf[INET6_ADDRSTRLEN];
2099#endif
2100
2101	CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)",
2102	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2103	    inm->in6m_ifp, if_name(inm->in6m_ifp));
2104
2105	ifp = inm->in6m_ifp;
2106
2107	IN6_MULTI_LOCK_ASSERT();
2108	MLD_LOCK_ASSERT();
2109
2110	KASSERT(mli && mli->mli_ifp == ifp,
2111	    ("%s: inconsistent ifp", __func__));
2112
2113	if ((ifp->if_flags & IFF_LOOPBACK) ||
2114	    (mli->mli_flags & MLIF_SILENT) ||
2115	    !mld_is_addr_reported(&inm->in6m_addr) ||
2116	    (mli->mli_version != MLD_VERSION_2)) {
2117		if (!mld_is_addr_reported(&inm->in6m_addr)) {
2118			CTR1(KTR_MLD,
2119"%s: not kicking state machine for silent group", __func__);
2120		}
2121		CTR1(KTR_MLD, "%s: nothing to do", __func__);
2122		in6m_commit(inm);
2123		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2124		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2125		    if_name(inm->in6m_ifp));
2126		return (0);
2127	}
2128
2129	mbufq_drain(&inm->in6m_scq);
2130
2131	retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
2132	    (mli->mli_flags & MLIF_USEALLOW));
2133	CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval);
2134	if (retval <= 0)
2135		return (-retval);
2136
2137	/*
2138	 * If record(s) were enqueued, start the state-change
2139	 * report timer for this group.
2140	 */
2141	inm->in6m_scrv = mli->mli_rv;
2142	inm->in6m_sctimer = 1;
2143	V_state_change_timers_running6 = 1;
2144
2145	return (0);
2146}
2147
2148/*
2149 * Perform the final leave for a multicast address.
2150 *
2151 * When leaving a group:
2152 *  MLDv1 sends a DONE message, if and only if we are the reporter.
2153 *  MLDv2 enqueues a state-change report containing a transition
2154 *  to INCLUDE {} for immediate transmission.
2155 */
2156static void
2157mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli)
2158{
2159	int syncstates;
2160#ifdef KTR
2161	char ip6tbuf[INET6_ADDRSTRLEN];
2162#endif
2163
2164	syncstates = 1;
2165
2166	CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)",
2167	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2168	    inm->in6m_ifp, if_name(inm->in6m_ifp));
2169
2170	IN6_MULTI_LOCK_ASSERT();
2171	MLD_LOCK_ASSERT();
2172
2173	switch (inm->in6m_state) {
2174	case MLD_NOT_MEMBER:
2175	case MLD_SILENT_MEMBER:
2176	case MLD_LEAVING_MEMBER:
2177		/* Already leaving or left; do nothing. */
2178		CTR1(KTR_MLD,
2179"%s: not kicking state machine for silent group", __func__);
2180		break;
2181	case MLD_REPORTING_MEMBER:
2182	case MLD_IDLE_MEMBER:
2183	case MLD_G_QUERY_PENDING_MEMBER:
2184	case MLD_SG_QUERY_PENDING_MEMBER:
2185		if (mli->mli_version == MLD_VERSION_1) {
2186#ifdef INVARIANTS
2187			if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
2188			    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)
2189			panic("%s: MLDv2 state reached, not MLDv2 mode",
2190			     __func__);
2191#endif
2192			mld_v1_transmit_report(inm, MLD_LISTENER_DONE);
2193			inm->in6m_state = MLD_NOT_MEMBER;
2194			V_current_state_timers_running6 = 1;
2195		} else if (mli->mli_version == MLD_VERSION_2) {
2196			/*
2197			 * Stop group timer and all pending reports.
2198			 * Immediately enqueue a state-change report
2199			 * TO_IN {} to be sent on the next fast timeout,
2200			 * giving us an opportunity to merge reports.
2201			 */
2202			mbufq_drain(&inm->in6m_scq);
2203			inm->in6m_timer = 0;
2204			inm->in6m_scrv = mli->mli_rv;
2205			CTR4(KTR_MLD, "%s: Leaving %s/%s with %d "
2206			    "pending retransmissions.", __func__,
2207			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2208			    if_name(inm->in6m_ifp), inm->in6m_scrv);
2209			if (inm->in6m_scrv == 0) {
2210				inm->in6m_state = MLD_NOT_MEMBER;
2211				inm->in6m_sctimer = 0;
2212			} else {
2213				int retval;
2214
2215				in6m_acquire_locked(inm);
2216
2217				retval = mld_v2_enqueue_group_record(
2218				    &inm->in6m_scq, inm, 1, 0, 0,
2219				    (mli->mli_flags & MLIF_USEALLOW));
2220				KASSERT(retval != 0,
2221				    ("%s: enqueue record = %d", __func__,
2222				     retval));
2223
2224				inm->in6m_state = MLD_LEAVING_MEMBER;
2225				inm->in6m_sctimer = 1;
2226				V_state_change_timers_running6 = 1;
2227				syncstates = 0;
2228			}
2229			break;
2230		}
2231		break;
2232	case MLD_LAZY_MEMBER:
2233	case MLD_SLEEPING_MEMBER:
2234	case MLD_AWAKENING_MEMBER:
2235		/* Our reports are suppressed; do nothing. */
2236		break;
2237	}
2238
2239	if (syncstates) {
2240		in6m_commit(inm);
2241		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2242		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2243		    if_name(inm->in6m_ifp));
2244		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
2245		CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s",
2246		    __func__, &inm->in6m_addr, if_name(inm->in6m_ifp));
2247	}
2248}
2249
2250/*
2251 * Enqueue an MLDv2 group record to the given output queue.
2252 *
2253 * If is_state_change is zero, a current-state record is appended.
2254 * If is_state_change is non-zero, a state-change report is appended.
2255 *
2256 * If is_group_query is non-zero, an mbuf packet chain is allocated.
2257 * If is_group_query is zero, and if there is a packet with free space
2258 * at the tail of the queue, it will be appended to providing there
2259 * is enough free space.
2260 * Otherwise a new mbuf packet chain is allocated.
2261 *
2262 * If is_source_query is non-zero, each source is checked to see if
2263 * it was recorded for a Group-Source query, and will be omitted if
2264 * it is not both in-mode and recorded.
2265 *
2266 * If use_block_allow is non-zero, state change reports for initial join
2267 * and final leave, on an inclusive mode group with a source list, will be
2268 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2269 *
2270 * The function will attempt to allocate leading space in the packet
2271 * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2272 *
2273 * If successful the size of all data appended to the queue is returned,
2274 * otherwise an error code less than zero is returned, or zero if
2275 * no record(s) were appended.
2276 */
2277static int
2278mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm,
2279    const int is_state_change, const int is_group_query,
2280    const int is_source_query, const int use_block_allow)
2281{
2282	struct mldv2_record	 mr;
2283	struct mldv2_record	*pmr;
2284	struct ifnet		*ifp;
2285	struct ip6_msource	*ims, *nims;
2286	struct mbuf		*m0, *m, *md;
2287	int			 error, is_filter_list_change;
2288	int			 minrec0len, m0srcs, msrcs, nbytes, off;
2289	int			 record_has_sources;
2290	int			 now;
2291	int			 type;
2292	uint8_t			 mode;
2293#ifdef KTR
2294	char			 ip6tbuf[INET6_ADDRSTRLEN];
2295#endif
2296
2297	IN6_MULTI_LOCK_ASSERT();
2298
2299	error = 0;
2300	ifp = inm->in6m_ifp;
2301	is_filter_list_change = 0;
2302	m = NULL;
2303	m0 = NULL;
2304	m0srcs = 0;
2305	msrcs = 0;
2306	nbytes = 0;
2307	nims = NULL;
2308	record_has_sources = 1;
2309	pmr = NULL;
2310	type = MLD_DO_NOTHING;
2311	mode = inm->in6m_st[1].iss_fmode;
2312
2313	/*
2314	 * If we did not transition out of ASM mode during t0->t1,
2315	 * and there are no source nodes to process, we can skip
2316	 * the generation of source records.
2317	 */
2318	if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
2319	    inm->in6m_nsrc == 0)
2320		record_has_sources = 0;
2321
2322	if (is_state_change) {
2323		/*
2324		 * Queue a state change record.
2325		 * If the mode did not change, and there are non-ASM
2326		 * listeners or source filters present,
2327		 * we potentially need to issue two records for the group.
2328		 * If there are ASM listeners, and there was no filter
2329		 * mode transition of any kind, do nothing.
2330		 *
2331		 * If we are transitioning to MCAST_UNDEFINED, we need
2332		 * not send any sources. A transition to/from this state is
2333		 * considered inclusive with some special treatment.
2334		 *
2335		 * If we are rewriting initial joins/leaves to use
2336		 * ALLOW/BLOCK, and the group's membership is inclusive,
2337		 * we need to send sources in all cases.
2338		 */
2339		if (mode != inm->in6m_st[0].iss_fmode) {
2340			if (mode == MCAST_EXCLUDE) {
2341				CTR1(KTR_MLD, "%s: change to EXCLUDE",
2342				    __func__);
2343				type = MLD_CHANGE_TO_EXCLUDE_MODE;
2344			} else {
2345				CTR1(KTR_MLD, "%s: change to INCLUDE",
2346				    __func__);
2347				if (use_block_allow) {
2348					/*
2349					 * XXX
2350					 * Here we're interested in state
2351					 * edges either direction between
2352					 * MCAST_UNDEFINED and MCAST_INCLUDE.
2353					 * Perhaps we should just check
2354					 * the group state, rather than
2355					 * the filter mode.
2356					 */
2357					if (mode == MCAST_UNDEFINED) {
2358						type = MLD_BLOCK_OLD_SOURCES;
2359					} else {
2360						type = MLD_ALLOW_NEW_SOURCES;
2361					}
2362				} else {
2363					type = MLD_CHANGE_TO_INCLUDE_MODE;
2364					if (mode == MCAST_UNDEFINED)
2365						record_has_sources = 0;
2366				}
2367			}
2368		} else {
2369			if (record_has_sources) {
2370				is_filter_list_change = 1;
2371			} else {
2372				type = MLD_DO_NOTHING;
2373			}
2374		}
2375	} else {
2376		/*
2377		 * Queue a current state record.
2378		 */
2379		if (mode == MCAST_EXCLUDE) {
2380			type = MLD_MODE_IS_EXCLUDE;
2381		} else if (mode == MCAST_INCLUDE) {
2382			type = MLD_MODE_IS_INCLUDE;
2383			KASSERT(inm->in6m_st[1].iss_asm == 0,
2384			    ("%s: inm %p is INCLUDE but ASM count is %d",
2385			     __func__, inm, inm->in6m_st[1].iss_asm));
2386		}
2387	}
2388
2389	/*
2390	 * Generate the filter list changes using a separate function.
2391	 */
2392	if (is_filter_list_change)
2393		return (mld_v2_enqueue_filter_change(mq, inm));
2394
2395	if (type == MLD_DO_NOTHING) {
2396		CTR3(KTR_MLD, "%s: nothing to do for %s/%s",
2397		    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2398		    if_name(inm->in6m_ifp));
2399		return (0);
2400	}
2401
2402	/*
2403	 * If any sources are present, we must be able to fit at least
2404	 * one in the trailing space of the tail packet's mbuf,
2405	 * ideally more.
2406	 */
2407	minrec0len = sizeof(struct mldv2_record);
2408	if (record_has_sources)
2409		minrec0len += sizeof(struct in6_addr);
2410
2411	CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__,
2412	    mld_rec_type_to_str(type),
2413	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2414	    if_name(inm->in6m_ifp));
2415
2416	/*
2417	 * Check if we have a packet in the tail of the queue for this
2418	 * group into which the first group record for this group will fit.
2419	 * Otherwise allocate a new packet.
2420	 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2421	 * Note: Group records for G/GSR query responses MUST be sent
2422	 * in their own packet.
2423	 */
2424	m0 = mbufq_last(mq);
2425	if (!is_group_query &&
2426	    m0 != NULL &&
2427	    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
2428	    (m0->m_pkthdr.len + minrec0len) <
2429	     (ifp->if_mtu - MLD_MTUSPACE)) {
2430		m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2431			    sizeof(struct mldv2_record)) /
2432			    sizeof(struct in6_addr);
2433		m = m0;
2434		CTR1(KTR_MLD, "%s: use existing packet", __func__);
2435	} else {
2436		if (mbufq_full(mq)) {
2437			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2438			return (-ENOMEM);
2439		}
2440		m = NULL;
2441		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2442		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2443		if (!is_state_change && !is_group_query)
2444			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2445		if (m == NULL)
2446			m = m_gethdr(M_NOWAIT, MT_DATA);
2447		if (m == NULL)
2448			return (-ENOMEM);
2449
2450		mld_save_context(m, ifp);
2451
2452		CTR1(KTR_MLD, "%s: allocated first packet", __func__);
2453	}
2454
2455	/*
2456	 * Append group record.
2457	 * If we have sources, we don't know how many yet.
2458	 */
2459	mr.mr_type = type;
2460	mr.mr_datalen = 0;
2461	mr.mr_numsrc = 0;
2462	mr.mr_addr = inm->in6m_addr;
2463	in6_clearscope(&mr.mr_addr);
2464	if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2465		if (m != m0)
2466			m_freem(m);
2467		CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2468		return (-ENOMEM);
2469	}
2470	nbytes += sizeof(struct mldv2_record);
2471
2472	/*
2473	 * Append as many sources as will fit in the first packet.
2474	 * If we are appending to a new packet, the chain allocation
2475	 * may potentially use clusters; use m_getptr() in this case.
2476	 * If we are appending to an existing packet, we need to obtain
2477	 * a pointer to the group record after m_append(), in case a new
2478	 * mbuf was allocated.
2479	 *
2480	 * Only append sources which are in-mode at t1. If we are
2481	 * transitioning to MCAST_UNDEFINED state on the group, and
2482	 * use_block_allow is zero, do not include source entries.
2483	 * Otherwise, we need to include this source in the report.
2484	 *
2485	 * Only report recorded sources in our filter set when responding
2486	 * to a group-source query.
2487	 */
2488	if (record_has_sources) {
2489		if (m == m0) {
2490			md = m_last(m);
2491			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2492			    md->m_len - nbytes);
2493		} else {
2494			md = m_getptr(m, 0, &off);
2495			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2496			    off);
2497		}
2498		msrcs = 0;
2499		RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
2500		    nims) {
2501			CTR2(KTR_MLD, "%s: visit node %s", __func__,
2502			    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2503			now = im6s_get_mode(inm, ims, 1);
2504			CTR2(KTR_MLD, "%s: node is %d", __func__, now);
2505			if ((now != mode) ||
2506			    (now == mode &&
2507			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2508				CTR1(KTR_MLD, "%s: skip node", __func__);
2509				continue;
2510			}
2511			if (is_source_query && ims->im6s_stp == 0) {
2512				CTR1(KTR_MLD, "%s: skip unrecorded node",
2513				    __func__);
2514				continue;
2515			}
2516			CTR1(KTR_MLD, "%s: append node", __func__);
2517			if (!m_append(m, sizeof(struct in6_addr),
2518			    (void *)&ims->im6s_addr)) {
2519				if (m != m0)
2520					m_freem(m);
2521				CTR1(KTR_MLD, "%s: m_append() failed.",
2522				    __func__);
2523				return (-ENOMEM);
2524			}
2525			nbytes += sizeof(struct in6_addr);
2526			++msrcs;
2527			if (msrcs == m0srcs)
2528				break;
2529		}
2530		CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__,
2531		    msrcs);
2532		pmr->mr_numsrc = htons(msrcs);
2533		nbytes += (msrcs * sizeof(struct in6_addr));
2534	}
2535
2536	if (is_source_query && msrcs == 0) {
2537		CTR1(KTR_MLD, "%s: no recorded sources to report", __func__);
2538		if (m != m0)
2539			m_freem(m);
2540		return (0);
2541	}
2542
2543	/*
2544	 * We are good to go with first packet.
2545	 */
2546	if (m != m0) {
2547		CTR1(KTR_MLD, "%s: enqueueing first packet", __func__);
2548		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2549		mbufq_enqueue(mq, m);
2550	} else
2551		m->m_pkthdr.PH_vt.vt_nrecs++;
2552
2553	/*
2554	 * No further work needed if no source list in packet(s).
2555	 */
2556	if (!record_has_sources)
2557		return (nbytes);
2558
2559	/*
2560	 * Whilst sources remain to be announced, we need to allocate
2561	 * a new packet and fill out as many sources as will fit.
2562	 * Always try for a cluster first.
2563	 */
2564	while (nims != NULL) {
2565		if (mbufq_full(mq)) {
2566			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2567			return (-ENOMEM);
2568		}
2569		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2570		if (m == NULL)
2571			m = m_gethdr(M_NOWAIT, MT_DATA);
2572		if (m == NULL)
2573			return (-ENOMEM);
2574		mld_save_context(m, ifp);
2575		md = m_getptr(m, 0, &off);
2576		pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
2577		CTR1(KTR_MLD, "%s: allocated next packet", __func__);
2578
2579		if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2580			if (m != m0)
2581				m_freem(m);
2582			CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2583			return (-ENOMEM);
2584		}
2585		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2586		nbytes += sizeof(struct mldv2_record);
2587
2588		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2589		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2590
2591		msrcs = 0;
2592		RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2593			CTR2(KTR_MLD, "%s: visit node %s",
2594			    __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2595			now = im6s_get_mode(inm, ims, 1);
2596			if ((now != mode) ||
2597			    (now == mode &&
2598			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2599				CTR1(KTR_MLD, "%s: skip node", __func__);
2600				continue;
2601			}
2602			if (is_source_query && ims->im6s_stp == 0) {
2603				CTR1(KTR_MLD, "%s: skip unrecorded node",
2604				    __func__);
2605				continue;
2606			}
2607			CTR1(KTR_MLD, "%s: append node", __func__);
2608			if (!m_append(m, sizeof(struct in6_addr),
2609			    (void *)&ims->im6s_addr)) {
2610				if (m != m0)
2611					m_freem(m);
2612				CTR1(KTR_MLD, "%s: m_append() failed.",
2613				    __func__);
2614				return (-ENOMEM);
2615			}
2616			++msrcs;
2617			if (msrcs == m0srcs)
2618				break;
2619		}
2620		pmr->mr_numsrc = htons(msrcs);
2621		nbytes += (msrcs * sizeof(struct in6_addr));
2622
2623		CTR1(KTR_MLD, "%s: enqueueing next packet", __func__);
2624		mbufq_enqueue(mq, m);
2625	}
2626
2627	return (nbytes);
2628}
2629
2630/*
2631 * Type used to mark record pass completion.
2632 * We exploit the fact we can cast to this easily from the
2633 * current filter modes on each ip_msource node.
2634 */
2635typedef enum {
2636	REC_NONE = 0x00,	/* MCAST_UNDEFINED */
2637	REC_ALLOW = 0x01,	/* MCAST_INCLUDE */
2638	REC_BLOCK = 0x02,	/* MCAST_EXCLUDE */
2639	REC_FULL = REC_ALLOW | REC_BLOCK
2640} rectype_t;
2641
2642/*
2643 * Enqueue an MLDv2 filter list change to the given output queue.
2644 *
2645 * Source list filter state is held in an RB-tree. When the filter list
2646 * for a group is changed without changing its mode, we need to compute
2647 * the deltas between T0 and T1 for each source in the filter set,
2648 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
2649 *
2650 * As we may potentially queue two record types, and the entire R-B tree
2651 * needs to be walked at once, we break this out into its own function
2652 * so we can generate a tightly packed queue of packets.
2653 *
2654 * XXX This could be written to only use one tree walk, although that makes
2655 * serializing into the mbuf chains a bit harder. For now we do two walks
2656 * which makes things easier on us, and it may or may not be harder on
2657 * the L2 cache.
2658 *
2659 * If successful the size of all data appended to the queue is returned,
2660 * otherwise an error code less than zero is returned, or zero if
2661 * no record(s) were appended.
2662 */
2663static int
2664mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm)
2665{
2666	static const int MINRECLEN =
2667	    sizeof(struct mldv2_record) + sizeof(struct in6_addr);
2668	struct ifnet		*ifp;
2669	struct mldv2_record	 mr;
2670	struct mldv2_record	*pmr;
2671	struct ip6_msource	*ims, *nims;
2672	struct mbuf		*m, *m0, *md;
2673	int			 m0srcs, nbytes, npbytes, off, rsrcs, schanged;
2674	int			 nallow, nblock;
2675	uint8_t			 mode, now, then;
2676	rectype_t		 crt, drt, nrt;
2677#ifdef KTR
2678	char			 ip6tbuf[INET6_ADDRSTRLEN];
2679#endif
2680
2681	IN6_MULTI_LOCK_ASSERT();
2682
2683	if (inm->in6m_nsrc == 0 ||
2684	    (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
2685		return (0);
2686
2687	ifp = inm->in6m_ifp;			/* interface */
2688	mode = inm->in6m_st[1].iss_fmode;	/* filter mode at t1 */
2689	crt = REC_NONE;	/* current group record type */
2690	drt = REC_NONE;	/* mask of completed group record types */
2691	nrt = REC_NONE;	/* record type for current node */
2692	m0srcs = 0;	/* # source which will fit in current mbuf chain */
2693	npbytes = 0;	/* # of bytes appended this packet */
2694	nbytes = 0;	/* # of bytes appended to group's state-change queue */
2695	rsrcs = 0;	/* # sources encoded in current record */
2696	schanged = 0;	/* # nodes encoded in overall filter change */
2697	nallow = 0;	/* # of source entries in ALLOW_NEW */
2698	nblock = 0;	/* # of source entries in BLOCK_OLD */
2699	nims = NULL;	/* next tree node pointer */
2700
2701	/*
2702	 * For each possible filter record mode.
2703	 * The first kind of source we encounter tells us which
2704	 * is the first kind of record we start appending.
2705	 * If a node transitioned to UNDEFINED at t1, its mode is treated
2706	 * as the inverse of the group's filter mode.
2707	 */
2708	while (drt != REC_FULL) {
2709		do {
2710			m0 = mbufq_last(mq);
2711			if (m0 != NULL &&
2712			    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <=
2713			     MLD_V2_REPORT_MAXRECS) &&
2714			    (m0->m_pkthdr.len + MINRECLEN) <
2715			     (ifp->if_mtu - MLD_MTUSPACE)) {
2716				m = m0;
2717				m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2718					    sizeof(struct mldv2_record)) /
2719					    sizeof(struct in6_addr);
2720				CTR1(KTR_MLD,
2721				    "%s: use previous packet", __func__);
2722			} else {
2723				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2724				if (m == NULL)
2725					m = m_gethdr(M_NOWAIT, MT_DATA);
2726				if (m == NULL) {
2727					CTR1(KTR_MLD,
2728					    "%s: m_get*() failed", __func__);
2729					return (-ENOMEM);
2730				}
2731				m->m_pkthdr.PH_vt.vt_nrecs = 0;
2732				mld_save_context(m, ifp);
2733				m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2734				    sizeof(struct mldv2_record)) /
2735				    sizeof(struct in6_addr);
2736				npbytes = 0;
2737				CTR1(KTR_MLD,
2738				    "%s: allocated new packet", __func__);
2739			}
2740			/*
2741			 * Append the MLD group record header to the
2742			 * current packet's data area.
2743			 * Recalculate pointer to free space for next
2744			 * group record, in case m_append() allocated
2745			 * a new mbuf or cluster.
2746			 */
2747			memset(&mr, 0, sizeof(mr));
2748			mr.mr_addr = inm->in6m_addr;
2749			in6_clearscope(&mr.mr_addr);
2750			if (!m_append(m, sizeof(mr), (void *)&mr)) {
2751				if (m != m0)
2752					m_freem(m);
2753				CTR1(KTR_MLD,
2754				    "%s: m_append() failed", __func__);
2755				return (-ENOMEM);
2756			}
2757			npbytes += sizeof(struct mldv2_record);
2758			if (m != m0) {
2759				/* new packet; offset in chain */
2760				md = m_getptr(m, npbytes -
2761				    sizeof(struct mldv2_record), &off);
2762				pmr = (struct mldv2_record *)(mtod(md,
2763				    uint8_t *) + off);
2764			} else {
2765				/* current packet; offset from last append */
2766				md = m_last(m);
2767				pmr = (struct mldv2_record *)(mtod(md,
2768				    uint8_t *) + md->m_len -
2769				    sizeof(struct mldv2_record));
2770			}
2771			/*
2772			 * Begin walking the tree for this record type
2773			 * pass, or continue from where we left off
2774			 * previously if we had to allocate a new packet.
2775			 * Only report deltas in-mode at t1.
2776			 * We need not report included sources as allowed
2777			 * if we are in inclusive mode on the group,
2778			 * however the converse is not true.
2779			 */
2780			rsrcs = 0;
2781			if (nims == NULL) {
2782				nims = RB_MIN(ip6_msource_tree,
2783				    &inm->in6m_srcs);
2784			}
2785			RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2786				CTR2(KTR_MLD, "%s: visit node %s", __func__,
2787				    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2788				now = im6s_get_mode(inm, ims, 1);
2789				then = im6s_get_mode(inm, ims, 0);
2790				CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d",
2791				    __func__, then, now);
2792				if (now == then) {
2793					CTR1(KTR_MLD,
2794					    "%s: skip unchanged", __func__);
2795					continue;
2796				}
2797				if (mode == MCAST_EXCLUDE &&
2798				    now == MCAST_INCLUDE) {
2799					CTR1(KTR_MLD,
2800					    "%s: skip IN src on EX group",
2801					    __func__);
2802					continue;
2803				}
2804				nrt = (rectype_t)now;
2805				if (nrt == REC_NONE)
2806					nrt = (rectype_t)(~mode & REC_FULL);
2807				if (schanged++ == 0) {
2808					crt = nrt;
2809				} else if (crt != nrt)
2810					continue;
2811				if (!m_append(m, sizeof(struct in6_addr),
2812				    (void *)&ims->im6s_addr)) {
2813					if (m != m0)
2814						m_freem(m);
2815					CTR1(KTR_MLD,
2816					    "%s: m_append() failed", __func__);
2817					return (-ENOMEM);
2818				}
2819				nallow += !!(crt == REC_ALLOW);
2820				nblock += !!(crt == REC_BLOCK);
2821				if (++rsrcs == m0srcs)
2822					break;
2823			}
2824			/*
2825			 * If we did not append any tree nodes on this
2826			 * pass, back out of allocations.
2827			 */
2828			if (rsrcs == 0) {
2829				npbytes -= sizeof(struct mldv2_record);
2830				if (m != m0) {
2831					CTR1(KTR_MLD,
2832					    "%s: m_free(m)", __func__);
2833					m_freem(m);
2834				} else {
2835					CTR1(KTR_MLD,
2836					    "%s: m_adj(m, -mr)", __func__);
2837					m_adj(m, -((int)sizeof(
2838					    struct mldv2_record)));
2839				}
2840				continue;
2841			}
2842			npbytes += (rsrcs * sizeof(struct in6_addr));
2843			if (crt == REC_ALLOW)
2844				pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
2845			else if (crt == REC_BLOCK)
2846				pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
2847			pmr->mr_numsrc = htons(rsrcs);
2848			/*
2849			 * Count the new group record, and enqueue this
2850			 * packet if it wasn't already queued.
2851			 */
2852			m->m_pkthdr.PH_vt.vt_nrecs++;
2853			if (m != m0)
2854				mbufq_enqueue(mq, m);
2855			nbytes += npbytes;
2856		} while (nims != NULL);
2857		drt |= crt;
2858		crt = (~crt & REC_FULL);
2859	}
2860
2861	CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__,
2862	    nallow, nblock);
2863
2864	return (nbytes);
2865}
2866
2867static int
2868mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq)
2869{
2870	struct mbufq	*gq;
2871	struct mbuf	*m;		/* pending state-change */
2872	struct mbuf	*m0;		/* copy of pending state-change */
2873	struct mbuf	*mt;		/* last state-change in packet */
2874	int		 docopy, domerge;
2875	u_int		 recslen;
2876
2877	docopy = 0;
2878	domerge = 0;
2879	recslen = 0;
2880
2881	IN6_MULTI_LOCK_ASSERT();
2882	MLD_LOCK_ASSERT();
2883
2884	/*
2885	 * If there are further pending retransmissions, make a writable
2886	 * copy of each queued state-change message before merging.
2887	 */
2888	if (inm->in6m_scrv > 0)
2889		docopy = 1;
2890
2891	gq = &inm->in6m_scq;
2892#ifdef KTR
2893	if (mbufq_first(gq) == NULL) {
2894		CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty",
2895		    __func__, inm);
2896	}
2897#endif
2898
2899	m = mbufq_first(gq);
2900	while (m != NULL) {
2901		/*
2902		 * Only merge the report into the current packet if
2903		 * there is sufficient space to do so; an MLDv2 report
2904		 * packet may only contain 65,535 group records.
2905		 * Always use a simple mbuf chain concatentation to do this,
2906		 * as large state changes for single groups may have
2907		 * allocated clusters.
2908		 */
2909		domerge = 0;
2910		mt = mbufq_last(scq);
2911		if (mt != NULL) {
2912			recslen = m_length(m, NULL);
2913
2914			if ((mt->m_pkthdr.PH_vt.vt_nrecs +
2915			    m->m_pkthdr.PH_vt.vt_nrecs <=
2916			    MLD_V2_REPORT_MAXRECS) &&
2917			    (mt->m_pkthdr.len + recslen <=
2918			    (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
2919				domerge = 1;
2920		}
2921
2922		if (!domerge && mbufq_full(gq)) {
2923			CTR2(KTR_MLD,
2924			    "%s: outbound queue full, skipping whole packet %p",
2925			    __func__, m);
2926			mt = m->m_nextpkt;
2927			if (!docopy)
2928				m_freem(m);
2929			m = mt;
2930			continue;
2931		}
2932
2933		if (!docopy) {
2934			CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m);
2935			m0 = mbufq_dequeue(gq);
2936			m = m0->m_nextpkt;
2937		} else {
2938			CTR2(KTR_MLD, "%s: copying %p", __func__, m);
2939			m0 = m_dup(m, M_NOWAIT);
2940			if (m0 == NULL)
2941				return (ENOMEM);
2942			m0->m_nextpkt = NULL;
2943			m = m->m_nextpkt;
2944		}
2945
2946		if (!domerge) {
2947			CTR3(KTR_MLD, "%s: queueing %p to scq %p)",
2948			    __func__, m0, scq);
2949			mbufq_enqueue(scq, m0);
2950		} else {
2951			struct mbuf *mtl;	/* last mbuf of packet mt */
2952
2953			CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)",
2954			    __func__, m0, mt);
2955
2956			mtl = m_last(mt);
2957			m0->m_flags &= ~M_PKTHDR;
2958			mt->m_pkthdr.len += recslen;
2959			mt->m_pkthdr.PH_vt.vt_nrecs +=
2960			    m0->m_pkthdr.PH_vt.vt_nrecs;
2961
2962			mtl->m_next = m0;
2963		}
2964	}
2965
2966	return (0);
2967}
2968
2969/*
2970 * Respond to a pending MLDv2 General Query.
2971 */
2972static void
2973mld_v2_dispatch_general_query(struct mld_ifsoftc *mli)
2974{
2975	struct ifmultiaddr	*ifma;
2976	struct ifnet		*ifp;
2977	struct in6_multi	*inm;
2978	int			 retval;
2979
2980	IN6_MULTI_LOCK_ASSERT();
2981	MLD_LOCK_ASSERT();
2982
2983	KASSERT(mli->mli_version == MLD_VERSION_2,
2984	    ("%s: called when version %d", __func__, mli->mli_version));
2985
2986	/*
2987	 * Check that there are some packets queued. If so, send them first.
2988	 * For large number of groups the reply to general query can take
2989	 * many packets, we should finish sending them before starting of
2990	 * queuing the new reply.
2991	 */
2992	if (mbufq_len(&mli->mli_gq) != 0)
2993		goto send;
2994
2995	ifp = mli->mli_ifp;
2996
2997	IF_ADDR_RLOCK(ifp);
2998	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2999		if (ifma->ifma_addr->sa_family != AF_INET6 ||
3000		    ifma->ifma_protospec == NULL)
3001			continue;
3002
3003		inm = (struct in6_multi *)ifma->ifma_protospec;
3004		KASSERT(ifp == inm->in6m_ifp,
3005		    ("%s: inconsistent ifp", __func__));
3006
3007		switch (inm->in6m_state) {
3008		case MLD_NOT_MEMBER:
3009		case MLD_SILENT_MEMBER:
3010			break;
3011		case MLD_REPORTING_MEMBER:
3012		case MLD_IDLE_MEMBER:
3013		case MLD_LAZY_MEMBER:
3014		case MLD_SLEEPING_MEMBER:
3015		case MLD_AWAKENING_MEMBER:
3016			inm->in6m_state = MLD_REPORTING_MEMBER;
3017			retval = mld_v2_enqueue_group_record(&mli->mli_gq,
3018			    inm, 0, 0, 0, 0);
3019			CTR2(KTR_MLD, "%s: enqueue record = %d",
3020			    __func__, retval);
3021			break;
3022		case MLD_G_QUERY_PENDING_MEMBER:
3023		case MLD_SG_QUERY_PENDING_MEMBER:
3024		case MLD_LEAVING_MEMBER:
3025			break;
3026		}
3027	}
3028	IF_ADDR_RUNLOCK(ifp);
3029
3030send:
3031	mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST);
3032
3033	/*
3034	 * Slew transmission of bursts over 500ms intervals.
3035	 */
3036	if (mbufq_first(&mli->mli_gq) != NULL) {
3037		mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
3038		    MLD_RESPONSE_BURST_INTERVAL);
3039		V_interface_timers_running6 = 1;
3040	}
3041}
3042
3043/*
3044 * Transmit the next pending message in the output queue.
3045 *
3046 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis.
3047 * MRT: Nothing needs to be done, as MLD traffic is always local to
3048 * a link and uses a link-scope multicast address.
3049 */
3050static void
3051mld_dispatch_packet(struct mbuf *m)
3052{
3053	struct ip6_moptions	 im6o;
3054	struct ifnet		*ifp;
3055	struct ifnet		*oifp;
3056	struct mbuf		*m0;
3057	struct mbuf		*md;
3058	struct ip6_hdr		*ip6;
3059	struct mld_hdr		*mld;
3060	int			 error;
3061	int			 off;
3062	int			 type;
3063	uint32_t		 ifindex;
3064
3065	CTR2(KTR_MLD, "%s: transmit %p", __func__, m);
3066
3067	/*
3068	 * Set VNET image pointer from enqueued mbuf chain
3069	 * before doing anything else. Whilst we use interface
3070	 * indexes to guard against interface detach, they are
3071	 * unique to each VIMAGE and must be retrieved.
3072	 */
3073	ifindex = mld_restore_context(m);
3074
3075	/*
3076	 * Check if the ifnet still exists. This limits the scope of
3077	 * any race in the absence of a global ifp lock for low cost
3078	 * (an array lookup).
3079	 */
3080	ifp = ifnet_byindex(ifindex);
3081	if (ifp == NULL) {
3082		CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.",
3083		    __func__, m, ifindex);
3084		m_freem(m);
3085		IP6STAT_INC(ip6s_noroute);
3086		goto out;
3087	}
3088
3089	im6o.im6o_multicast_hlim  = 1;
3090	im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL);
3091	im6o.im6o_multicast_ifp = ifp;
3092
3093	if (m->m_flags & M_MLDV1) {
3094		m0 = m;
3095	} else {
3096		m0 = mld_v2_encap_report(ifp, m);
3097		if (m0 == NULL) {
3098			CTR2(KTR_MLD, "%s: dropped %p", __func__, m);
3099			IP6STAT_INC(ip6s_odropped);
3100			goto out;
3101		}
3102	}
3103
3104	mld_scrub_context(m0);
3105	m_clrprotoflags(m);
3106	m0->m_pkthdr.rcvif = V_loif;
3107
3108	ip6 = mtod(m0, struct ip6_hdr *);
3109#if 0
3110	(void)in6_setscope(&ip6->ip6_dst, ifp, NULL);	/* XXX LOR */
3111#else
3112	/*
3113	 * XXX XXX Break some KPI rules to prevent an LOR which would
3114	 * occur if we called in6_setscope() at transmission.
3115	 * See comments at top of file.
3116	 */
3117	MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index);
3118#endif
3119
3120	/*
3121	 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3122	 * so we can bump the stats.
3123	 */
3124	md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
3125	mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
3126	type = mld->mld_type;
3127
3128	error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o,
3129	    &oifp, NULL);
3130	if (error) {
3131		CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error);
3132		goto out;
3133	}
3134	ICMP6STAT_INC(icp6s_outhist[type]);
3135	if (oifp != NULL) {
3136		icmp6_ifstat_inc(oifp, ifs6_out_msg);
3137		switch (type) {
3138		case MLD_LISTENER_REPORT:
3139		case MLDV2_LISTENER_REPORT:
3140			icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
3141			break;
3142		case MLD_LISTENER_DONE:
3143			icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
3144			break;
3145		}
3146	}
3147out:
3148	return;
3149}
3150
3151/*
3152 * Encapsulate an MLDv2 report.
3153 *
3154 * KAME IPv6 requires that hop-by-hop options be passed separately,
3155 * and that the IPv6 header be prepended in a separate mbuf.
3156 *
3157 * Returns a pointer to the new mbuf chain head, or NULL if the
3158 * allocation failed.
3159 */
3160static struct mbuf *
3161mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
3162{
3163	struct mbuf		*mh;
3164	struct mldv2_report	*mld;
3165	struct ip6_hdr		*ip6;
3166	struct in6_ifaddr	*ia;
3167	int			 mldreclen;
3168
3169	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
3170	KASSERT((m->m_flags & M_PKTHDR),
3171	    ("%s: mbuf chain %p is !M_PKTHDR", __func__, m));
3172
3173	/*
3174	 * RFC3590: OK to send as :: or tentative during DAD.
3175	 */
3176	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
3177	if (ia == NULL)
3178		CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__);
3179
3180	mh = m_gethdr(M_NOWAIT, MT_DATA);
3181	if (mh == NULL) {
3182		if (ia != NULL)
3183			ifa_free(&ia->ia_ifa);
3184		m_freem(m);
3185		return (NULL);
3186	}
3187	M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
3188
3189	mldreclen = m_length(m, NULL);
3190	CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen);
3191
3192	mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
3193	mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
3194	    sizeof(struct mldv2_report) + mldreclen;
3195
3196	ip6 = mtod(mh, struct ip6_hdr *);
3197	ip6->ip6_flow = 0;
3198	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3199	ip6->ip6_vfc |= IPV6_VERSION;
3200	ip6->ip6_nxt = IPPROTO_ICMPV6;
3201	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
3202	if (ia != NULL)
3203		ifa_free(&ia->ia_ifa);
3204	ip6->ip6_dst = in6addr_linklocal_allv2routers;
3205	/* scope ID will be set in netisr */
3206
3207	mld = (struct mldv2_report *)(ip6 + 1);
3208	mld->mld_type = MLDV2_LISTENER_REPORT;
3209	mld->mld_code = 0;
3210	mld->mld_cksum = 0;
3211	mld->mld_v2_reserved = 0;
3212	mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs);
3213	m->m_pkthdr.PH_vt.vt_nrecs = 0;
3214
3215	mh->m_next = m;
3216	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
3217	    sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
3218	return (mh);
3219}
3220
3221#ifdef KTR
3222static char *
3223mld_rec_type_to_str(const int type)
3224{
3225
3226	switch (type) {
3227		case MLD_CHANGE_TO_EXCLUDE_MODE:
3228			return "TO_EX";
3229			break;
3230		case MLD_CHANGE_TO_INCLUDE_MODE:
3231			return "TO_IN";
3232			break;
3233		case MLD_MODE_IS_EXCLUDE:
3234			return "MODE_EX";
3235			break;
3236		case MLD_MODE_IS_INCLUDE:
3237			return "MODE_IN";
3238			break;
3239		case MLD_ALLOW_NEW_SOURCES:
3240			return "ALLOW_NEW";
3241			break;
3242		case MLD_BLOCK_OLD_SOURCES:
3243			return "BLOCK_OLD";
3244			break;
3245		default:
3246			break;
3247	}
3248	return "unknown";
3249}
3250#endif
3251
3252static void
3253mld_init(void *unused __unused)
3254{
3255
3256	CTR1(KTR_MLD, "%s: initializing", __func__);
3257	MLD_LOCK_INIT();
3258
3259	ip6_initpktopts(&mld_po);
3260	mld_po.ip6po_hlim = 1;
3261	mld_po.ip6po_hbh = &mld_ra.hbh;
3262	mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
3263	mld_po.ip6po_flags = IP6PO_DONTFRAG;
3264}
3265SYSINIT(mld_init, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_init, NULL);
3266
3267static void
3268mld_uninit(void *unused __unused)
3269{
3270
3271	CTR1(KTR_MLD, "%s: tearing down", __func__);
3272	MLD_LOCK_DESTROY();
3273}
3274SYSUNINIT(mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_uninit, NULL);
3275
3276static void
3277vnet_mld_init(const void *unused __unused)
3278{
3279
3280	CTR1(KTR_MLD, "%s: initializing", __func__);
3281
3282	LIST_INIT(&V_mli_head);
3283}
3284VNET_SYSINIT(vnet_mld_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_init,
3285    NULL);
3286
3287static void
3288vnet_mld_uninit(const void *unused __unused)
3289{
3290
3291	/* This can happen if we shutdown the network stack. */
3292	CTR1(KTR_MLD, "%s: tearing down", __func__);
3293}
3294VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_uninit,
3295    NULL);
3296
3297static int
3298mld_modevent(module_t mod, int type, void *unused __unused)
3299{
3300
3301    switch (type) {
3302    case MOD_LOAD:
3303    case MOD_UNLOAD:
3304	break;
3305    default:
3306	return (EOPNOTSUPP);
3307    }
3308    return (0);
3309}
3310
3311static moduledata_t mld_mod = {
3312    "mld",
3313    mld_modevent,
3314    0
3315};
3316DECLARE_MODULE(mld, mld_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY);
3317