tcp_timewait.c revision 96972
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 96972 2002-05-20 05:41:09Z tanimura $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#define _IP_VHL
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#ifdef INET6
68#include <netinet/ip6.h>
69#endif
70#include <netinet/in_pcb.h>
71#ifdef INET6
72#include <netinet6/in6_pcb.h>
73#endif
74#include <netinet/in_var.h>
75#include <netinet/ip_var.h>
76#ifdef INET6
77#include <netinet6/ip6_var.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#include <machine/in_cksum.h>
101#include <sys/md5.h>
102
103int 	tcp_mssdflt = TCP_MSS;
104SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
105    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
106
107#ifdef INET6
108int	tcp_v6mssdflt = TCP6_MSS;
109SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
110	CTLFLAG_RW, &tcp_v6mssdflt , 0,
111	"Default TCP Maximum Segment Size for IPv6");
112#endif
113
114#if 0
115static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
116SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
117    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
118#endif
119
120int	tcp_do_rfc1323 = 1;
121SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
122    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
123
124int	tcp_do_rfc1644 = 0;
125SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
126    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
127
128static int	tcp_tcbhashsize = 0;
129SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
130     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
131
132static int	do_tcpdrain = 1;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
134     "Enable tcp_drain routine for extra help when low on mbufs");
135
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
137    &tcbinfo.ipi_count, 0, "Number of active PCBs");
138
139static int	icmp_may_rst = 1;
140SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
141    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
142
143static int	tcp_isn_reseed_interval = 0;
144SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
145    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
146
147static void	tcp_cleartaocache(void);
148static void	tcp_notify(struct inpcb *, int);
149
150/*
151 * Target size of TCP PCB hash tables. Must be a power of two.
152 *
153 * Note that this can be overridden by the kernel environment
154 * variable net.inet.tcp.tcbhashsize
155 */
156#ifndef TCBHASHSIZE
157#define TCBHASHSIZE	512
158#endif
159
160/*
161 * This is the actual shape of what we allocate using the zone
162 * allocator.  Doing it this way allows us to protect both structures
163 * using the same generation count, and also eliminates the overhead
164 * of allocating tcpcbs separately.  By hiding the structure here,
165 * we avoid changing most of the rest of the code (although it needs
166 * to be changed, eventually, for greater efficiency).
167 */
168#define	ALIGNMENT	32
169#define	ALIGNM1		(ALIGNMENT - 1)
170struct	inp_tp {
171	union {
172		struct	inpcb inp;
173		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
174	} inp_tp_u;
175	struct	tcpcb tcb;
176	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
177	struct	callout inp_tp_delack;
178};
179#undef ALIGNMENT
180#undef ALIGNM1
181
182/*
183 * Tcp initialization
184 */
185void
186tcp_init()
187{
188	int hashsize = TCBHASHSIZE;
189
190	tcp_ccgen = 1;
191	tcp_cleartaocache();
192
193	tcp_delacktime = TCPTV_DELACK;
194	tcp_keepinit = TCPTV_KEEP_INIT;
195	tcp_keepidle = TCPTV_KEEP_IDLE;
196	tcp_keepintvl = TCPTV_KEEPINTVL;
197	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
198	tcp_msl = TCPTV_MSL;
199
200	LIST_INIT(&tcb);
201	tcbinfo.listhead = &tcb;
202	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
203	if (!powerof2(hashsize)) {
204		printf("WARNING: TCB hash size not a power of 2\n");
205		hashsize = 512; /* safe default */
206	}
207	tcp_tcbhashsize = hashsize;
208	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
209	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
210					&tcbinfo.porthashmask);
211	tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp),
212	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
213	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
214#ifdef INET6
215#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
216#else /* INET6 */
217#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
218#endif /* INET6 */
219	if (max_protohdr < TCP_MINPROTOHDR)
220		max_protohdr = TCP_MINPROTOHDR;
221	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
222		panic("tcp_init");
223#undef TCP_MINPROTOHDR
224
225	syncache_init();
226}
227
228/*
229 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
230 * tcp_template used to store this data in mbufs, but we now recopy it out
231 * of the tcpcb each time to conserve mbufs.
232 */
233void
234tcp_fillheaders(tp, ip_ptr, tcp_ptr)
235	struct tcpcb *tp;
236	void *ip_ptr;
237	void *tcp_ptr;
238{
239	struct inpcb *inp = tp->t_inpcb;
240	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
241
242#ifdef INET6
243	if ((inp->inp_vflag & INP_IPV6) != 0) {
244		struct ip6_hdr *ip6;
245
246		ip6 = (struct ip6_hdr *)ip_ptr;
247		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
248			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
249		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
250			(IPV6_VERSION & IPV6_VERSION_MASK);
251		ip6->ip6_nxt = IPPROTO_TCP;
252		ip6->ip6_plen = sizeof(struct tcphdr);
253		ip6->ip6_src = inp->in6p_laddr;
254		ip6->ip6_dst = inp->in6p_faddr;
255		tcp_hdr->th_sum = 0;
256	} else
257#endif
258	{
259	struct ip *ip = (struct ip *) ip_ptr;
260
261	ip->ip_vhl = IP_VHL_BORING;
262	ip->ip_tos = 0;
263	ip->ip_len = 0;
264	ip->ip_id = 0;
265	ip->ip_off = 0;
266	ip->ip_ttl = 0;
267	ip->ip_sum = 0;
268	ip->ip_p = IPPROTO_TCP;
269	ip->ip_src = inp->inp_laddr;
270	ip->ip_dst = inp->inp_faddr;
271	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
272		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
273	}
274
275	tcp_hdr->th_sport = inp->inp_lport;
276	tcp_hdr->th_dport = inp->inp_fport;
277	tcp_hdr->th_seq = 0;
278	tcp_hdr->th_ack = 0;
279	tcp_hdr->th_x2 = 0;
280	tcp_hdr->th_off = 5;
281	tcp_hdr->th_flags = 0;
282	tcp_hdr->th_win = 0;
283	tcp_hdr->th_urp = 0;
284}
285
286/*
287 * Create template to be used to send tcp packets on a connection.
288 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
289 * use for this function is in keepalives, which use tcp_respond.
290 */
291struct tcptemp *
292tcp_maketemplate(tp)
293	struct tcpcb *tp;
294{
295	struct mbuf *m;
296	struct tcptemp *n;
297
298	m = m_get(M_DONTWAIT, MT_HEADER);
299	if (m == NULL)
300		return (0);
301	m->m_len = sizeof(struct tcptemp);
302	n = mtod(m, struct tcptemp *);
303
304	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
305	return (n);
306}
307
308/*
309 * Send a single message to the TCP at address specified by
310 * the given TCP/IP header.  If m == 0, then we make a copy
311 * of the tcpiphdr at ti and send directly to the addressed host.
312 * This is used to force keep alive messages out using the TCP
313 * template for a connection.  If flags are given then we send
314 * a message back to the TCP which originated the * segment ti,
315 * and discard the mbuf containing it and any other attached mbufs.
316 *
317 * In any case the ack and sequence number of the transmitted
318 * segment are as specified by the parameters.
319 *
320 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
321 */
322void
323tcp_respond(tp, ipgen, th, m, ack, seq, flags)
324	struct tcpcb *tp;
325	void *ipgen;
326	register struct tcphdr *th;
327	register struct mbuf *m;
328	tcp_seq ack, seq;
329	int flags;
330{
331	register int tlen;
332	int win = 0;
333	struct route *ro = 0;
334	struct route sro;
335	struct ip *ip;
336	struct tcphdr *nth;
337#ifdef INET6
338	struct route_in6 *ro6 = 0;
339	struct route_in6 sro6;
340	struct ip6_hdr *ip6;
341	int isipv6;
342#endif /* INET6 */
343	int ipflags = 0;
344
345#ifdef INET6
346	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
347	ip6 = ipgen;
348#endif /* INET6 */
349	ip = ipgen;
350
351	if (tp) {
352		if (!(flags & TH_RST)) {
353			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
354			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
355				win = (long)TCP_MAXWIN << tp->rcv_scale;
356		}
357#ifdef INET6
358		if (isipv6)
359			ro6 = &tp->t_inpcb->in6p_route;
360		else
361#endif /* INET6 */
362		ro = &tp->t_inpcb->inp_route;
363	} else {
364#ifdef INET6
365		if (isipv6) {
366			ro6 = &sro6;
367			bzero(ro6, sizeof *ro6);
368		} else
369#endif /* INET6 */
370	      {
371		ro = &sro;
372		bzero(ro, sizeof *ro);
373	      }
374	}
375	if (m == 0) {
376		m = m_gethdr(M_DONTWAIT, MT_HEADER);
377		if (m == NULL)
378			return;
379		tlen = 0;
380		m->m_data += max_linkhdr;
381#ifdef INET6
382		if (isipv6) {
383			bcopy((caddr_t)ip6, mtod(m, caddr_t),
384			      sizeof(struct ip6_hdr));
385			ip6 = mtod(m, struct ip6_hdr *);
386			nth = (struct tcphdr *)(ip6 + 1);
387		} else
388#endif /* INET6 */
389	      {
390		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
391		ip = mtod(m, struct ip *);
392		nth = (struct tcphdr *)(ip + 1);
393	      }
394		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
395		flags = TH_ACK;
396	} else {
397		m_freem(m->m_next);
398		m->m_next = 0;
399		m->m_data = (caddr_t)ipgen;
400		/* m_len is set later */
401		tlen = 0;
402#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
403#ifdef INET6
404		if (isipv6) {
405			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
406			nth = (struct tcphdr *)(ip6 + 1);
407		} else
408#endif /* INET6 */
409	      {
410		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
411		nth = (struct tcphdr *)(ip + 1);
412	      }
413		if (th != nth) {
414			/*
415			 * this is usually a case when an extension header
416			 * exists between the IPv6 header and the
417			 * TCP header.
418			 */
419			nth->th_sport = th->th_sport;
420			nth->th_dport = th->th_dport;
421		}
422		xchg(nth->th_dport, nth->th_sport, n_short);
423#undef xchg
424	}
425#ifdef INET6
426	if (isipv6) {
427		ip6->ip6_flow = 0;
428		ip6->ip6_vfc = IPV6_VERSION;
429		ip6->ip6_nxt = IPPROTO_TCP;
430		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
431						tlen));
432		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
433	} else
434#endif
435      {
436	tlen += sizeof (struct tcpiphdr);
437	ip->ip_len = tlen;
438	ip->ip_ttl = ip_defttl;
439      }
440	m->m_len = tlen;
441	m->m_pkthdr.len = tlen;
442	m->m_pkthdr.rcvif = (struct ifnet *) 0;
443	nth->th_seq = htonl(seq);
444	nth->th_ack = htonl(ack);
445	nth->th_x2 = 0;
446	nth->th_off = sizeof (struct tcphdr) >> 2;
447	nth->th_flags = flags;
448	if (tp)
449		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
450	else
451		nth->th_win = htons((u_short)win);
452	nth->th_urp = 0;
453#ifdef INET6
454	if (isipv6) {
455		nth->th_sum = 0;
456		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
457					sizeof(struct ip6_hdr),
458					tlen - sizeof(struct ip6_hdr));
459		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
460					       ro6 && ro6->ro_rt ?
461					       ro6->ro_rt->rt_ifp :
462					       NULL);
463	} else
464#endif /* INET6 */
465      {
466        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
467	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
468        m->m_pkthdr.csum_flags = CSUM_TCP;
469        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
470      }
471#ifdef TCPDEBUG
472	if (tp == NULL)
473		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
474	else {
475		SOCK_LOCK(tp->t_inpcb->inp_socket);
476		if ((tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
477			SOCK_UNLOCK(tp->t_inpcb->inp_socket);
478			tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
479		} else
480			SOCK_UNLOCK(tp->t_inpcb->inp_socket);
481	}
482#endif
483#ifdef IPSEC
484	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
485		m_freem(m);
486		return;
487	}
488#endif
489#ifdef INET6
490	if (isipv6) {
491		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
492		if (ro6 == &sro6 && ro6->ro_rt) {
493			RTFREE(ro6->ro_rt);
494			ro6->ro_rt = NULL;
495		}
496	} else
497#endif /* INET6 */
498      {
499	(void) ip_output(m, NULL, ro, ipflags, NULL);
500	if (ro == &sro && ro->ro_rt) {
501		RTFREE(ro->ro_rt);
502		ro->ro_rt = NULL;
503	}
504      }
505}
506
507/*
508 * Create a new TCP control block, making an
509 * empty reassembly queue and hooking it to the argument
510 * protocol control block.  The `inp' parameter must have
511 * come from the zone allocator set up in tcp_init().
512 */
513struct tcpcb *
514tcp_newtcpcb(inp)
515	struct inpcb *inp;
516{
517	struct inp_tp *it;
518	register struct tcpcb *tp;
519#ifdef INET6
520	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
521#endif /* INET6 */
522
523	it = (struct inp_tp *)inp;
524	tp = &it->tcb;
525	bzero((char *) tp, sizeof(struct tcpcb));
526	LIST_INIT(&tp->t_segq);
527	tp->t_maxseg = tp->t_maxopd =
528#ifdef INET6
529		isipv6 ? tcp_v6mssdflt :
530#endif /* INET6 */
531		tcp_mssdflt;
532
533	/* Set up our timeouts. */
534	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
535	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
536	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
537	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
538	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
539
540	if (tcp_do_rfc1323)
541		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
542	if (tcp_do_rfc1644)
543		tp->t_flags |= TF_REQ_CC;
544	tp->t_inpcb = inp;	/* XXX */
545	/*
546	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
547	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
548	 * reasonable initial retransmit time.
549	 */
550	tp->t_srtt = TCPTV_SRTTBASE;
551	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
552	tp->t_rttmin = TCPTV_MIN;
553	tp->t_rxtcur = TCPTV_RTOBASE;
554	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
555	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
556	tp->t_rcvtime = ticks;
557        /*
558	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
559	 * because the socket may be bound to an IPv6 wildcard address,
560	 * which may match an IPv4-mapped IPv6 address.
561	 */
562	inp->inp_ip_ttl = ip_defttl;
563	inp->inp_ppcb = (caddr_t)tp;
564	return (tp);		/* XXX */
565}
566
567/*
568 * Drop a TCP connection, reporting
569 * the specified error.  If connection is synchronized,
570 * then send a RST to peer.
571 */
572struct tcpcb *
573tcp_drop(tp, errno)
574	register struct tcpcb *tp;
575	int errno;
576{
577	struct socket *so = tp->t_inpcb->inp_socket;
578
579	if (TCPS_HAVERCVDSYN(tp->t_state)) {
580		tp->t_state = TCPS_CLOSED;
581		(void) tcp_output(tp);
582		tcpstat.tcps_drops++;
583	} else
584		tcpstat.tcps_conndrops++;
585	if (errno == ETIMEDOUT && tp->t_softerror)
586		errno = tp->t_softerror;
587	so->so_error = errno;
588	return (tcp_close(tp));
589}
590
591/*
592 * Close a TCP control block:
593 *	discard all space held by the tcp
594 *	discard internet protocol block
595 *	wake up any sleepers
596 */
597struct tcpcb *
598tcp_close(tp)
599	register struct tcpcb *tp;
600{
601	register struct tseg_qent *q;
602	struct inpcb *inp = tp->t_inpcb;
603	struct socket *so = inp->inp_socket;
604#ifdef INET6
605	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
606#endif /* INET6 */
607	register struct rtentry *rt;
608	int dosavessthresh;
609
610	/*
611	 * Make sure that all of our timers are stopped before we
612	 * delete the PCB.
613	 */
614	callout_stop(tp->tt_rexmt);
615	callout_stop(tp->tt_persist);
616	callout_stop(tp->tt_keep);
617	callout_stop(tp->tt_2msl);
618	callout_stop(tp->tt_delack);
619
620	/*
621	 * If we got enough samples through the srtt filter,
622	 * save the rtt and rttvar in the routing entry.
623	 * 'Enough' is arbitrarily defined as the 16 samples.
624	 * 16 samples is enough for the srtt filter to converge
625	 * to within 5% of the correct value; fewer samples and
626	 * we could save a very bogus rtt.
627	 *
628	 * Don't update the default route's characteristics and don't
629	 * update anything that the user "locked".
630	 */
631	if (tp->t_rttupdated >= 16) {
632		register u_long i = 0;
633#ifdef INET6
634		if (isipv6) {
635			struct sockaddr_in6 *sin6;
636
637			if ((rt = inp->in6p_route.ro_rt) == NULL)
638				goto no_valid_rt;
639			sin6 = (struct sockaddr_in6 *)rt_key(rt);
640			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
641				goto no_valid_rt;
642		}
643		else
644#endif /* INET6 */
645		if ((rt = inp->inp_route.ro_rt) == NULL ||
646		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
647		    == INADDR_ANY)
648			goto no_valid_rt;
649
650		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
651			i = tp->t_srtt *
652			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
653			if (rt->rt_rmx.rmx_rtt && i)
654				/*
655				 * filter this update to half the old & half
656				 * the new values, converting scale.
657				 * See route.h and tcp_var.h for a
658				 * description of the scaling constants.
659				 */
660				rt->rt_rmx.rmx_rtt =
661				    (rt->rt_rmx.rmx_rtt + i) / 2;
662			else
663				rt->rt_rmx.rmx_rtt = i;
664			tcpstat.tcps_cachedrtt++;
665		}
666		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
667			i = tp->t_rttvar *
668			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
669			if (rt->rt_rmx.rmx_rttvar && i)
670				rt->rt_rmx.rmx_rttvar =
671				    (rt->rt_rmx.rmx_rttvar + i) / 2;
672			else
673				rt->rt_rmx.rmx_rttvar = i;
674			tcpstat.tcps_cachedrttvar++;
675		}
676		/*
677		 * The old comment here said:
678		 * update the pipelimit (ssthresh) if it has been updated
679		 * already or if a pipesize was specified & the threshhold
680		 * got below half the pipesize.  I.e., wait for bad news
681		 * before we start updating, then update on both good
682		 * and bad news.
683		 *
684		 * But we want to save the ssthresh even if no pipesize is
685		 * specified explicitly in the route, because such
686		 * connections still have an implicit pipesize specified
687		 * by the global tcp_sendspace.  In the absence of a reliable
688		 * way to calculate the pipesize, it will have to do.
689		 */
690		i = tp->snd_ssthresh;
691		if (rt->rt_rmx.rmx_sendpipe != 0)
692			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
693		else
694			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
695		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
696		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
697		    || dosavessthresh) {
698			/*
699			 * convert the limit from user data bytes to
700			 * packets then to packet data bytes.
701			 */
702			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
703			if (i < 2)
704				i = 2;
705			i *= (u_long)(tp->t_maxseg +
706#ifdef INET6
707				      (isipv6 ? sizeof (struct ip6_hdr) +
708					       sizeof (struct tcphdr) :
709#endif
710				       sizeof (struct tcpiphdr)
711#ifdef INET6
712				       )
713#endif
714				      );
715			if (rt->rt_rmx.rmx_ssthresh)
716				rt->rt_rmx.rmx_ssthresh =
717				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
718			else
719				rt->rt_rmx.rmx_ssthresh = i;
720			tcpstat.tcps_cachedssthresh++;
721		}
722	}
723    no_valid_rt:
724	/* free the reassembly queue, if any */
725	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
726		LIST_REMOVE(q, tqe_q);
727		m_freem(q->tqe_m);
728		FREE(q, M_TSEGQ);
729	}
730	inp->inp_ppcb = NULL;
731	SOCK_LOCK(so);
732	soisdisconnected(so);
733	SOCK_UNLOCK(so);
734#ifdef INET6
735	if (INP_CHECK_SOCKAF(so, AF_INET6))
736		in6_pcbdetach(inp);
737	else
738#endif /* INET6 */
739	in_pcbdetach(inp);
740	tcpstat.tcps_closed++;
741	return ((struct tcpcb *)0);
742}
743
744void
745tcp_drain()
746{
747	if (do_tcpdrain)
748	{
749		struct inpcb *inpb;
750		struct tcpcb *tcpb;
751		struct tseg_qent *te;
752
753	/*
754	 * Walk the tcpbs, if existing, and flush the reassembly queue,
755	 * if there is one...
756	 * XXX: The "Net/3" implementation doesn't imply that the TCP
757	 *      reassembly queue should be flushed, but in a situation
758	 * 	where we're really low on mbufs, this is potentially
759	 *  	usefull.
760	 */
761		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
762			if ((tcpb = intotcpcb(inpb))) {
763				while ((te = LIST_FIRST(&tcpb->t_segq))
764			            != NULL) {
765					LIST_REMOVE(te, tqe_q);
766					m_freem(te->tqe_m);
767					FREE(te, M_TSEGQ);
768				}
769			}
770		}
771	}
772}
773
774/*
775 * Notify a tcp user of an asynchronous error;
776 * store error as soft error, but wake up user
777 * (for now, won't do anything until can select for soft error).
778 *
779 * Do not wake up user since there currently is no mechanism for
780 * reporting soft errors (yet - a kqueue filter may be added).
781 */
782static void
783tcp_notify(inp, error)
784	struct inpcb *inp;
785	int error;
786{
787	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
788
789	/*
790	 * Ignore some errors if we are hooked up.
791	 * If connection hasn't completed, has retransmitted several times,
792	 * and receives a second error, give up now.  This is better
793	 * than waiting a long time to establish a connection that
794	 * can never complete.
795	 */
796	if (tp->t_state == TCPS_ESTABLISHED &&
797	     (error == EHOSTUNREACH || error == ENETUNREACH ||
798	      error == EHOSTDOWN)) {
799		return;
800	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
801	    tp->t_softerror)
802		tcp_drop(tp, error);
803	else
804		tp->t_softerror = error;
805#if 0
806	SOCK_LOCK(so);
807	wakeup((caddr_t) &so->so_timeo);
808	sorwakeup(so);
809	sowwakeup(so);
810	SOCK_UNLOCK(so);
811#endif
812}
813
814static int
815tcp_pcblist(SYSCTL_HANDLER_ARGS)
816{
817	int error, i, n, s;
818	struct inpcb *inp, **inp_list;
819	inp_gen_t gencnt;
820	struct xinpgen xig;
821
822	/*
823	 * The process of preparing the TCB list is too time-consuming and
824	 * resource-intensive to repeat twice on every request.
825	 */
826	if (req->oldptr == 0) {
827		n = tcbinfo.ipi_count;
828		req->oldidx = 2 * (sizeof xig)
829			+ (n + n/8) * sizeof(struct xtcpcb);
830		return 0;
831	}
832
833	if (req->newptr != 0)
834		return EPERM;
835
836	/*
837	 * OK, now we're committed to doing something.
838	 */
839	s = splnet();
840	gencnt = tcbinfo.ipi_gencnt;
841	n = tcbinfo.ipi_count;
842	splx(s);
843
844	xig.xig_len = sizeof xig;
845	xig.xig_count = n;
846	xig.xig_gen = gencnt;
847	xig.xig_sogen = so_gencnt;
848	error = SYSCTL_OUT(req, &xig, sizeof xig);
849	if (error)
850		return error;
851
852	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
853	if (inp_list == 0)
854		return ENOMEM;
855
856	s = splnet();
857	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
858	     inp = LIST_NEXT(inp, inp_list)) {
859		if (inp->inp_gencnt <= gencnt) {
860			if (cr_canseesocket(req->td->td_ucred,
861			    inp->inp_socket))
862				continue;
863			inp_list[i++] = inp;
864		}
865	}
866	splx(s);
867	n = i;
868
869	error = 0;
870	for (i = 0; i < n; i++) {
871		inp = inp_list[i];
872		if (inp->inp_gencnt <= gencnt) {
873			struct xtcpcb xt;
874			caddr_t inp_ppcb;
875			xt.xt_len = sizeof xt;
876			/* XXX should avoid extra copy */
877			bcopy(inp, &xt.xt_inp, sizeof *inp);
878			inp_ppcb = inp->inp_ppcb;
879			if (inp_ppcb != NULL)
880				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
881			else
882				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
883			if (inp->inp_socket)
884				sotoxsocket(inp->inp_socket, &xt.xt_socket);
885			error = SYSCTL_OUT(req, &xt, sizeof xt);
886		}
887	}
888	if (!error) {
889		/*
890		 * Give the user an updated idea of our state.
891		 * If the generation differs from what we told
892		 * her before, she knows that something happened
893		 * while we were processing this request, and it
894		 * might be necessary to retry.
895		 */
896		s = splnet();
897		xig.xig_gen = tcbinfo.ipi_gencnt;
898		xig.xig_sogen = so_gencnt;
899		xig.xig_count = tcbinfo.ipi_count;
900		splx(s);
901		error = SYSCTL_OUT(req, &xig, sizeof xig);
902	}
903	free(inp_list, M_TEMP);
904	return error;
905}
906
907SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
908	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
909
910static int
911tcp_getcred(SYSCTL_HANDLER_ARGS)
912{
913	struct xucred xuc;
914	struct sockaddr_in addrs[2];
915	struct inpcb *inp;
916	int error, s;
917
918	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
919	if (error)
920		return (error);
921	error = SYSCTL_IN(req, addrs, sizeof(addrs));
922	if (error)
923		return (error);
924	s = splnet();
925	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
926	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
927	if (inp == NULL || inp->inp_socket == NULL) {
928		error = ENOENT;
929		goto out;
930	}
931	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
932	if (error)
933		goto out;
934	cru2x(inp->inp_socket->so_cred, &xuc);
935	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
936out:
937	splx(s);
938	return (error);
939}
940
941SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
942    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
943    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
944
945#ifdef INET6
946static int
947tcp6_getcred(SYSCTL_HANDLER_ARGS)
948{
949	struct xucred xuc;
950	struct sockaddr_in6 addrs[2];
951	struct inpcb *inp;
952	int error, s, mapped = 0;
953
954	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
955	if (error)
956		return (error);
957	error = SYSCTL_IN(req, addrs, sizeof(addrs));
958	if (error)
959		return (error);
960	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
961		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
962			mapped = 1;
963		else
964			return (EINVAL);
965	}
966	s = splnet();
967	if (mapped == 1)
968		inp = in_pcblookup_hash(&tcbinfo,
969			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
970			addrs[1].sin6_port,
971			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
972			addrs[0].sin6_port,
973			0, NULL);
974	else
975		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
976				 addrs[1].sin6_port,
977				 &addrs[0].sin6_addr, addrs[0].sin6_port,
978				 0, NULL);
979	if (inp == NULL || inp->inp_socket == NULL) {
980		error = ENOENT;
981		goto out;
982	}
983	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
984	if (error)
985		goto out;
986	cru2x(inp->inp_socket->so_cred, &xuc);
987	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
988out:
989	splx(s);
990	return (error);
991}
992
993SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
994    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
995    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
996#endif
997
998
999void
1000tcp_ctlinput(cmd, sa, vip)
1001	int cmd;
1002	struct sockaddr *sa;
1003	void *vip;
1004{
1005	struct ip *ip = vip;
1006	struct tcphdr *th;
1007	struct in_addr faddr;
1008	struct inpcb *inp;
1009	struct tcpcb *tp;
1010	void (*notify)(struct inpcb *, int) = tcp_notify;
1011	tcp_seq icmp_seq;
1012	int s;
1013
1014	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1015	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1016		return;
1017
1018	if (cmd == PRC_QUENCH)
1019		notify = tcp_quench;
1020	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1021		cmd == PRC_UNREACH_PORT) && ip)
1022		notify = tcp_drop_syn_sent;
1023	else if (cmd == PRC_MSGSIZE)
1024		notify = tcp_mtudisc;
1025	else if (PRC_IS_REDIRECT(cmd)) {
1026		ip = 0;
1027		notify = in_rtchange;
1028	} else if (cmd == PRC_HOSTDEAD)
1029		ip = 0;
1030	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1031		return;
1032	if (ip) {
1033		s = splnet();
1034		th = (struct tcphdr *)((caddr_t)ip
1035				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1036		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1037		    ip->ip_src, th->th_sport, 0, NULL);
1038		if (inp != NULL && inp->inp_socket != NULL) {
1039			icmp_seq = htonl(th->th_seq);
1040			tp = intotcpcb(inp);
1041			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1042			    SEQ_LT(icmp_seq, tp->snd_max))
1043				(*notify)(inp, inetctlerrmap[cmd]);
1044		} else {
1045			struct in_conninfo inc;
1046
1047			inc.inc_fport = th->th_dport;
1048			inc.inc_lport = th->th_sport;
1049			inc.inc_faddr = faddr;
1050			inc.inc_laddr = ip->ip_src;
1051#ifdef INET6
1052			inc.inc_isipv6 = 0;
1053#endif
1054			syncache_unreach(&inc, th);
1055		}
1056		splx(s);
1057	} else
1058		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1059}
1060
1061#ifdef INET6
1062void
1063tcp6_ctlinput(cmd, sa, d)
1064	int cmd;
1065	struct sockaddr *sa;
1066	void *d;
1067{
1068	struct tcphdr th;
1069	void (*notify)(struct inpcb *, int) = tcp_notify;
1070	struct ip6_hdr *ip6;
1071	struct mbuf *m;
1072	struct ip6ctlparam *ip6cp = NULL;
1073	const struct sockaddr_in6 *sa6_src = NULL;
1074	int off;
1075	struct tcp_portonly {
1076		u_int16_t th_sport;
1077		u_int16_t th_dport;
1078	} *thp;
1079
1080	if (sa->sa_family != AF_INET6 ||
1081	    sa->sa_len != sizeof(struct sockaddr_in6))
1082		return;
1083
1084	if (cmd == PRC_QUENCH)
1085		notify = tcp_quench;
1086	else if (cmd == PRC_MSGSIZE)
1087		notify = tcp_mtudisc;
1088	else if (!PRC_IS_REDIRECT(cmd) &&
1089		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1090		return;
1091
1092	/* if the parameter is from icmp6, decode it. */
1093	if (d != NULL) {
1094		ip6cp = (struct ip6ctlparam *)d;
1095		m = ip6cp->ip6c_m;
1096		ip6 = ip6cp->ip6c_ip6;
1097		off = ip6cp->ip6c_off;
1098		sa6_src = ip6cp->ip6c_src;
1099	} else {
1100		m = NULL;
1101		ip6 = NULL;
1102		off = 0;	/* fool gcc */
1103		sa6_src = &sa6_any;
1104	}
1105
1106	if (ip6) {
1107		struct in_conninfo inc;
1108		/*
1109		 * XXX: We assume that when IPV6 is non NULL,
1110		 * M and OFF are valid.
1111		 */
1112
1113		/* check if we can safely examine src and dst ports */
1114		if (m->m_pkthdr.len < off + sizeof(*thp))
1115			return;
1116
1117		bzero(&th, sizeof(th));
1118		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1119
1120		in6_pcbnotify(&tcb, sa, th.th_dport,
1121		    (struct sockaddr *)ip6cp->ip6c_src,
1122		    th.th_sport, cmd, notify);
1123
1124		inc.inc_fport = th.th_dport;
1125		inc.inc_lport = th.th_sport;
1126		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1127		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1128		inc.inc_isipv6 = 1;
1129		syncache_unreach(&inc, &th);
1130	} else
1131		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1132			      0, cmd, notify);
1133}
1134#endif /* INET6 */
1135
1136
1137/*
1138 * Following is where TCP initial sequence number generation occurs.
1139 *
1140 * There are two places where we must use initial sequence numbers:
1141 * 1.  In SYN-ACK packets.
1142 * 2.  In SYN packets.
1143 *
1144 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1145 * tcp_syncache.c for details.
1146 *
1147 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1148 * depends on this property.  In addition, these ISNs should be
1149 * unguessable so as to prevent connection hijacking.  To satisfy
1150 * the requirements of this situation, the algorithm outlined in
1151 * RFC 1948 is used to generate sequence numbers.
1152 *
1153 * Implementation details:
1154 *
1155 * Time is based off the system timer, and is corrected so that it
1156 * increases by one megabyte per second.  This allows for proper
1157 * recycling on high speed LANs while still leaving over an hour
1158 * before rollover.
1159 *
1160 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1161 * between seeding of isn_secret.  This is normally set to zero,
1162 * as reseeding should not be necessary.
1163 *
1164 */
1165
1166#define ISN_BYTES_PER_SECOND 1048576
1167
1168u_char isn_secret[32];
1169int isn_last_reseed;
1170MD5_CTX isn_ctx;
1171
1172tcp_seq
1173tcp_new_isn(tp)
1174	struct tcpcb *tp;
1175{
1176	u_int32_t md5_buffer[4];
1177	tcp_seq new_isn;
1178
1179	/* Seed if this is the first use, reseed if requested. */
1180	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1181	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1182		< (u_int)ticks))) {
1183		read_random(&isn_secret, sizeof(isn_secret));
1184		isn_last_reseed = ticks;
1185	}
1186
1187	/* Compute the md5 hash and return the ISN. */
1188	MD5Init(&isn_ctx);
1189	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1190	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1191#ifdef INET6
1192	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1193		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1194			  sizeof(struct in6_addr));
1195		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1196			  sizeof(struct in6_addr));
1197	} else
1198#endif
1199	{
1200		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1201			  sizeof(struct in_addr));
1202		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1203			  sizeof(struct in_addr));
1204	}
1205	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1206	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1207	new_isn = (tcp_seq) md5_buffer[0];
1208	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1209	return new_isn;
1210}
1211
1212/*
1213 * When a source quench is received, close congestion window
1214 * to one segment.  We will gradually open it again as we proceed.
1215 */
1216void
1217tcp_quench(inp, errno)
1218	struct inpcb *inp;
1219	int errno;
1220{
1221	struct tcpcb *tp = intotcpcb(inp);
1222
1223	if (tp)
1224		tp->snd_cwnd = tp->t_maxseg;
1225}
1226
1227/*
1228 * When a specific ICMP unreachable message is received and the
1229 * connection state is SYN-SENT, drop the connection.  This behavior
1230 * is controlled by the icmp_may_rst sysctl.
1231 */
1232void
1233tcp_drop_syn_sent(inp, errno)
1234	struct inpcb *inp;
1235	int errno;
1236{
1237	struct tcpcb *tp = intotcpcb(inp);
1238
1239	if (tp && tp->t_state == TCPS_SYN_SENT)
1240		tcp_drop(tp, errno);
1241}
1242
1243/*
1244 * When `need fragmentation' ICMP is received, update our idea of the MSS
1245 * based on the new value in the route.  Also nudge TCP to send something,
1246 * since we know the packet we just sent was dropped.
1247 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1248 */
1249void
1250tcp_mtudisc(inp, errno)
1251	struct inpcb *inp;
1252	int errno;
1253{
1254	struct tcpcb *tp = intotcpcb(inp);
1255	struct rtentry *rt;
1256	struct rmxp_tao *taop;
1257	struct socket *so = inp->inp_socket;
1258	int offered;
1259	int mss;
1260#ifdef INET6
1261	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1262#endif /* INET6 */
1263
1264	if (tp) {
1265#ifdef INET6
1266		if (isipv6)
1267			rt = tcp_rtlookup6(&inp->inp_inc);
1268		else
1269#endif /* INET6 */
1270		rt = tcp_rtlookup(&inp->inp_inc);
1271		if (!rt || !rt->rt_rmx.rmx_mtu) {
1272			tp->t_maxopd = tp->t_maxseg =
1273#ifdef INET6
1274				isipv6 ? tcp_v6mssdflt :
1275#endif /* INET6 */
1276				tcp_mssdflt;
1277			return;
1278		}
1279		taop = rmx_taop(rt->rt_rmx);
1280		offered = taop->tao_mssopt;
1281		mss = rt->rt_rmx.rmx_mtu -
1282#ifdef INET6
1283			(isipv6 ?
1284			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1285#endif /* INET6 */
1286			 sizeof(struct tcpiphdr)
1287#ifdef INET6
1288			 )
1289#endif /* INET6 */
1290			;
1291
1292		if (offered)
1293			mss = min(mss, offered);
1294		/*
1295		 * XXX - The above conditional probably violates the TCP
1296		 * spec.  The problem is that, since we don't know the
1297		 * other end's MSS, we are supposed to use a conservative
1298		 * default.  But, if we do that, then MTU discovery will
1299		 * never actually take place, because the conservative
1300		 * default is much less than the MTUs typically seen
1301		 * on the Internet today.  For the moment, we'll sweep
1302		 * this under the carpet.
1303		 *
1304		 * The conservative default might not actually be a problem
1305		 * if the only case this occurs is when sending an initial
1306		 * SYN with options and data to a host we've never talked
1307		 * to before.  Then, they will reply with an MSS value which
1308		 * will get recorded and the new parameters should get
1309		 * recomputed.  For Further Study.
1310		 */
1311		if (tp->t_maxopd <= mss)
1312			return;
1313		tp->t_maxopd = mss;
1314
1315		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1316		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1317			mss -= TCPOLEN_TSTAMP_APPA;
1318		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1319		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1320			mss -= TCPOLEN_CC_APPA;
1321#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1322		if (mss > MCLBYTES)
1323			mss &= ~(MCLBYTES-1);
1324#else
1325		if (mss > MCLBYTES)
1326			mss = mss / MCLBYTES * MCLBYTES;
1327#endif
1328		if (so->so_snd.sb_hiwat < mss)
1329			mss = so->so_snd.sb_hiwat;
1330
1331		tp->t_maxseg = mss;
1332
1333		tcpstat.tcps_mturesent++;
1334		tp->t_rtttime = 0;
1335		tp->snd_nxt = tp->snd_una;
1336		tcp_output(tp);
1337	}
1338}
1339
1340/*
1341 * Look-up the routing entry to the peer of this inpcb.  If no route
1342 * is found and it cannot be allocated the return NULL.  This routine
1343 * is called by TCP routines that access the rmx structure and by tcp_mss
1344 * to get the interface MTU.
1345 */
1346struct rtentry *
1347tcp_rtlookup(inc)
1348	struct in_conninfo *inc;
1349{
1350	struct route *ro;
1351	struct rtentry *rt;
1352
1353	ro = &inc->inc_route;
1354	rt = ro->ro_rt;
1355	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1356		/* No route yet, so try to acquire one */
1357		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1358			ro->ro_dst.sa_family = AF_INET;
1359			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1360			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1361			    inc->inc_faddr;
1362			rtalloc(ro);
1363			rt = ro->ro_rt;
1364		}
1365	}
1366	return rt;
1367}
1368
1369#ifdef INET6
1370struct rtentry *
1371tcp_rtlookup6(inc)
1372	struct in_conninfo *inc;
1373{
1374	struct route_in6 *ro6;
1375	struct rtentry *rt;
1376
1377	ro6 = &inc->inc6_route;
1378	rt = ro6->ro_rt;
1379	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1380		/* No route yet, so try to acquire one */
1381		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1382			ro6->ro_dst.sin6_family = AF_INET6;
1383			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1384			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1385			rtalloc((struct route *)ro6);
1386			rt = ro6->ro_rt;
1387		}
1388	}
1389	return rt;
1390}
1391#endif /* INET6 */
1392
1393#ifdef IPSEC
1394/* compute ESP/AH header size for TCP, including outer IP header. */
1395size_t
1396ipsec_hdrsiz_tcp(tp)
1397	struct tcpcb *tp;
1398{
1399	struct inpcb *inp;
1400	struct mbuf *m;
1401	size_t hdrsiz;
1402	struct ip *ip;
1403#ifdef INET6
1404	struct ip6_hdr *ip6;
1405#endif /* INET6 */
1406	struct tcphdr *th;
1407
1408	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1409		return 0;
1410	MGETHDR(m, M_DONTWAIT, MT_DATA);
1411	if (!m)
1412		return 0;
1413
1414#ifdef INET6
1415	if ((inp->inp_vflag & INP_IPV6) != 0) {
1416		ip6 = mtod(m, struct ip6_hdr *);
1417		th = (struct tcphdr *)(ip6 + 1);
1418		m->m_pkthdr.len = m->m_len =
1419			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1420		tcp_fillheaders(tp, ip6, th);
1421		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1422	} else
1423#endif /* INET6 */
1424      {
1425	ip = mtod(m, struct ip *);
1426	th = (struct tcphdr *)(ip + 1);
1427	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1428	tcp_fillheaders(tp, ip, th);
1429	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1430      }
1431
1432	m_free(m);
1433	return hdrsiz;
1434}
1435#endif /*IPSEC*/
1436
1437/*
1438 * Return a pointer to the cached information about the remote host.
1439 * The cached information is stored in the protocol specific part of
1440 * the route metrics.
1441 */
1442struct rmxp_tao *
1443tcp_gettaocache(inc)
1444	struct in_conninfo *inc;
1445{
1446	struct rtentry *rt;
1447
1448#ifdef INET6
1449	if (inc->inc_isipv6)
1450		rt = tcp_rtlookup6(inc);
1451	else
1452#endif /* INET6 */
1453	rt = tcp_rtlookup(inc);
1454
1455	/* Make sure this is a host route and is up. */
1456	if (rt == NULL ||
1457	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1458		return NULL;
1459
1460	return rmx_taop(rt->rt_rmx);
1461}
1462
1463/*
1464 * Clear all the TAO cache entries, called from tcp_init.
1465 *
1466 * XXX
1467 * This routine is just an empty one, because we assume that the routing
1468 * routing tables are initialized at the same time when TCP, so there is
1469 * nothing in the cache left over.
1470 */
1471static void
1472tcp_cleartaocache()
1473{
1474}
1475