tcp_timewait.c revision 91357
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 91357 2002-02-27 05:11:50Z alfred $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/vm_zone.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#define _IP_VHL
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#ifdef INET6
68#include <netinet/ip6.h>
69#endif
70#include <netinet/in_pcb.h>
71#ifdef INET6
72#include <netinet6/in6_pcb.h>
73#endif
74#include <netinet/in_var.h>
75#include <netinet/ip_var.h>
76#ifdef INET6
77#include <netinet6/ip6_var.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#include <machine/in_cksum.h>
101#include <sys/md5.h>
102
103int 	tcp_mssdflt = TCP_MSS;
104SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
105    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
106
107#ifdef INET6
108int	tcp_v6mssdflt = TCP6_MSS;
109SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
110	CTLFLAG_RW, &tcp_v6mssdflt , 0,
111	"Default TCP Maximum Segment Size for IPv6");
112#endif
113
114#if 0
115static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
116SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
117    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
118#endif
119
120int	tcp_do_rfc1323 = 1;
121SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
122    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
123
124int	tcp_do_rfc1644 = 0;
125SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
126    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
127
128static int	tcp_tcbhashsize = 0;
129SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
130     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
131
132static int	do_tcpdrain = 1;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
134     "Enable tcp_drain routine for extra help when low on mbufs");
135
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
137    &tcbinfo.ipi_count, 0, "Number of active PCBs");
138
139static int	icmp_may_rst = 1;
140SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
141    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
142
143static int	tcp_strict_rfc1948 = 0;
144SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW,
145    &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
146
147static int	tcp_isn_reseed_interval = 0;
148SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
149    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
150
151static void	tcp_cleartaocache __P((void));
152static void	tcp_notify __P((struct inpcb *, int));
153
154/*
155 * Target size of TCP PCB hash tables. Must be a power of two.
156 *
157 * Note that this can be overridden by the kernel environment
158 * variable net.inet.tcp.tcbhashsize
159 */
160#ifndef TCBHASHSIZE
161#define TCBHASHSIZE	512
162#endif
163
164/*
165 * This is the actual shape of what we allocate using the zone
166 * allocator.  Doing it this way allows us to protect both structures
167 * using the same generation count, and also eliminates the overhead
168 * of allocating tcpcbs separately.  By hiding the structure here,
169 * we avoid changing most of the rest of the code (although it needs
170 * to be changed, eventually, for greater efficiency).
171 */
172#define	ALIGNMENT	32
173#define	ALIGNM1		(ALIGNMENT - 1)
174struct	inp_tp {
175	union {
176		struct	inpcb inp;
177		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
178	} inp_tp_u;
179	struct	tcpcb tcb;
180	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
181	struct	callout inp_tp_delack;
182};
183#undef ALIGNMENT
184#undef ALIGNM1
185
186/*
187 * Tcp initialization
188 */
189void
190tcp_init()
191{
192	int hashsize = TCBHASHSIZE;
193
194	tcp_ccgen = 1;
195	tcp_cleartaocache();
196
197	tcp_delacktime = TCPTV_DELACK;
198	tcp_keepinit = TCPTV_KEEP_INIT;
199	tcp_keepidle = TCPTV_KEEP_IDLE;
200	tcp_keepintvl = TCPTV_KEEPINTVL;
201	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
202	tcp_msl = TCPTV_MSL;
203
204	LIST_INIT(&tcb);
205	tcbinfo.listhead = &tcb;
206	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
207	if (!powerof2(hashsize)) {
208		printf("WARNING: TCB hash size not a power of 2\n");
209		hashsize = 512; /* safe default */
210	}
211	tcp_tcbhashsize = hashsize;
212	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
213	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
214					&tcbinfo.porthashmask);
215	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
216				 ZONE_INTERRUPT, 0);
217#ifdef INET6
218#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
219#else /* INET6 */
220#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
221#endif /* INET6 */
222	if (max_protohdr < TCP_MINPROTOHDR)
223		max_protohdr = TCP_MINPROTOHDR;
224	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
225		panic("tcp_init");
226#undef TCP_MINPROTOHDR
227
228	syncache_init();
229}
230
231/*
232 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
233 * tcp_template used to store this data in mbufs, but we now recopy it out
234 * of the tcpcb each time to conserve mbufs.
235 */
236void
237tcp_fillheaders(tp, ip_ptr, tcp_ptr)
238	struct tcpcb *tp;
239	void *ip_ptr;
240	void *tcp_ptr;
241{
242	struct inpcb *inp = tp->t_inpcb;
243	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
244
245#ifdef INET6
246	if ((inp->inp_vflag & INP_IPV6) != 0) {
247		struct ip6_hdr *ip6;
248
249		ip6 = (struct ip6_hdr *)ip_ptr;
250		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
251			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
252		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
253			(IPV6_VERSION & IPV6_VERSION_MASK);
254		ip6->ip6_nxt = IPPROTO_TCP;
255		ip6->ip6_plen = sizeof(struct tcphdr);
256		ip6->ip6_src = inp->in6p_laddr;
257		ip6->ip6_dst = inp->in6p_faddr;
258		tcp_hdr->th_sum = 0;
259	} else
260#endif
261	{
262	struct ip *ip = (struct ip *) ip_ptr;
263
264	ip->ip_vhl = IP_VHL_BORING;
265	ip->ip_tos = 0;
266	ip->ip_len = 0;
267	ip->ip_id = 0;
268	ip->ip_off = 0;
269	ip->ip_ttl = 0;
270	ip->ip_sum = 0;
271	ip->ip_p = IPPROTO_TCP;
272	ip->ip_src = inp->inp_laddr;
273	ip->ip_dst = inp->inp_faddr;
274	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
275		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
276	}
277
278	tcp_hdr->th_sport = inp->inp_lport;
279	tcp_hdr->th_dport = inp->inp_fport;
280	tcp_hdr->th_seq = 0;
281	tcp_hdr->th_ack = 0;
282	tcp_hdr->th_x2 = 0;
283	tcp_hdr->th_off = 5;
284	tcp_hdr->th_flags = 0;
285	tcp_hdr->th_win = 0;
286	tcp_hdr->th_urp = 0;
287}
288
289/*
290 * Create template to be used to send tcp packets on a connection.
291 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
292 * use for this function is in keepalives, which use tcp_respond.
293 */
294struct tcptemp *
295tcp_maketemplate(tp)
296	struct tcpcb *tp;
297{
298	struct mbuf *m;
299	struct tcptemp *n;
300
301	m = m_get(M_DONTWAIT, MT_HEADER);
302	if (m == NULL)
303		return (0);
304	m->m_len = sizeof(struct tcptemp);
305	n = mtod(m, struct tcptemp *);
306
307	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
308	return (n);
309}
310
311/*
312 * Send a single message to the TCP at address specified by
313 * the given TCP/IP header.  If m == 0, then we make a copy
314 * of the tcpiphdr at ti and send directly to the addressed host.
315 * This is used to force keep alive messages out using the TCP
316 * template for a connection.  If flags are given then we send
317 * a message back to the TCP which originated the * segment ti,
318 * and discard the mbuf containing it and any other attached mbufs.
319 *
320 * In any case the ack and sequence number of the transmitted
321 * segment are as specified by the parameters.
322 *
323 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
324 */
325void
326tcp_respond(tp, ipgen, th, m, ack, seq, flags)
327	struct tcpcb *tp;
328	void *ipgen;
329	register struct tcphdr *th;
330	register struct mbuf *m;
331	tcp_seq ack, seq;
332	int flags;
333{
334	register int tlen;
335	int win = 0;
336	struct route *ro = 0;
337	struct route sro;
338	struct ip *ip;
339	struct tcphdr *nth;
340#ifdef INET6
341	struct route_in6 *ro6 = 0;
342	struct route_in6 sro6;
343	struct ip6_hdr *ip6;
344	int isipv6;
345#endif /* INET6 */
346	int ipflags = 0;
347
348#ifdef INET6
349	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
350	ip6 = ipgen;
351#endif /* INET6 */
352	ip = ipgen;
353
354	if (tp) {
355		if (!(flags & TH_RST)) {
356			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
357			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
358				win = (long)TCP_MAXWIN << tp->rcv_scale;
359		}
360#ifdef INET6
361		if (isipv6)
362			ro6 = &tp->t_inpcb->in6p_route;
363		else
364#endif /* INET6 */
365		ro = &tp->t_inpcb->inp_route;
366	} else {
367#ifdef INET6
368		if (isipv6) {
369			ro6 = &sro6;
370			bzero(ro6, sizeof *ro6);
371		} else
372#endif /* INET6 */
373	      {
374		ro = &sro;
375		bzero(ro, sizeof *ro);
376	      }
377	}
378	if (m == 0) {
379		m = m_gethdr(M_DONTWAIT, MT_HEADER);
380		if (m == NULL)
381			return;
382		tlen = 0;
383		m->m_data += max_linkhdr;
384#ifdef INET6
385		if (isipv6) {
386			bcopy((caddr_t)ip6, mtod(m, caddr_t),
387			      sizeof(struct ip6_hdr));
388			ip6 = mtod(m, struct ip6_hdr *);
389			nth = (struct tcphdr *)(ip6 + 1);
390		} else
391#endif /* INET6 */
392	      {
393		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
394		ip = mtod(m, struct ip *);
395		nth = (struct tcphdr *)(ip + 1);
396	      }
397		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
398		flags = TH_ACK;
399	} else {
400		m_freem(m->m_next);
401		m->m_next = 0;
402		m->m_data = (caddr_t)ipgen;
403		/* m_len is set later */
404		tlen = 0;
405#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
406#ifdef INET6
407		if (isipv6) {
408			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
409			nth = (struct tcphdr *)(ip6 + 1);
410		} else
411#endif /* INET6 */
412	      {
413		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
414		nth = (struct tcphdr *)(ip + 1);
415	      }
416		if (th != nth) {
417			/*
418			 * this is usually a case when an extension header
419			 * exists between the IPv6 header and the
420			 * TCP header.
421			 */
422			nth->th_sport = th->th_sport;
423			nth->th_dport = th->th_dport;
424		}
425		xchg(nth->th_dport, nth->th_sport, n_short);
426#undef xchg
427	}
428#ifdef INET6
429	if (isipv6) {
430		ip6->ip6_flow = 0;
431		ip6->ip6_vfc = IPV6_VERSION;
432		ip6->ip6_nxt = IPPROTO_TCP;
433		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
434						tlen));
435		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
436	} else
437#endif
438      {
439	tlen += sizeof (struct tcpiphdr);
440	ip->ip_len = tlen;
441	ip->ip_ttl = ip_defttl;
442      }
443	m->m_len = tlen;
444	m->m_pkthdr.len = tlen;
445	m->m_pkthdr.rcvif = (struct ifnet *) 0;
446	nth->th_seq = htonl(seq);
447	nth->th_ack = htonl(ack);
448	nth->th_x2 = 0;
449	nth->th_off = sizeof (struct tcphdr) >> 2;
450	nth->th_flags = flags;
451	if (tp)
452		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
453	else
454		nth->th_win = htons((u_short)win);
455	nth->th_urp = 0;
456#ifdef INET6
457	if (isipv6) {
458		nth->th_sum = 0;
459		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
460					sizeof(struct ip6_hdr),
461					tlen - sizeof(struct ip6_hdr));
462		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
463					       ro6 && ro6->ro_rt ?
464					       ro6->ro_rt->rt_ifp :
465					       NULL);
466	} else
467#endif /* INET6 */
468      {
469        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
470	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
471        m->m_pkthdr.csum_flags = CSUM_TCP;
472        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
473      }
474#ifdef TCPDEBUG
475	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
476		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
477#endif
478#ifdef IPSEC
479	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
480		m_freem(m);
481		return;
482	}
483#endif
484#ifdef INET6
485	if (isipv6) {
486		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
487		if (ro6 == &sro6 && ro6->ro_rt) {
488			RTFREE(ro6->ro_rt);
489			ro6->ro_rt = NULL;
490		}
491	} else
492#endif /* INET6 */
493      {
494	(void) ip_output(m, NULL, ro, ipflags, NULL);
495	if (ro == &sro && ro->ro_rt) {
496		RTFREE(ro->ro_rt);
497		ro->ro_rt = NULL;
498	}
499      }
500}
501
502/*
503 * Create a new TCP control block, making an
504 * empty reassembly queue and hooking it to the argument
505 * protocol control block.  The `inp' parameter must have
506 * come from the zone allocator set up in tcp_init().
507 */
508struct tcpcb *
509tcp_newtcpcb(inp)
510	struct inpcb *inp;
511{
512	struct inp_tp *it;
513	register struct tcpcb *tp;
514#ifdef INET6
515	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
516#endif /* INET6 */
517
518	it = (struct inp_tp *)inp;
519	tp = &it->tcb;
520	bzero((char *) tp, sizeof(struct tcpcb));
521	LIST_INIT(&tp->t_segq);
522	tp->t_maxseg = tp->t_maxopd =
523#ifdef INET6
524		isipv6 ? tcp_v6mssdflt :
525#endif /* INET6 */
526		tcp_mssdflt;
527
528	/* Set up our timeouts. */
529	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
530	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
531	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
532	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
533	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
534
535	if (tcp_do_rfc1323)
536		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
537	if (tcp_do_rfc1644)
538		tp->t_flags |= TF_REQ_CC;
539	tp->t_inpcb = inp;	/* XXX */
540	/*
541	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
542	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
543	 * reasonable initial retransmit time.
544	 */
545	tp->t_srtt = TCPTV_SRTTBASE;
546	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
547	tp->t_rttmin = TCPTV_MIN;
548	tp->t_rxtcur = TCPTV_RTOBASE;
549	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
550	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
551	tp->t_rcvtime = ticks;
552        /*
553	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
554	 * because the socket may be bound to an IPv6 wildcard address,
555	 * which may match an IPv4-mapped IPv6 address.
556	 */
557	inp->inp_ip_ttl = ip_defttl;
558	inp->inp_ppcb = (caddr_t)tp;
559	return (tp);		/* XXX */
560}
561
562/*
563 * Drop a TCP connection, reporting
564 * the specified error.  If connection is synchronized,
565 * then send a RST to peer.
566 */
567struct tcpcb *
568tcp_drop(tp, errno)
569	register struct tcpcb *tp;
570	int errno;
571{
572	struct socket *so = tp->t_inpcb->inp_socket;
573
574	if (TCPS_HAVERCVDSYN(tp->t_state)) {
575		tp->t_state = TCPS_CLOSED;
576		(void) tcp_output(tp);
577		tcpstat.tcps_drops++;
578	} else
579		tcpstat.tcps_conndrops++;
580	if (errno == ETIMEDOUT && tp->t_softerror)
581		errno = tp->t_softerror;
582	so->so_error = errno;
583	return (tcp_close(tp));
584}
585
586/*
587 * Close a TCP control block:
588 *	discard all space held by the tcp
589 *	discard internet protocol block
590 *	wake up any sleepers
591 */
592struct tcpcb *
593tcp_close(tp)
594	register struct tcpcb *tp;
595{
596	register struct tseg_qent *q;
597	struct inpcb *inp = tp->t_inpcb;
598	struct socket *so = inp->inp_socket;
599#ifdef INET6
600	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
601#endif /* INET6 */
602	register struct rtentry *rt;
603	int dosavessthresh;
604
605	/*
606	 * Make sure that all of our timers are stopped before we
607	 * delete the PCB.
608	 */
609	callout_stop(tp->tt_rexmt);
610	callout_stop(tp->tt_persist);
611	callout_stop(tp->tt_keep);
612	callout_stop(tp->tt_2msl);
613	callout_stop(tp->tt_delack);
614
615	/*
616	 * If we got enough samples through the srtt filter,
617	 * save the rtt and rttvar in the routing entry.
618	 * 'Enough' is arbitrarily defined as the 16 samples.
619	 * 16 samples is enough for the srtt filter to converge
620	 * to within 5% of the correct value; fewer samples and
621	 * we could save a very bogus rtt.
622	 *
623	 * Don't update the default route's characteristics and don't
624	 * update anything that the user "locked".
625	 */
626	if (tp->t_rttupdated >= 16) {
627		register u_long i = 0;
628#ifdef INET6
629		if (isipv6) {
630			struct sockaddr_in6 *sin6;
631
632			if ((rt = inp->in6p_route.ro_rt) == NULL)
633				goto no_valid_rt;
634			sin6 = (struct sockaddr_in6 *)rt_key(rt);
635			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
636				goto no_valid_rt;
637		}
638		else
639#endif /* INET6 */
640		if ((rt = inp->inp_route.ro_rt) == NULL ||
641		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
642		    == INADDR_ANY)
643			goto no_valid_rt;
644
645		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
646			i = tp->t_srtt *
647			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
648			if (rt->rt_rmx.rmx_rtt && i)
649				/*
650				 * filter this update to half the old & half
651				 * the new values, converting scale.
652				 * See route.h and tcp_var.h for a
653				 * description of the scaling constants.
654				 */
655				rt->rt_rmx.rmx_rtt =
656				    (rt->rt_rmx.rmx_rtt + i) / 2;
657			else
658				rt->rt_rmx.rmx_rtt = i;
659			tcpstat.tcps_cachedrtt++;
660		}
661		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
662			i = tp->t_rttvar *
663			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
664			if (rt->rt_rmx.rmx_rttvar && i)
665				rt->rt_rmx.rmx_rttvar =
666				    (rt->rt_rmx.rmx_rttvar + i) / 2;
667			else
668				rt->rt_rmx.rmx_rttvar = i;
669			tcpstat.tcps_cachedrttvar++;
670		}
671		/*
672		 * The old comment here said:
673		 * update the pipelimit (ssthresh) if it has been updated
674		 * already or if a pipesize was specified & the threshhold
675		 * got below half the pipesize.  I.e., wait for bad news
676		 * before we start updating, then update on both good
677		 * and bad news.
678		 *
679		 * But we want to save the ssthresh even if no pipesize is
680		 * specified explicitly in the route, because such
681		 * connections still have an implicit pipesize specified
682		 * by the global tcp_sendspace.  In the absence of a reliable
683		 * way to calculate the pipesize, it will have to do.
684		 */
685		i = tp->snd_ssthresh;
686		if (rt->rt_rmx.rmx_sendpipe != 0)
687			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
688		else
689			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
690		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
691		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
692		    || dosavessthresh) {
693			/*
694			 * convert the limit from user data bytes to
695			 * packets then to packet data bytes.
696			 */
697			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
698			if (i < 2)
699				i = 2;
700			i *= (u_long)(tp->t_maxseg +
701#ifdef INET6
702				      (isipv6 ? sizeof (struct ip6_hdr) +
703					       sizeof (struct tcphdr) :
704#endif
705				       sizeof (struct tcpiphdr)
706#ifdef INET6
707				       )
708#endif
709				      );
710			if (rt->rt_rmx.rmx_ssthresh)
711				rt->rt_rmx.rmx_ssthresh =
712				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
713			else
714				rt->rt_rmx.rmx_ssthresh = i;
715			tcpstat.tcps_cachedssthresh++;
716		}
717	}
718    no_valid_rt:
719	/* free the reassembly queue, if any */
720	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
721		LIST_REMOVE(q, tqe_q);
722		m_freem(q->tqe_m);
723		FREE(q, M_TSEGQ);
724	}
725	inp->inp_ppcb = NULL;
726	soisdisconnected(so);
727#ifdef INET6
728	if (INP_CHECK_SOCKAF(so, AF_INET6))
729		in6_pcbdetach(inp);
730	else
731#endif /* INET6 */
732	in_pcbdetach(inp);
733	tcpstat.tcps_closed++;
734	return ((struct tcpcb *)0);
735}
736
737void
738tcp_drain()
739{
740	if (do_tcpdrain)
741	{
742		struct inpcb *inpb;
743		struct tcpcb *tcpb;
744		struct tseg_qent *te;
745
746	/*
747	 * Walk the tcpbs, if existing, and flush the reassembly queue,
748	 * if there is one...
749	 * XXX: The "Net/3" implementation doesn't imply that the TCP
750	 *      reassembly queue should be flushed, but in a situation
751	 * 	where we're really low on mbufs, this is potentially
752	 *  	usefull.
753	 */
754		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
755			if ((tcpb = intotcpcb(inpb))) {
756				while ((te = LIST_FIRST(&tcpb->t_segq))
757			            != NULL) {
758					LIST_REMOVE(te, tqe_q);
759					m_freem(te->tqe_m);
760					FREE(te, M_TSEGQ);
761				}
762			}
763		}
764	}
765}
766
767/*
768 * Notify a tcp user of an asynchronous error;
769 * store error as soft error, but wake up user
770 * (for now, won't do anything until can select for soft error).
771 *
772 * Do not wake up user since there currently is no mechanism for
773 * reporting soft errors (yet - a kqueue filter may be added).
774 */
775static void
776tcp_notify(inp, error)
777	struct inpcb *inp;
778	int error;
779{
780	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
781
782	/*
783	 * Ignore some errors if we are hooked up.
784	 * If connection hasn't completed, has retransmitted several times,
785	 * and receives a second error, give up now.  This is better
786	 * than waiting a long time to establish a connection that
787	 * can never complete.
788	 */
789	if (tp->t_state == TCPS_ESTABLISHED &&
790	     (error == EHOSTUNREACH || error == ENETUNREACH ||
791	      error == EHOSTDOWN)) {
792		return;
793	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
794	    tp->t_softerror)
795		tcp_drop(tp, error);
796	else
797		tp->t_softerror = error;
798#if 0
799	wakeup((caddr_t) &so->so_timeo);
800	sorwakeup(so);
801	sowwakeup(so);
802#endif
803}
804
805static int
806tcp_pcblist(SYSCTL_HANDLER_ARGS)
807{
808	int error, i, n, s;
809	struct inpcb *inp, **inp_list;
810	inp_gen_t gencnt;
811	struct xinpgen xig;
812
813	/*
814	 * The process of preparing the TCB list is too time-consuming and
815	 * resource-intensive to repeat twice on every request.
816	 */
817	if (req->oldptr == 0) {
818		n = tcbinfo.ipi_count;
819		req->oldidx = 2 * (sizeof xig)
820			+ (n + n/8) * sizeof(struct xtcpcb);
821		return 0;
822	}
823
824	if (req->newptr != 0)
825		return EPERM;
826
827	/*
828	 * OK, now we're committed to doing something.
829	 */
830	s = splnet();
831	gencnt = tcbinfo.ipi_gencnt;
832	n = tcbinfo.ipi_count;
833	splx(s);
834
835	xig.xig_len = sizeof xig;
836	xig.xig_count = n;
837	xig.xig_gen = gencnt;
838	xig.xig_sogen = so_gencnt;
839	error = SYSCTL_OUT(req, &xig, sizeof xig);
840	if (error)
841		return error;
842
843	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
844	if (inp_list == 0)
845		return ENOMEM;
846
847	s = splnet();
848	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
849	     inp = LIST_NEXT(inp, inp_list)) {
850		if (inp->inp_gencnt <= gencnt) {
851			if (cr_cansee(req->td->td_proc->p_ucred,
852			    inp->inp_socket->so_cred))
853				continue;
854			inp_list[i++] = inp;
855		}
856	}
857	splx(s);
858	n = i;
859
860	error = 0;
861	for (i = 0; i < n; i++) {
862		inp = inp_list[i];
863		if (inp->inp_gencnt <= gencnt) {
864			struct xtcpcb xt;
865			caddr_t inp_ppcb;
866			xt.xt_len = sizeof xt;
867			/* XXX should avoid extra copy */
868			bcopy(inp, &xt.xt_inp, sizeof *inp);
869			inp_ppcb = inp->inp_ppcb;
870			if (inp_ppcb != NULL)
871				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
872			else
873				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
874			if (inp->inp_socket)
875				sotoxsocket(inp->inp_socket, &xt.xt_socket);
876			error = SYSCTL_OUT(req, &xt, sizeof xt);
877		}
878	}
879	if (!error) {
880		/*
881		 * Give the user an updated idea of our state.
882		 * If the generation differs from what we told
883		 * her before, she knows that something happened
884		 * while we were processing this request, and it
885		 * might be necessary to retry.
886		 */
887		s = splnet();
888		xig.xig_gen = tcbinfo.ipi_gencnt;
889		xig.xig_sogen = so_gencnt;
890		xig.xig_count = tcbinfo.ipi_count;
891		splx(s);
892		error = SYSCTL_OUT(req, &xig, sizeof xig);
893	}
894	free(inp_list, M_TEMP);
895	return error;
896}
897
898SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
899	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
900
901static int
902tcp_getcred(SYSCTL_HANDLER_ARGS)
903{
904	struct xucred xuc;
905	struct sockaddr_in addrs[2];
906	struct inpcb *inp;
907	int error, s;
908
909	error = suser_xxx(0, req->td->td_proc, PRISON_ROOT);
910	if (error)
911		return (error);
912	error = SYSCTL_IN(req, addrs, sizeof(addrs));
913	if (error)
914		return (error);
915	s = splnet();
916	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
917	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
918	if (inp == NULL || inp->inp_socket == NULL) {
919		error = ENOENT;
920		goto out;
921	}
922	error = cr_cansee(req->td->td_proc->p_ucred, inp->inp_socket->so_cred);
923	if (error)
924		goto out;
925	cru2x(inp->inp_socket->so_cred, &xuc);
926	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
927out:
928	splx(s);
929	return (error);
930}
931
932SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
933    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
934    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
935
936#ifdef INET6
937static int
938tcp6_getcred(SYSCTL_HANDLER_ARGS)
939{
940	struct xucred xuc;
941	struct sockaddr_in6 addrs[2];
942	struct inpcb *inp;
943	int error, s, mapped = 0;
944
945	error = suser_xxx(0, req->td->td_proc, PRISON_ROOT);
946	if (error)
947		return (error);
948	error = SYSCTL_IN(req, addrs, sizeof(addrs));
949	if (error)
950		return (error);
951	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
952		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
953			mapped = 1;
954		else
955			return (EINVAL);
956	}
957	s = splnet();
958	if (mapped == 1)
959		inp = in_pcblookup_hash(&tcbinfo,
960			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
961			addrs[1].sin6_port,
962			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
963			addrs[0].sin6_port,
964			0, NULL);
965	else
966		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
967				 addrs[1].sin6_port,
968				 &addrs[0].sin6_addr, addrs[0].sin6_port,
969				 0, NULL);
970	if (inp == NULL || inp->inp_socket == NULL) {
971		error = ENOENT;
972		goto out;
973	}
974	error = cr_cansee(req->td->td_proc->p_ucred, inp->inp_socket->so_cred);
975	if (error)
976		goto out;
977	cru2x(inp->inp_socket->so_cred, &xuc);
978	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
979out:
980	splx(s);
981	return (error);
982}
983
984SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
985    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
986    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
987#endif
988
989
990void
991tcp_ctlinput(cmd, sa, vip)
992	int cmd;
993	struct sockaddr *sa;
994	void *vip;
995{
996	struct ip *ip = vip;
997	struct tcphdr *th;
998	struct in_addr faddr;
999	struct inpcb *inp;
1000	struct tcpcb *tp;
1001	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1002	tcp_seq icmp_seq;
1003	int s;
1004
1005	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1006	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1007		return;
1008
1009	if (cmd == PRC_QUENCH)
1010		notify = tcp_quench;
1011	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1012		cmd == PRC_UNREACH_PORT) && ip)
1013		notify = tcp_drop_syn_sent;
1014	else if (cmd == PRC_MSGSIZE)
1015		notify = tcp_mtudisc;
1016	else if (PRC_IS_REDIRECT(cmd)) {
1017		ip = 0;
1018		notify = in_rtchange;
1019	} else if (cmd == PRC_HOSTDEAD)
1020		ip = 0;
1021	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1022		return;
1023	if (ip) {
1024		s = splnet();
1025		th = (struct tcphdr *)((caddr_t)ip
1026				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1027		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1028		    ip->ip_src, th->th_sport, 0, NULL);
1029		if (inp != NULL && inp->inp_socket != NULL) {
1030			icmp_seq = htonl(th->th_seq);
1031			tp = intotcpcb(inp);
1032			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1033			    SEQ_LT(icmp_seq, tp->snd_max))
1034				(*notify)(inp, inetctlerrmap[cmd]);
1035		} else {
1036			struct in_conninfo inc;
1037
1038			inc.inc_fport = th->th_dport;
1039			inc.inc_lport = th->th_sport;
1040			inc.inc_faddr = faddr;
1041			inc.inc_laddr = ip->ip_src;
1042#ifdef INET6
1043			inc.inc_isipv6 = 0;
1044#endif
1045			syncache_unreach(&inc, th);
1046		}
1047		splx(s);
1048	} else
1049		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1050}
1051
1052#ifdef INET6
1053void
1054tcp6_ctlinput(cmd, sa, d)
1055	int cmd;
1056	struct sockaddr *sa;
1057	void *d;
1058{
1059	struct tcphdr th;
1060	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1061	struct ip6_hdr *ip6;
1062	struct mbuf *m;
1063	struct ip6ctlparam *ip6cp = NULL;
1064	const struct sockaddr_in6 *sa6_src = NULL;
1065	int off;
1066	struct tcp_portonly {
1067		u_int16_t th_sport;
1068		u_int16_t th_dport;
1069	} *thp;
1070
1071	if (sa->sa_family != AF_INET6 ||
1072	    sa->sa_len != sizeof(struct sockaddr_in6))
1073		return;
1074
1075	if (cmd == PRC_QUENCH)
1076		notify = tcp_quench;
1077	else if (cmd == PRC_MSGSIZE)
1078		notify = tcp_mtudisc;
1079	else if (!PRC_IS_REDIRECT(cmd) &&
1080		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1081		return;
1082
1083	/* if the parameter is from icmp6, decode it. */
1084	if (d != NULL) {
1085		ip6cp = (struct ip6ctlparam *)d;
1086		m = ip6cp->ip6c_m;
1087		ip6 = ip6cp->ip6c_ip6;
1088		off = ip6cp->ip6c_off;
1089		sa6_src = ip6cp->ip6c_src;
1090	} else {
1091		m = NULL;
1092		ip6 = NULL;
1093		off = 0;	/* fool gcc */
1094		sa6_src = &sa6_any;
1095	}
1096
1097	if (ip6) {
1098		struct in_conninfo inc;
1099		/*
1100		 * XXX: We assume that when IPV6 is non NULL,
1101		 * M and OFF are valid.
1102		 */
1103
1104		/* check if we can safely examine src and dst ports */
1105		if (m->m_pkthdr.len < off + sizeof(*thp))
1106			return;
1107
1108		bzero(&th, sizeof(th));
1109		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1110
1111		in6_pcbnotify(&tcb, sa, th.th_dport,
1112		    (struct sockaddr *)ip6cp->ip6c_src,
1113		    th.th_sport, cmd, notify);
1114
1115		inc.inc_fport = th.th_dport;
1116		inc.inc_lport = th.th_sport;
1117		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1118		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1119		inc.inc_isipv6 = 1;
1120		syncache_unreach(&inc, &th);
1121	} else
1122		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1123			      0, cmd, notify);
1124}
1125#endif /* INET6 */
1126
1127
1128/*
1129 * Following is where TCP initial sequence number generation occurs.
1130 *
1131 * There are two places where we must use initial sequence numbers:
1132 * 1.  In SYN-ACK packets.
1133 * 2.  In SYN packets.
1134 *
1135 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1136 * and should be as unpredictable as possible to avoid the possibility
1137 * of spoofing and/or connection hijacking.  To satisfy this
1138 * requirement, SYN-ACK ISNs are generated via the arc4random()
1139 * function.  If exact RFC 1948 compliance is requested via sysctl,
1140 * these ISNs will be generated just like those in SYN packets.
1141 *
1142 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1143 * depends on this property.  In addition, these ISNs should be
1144 * unguessable so as to prevent connection hijacking.  To satisfy
1145 * the requirements of this situation, the algorithm outlined in
1146 * RFC 1948 is used to generate sequence numbers.
1147 *
1148 * For more information on the theory of operation, please see
1149 * RFC 1948.
1150 *
1151 * Implementation details:
1152 *
1153 * Time is based off the system timer, and is corrected so that it
1154 * increases by one megabyte per second.  This allows for proper
1155 * recycling on high speed LANs while still leaving over an hour
1156 * before rollover.
1157 *
1158 * Two sysctls control the generation of ISNs:
1159 *
1160 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1161 * between seeding of isn_secret.  This is normally set to zero,
1162 * as reseeding should not be necessary.
1163 *
1164 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1165 * strictly.  When strict compliance is requested, reseeding is
1166 * disabled and SYN-ACKs will be generated in the same manner as
1167 * SYNs.  Strict mode is disabled by default.
1168 *
1169 */
1170
1171#define ISN_BYTES_PER_SECOND 1048576
1172
1173u_char isn_secret[32];
1174int isn_last_reseed;
1175MD5_CTX isn_ctx;
1176
1177tcp_seq
1178tcp_new_isn(tp)
1179	struct tcpcb *tp;
1180{
1181	u_int32_t md5_buffer[4];
1182	tcp_seq new_isn;
1183
1184	/* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1185	if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1186	   && tcp_strict_rfc1948 == 0)
1187		return arc4random();
1188
1189	/* Seed if this is the first use, reseed if requested. */
1190	if ((isn_last_reseed == 0) ||
1191	    ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1192	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1193		< (u_int)ticks))) {
1194		read_random(&isn_secret, sizeof(isn_secret));
1195		isn_last_reseed = ticks;
1196	}
1197
1198	/* Compute the md5 hash and return the ISN. */
1199	MD5Init(&isn_ctx);
1200	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1201	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1202#ifdef INET6
1203	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1204		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1205			  sizeof(struct in6_addr));
1206		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1207			  sizeof(struct in6_addr));
1208	} else
1209#endif
1210	{
1211		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1212			  sizeof(struct in_addr));
1213		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1214			  sizeof(struct in_addr));
1215	}
1216	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1217	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1218	new_isn = (tcp_seq) md5_buffer[0];
1219	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1220	return new_isn;
1221}
1222
1223/*
1224 * When a source quench is received, close congestion window
1225 * to one segment.  We will gradually open it again as we proceed.
1226 */
1227void
1228tcp_quench(inp, errno)
1229	struct inpcb *inp;
1230	int errno;
1231{
1232	struct tcpcb *tp = intotcpcb(inp);
1233
1234	if (tp)
1235		tp->snd_cwnd = tp->t_maxseg;
1236}
1237
1238/*
1239 * When a specific ICMP unreachable message is received and the
1240 * connection state is SYN-SENT, drop the connection.  This behavior
1241 * is controlled by the icmp_may_rst sysctl.
1242 */
1243void
1244tcp_drop_syn_sent(inp, errno)
1245	struct inpcb *inp;
1246	int errno;
1247{
1248	struct tcpcb *tp = intotcpcb(inp);
1249
1250	if (tp && tp->t_state == TCPS_SYN_SENT)
1251		tcp_drop(tp, errno);
1252}
1253
1254/*
1255 * When `need fragmentation' ICMP is received, update our idea of the MSS
1256 * based on the new value in the route.  Also nudge TCP to send something,
1257 * since we know the packet we just sent was dropped.
1258 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1259 */
1260void
1261tcp_mtudisc(inp, errno)
1262	struct inpcb *inp;
1263	int errno;
1264{
1265	struct tcpcb *tp = intotcpcb(inp);
1266	struct rtentry *rt;
1267	struct rmxp_tao *taop;
1268	struct socket *so = inp->inp_socket;
1269	int offered;
1270	int mss;
1271#ifdef INET6
1272	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1273#endif /* INET6 */
1274
1275	if (tp) {
1276#ifdef INET6
1277		if (isipv6)
1278			rt = tcp_rtlookup6(&inp->inp_inc);
1279		else
1280#endif /* INET6 */
1281		rt = tcp_rtlookup(&inp->inp_inc);
1282		if (!rt || !rt->rt_rmx.rmx_mtu) {
1283			tp->t_maxopd = tp->t_maxseg =
1284#ifdef INET6
1285				isipv6 ? tcp_v6mssdflt :
1286#endif /* INET6 */
1287				tcp_mssdflt;
1288			return;
1289		}
1290		taop = rmx_taop(rt->rt_rmx);
1291		offered = taop->tao_mssopt;
1292		mss = rt->rt_rmx.rmx_mtu -
1293#ifdef INET6
1294			(isipv6 ?
1295			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1296#endif /* INET6 */
1297			 sizeof(struct tcpiphdr)
1298#ifdef INET6
1299			 )
1300#endif /* INET6 */
1301			;
1302
1303		if (offered)
1304			mss = min(mss, offered);
1305		/*
1306		 * XXX - The above conditional probably violates the TCP
1307		 * spec.  The problem is that, since we don't know the
1308		 * other end's MSS, we are supposed to use a conservative
1309		 * default.  But, if we do that, then MTU discovery will
1310		 * never actually take place, because the conservative
1311		 * default is much less than the MTUs typically seen
1312		 * on the Internet today.  For the moment, we'll sweep
1313		 * this under the carpet.
1314		 *
1315		 * The conservative default might not actually be a problem
1316		 * if the only case this occurs is when sending an initial
1317		 * SYN with options and data to a host we've never talked
1318		 * to before.  Then, they will reply with an MSS value which
1319		 * will get recorded and the new parameters should get
1320		 * recomputed.  For Further Study.
1321		 */
1322		if (tp->t_maxopd <= mss)
1323			return;
1324		tp->t_maxopd = mss;
1325
1326		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1327		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1328			mss -= TCPOLEN_TSTAMP_APPA;
1329		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1330		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1331			mss -= TCPOLEN_CC_APPA;
1332#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1333		if (mss > MCLBYTES)
1334			mss &= ~(MCLBYTES-1);
1335#else
1336		if (mss > MCLBYTES)
1337			mss = mss / MCLBYTES * MCLBYTES;
1338#endif
1339		if (so->so_snd.sb_hiwat < mss)
1340			mss = so->so_snd.sb_hiwat;
1341
1342		tp->t_maxseg = mss;
1343
1344		tcpstat.tcps_mturesent++;
1345		tp->t_rtttime = 0;
1346		tp->snd_nxt = tp->snd_una;
1347		tcp_output(tp);
1348	}
1349}
1350
1351/*
1352 * Look-up the routing entry to the peer of this inpcb.  If no route
1353 * is found and it cannot be allocated the return NULL.  This routine
1354 * is called by TCP routines that access the rmx structure and by tcp_mss
1355 * to get the interface MTU.
1356 */
1357struct rtentry *
1358tcp_rtlookup(inc)
1359	struct in_conninfo *inc;
1360{
1361	struct route *ro;
1362	struct rtentry *rt;
1363
1364	ro = &inc->inc_route;
1365	rt = ro->ro_rt;
1366	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1367		/* No route yet, so try to acquire one */
1368		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1369			ro->ro_dst.sa_family = AF_INET;
1370			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1371			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1372			    inc->inc_faddr;
1373			rtalloc(ro);
1374			rt = ro->ro_rt;
1375		}
1376	}
1377	return rt;
1378}
1379
1380#ifdef INET6
1381struct rtentry *
1382tcp_rtlookup6(inc)
1383	struct in_conninfo *inc;
1384{
1385	struct route_in6 *ro6;
1386	struct rtentry *rt;
1387
1388	ro6 = &inc->inc6_route;
1389	rt = ro6->ro_rt;
1390	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1391		/* No route yet, so try to acquire one */
1392		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1393			ro6->ro_dst.sin6_family = AF_INET6;
1394			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1395			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1396			rtalloc((struct route *)ro6);
1397			rt = ro6->ro_rt;
1398		}
1399	}
1400	return rt;
1401}
1402#endif /* INET6 */
1403
1404#ifdef IPSEC
1405/* compute ESP/AH header size for TCP, including outer IP header. */
1406size_t
1407ipsec_hdrsiz_tcp(tp)
1408	struct tcpcb *tp;
1409{
1410	struct inpcb *inp;
1411	struct mbuf *m;
1412	size_t hdrsiz;
1413	struct ip *ip;
1414#ifdef INET6
1415	struct ip6_hdr *ip6;
1416#endif /* INET6 */
1417	struct tcphdr *th;
1418
1419	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1420		return 0;
1421	MGETHDR(m, M_DONTWAIT, MT_DATA);
1422	if (!m)
1423		return 0;
1424
1425#ifdef INET6
1426	if ((inp->inp_vflag & INP_IPV6) != 0) {
1427		ip6 = mtod(m, struct ip6_hdr *);
1428		th = (struct tcphdr *)(ip6 + 1);
1429		m->m_pkthdr.len = m->m_len =
1430			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1431		tcp_fillheaders(tp, ip6, th);
1432		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1433	} else
1434#endif /* INET6 */
1435      {
1436	ip = mtod(m, struct ip *);
1437	th = (struct tcphdr *)(ip + 1);
1438	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1439	tcp_fillheaders(tp, ip, th);
1440	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1441      }
1442
1443	m_free(m);
1444	return hdrsiz;
1445}
1446#endif /*IPSEC*/
1447
1448/*
1449 * Return a pointer to the cached information about the remote host.
1450 * The cached information is stored in the protocol specific part of
1451 * the route metrics.
1452 */
1453struct rmxp_tao *
1454tcp_gettaocache(inc)
1455	struct in_conninfo *inc;
1456{
1457	struct rtentry *rt;
1458
1459#ifdef INET6
1460	if (inc->inc_isipv6)
1461		rt = tcp_rtlookup6(inc);
1462	else
1463#endif /* INET6 */
1464	rt = tcp_rtlookup(inc);
1465
1466	/* Make sure this is a host route and is up. */
1467	if (rt == NULL ||
1468	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1469		return NULL;
1470
1471	return rmx_taop(rt->rt_rmx);
1472}
1473
1474/*
1475 * Clear all the TAO cache entries, called from tcp_init.
1476 *
1477 * XXX
1478 * This routine is just an empty one, because we assume that the routing
1479 * routing tables are initialized at the same time when TCP, so there is
1480 * nothing in the cache left over.
1481 */
1482static void
1483tcp_cleartaocache()
1484{
1485}
1486