tcp_timewait.c revision 7684
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.1 (Berkeley) 6/10/93
34 * $Id: tcp_subr.c,v 1.9 1995/03/16 18:15:05 bde Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/proc.h>
39#include <sys/systm.h>
40#include <sys/malloc.h>
41#include <sys/mbuf.h>
42#include <sys/socket.h>
43#include <sys/socketvar.h>
44#include <sys/protosw.h>
45#include <sys/errno.h>
46#include <sys/queue.h>
47
48#include <net/route.h>
49#include <net/if.h>
50
51#include <netinet/in.h>
52#include <netinet/in_systm.h>
53#include <netinet/ip.h>
54#include <netinet/in_pcb.h>
55#include <netinet/in_var.h>
56#include <netinet/ip_var.h>
57#include <netinet/ip_icmp.h>
58#include <netinet/tcp.h>
59#include <netinet/tcp_fsm.h>
60#include <netinet/tcp_seq.h>
61#include <netinet/tcp_timer.h>
62#include <netinet/tcp_var.h>
63#include <netinet/tcpip.h>
64#ifdef TCPDEBUG
65#include <netinet/tcp_debug.h>
66#endif
67
68/* patchable/settable parameters for tcp */
69int 	tcp_mssdflt = TCP_MSS;
70int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
71int	tcp_do_rfc1323 = 1;
72int	tcp_do_rfc1644 = 1;
73static	void tcp_cleartaocache(void);
74
75/*
76 * Target size of TCP PCB hash table. Will be rounded down to a prime
77 * number.
78 */
79#ifndef TCBHASHSIZE
80#define TCBHASHSIZE	128
81#endif
82
83/*
84 * Tcp initialization
85 */
86void
87tcp_init()
88{
89
90	tcp_iss = 1;		/* wrong */
91	tcp_ccgen = 1;
92	tcp_cleartaocache();
93	LIST_INIT(&tcb);
94	tcbinfo.listhead = &tcb;
95	tcbinfo.hashbase = phashinit(TCBHASHSIZE, M_PCB, &tcbinfo.hashsize);
96	if (max_protohdr < sizeof(struct tcpiphdr))
97		max_protohdr = sizeof(struct tcpiphdr);
98	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
99		panic("tcp_init");
100}
101
102/*
103 * Create template to be used to send tcp packets on a connection.
104 * Call after host entry created, allocates an mbuf and fills
105 * in a skeletal tcp/ip header, minimizing the amount of work
106 * necessary when the connection is used.
107 */
108struct tcpiphdr *
109tcp_template(tp)
110	struct tcpcb *tp;
111{
112	register struct inpcb *inp = tp->t_inpcb;
113	register struct mbuf *m;
114	register struct tcpiphdr *n;
115
116	if ((n = tp->t_template) == 0) {
117		m = m_get(M_DONTWAIT, MT_HEADER);
118		if (m == NULL)
119			return (0);
120		m->m_len = sizeof (struct tcpiphdr);
121		n = mtod(m, struct tcpiphdr *);
122	}
123	n->ti_next = n->ti_prev = 0;
124	n->ti_x1 = 0;
125	n->ti_pr = IPPROTO_TCP;
126	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
127	n->ti_src = inp->inp_laddr;
128	n->ti_dst = inp->inp_faddr;
129	n->ti_sport = inp->inp_lport;
130	n->ti_dport = inp->inp_fport;
131	n->ti_seq = 0;
132	n->ti_ack = 0;
133	n->ti_x2 = 0;
134	n->ti_off = 5;
135	n->ti_flags = 0;
136	n->ti_win = 0;
137	n->ti_sum = 0;
138	n->ti_urp = 0;
139	return (n);
140}
141
142/*
143 * Send a single message to the TCP at address specified by
144 * the given TCP/IP header.  If m == 0, then we make a copy
145 * of the tcpiphdr at ti and send directly to the addressed host.
146 * This is used to force keep alive messages out using the TCP
147 * template for a connection tp->t_template.  If flags are given
148 * then we send a message back to the TCP which originated the
149 * segment ti, and discard the mbuf containing it and any other
150 * attached mbufs.
151 *
152 * In any case the ack and sequence number of the transmitted
153 * segment are as specified by the parameters.
154 */
155void
156tcp_respond(tp, ti, m, ack, seq, flags)
157	struct tcpcb *tp;
158	register struct tcpiphdr *ti;
159	register struct mbuf *m;
160	tcp_seq ack, seq;
161	int flags;
162{
163	register int tlen;
164	int win = 0;
165	struct route *ro = 0;
166
167	if (tp) {
168		win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
169		ro = &tp->t_inpcb->inp_route;
170	}
171	if (m == 0) {
172		m = m_gethdr(M_DONTWAIT, MT_HEADER);
173		if (m == NULL)
174			return;
175#ifdef TCP_COMPAT_42
176		tlen = 1;
177#else
178		tlen = 0;
179#endif
180		m->m_data += max_linkhdr;
181		*mtod(m, struct tcpiphdr *) = *ti;
182		ti = mtod(m, struct tcpiphdr *);
183		flags = TH_ACK;
184	} else {
185		m_freem(m->m_next);
186		m->m_next = 0;
187		m->m_data = (caddr_t)ti;
188		m->m_len = sizeof (struct tcpiphdr);
189		tlen = 0;
190#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
191		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_long);
192		xchg(ti->ti_dport, ti->ti_sport, u_short);
193#undef xchg
194	}
195	ti->ti_len = htons((u_short)(sizeof (struct tcphdr) + tlen));
196	tlen += sizeof (struct tcpiphdr);
197	m->m_len = tlen;
198	m->m_pkthdr.len = tlen;
199	m->m_pkthdr.rcvif = (struct ifnet *) 0;
200	ti->ti_next = ti->ti_prev = 0;
201	ti->ti_x1 = 0;
202	ti->ti_seq = htonl(seq);
203	ti->ti_ack = htonl(ack);
204	ti->ti_x2 = 0;
205	ti->ti_off = sizeof (struct tcphdr) >> 2;
206	ti->ti_flags = flags;
207	if (tp)
208		ti->ti_win = htons((u_short) (win >> tp->rcv_scale));
209	else
210		ti->ti_win = htons((u_short)win);
211	ti->ti_urp = 0;
212	ti->ti_sum = 0;
213	ti->ti_sum = in_cksum(m, tlen);
214	((struct ip *)ti)->ip_len = tlen;
215	((struct ip *)ti)->ip_ttl = ip_defttl;
216#ifdef TCPDEBUG
217	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
218		tcp_trace(TA_OUTPUT, 0, tp, ti, 0);
219#endif
220	(void) ip_output(m, NULL, ro, 0, NULL);
221}
222
223/*
224 * Create a new TCP control block, making an
225 * empty reassembly queue and hooking it to the argument
226 * protocol control block.
227 */
228struct tcpcb *
229tcp_newtcpcb(inp)
230	struct inpcb *inp;
231{
232	register struct tcpcb *tp;
233
234	tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
235	if (tp == NULL)
236		return ((struct tcpcb *)0);
237	bzero((char *) tp, sizeof(struct tcpcb));
238	tp->seg_next = tp->seg_prev = (struct tcpiphdr *)tp;
239	tp->t_maxseg = tp->t_maxopd = tcp_mssdflt;
240
241	if (tcp_do_rfc1323)
242		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
243	if (tcp_do_rfc1644)
244		tp->t_flags |= TF_REQ_CC;
245	tp->t_inpcb = inp;
246	/*
247	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
248	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
249	 * reasonable initial retransmit time.
250	 */
251	tp->t_srtt = TCPTV_SRTTBASE;
252	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << 2;
253	tp->t_rttmin = TCPTV_MIN;
254	TCPT_RANGESET(tp->t_rxtcur,
255	    ((TCPTV_SRTTBASE >> 2) + (TCPTV_SRTTDFLT << 2)) >> 1,
256	    TCPTV_MIN, TCPTV_REXMTMAX);
257	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
258	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
259	inp->inp_ip.ip_ttl = ip_defttl;
260	inp->inp_ppcb = (caddr_t)tp;
261	return (tp);
262}
263
264/*
265 * Drop a TCP connection, reporting
266 * the specified error.  If connection is synchronized,
267 * then send a RST to peer.
268 */
269struct tcpcb *
270tcp_drop(tp, errno)
271	register struct tcpcb *tp;
272	int errno;
273{
274	struct socket *so = tp->t_inpcb->inp_socket;
275
276	if (TCPS_HAVERCVDSYN(tp->t_state)) {
277		tp->t_state = TCPS_CLOSED;
278		(void) tcp_output(tp);
279		tcpstat.tcps_drops++;
280	} else
281		tcpstat.tcps_conndrops++;
282	if (errno == ETIMEDOUT && tp->t_softerror)
283		errno = tp->t_softerror;
284	so->so_error = errno;
285	return (tcp_close(tp));
286}
287
288/*
289 * Close a TCP control block:
290 *	discard all space held by the tcp
291 *	discard internet protocol block
292 *	wake up any sleepers
293 */
294struct tcpcb *
295tcp_close(tp)
296	register struct tcpcb *tp;
297{
298	register struct tcpiphdr *t;
299	struct inpcb *inp = tp->t_inpcb;
300	struct socket *so = inp->inp_socket;
301	register struct mbuf *m;
302#ifdef RTV_RTT
303	register struct rtentry *rt;
304
305	/*
306	 * If we sent enough data to get some meaningful characteristics,
307	 * save them in the routing entry.  'Enough' is arbitrarily
308	 * defined as the sendpipesize (default 4K) * 16.  This would
309	 * give us 16 rtt samples assuming we only get one sample per
310	 * window (the usual case on a long haul net).  16 samples is
311	 * enough for the srtt filter to converge to within 5% of the correct
312	 * value; fewer samples and we could save a very bogus rtt.
313	 *
314	 * Don't update the default route's characteristics and don't
315	 * update anything that the user "locked".
316	 */
317	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
318	    (rt = inp->inp_route.ro_rt) &&
319	    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr != INADDR_ANY) {
320		register u_long i = 0;
321
322		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
323			i = tp->t_srtt *
324			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
325			if (rt->rt_rmx.rmx_rtt && i)
326				/*
327				 * filter this update to half the old & half
328				 * the new values, converting scale.
329				 * See route.h and tcp_var.h for a
330				 * description of the scaling constants.
331				 */
332				rt->rt_rmx.rmx_rtt =
333				    (rt->rt_rmx.rmx_rtt + i) / 2;
334			else
335				rt->rt_rmx.rmx_rtt = i;
336		}
337		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
338			i = tp->t_rttvar *
339			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
340			if (rt->rt_rmx.rmx_rttvar && i)
341				rt->rt_rmx.rmx_rttvar =
342				    (rt->rt_rmx.rmx_rttvar + i) / 2;
343			else
344				rt->rt_rmx.rmx_rttvar = i;
345		}
346		/*
347		 * update the pipelimit (ssthresh) if it has been updated
348		 * already or if a pipesize was specified & the threshhold
349		 * got below half the pipesize.  I.e., wait for bad news
350		 * before we start updating, then update on both good
351		 * and bad news.
352		 */
353		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
354		    ((i = tp->snd_ssthresh) != 0) && rt->rt_rmx.rmx_ssthresh) ||
355		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
356			/*
357			 * convert the limit from user data bytes to
358			 * packets then to packet data bytes.
359			 */
360			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
361			if (i < 2)
362				i = 2;
363			i *= (u_long)(tp->t_maxseg + sizeof (struct tcpiphdr));
364			if (rt->rt_rmx.rmx_ssthresh)
365				rt->rt_rmx.rmx_ssthresh =
366				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
367			else
368				rt->rt_rmx.rmx_ssthresh = i;
369		}
370	}
371#endif /* RTV_RTT */
372	/* free the reassembly queue, if any */
373	t = tp->seg_next;
374	while (t != (struct tcpiphdr *)tp) {
375		t = (struct tcpiphdr *)t->ti_next;
376		m = REASS_MBUF((struct tcpiphdr *)t->ti_prev);
377		remque(t->ti_prev);
378		m_freem(m);
379	}
380	if (tp->t_template)
381		(void) m_free(dtom(tp->t_template));
382	free(tp, M_PCB);
383	inp->inp_ppcb = 0;
384	soisdisconnected(so);
385	in_pcbdetach(inp);
386	tcpstat.tcps_closed++;
387	return ((struct tcpcb *)0);
388}
389
390void
391tcp_drain()
392{
393
394}
395
396/*
397 * Notify a tcp user of an asynchronous error;
398 * store error as soft error, but wake up user
399 * (for now, won't do anything until can select for soft error).
400 */
401void
402tcp_notify(inp, error)
403	struct inpcb *inp;
404	int error;
405{
406	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
407	register struct socket *so = inp->inp_socket;
408
409	/*
410	 * Ignore some errors if we are hooked up.
411	 * If connection hasn't completed, has retransmitted several times,
412	 * and receives a second error, give up now.  This is better
413	 * than waiting a long time to establish a connection that
414	 * can never complete.
415	 */
416	if (tp->t_state == TCPS_ESTABLISHED &&
417	     (error == EHOSTUNREACH || error == ENETUNREACH ||
418	      error == EHOSTDOWN)) {
419		return;
420	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
421	    tp->t_softerror)
422		so->so_error = error;
423	else
424		tp->t_softerror = error;
425	wakeup((caddr_t) &so->so_timeo);
426	sorwakeup(so);
427	sowwakeup(so);
428}
429
430void
431tcp_ctlinput(cmd, sa, ip)
432	int cmd;
433	struct sockaddr *sa;
434	register struct ip *ip;
435{
436	register struct tcphdr *th;
437	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
438
439	if (cmd == PRC_QUENCH)
440		notify = tcp_quench;
441	else if (!PRC_IS_REDIRECT(cmd) &&
442		 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0))
443		return;
444	if (ip) {
445		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
446		in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,
447			cmd, notify);
448	} else
449		in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);
450}
451
452/*
453 * When a source quench is received, close congestion window
454 * to one segment.  We will gradually open it again as we proceed.
455 */
456void
457tcp_quench(inp, errno)
458	struct inpcb *inp;
459	int errno;
460{
461	struct tcpcb *tp = intotcpcb(inp);
462
463	if (tp)
464		tp->snd_cwnd = tp->t_maxseg;
465}
466
467/*
468 * Look-up the routing entry to the peer of this inpcb.  If no route
469 * is found and it cannot be allocated the return NULL.  This routine
470 * is called by TCP routines that access the rmx structure and by tcp_mss
471 * to get the interface MTU.
472 */
473struct rtentry *
474tcp_rtlookup(inp)
475	struct inpcb *inp;
476{
477	struct route *ro;
478	struct rtentry *rt;
479
480	ro = &inp->inp_route;
481	rt = ro->ro_rt;
482	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
483		/* No route yet, so try to acquire one */
484		if (inp->inp_faddr.s_addr != INADDR_ANY) {
485			ro->ro_dst.sa_family = AF_INET;
486			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
487			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
488				inp->inp_faddr;
489			rtalloc(ro);
490			rt = ro->ro_rt;
491		}
492	}
493	return rt;
494}
495
496/*
497 * Return a pointer to the cached information about the remote host.
498 * The cached information is stored in the protocol specific part of
499 * the route metrics.
500 */
501struct rmxp_tao *
502tcp_gettaocache(inp)
503	struct inpcb *inp;
504{
505	struct rtentry *rt = tcp_rtlookup(inp);
506
507	/* Make sure this is a host route and is up. */
508	if (rt == NULL ||
509	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
510		return NULL;
511
512	return rmx_taop(rt->rt_rmx);
513}
514
515/*
516 * Clear all the TAO cache entries, called from tcp_init.
517 *
518 * XXX
519 * This routine is just an empty one, because we assume that the routing
520 * routing tables are initialized at the same time when TCP, so there is
521 * nothing in the cache left over.
522 */
523static void
524tcp_cleartaocache(void)
525{ }
526