tcp_timewait.c revision 34923
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 *	$Id: tcp_subr.c,v 1.43 1998/03/24 18:06:28 wollman Exp $
35 */
36
37#include "opt_compat.h"
38#include "opt_tcpdebug.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/sysctl.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/socket.h>
47#include <sys/socketvar.h>
48#include <sys/protosw.h>
49
50#include <vm/vm_zone.h>
51
52#include <net/route.h>
53#include <net/if.h>
54
55#define _IP_VHL
56#include <netinet/in.h>
57#include <netinet/in_systm.h>
58#include <netinet/ip.h>
59#include <netinet/in_pcb.h>
60#include <netinet/in_var.h>
61#include <netinet/ip_var.h>
62#include <netinet/tcp.h>
63#include <netinet/tcp_fsm.h>
64#include <netinet/tcp_seq.h>
65#include <netinet/tcp_timer.h>
66#include <netinet/tcp_var.h>
67#include <netinet/tcpip.h>
68#ifdef TCPDEBUG
69#include <netinet/tcp_debug.h>
70#endif
71
72int 	tcp_mssdflt = TCP_MSS;
73SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
74	CTLFLAG_RW, &tcp_mssdflt , 0, "");
75
76static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
77SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt,
78	CTLFLAG_RW, &tcp_rttdflt , 0, "");
79
80static int	tcp_do_rfc1323 = 1;
81SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323,
82	CTLFLAG_RW, &tcp_do_rfc1323 , 0, "");
83
84static int	tcp_do_rfc1644 = 1;
85SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644,
86	CTLFLAG_RW, &tcp_do_rfc1644 , 0, "");
87
88static void	tcp_cleartaocache __P((void));
89static void	tcp_notify __P((struct inpcb *, int));
90
91/*
92 * Target size of TCP PCB hash tables. Must be a power of two.
93 */
94#ifndef TCBHASHSIZE
95#define TCBHASHSIZE	512
96#endif
97
98/*
99 * This is the actual shape of what we allocate using the zone
100 * allocator.  Doing it this way allows us to protect both structures
101 * using the same generation count, and also eliminates the overhead
102 * of allocating tcpcbs separately.  By hiding the structure here,
103 * we avoid changing most of the rest of the code (although it needs
104 * to be changed, eventually, for greater efficiency).
105 */
106#define	ALIGNMENT	32
107#define	ALIGNM1		(ALIGNMENT - 1)
108struct	inp_tp {
109	union {
110		struct	inpcb inp;
111		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
112	} inp_tp_u;
113	struct	tcpcb tcb;
114};
115#undef ALIGNMENT
116#undef ALIGNM1
117
118/*
119 * Tcp initialization
120 */
121void
122tcp_init()
123{
124
125	tcp_iss = random();	/* wrong, but better than a constant */
126	tcp_ccgen = 1;
127	tcp_cleartaocache();
128	LIST_INIT(&tcb);
129	tcbinfo.listhead = &tcb;
130	tcbinfo.hashbase = hashinit(TCBHASHSIZE, M_PCB, &tcbinfo.hashmask);
131	tcbinfo.porthashbase = hashinit(TCBHASHSIZE, M_PCB,
132					&tcbinfo.porthashmask);
133	/* For the moment, we just worry about putting inpcbs here. */
134	/*
135	 * Rationale for a maximum of `nmbclusters':
136	 * 	1) It's a convenient value, sized by config, based on
137	 *	   parameters already known to be tweakable as needed
138	 *	   for network-intensive systems.
139	 *	2) Under the Old World Order, when pcbs were stored in
140	 *	   mbufs, it was of course impossible to have more
141	 *	   pcbs than mbufs.
142	 *	3) The zone allocator doesn't allocate physical memory
143	 *	   for this many pcbs; it just sizes the virtual
144	 *	   address space appropriately.  Thus, even for very large
145	 *	   values of nmbclusters, we don't actually take up much
146	 *	   memory unless required.
147	 */
148	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), nmbclusters,
149				 ZONE_INTERRUPT, 0);
150	if (max_protohdr < sizeof(struct tcpiphdr))
151		max_protohdr = sizeof(struct tcpiphdr);
152	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
153		panic("tcp_init");
154}
155
156/*
157 * Create template to be used to send tcp packets on a connection.
158 * Call after host entry created, allocates an mbuf and fills
159 * in a skeletal tcp/ip header, minimizing the amount of work
160 * necessary when the connection is used.
161 */
162struct tcpiphdr *
163tcp_template(tp)
164	struct tcpcb *tp;
165{
166	register struct inpcb *inp = tp->t_inpcb;
167	register struct mbuf *m;
168	register struct tcpiphdr *n;
169
170	if ((n = tp->t_template) == 0) {
171		m = m_get(M_DONTWAIT, MT_HEADER);
172		if (m == NULL)
173			return (0);
174		m->m_len = sizeof (struct tcpiphdr);
175		n = mtod(m, struct tcpiphdr *);
176	}
177	n->ti_next = n->ti_prev = 0;
178	n->ti_x1 = 0;
179	n->ti_pr = IPPROTO_TCP;
180	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
181	n->ti_src = inp->inp_laddr;
182	n->ti_dst = inp->inp_faddr;
183	n->ti_sport = inp->inp_lport;
184	n->ti_dport = inp->inp_fport;
185	n->ti_seq = 0;
186	n->ti_ack = 0;
187	n->ti_x2 = 0;
188	n->ti_off = 5;
189	n->ti_flags = 0;
190	n->ti_win = 0;
191	n->ti_sum = 0;
192	n->ti_urp = 0;
193	return (n);
194}
195
196/*
197 * Send a single message to the TCP at address specified by
198 * the given TCP/IP header.  If m == 0, then we make a copy
199 * of the tcpiphdr at ti and send directly to the addressed host.
200 * This is used to force keep alive messages out using the TCP
201 * template for a connection tp->t_template.  If flags are given
202 * then we send a message back to the TCP which originated the
203 * segment ti, and discard the mbuf containing it and any other
204 * attached mbufs.
205 *
206 * In any case the ack and sequence number of the transmitted
207 * segment are as specified by the parameters.
208 *
209 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
210 */
211void
212tcp_respond(tp, ti, m, ack, seq, flags)
213	struct tcpcb *tp;
214	register struct tcpiphdr *ti;
215	register struct mbuf *m;
216	tcp_seq ack, seq;
217	int flags;
218{
219	register int tlen;
220	int win = 0;
221	struct route *ro = 0;
222	struct route sro;
223
224	if (tp) {
225		win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
226		ro = &tp->t_inpcb->inp_route;
227	} else {
228		ro = &sro;
229		bzero(ro, sizeof *ro);
230	}
231	if (m == 0) {
232		m = m_gethdr(M_DONTWAIT, MT_HEADER);
233		if (m == NULL)
234			return;
235#ifdef TCP_COMPAT_42
236		tlen = 1;
237#else
238		tlen = 0;
239#endif
240		m->m_data += max_linkhdr;
241		*mtod(m, struct tcpiphdr *) = *ti;
242		ti = mtod(m, struct tcpiphdr *);
243		flags = TH_ACK;
244	} else {
245		m_freem(m->m_next);
246		m->m_next = 0;
247		m->m_data = (caddr_t)ti;
248		m->m_len = sizeof (struct tcpiphdr);
249		tlen = 0;
250#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
251		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_long);
252		xchg(ti->ti_dport, ti->ti_sport, u_short);
253#undef xchg
254	}
255	ti->ti_len = htons((u_short)(sizeof (struct tcphdr) + tlen));
256	tlen += sizeof (struct tcpiphdr);
257	m->m_len = tlen;
258	m->m_pkthdr.len = tlen;
259	m->m_pkthdr.rcvif = (struct ifnet *) 0;
260	ti->ti_next = ti->ti_prev = 0;
261	ti->ti_x1 = 0;
262	ti->ti_seq = htonl(seq);
263	ti->ti_ack = htonl(ack);
264	ti->ti_x2 = 0;
265	ti->ti_off = sizeof (struct tcphdr) >> 2;
266	ti->ti_flags = flags;
267	if (tp)
268		ti->ti_win = htons((u_short) (win >> tp->rcv_scale));
269	else
270		ti->ti_win = htons((u_short)win);
271	ti->ti_urp = 0;
272	ti->ti_sum = 0;
273	ti->ti_sum = in_cksum(m, tlen);
274	((struct ip *)ti)->ip_len = tlen;
275	((struct ip *)ti)->ip_ttl = ip_defttl;
276#ifdef TCPDEBUG
277	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
278		tcp_trace(TA_OUTPUT, 0, tp, ti, 0);
279#endif
280	(void) ip_output(m, NULL, ro, 0, NULL);
281	if (ro == &sro && ro->ro_rt) {
282		RTFREE(ro->ro_rt);
283	}
284}
285
286/*
287 * Create a new TCP control block, making an
288 * empty reassembly queue and hooking it to the argument
289 * protocol control block.  The `inp' parameter must have
290 * come from the zone allocator set up in tcp_init().
291 */
292struct tcpcb *
293tcp_newtcpcb(inp)
294	struct inpcb *inp;
295{
296	struct inp_tp *it;
297	register struct tcpcb *tp;
298
299	it = (struct inp_tp *)inp;
300	tp = &it->tcb;
301	bzero((char *) tp, sizeof(struct tcpcb));
302	tp->seg_next = tp->seg_prev = (struct tcpiphdr *)tp;
303	tp->t_maxseg = tp->t_maxopd = tcp_mssdflt;
304
305	if (tcp_do_rfc1323)
306		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
307	if (tcp_do_rfc1644)
308		tp->t_flags |= TF_REQ_CC;
309	tp->t_inpcb = inp;	/* XXX */
310	/*
311	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
312	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
313	 * reasonable initial retransmit time.
314	 */
315	tp->t_srtt = TCPTV_SRTTBASE;
316	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
317	tp->t_rttmin = TCPTV_MIN;
318	tp->t_rxtcur = TCPTV_RTOBASE;
319	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
320	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
321	inp->inp_ip_ttl = ip_defttl;
322	inp->inp_ppcb = (caddr_t)tp;
323	return (tp);		/* XXX */
324}
325
326/*
327 * Drop a TCP connection, reporting
328 * the specified error.  If connection is synchronized,
329 * then send a RST to peer.
330 */
331struct tcpcb *
332tcp_drop(tp, errno)
333	register struct tcpcb *tp;
334	int errno;
335{
336	struct socket *so = tp->t_inpcb->inp_socket;
337
338	if (TCPS_HAVERCVDSYN(tp->t_state)) {
339		tp->t_state = TCPS_CLOSED;
340		(void) tcp_output(tp);
341		tcpstat.tcps_drops++;
342	} else
343		tcpstat.tcps_conndrops++;
344	if (errno == ETIMEDOUT && tp->t_softerror)
345		errno = tp->t_softerror;
346	so->so_error = errno;
347	return (tcp_close(tp));
348}
349
350/*
351 * Close a TCP control block:
352 *	discard all space held by the tcp
353 *	discard internet protocol block
354 *	wake up any sleepers
355 */
356struct tcpcb *
357tcp_close(tp)
358	register struct tcpcb *tp;
359{
360	register struct tcpiphdr *t;
361	struct inpcb *inp = tp->t_inpcb;
362	struct socket *so = inp->inp_socket;
363	register struct mbuf *m;
364	register struct rtentry *rt;
365	int dosavessthresh;
366
367	/*
368	 * If we got enough samples through the srtt filter,
369	 * save the rtt and rttvar in the routing entry.
370	 * 'Enough' is arbitrarily defined as the 16 samples.
371	 * 16 samples is enough for the srtt filter to converge
372	 * to within 5% of the correct value; fewer samples and
373	 * we could save a very bogus rtt.
374	 *
375	 * Don't update the default route's characteristics and don't
376	 * update anything that the user "locked".
377	 */
378	if (tp->t_rttupdated >= 16 &&
379	    (rt = inp->inp_route.ro_rt) &&
380	    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr != INADDR_ANY) {
381		register u_long i = 0;
382
383		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
384			i = tp->t_srtt *
385			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
386			if (rt->rt_rmx.rmx_rtt && i)
387				/*
388				 * filter this update to half the old & half
389				 * the new values, converting scale.
390				 * See route.h and tcp_var.h for a
391				 * description of the scaling constants.
392				 */
393				rt->rt_rmx.rmx_rtt =
394				    (rt->rt_rmx.rmx_rtt + i) / 2;
395			else
396				rt->rt_rmx.rmx_rtt = i;
397			tcpstat.tcps_cachedrtt++;
398		}
399		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
400			i = tp->t_rttvar *
401			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
402			if (rt->rt_rmx.rmx_rttvar && i)
403				rt->rt_rmx.rmx_rttvar =
404				    (rt->rt_rmx.rmx_rttvar + i) / 2;
405			else
406				rt->rt_rmx.rmx_rttvar = i;
407			tcpstat.tcps_cachedrttvar++;
408		}
409		/*
410		 * The old comment here said:
411		 * update the pipelimit (ssthresh) if it has been updated
412		 * already or if a pipesize was specified & the threshhold
413		 * got below half the pipesize.  I.e., wait for bad news
414		 * before we start updating, then update on both good
415		 * and bad news.
416		 *
417		 * But we want to save the ssthresh even if no pipesize is
418		 * specified explicitly in the route, because such
419		 * connections still have an implicit pipesize specified
420		 * by the global tcp_sendspace.  In the absence of a reliable
421		 * way to calculate the pipesize, it will have to do.
422		 */
423		i = tp->snd_ssthresh;
424#if 1
425		if (rt->rt_rmx.rmx_sendpipe != 0)
426			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
427		else
428			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
429#else
430		dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
431#endif
432		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
433		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
434		    || dosavessthresh) {
435			/*
436			 * convert the limit from user data bytes to
437			 * packets then to packet data bytes.
438			 */
439			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
440			if (i < 2)
441				i = 2;
442			i *= (u_long)(tp->t_maxseg + sizeof (struct tcpiphdr));
443			if (rt->rt_rmx.rmx_ssthresh)
444				rt->rt_rmx.rmx_ssthresh =
445				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
446			else
447				rt->rt_rmx.rmx_ssthresh = i;
448			tcpstat.tcps_cachedssthresh++;
449		}
450	}
451	/* free the reassembly queue, if any */
452	t = tp->seg_next;
453	while (t != (struct tcpiphdr *)tp) {
454		t = (struct tcpiphdr *)t->ti_next;
455		m = REASS_MBUF((struct tcpiphdr *)t->ti_prev);
456		remque(t->ti_prev);
457		m_freem(m);
458	}
459	if (tp->t_template)
460		(void) m_free(dtom(tp->t_template));
461	inp->inp_ppcb = NULL;
462	soisdisconnected(so);
463	in_pcbdetach(inp);
464	tcpstat.tcps_closed++;
465	return ((struct tcpcb *)0);
466}
467
468void
469tcp_drain()
470{
471
472}
473
474/*
475 * Notify a tcp user of an asynchronous error;
476 * store error as soft error, but wake up user
477 * (for now, won't do anything until can select for soft error).
478 */
479static void
480tcp_notify(inp, error)
481	struct inpcb *inp;
482	int error;
483{
484	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
485	register struct socket *so = inp->inp_socket;
486
487	/*
488	 * Ignore some errors if we are hooked up.
489	 * If connection hasn't completed, has retransmitted several times,
490	 * and receives a second error, give up now.  This is better
491	 * than waiting a long time to establish a connection that
492	 * can never complete.
493	 */
494	if (tp->t_state == TCPS_ESTABLISHED &&
495	     (error == EHOSTUNREACH || error == ENETUNREACH ||
496	      error == EHOSTDOWN)) {
497		return;
498	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
499	    tp->t_softerror)
500		so->so_error = error;
501	else
502		tp->t_softerror = error;
503	wakeup((caddr_t) &so->so_timeo);
504	sorwakeup(so);
505	sowwakeup(so);
506}
507
508void
509tcp_ctlinput(cmd, sa, vip)
510	int cmd;
511	struct sockaddr *sa;
512	void *vip;
513{
514	register struct ip *ip = vip;
515	register struct tcphdr *th;
516	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
517
518	if (cmd == PRC_QUENCH)
519		notify = tcp_quench;
520#if 1
521	else if (cmd == PRC_MSGSIZE)
522		notify = tcp_mtudisc;
523#endif
524	else if (!PRC_IS_REDIRECT(cmd) &&
525		 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0))
526		return;
527	if (ip) {
528		th = (struct tcphdr *)((caddr_t)ip
529				       + (IP_VHL_HL(ip->ip_vhl) << 2));
530		in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,
531			cmd, notify);
532	} else
533		in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);
534}
535
536/*
537 * When a source quench is received, close congestion window
538 * to one segment.  We will gradually open it again as we proceed.
539 */
540void
541tcp_quench(inp, errno)
542	struct inpcb *inp;
543	int errno;
544{
545	struct tcpcb *tp = intotcpcb(inp);
546
547	if (tp)
548		tp->snd_cwnd = tp->t_maxseg;
549}
550
551#if 1
552/*
553 * When `need fragmentation' ICMP is received, update our idea of the MSS
554 * based on the new value in the route.  Also nudge TCP to send something,
555 * since we know the packet we just sent was dropped.
556 * This duplicates some code in the tcp_mss() function in tcp_input.c.
557 */
558void
559tcp_mtudisc(inp, errno)
560	struct inpcb *inp;
561	int errno;
562{
563	struct tcpcb *tp = intotcpcb(inp);
564	struct rtentry *rt;
565	struct rmxp_tao *taop;
566	struct socket *so = inp->inp_socket;
567	int offered;
568	int mss;
569
570	if (tp) {
571		rt = tcp_rtlookup(inp);
572		if (!rt || !rt->rt_rmx.rmx_mtu) {
573			tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
574			return;
575		}
576		taop = rmx_taop(rt->rt_rmx);
577		offered = taop->tao_mssopt;
578		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
579		if (offered)
580			mss = min(mss, offered);
581		/*
582		 * XXX - The above conditional probably violates the TCP
583		 * spec.  The problem is that, since we don't know the
584		 * other end's MSS, we are supposed to use a conservative
585		 * default.  But, if we do that, then MTU discovery will
586		 * never actually take place, because the conservative
587		 * default is much less than the MTUs typically seen
588		 * on the Internet today.  For the moment, we'll sweep
589		 * this under the carpet.
590		 *
591		 * The conservative default might not actually be a problem
592		 * if the only case this occurs is when sending an initial
593		 * SYN with options and data to a host we've never talked
594		 * to before.  Then, they will reply with an MSS value which
595		 * will get recorded and the new parameters should get
596		 * recomputed.  For Further Study.
597		 */
598		if (tp->t_maxopd <= mss)
599			return;
600		tp->t_maxopd = mss;
601
602		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
603		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
604			mss -= TCPOLEN_TSTAMP_APPA;
605		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
606		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
607			mss -= TCPOLEN_CC_APPA;
608#if	(MCLBYTES & (MCLBYTES - 1)) == 0
609		if (mss > MCLBYTES)
610			mss &= ~(MCLBYTES-1);
611#else
612		if (mss > MCLBYTES)
613			mss = mss / MCLBYTES * MCLBYTES;
614#endif
615		if (so->so_snd.sb_hiwat < mss)
616			mss = so->so_snd.sb_hiwat;
617
618		tp->t_maxseg = mss;
619
620		tcpstat.tcps_mturesent++;
621		tp->t_rtt = 0;
622		tp->snd_nxt = tp->snd_una;
623		tcp_output(tp);
624	}
625}
626#endif
627
628/*
629 * Look-up the routing entry to the peer of this inpcb.  If no route
630 * is found and it cannot be allocated the return NULL.  This routine
631 * is called by TCP routines that access the rmx structure and by tcp_mss
632 * to get the interface MTU.
633 */
634struct rtentry *
635tcp_rtlookup(inp)
636	struct inpcb *inp;
637{
638	struct route *ro;
639	struct rtentry *rt;
640
641	ro = &inp->inp_route;
642	rt = ro->ro_rt;
643	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
644		/* No route yet, so try to acquire one */
645		if (inp->inp_faddr.s_addr != INADDR_ANY) {
646			ro->ro_dst.sa_family = AF_INET;
647			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
648			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
649				inp->inp_faddr;
650			rtalloc(ro);
651			rt = ro->ro_rt;
652		}
653	}
654	return rt;
655}
656
657/*
658 * Return a pointer to the cached information about the remote host.
659 * The cached information is stored in the protocol specific part of
660 * the route metrics.
661 */
662struct rmxp_tao *
663tcp_gettaocache(inp)
664	struct inpcb *inp;
665{
666	struct rtentry *rt = tcp_rtlookup(inp);
667
668	/* Make sure this is a host route and is up. */
669	if (rt == NULL ||
670	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
671		return NULL;
672
673	return rmx_taop(rt->rt_rmx);
674}
675
676/*
677 * Clear all the TAO cache entries, called from tcp_init.
678 *
679 * XXX
680 * This routine is just an empty one, because we assume that the routing
681 * routing tables are initialized at the same time when TCP, so there is
682 * nothing in the cache left over.
683 */
684static void
685tcp_cleartaocache()
686{
687}
688