tcp_timewait.c revision 169454
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 169454 2007-05-10 15:58:48Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#ifdef INET6
48#include <sys/domain.h>
49#endif
50#include <sys/priv.h>
51#include <sys/proc.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/protosw.h>
55#include <sys/random.h>
56
57#include <vm/uma.h>
58
59#include <net/route.h>
60#include <net/if.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/ip.h>
65#ifdef INET6
66#include <netinet/ip6.h>
67#endif
68#include <netinet/in_pcb.h>
69#ifdef INET6
70#include <netinet6/in6_pcb.h>
71#endif
72#include <netinet/in_var.h>
73#include <netinet/ip_var.h>
74#ifdef INET6
75#include <netinet6/ip6_var.h>
76#include <netinet6/scope6_var.h>
77#include <netinet6/nd6.h>
78#endif
79#include <netinet/ip_icmp.h>
80#include <netinet/tcp.h>
81#include <netinet/tcp_fsm.h>
82#include <netinet/tcp_seq.h>
83#include <netinet/tcp_timer.h>
84#include <netinet/tcp_var.h>
85#ifdef INET6
86#include <netinet6/tcp6_var.h>
87#endif
88#include <netinet/tcpip.h>
89#ifdef TCPDEBUG
90#include <netinet/tcp_debug.h>
91#endif
92#include <netinet6/ip6protosw.h>
93
94#ifdef IPSEC
95#include <netinet6/ipsec.h>
96#ifdef INET6
97#include <netinet6/ipsec6.h>
98#endif
99#include <netkey/key.h>
100#endif /*IPSEC*/
101
102#ifdef FAST_IPSEC
103#include <netipsec/ipsec.h>
104#include <netipsec/xform.h>
105#ifdef INET6
106#include <netipsec/ipsec6.h>
107#endif
108#include <netipsec/key.h>
109#define	IPSEC
110#endif /*FAST_IPSEC*/
111
112#include <machine/in_cksum.h>
113#include <sys/md5.h>
114
115#include <security/mac/mac_framework.h>
116
117int	tcp_mssdflt = TCP_MSS;
118SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
119    &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
120
121#ifdef INET6
122int	tcp_v6mssdflt = TCP6_MSS;
123SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
124    CTLFLAG_RW, &tcp_v6mssdflt , 0,
125    "Default TCP Maximum Segment Size for IPv6");
126#endif
127
128/*
129 * Minimum MSS we accept and use. This prevents DoS attacks where
130 * we are forced to a ridiculous low MSS like 20 and send hundreds
131 * of packets instead of one. The effect scales with the available
132 * bandwidth and quickly saturates the CPU and network interface
133 * with packet generation and sending. Set to zero to disable MINMSS
134 * checking. This setting prevents us from sending too small packets.
135 */
136int	tcp_minmss = TCP_MINMSS;
137SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
138    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
139
140int	tcp_do_rfc1323 = 1;
141SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
142    &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
143
144static int	tcp_tcbhashsize = 0;
145SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
146    &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
147
148static int	do_tcpdrain = 1;
149SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW,
150    &do_tcpdrain, 0,
151    "Enable tcp_drain routine for extra help when low on mbufs");
152
153SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
154    &tcbinfo.ipi_count, 0, "Number of active PCBs");
155
156static int	icmp_may_rst = 1;
157SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
158    &icmp_may_rst, 0,
159    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
160
161static int	tcp_isn_reseed_interval = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
163    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
164
165static uma_zone_t tcptw_zone;
166static int	maxtcptw;
167
168static int
169tcptw_auto_size(void)
170{
171	int halfrange;
172
173	/*
174	 * Max out at half the ephemeral port range so that TIME_WAIT
175	 * sockets don't tie up too many ephemeral ports.
176	 */
177	if (ipport_lastauto > ipport_firstauto)
178		halfrange = (ipport_lastauto - ipport_firstauto) / 2;
179	else
180		halfrange = (ipport_firstauto - ipport_lastauto) / 2;
181	/* Protect against goofy port ranges smaller than 32. */
182	return (imin(imax(halfrange, 32), maxsockets / 5));
183}
184
185static int
186sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
187{
188	int error, new;
189
190	if (maxtcptw == 0)
191		new = tcptw_auto_size();
192	else
193		new = maxtcptw;
194	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
195	if (error == 0 && req->newptr)
196		if (new >= 32) {
197			maxtcptw = new;
198			uma_zone_set_max(tcptw_zone, maxtcptw);
199		}
200	return (error);
201}
202SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
203    &maxtcptw, 0, sysctl_maxtcptw, "IU",
204    "Maximum number of compressed TCP TIME_WAIT entries");
205
206static int	nolocaltimewait = 0;
207SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
208    &nolocaltimewait, 0,
209    "Do not create compressed TCP TIME_WAIT entries for local connections");
210
211/*
212 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
213 * 1024 exists only for debugging.  A good production default would be
214 * something like 6100.
215 */
216SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
217    "TCP inflight data limiting");
218
219static int	tcp_inflight_enable = 1;
220SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
221    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
222
223static int	tcp_inflight_debug = 0;
224SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
225    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
226
227static int	tcp_inflight_rttthresh;
228SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
229    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
230    "RTT threshold below which inflight will deactivate itself");
231
232static int	tcp_inflight_min = 6144;
233SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
234    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
235
236static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
237SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
238    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
239
240static int	tcp_inflight_stab = 20;
241SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
242    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
243
244uma_zone_t sack_hole_zone;
245
246static struct inpcb *tcp_notify(struct inpcb *, int);
247static void	tcp_isn_tick(void *);
248
249/*
250 * Target size of TCP PCB hash tables. Must be a power of two.
251 *
252 * Note that this can be overridden by the kernel environment
253 * variable net.inet.tcp.tcbhashsize
254 */
255#ifndef TCBHASHSIZE
256#define TCBHASHSIZE	512
257#endif
258
259/*
260 * XXX
261 * Callouts should be moved into struct tcp directly.  They are currently
262 * separate because the tcpcb structure is exported to userland for sysctl
263 * parsing purposes, which do not know about callouts.
264 */
265struct tcpcb_mem {
266	struct	tcpcb		tcb;
267	struct	tcp_timer	tt;
268};
269
270static uma_zone_t tcpcb_zone;
271struct callout isn_callout;
272static struct mtx isn_mtx;
273
274#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
275#define	ISN_LOCK()	mtx_lock(&isn_mtx)
276#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
277
278/*
279 * TCP initialization.
280 */
281static void
282tcp_zone_change(void *tag)
283{
284
285	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
286	uma_zone_set_max(tcpcb_zone, maxsockets);
287	if (maxtcptw == 0)
288		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
289}
290
291static int
292tcp_inpcb_init(void *mem, int size, int flags)
293{
294	struct inpcb *inp = mem;
295
296	INP_LOCK_INIT(inp, "inp", "tcpinp");
297	return (0);
298}
299
300void
301tcp_init(void)
302{
303
304	int hashsize = TCBHASHSIZE;
305	tcp_delacktime = TCPTV_DELACK;
306	tcp_keepinit = TCPTV_KEEP_INIT;
307	tcp_keepidle = TCPTV_KEEP_IDLE;
308	tcp_keepintvl = TCPTV_KEEPINTVL;
309	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
310	tcp_msl = TCPTV_MSL;
311	tcp_rexmit_min = TCPTV_MIN;
312	tcp_rexmit_slop = TCPTV_CPU_VAR;
313	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
314	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
315
316	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
317	LIST_INIT(&tcb);
318	tcbinfo.ipi_listhead = &tcb;
319	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
320	if (!powerof2(hashsize)) {
321		printf("WARNING: TCB hash size not a power of 2\n");
322		hashsize = 512; /* safe default */
323	}
324	tcp_tcbhashsize = hashsize;
325	tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB,
326	    &tcbinfo.ipi_hashmask);
327	tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB,
328	    &tcbinfo.ipi_porthashmask);
329	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
330	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
331	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
332#ifdef INET6
333#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
334#else /* INET6 */
335#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
336#endif /* INET6 */
337	if (max_protohdr < TCP_MINPROTOHDR)
338		max_protohdr = TCP_MINPROTOHDR;
339	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
340		panic("tcp_init");
341#undef TCP_MINPROTOHDR
342	/*
343	 * These have to be type stable for the benefit of the timers.
344	 */
345	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
346	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
347	uma_zone_set_max(tcpcb_zone, maxsockets);
348	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
349	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
350	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
351	if (maxtcptw == 0)
352		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
353	else
354		uma_zone_set_max(tcptw_zone, maxtcptw);
355	tcp_timer_init();
356	syncache_init();
357	tcp_hc_init();
358	tcp_reass_init();
359	ISN_LOCK_INIT();
360	callout_init(&isn_callout, CALLOUT_MPSAFE);
361	tcp_isn_tick(NULL);
362	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
363		SHUTDOWN_PRI_DEFAULT);
364	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
365	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
366	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
367		EVENTHANDLER_PRI_ANY);
368}
369
370void
371tcp_fini(void *xtp)
372{
373
374	callout_stop(&isn_callout);
375}
376
377/*
378 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
379 * tcp_template used to store this data in mbufs, but we now recopy it out
380 * of the tcpcb each time to conserve mbufs.
381 */
382void
383tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
384{
385	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
386
387	INP_LOCK_ASSERT(inp);
388
389#ifdef INET6
390	if ((inp->inp_vflag & INP_IPV6) != 0) {
391		struct ip6_hdr *ip6;
392
393		ip6 = (struct ip6_hdr *)ip_ptr;
394		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
395			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
396		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
397			(IPV6_VERSION & IPV6_VERSION_MASK);
398		ip6->ip6_nxt = IPPROTO_TCP;
399		ip6->ip6_plen = sizeof(struct tcphdr);
400		ip6->ip6_src = inp->in6p_laddr;
401		ip6->ip6_dst = inp->in6p_faddr;
402	} else
403#endif
404	{
405		struct ip *ip;
406
407		ip = (struct ip *)ip_ptr;
408		ip->ip_v = IPVERSION;
409		ip->ip_hl = 5;
410		ip->ip_tos = inp->inp_ip_tos;
411		ip->ip_len = 0;
412		ip->ip_id = 0;
413		ip->ip_off = 0;
414		ip->ip_ttl = inp->inp_ip_ttl;
415		ip->ip_sum = 0;
416		ip->ip_p = IPPROTO_TCP;
417		ip->ip_src = inp->inp_laddr;
418		ip->ip_dst = inp->inp_faddr;
419	}
420	th->th_sport = inp->inp_lport;
421	th->th_dport = inp->inp_fport;
422	th->th_seq = 0;
423	th->th_ack = 0;
424	th->th_x2 = 0;
425	th->th_off = 5;
426	th->th_flags = 0;
427	th->th_win = 0;
428	th->th_urp = 0;
429	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
430}
431
432/*
433 * Create template to be used to send tcp packets on a connection.
434 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
435 * use for this function is in keepalives, which use tcp_respond.
436 */
437struct tcptemp *
438tcpip_maketemplate(struct inpcb *inp)
439{
440	struct mbuf *m;
441	struct tcptemp *n;
442
443	m = m_get(M_DONTWAIT, MT_DATA);
444	if (m == NULL)
445		return (0);
446	m->m_len = sizeof(struct tcptemp);
447	n = mtod(m, struct tcptemp *);
448
449	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
450	return (n);
451}
452
453/*
454 * Send a single message to the TCP at address specified by
455 * the given TCP/IP header.  If m == NULL, then we make a copy
456 * of the tcpiphdr at ti and send directly to the addressed host.
457 * This is used to force keep alive messages out using the TCP
458 * template for a connection.  If flags are given then we send
459 * a message back to the TCP which originated the * segment ti,
460 * and discard the mbuf containing it and any other attached mbufs.
461 *
462 * In any case the ack and sequence number of the transmitted
463 * segment are as specified by the parameters.
464 *
465 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
466 */
467void
468tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
469    tcp_seq ack, tcp_seq seq, int flags)
470{
471	int tlen;
472	int win = 0;
473	struct ip *ip;
474	struct tcphdr *nth;
475#ifdef INET6
476	struct ip6_hdr *ip6;
477	int isipv6;
478#endif /* INET6 */
479	int ipflags = 0;
480	struct inpcb *inp;
481
482	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
483
484#ifdef INET6
485	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
486	ip6 = ipgen;
487#endif /* INET6 */
488	ip = ipgen;
489
490	if (tp != NULL) {
491		inp = tp->t_inpcb;
492		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
493		INP_LOCK_ASSERT(inp);
494	} else
495		inp = NULL;
496
497	if (tp != NULL) {
498		if (!(flags & TH_RST)) {
499			win = sbspace(&inp->inp_socket->so_rcv);
500			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
501				win = (long)TCP_MAXWIN << tp->rcv_scale;
502		}
503	}
504	if (m == NULL) {
505		m = m_gethdr(M_DONTWAIT, MT_DATA);
506		if (m == NULL)
507			return;
508		tlen = 0;
509		m->m_data += max_linkhdr;
510#ifdef INET6
511		if (isipv6) {
512			bcopy((caddr_t)ip6, mtod(m, caddr_t),
513			      sizeof(struct ip6_hdr));
514			ip6 = mtod(m, struct ip6_hdr *);
515			nth = (struct tcphdr *)(ip6 + 1);
516		} else
517#endif /* INET6 */
518	      {
519		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
520		ip = mtod(m, struct ip *);
521		nth = (struct tcphdr *)(ip + 1);
522	      }
523		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
524		flags = TH_ACK;
525	} else {
526		m_freem(m->m_next);
527		m->m_next = NULL;
528		m->m_data = (caddr_t)ipgen;
529		/* m_len is set later */
530		tlen = 0;
531#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
532#ifdef INET6
533		if (isipv6) {
534			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
535			nth = (struct tcphdr *)(ip6 + 1);
536		} else
537#endif /* INET6 */
538	      {
539		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
540		nth = (struct tcphdr *)(ip + 1);
541	      }
542		if (th != nth) {
543			/*
544			 * this is usually a case when an extension header
545			 * exists between the IPv6 header and the
546			 * TCP header.
547			 */
548			nth->th_sport = th->th_sport;
549			nth->th_dport = th->th_dport;
550		}
551		xchg(nth->th_dport, nth->th_sport, n_short);
552#undef xchg
553	}
554#ifdef INET6
555	if (isipv6) {
556		ip6->ip6_flow = 0;
557		ip6->ip6_vfc = IPV6_VERSION;
558		ip6->ip6_nxt = IPPROTO_TCP;
559		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
560						tlen));
561		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
562	} else
563#endif
564	{
565		tlen += sizeof (struct tcpiphdr);
566		ip->ip_len = tlen;
567		ip->ip_ttl = ip_defttl;
568		if (path_mtu_discovery)
569			ip->ip_off |= IP_DF;
570	}
571	m->m_len = tlen;
572	m->m_pkthdr.len = tlen;
573	m->m_pkthdr.rcvif = NULL;
574#ifdef MAC
575	if (inp != NULL) {
576		/*
577		 * Packet is associated with a socket, so allow the
578		 * label of the response to reflect the socket label.
579		 */
580		INP_LOCK_ASSERT(inp);
581		mac_create_mbuf_from_inpcb(inp, m);
582	} else {
583		/*
584		 * Packet is not associated with a socket, so possibly
585		 * update the label in place.
586		 */
587		mac_reflect_mbuf_tcp(m);
588	}
589#endif
590	nth->th_seq = htonl(seq);
591	nth->th_ack = htonl(ack);
592	nth->th_x2 = 0;
593	nth->th_off = sizeof (struct tcphdr) >> 2;
594	nth->th_flags = flags;
595	if (tp != NULL)
596		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
597	else
598		nth->th_win = htons((u_short)win);
599	nth->th_urp = 0;
600#ifdef INET6
601	if (isipv6) {
602		nth->th_sum = 0;
603		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
604					sizeof(struct ip6_hdr),
605					tlen - sizeof(struct ip6_hdr));
606		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
607		    NULL, NULL);
608	} else
609#endif /* INET6 */
610	{
611		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
612		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
613		m->m_pkthdr.csum_flags = CSUM_TCP;
614		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
615	}
616#ifdef TCPDEBUG
617	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
618		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
619#endif
620#ifdef INET6
621	if (isipv6)
622		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
623	else
624#endif /* INET6 */
625	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
626}
627
628/*
629 * Create a new TCP control block, making an
630 * empty reassembly queue and hooking it to the argument
631 * protocol control block.  The `inp' parameter must have
632 * come from the zone allocator set up in tcp_init().
633 */
634struct tcpcb *
635tcp_newtcpcb(struct inpcb *inp)
636{
637	struct tcpcb_mem *tm;
638	struct tcpcb *tp;
639#ifdef INET6
640	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
641#endif /* INET6 */
642
643	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
644	if (tm == NULL)
645		return (NULL);
646	tp = &tm->tcb;
647	tp->t_timers = &tm->tt;
648	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
649	tp->t_maxseg = tp->t_maxopd =
650#ifdef INET6
651		isipv6 ? tcp_v6mssdflt :
652#endif /* INET6 */
653		tcp_mssdflt;
654
655	/* Set up our timeouts. */
656	callout_init_mtx(&tp->t_timers->tt_timer, &inp->inp_mtx,
657			 CALLOUT_RETURNUNLOCKED);
658
659	if (tcp_do_rfc1323)
660		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
661	if (tcp_do_sack)
662		tp->t_flags |= TF_SACK_PERMIT;
663	TAILQ_INIT(&tp->snd_holes);
664	tp->t_inpcb = inp;	/* XXX */
665	/*
666	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
667	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
668	 * reasonable initial retransmit time.
669	 */
670	tp->t_srtt = TCPTV_SRTTBASE;
671	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
672	tp->t_rttmin = tcp_rexmit_min;
673	tp->t_rxtcur = TCPTV_RTOBASE;
674	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
675	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
676	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
677	tp->t_rcvtime = ticks;
678	tp->t_bw_rtttime = ticks;
679	/*
680	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
681	 * because the socket may be bound to an IPv6 wildcard address,
682	 * which may match an IPv4-mapped IPv6 address.
683	 */
684	inp->inp_ip_ttl = ip_defttl;
685	inp->inp_ppcb = tp;
686	return (tp);		/* XXX */
687}
688
689/*
690 * Drop a TCP connection, reporting
691 * the specified error.  If connection is synchronized,
692 * then send a RST to peer.
693 */
694struct tcpcb *
695tcp_drop(struct tcpcb *tp, int errno)
696{
697	struct socket *so = tp->t_inpcb->inp_socket;
698
699	INP_INFO_WLOCK_ASSERT(&tcbinfo);
700	INP_LOCK_ASSERT(tp->t_inpcb);
701
702	if (TCPS_HAVERCVDSYN(tp->t_state)) {
703		tp->t_state = TCPS_CLOSED;
704		(void) tcp_output(tp);
705		tcpstat.tcps_drops++;
706	} else
707		tcpstat.tcps_conndrops++;
708	if (errno == ETIMEDOUT && tp->t_softerror)
709		errno = tp->t_softerror;
710	so->so_error = errno;
711	return (tcp_close(tp));
712}
713
714void
715tcp_discardcb(struct tcpcb *tp)
716{
717	struct tseg_qent *q;
718	struct inpcb *inp = tp->t_inpcb;
719	struct socket *so = inp->inp_socket;
720#ifdef INET6
721	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
722#endif /* INET6 */
723
724	INP_LOCK_ASSERT(inp);
725
726	/*
727	 * Make sure that all of our timers are stopped before we
728	 * delete the PCB.
729	 *
730	 * XXX: callout_stop() may race and a callout may already
731	 * try to obtain the INP_LOCK.  Only callout_drain() would
732	 * stop this but it would cause a LOR thus we can't use it.
733	 * The tcp_timer() function contains a lot of checks to
734	 * handle this case rather gracefully.
735	 */
736	tp->t_timers->tt_active = 0;
737	callout_stop(&tp->t_timers->tt_timer);
738
739	/*
740	 * If we got enough samples through the srtt filter,
741	 * save the rtt and rttvar in the routing entry.
742	 * 'Enough' is arbitrarily defined as 4 rtt samples.
743	 * 4 samples is enough for the srtt filter to converge
744	 * to within enough % of the correct value; fewer samples
745	 * and we could save a bogus rtt. The danger is not high
746	 * as tcp quickly recovers from everything.
747	 * XXX: Works very well but needs some more statistics!
748	 */
749	if (tp->t_rttupdated >= 4) {
750		struct hc_metrics_lite metrics;
751		u_long ssthresh;
752
753		bzero(&metrics, sizeof(metrics));
754		/*
755		 * Update the ssthresh always when the conditions below
756		 * are satisfied. This gives us better new start value
757		 * for the congestion avoidance for new connections.
758		 * ssthresh is only set if packet loss occured on a session.
759		 *
760		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
761		 * being torn down.  Ideally this code would not use 'so'.
762		 */
763		ssthresh = tp->snd_ssthresh;
764		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
765			/*
766			 * convert the limit from user data bytes to
767			 * packets then to packet data bytes.
768			 */
769			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
770			if (ssthresh < 2)
771				ssthresh = 2;
772			ssthresh *= (u_long)(tp->t_maxseg +
773#ifdef INET6
774				      (isipv6 ? sizeof (struct ip6_hdr) +
775					       sizeof (struct tcphdr) :
776#endif
777				       sizeof (struct tcpiphdr)
778#ifdef INET6
779				       )
780#endif
781				      );
782		} else
783			ssthresh = 0;
784		metrics.rmx_ssthresh = ssthresh;
785
786		metrics.rmx_rtt = tp->t_srtt;
787		metrics.rmx_rttvar = tp->t_rttvar;
788		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
789		metrics.rmx_bandwidth = tp->snd_bandwidth;
790		metrics.rmx_cwnd = tp->snd_cwnd;
791		metrics.rmx_sendpipe = 0;
792		metrics.rmx_recvpipe = 0;
793
794		tcp_hc_update(&inp->inp_inc, &metrics);
795	}
796
797	/* free the reassembly queue, if any */
798	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
799		LIST_REMOVE(q, tqe_q);
800		m_freem(q->tqe_m);
801		uma_zfree(tcp_reass_zone, q);
802		tp->t_segqlen--;
803		tcp_reass_qsize--;
804	}
805	tcp_free_sackholes(tp);
806	inp->inp_ppcb = NULL;
807	tp->t_inpcb = NULL;
808	uma_zfree(tcpcb_zone, tp);
809}
810
811/*
812 * Attempt to close a TCP control block, marking it as dropped, and freeing
813 * the socket if we hold the only reference.
814 */
815struct tcpcb *
816tcp_close(struct tcpcb *tp)
817{
818	struct inpcb *inp = tp->t_inpcb;
819	struct socket *so;
820
821	INP_INFO_WLOCK_ASSERT(&tcbinfo);
822	INP_LOCK_ASSERT(inp);
823
824	in_pcbdrop(inp);
825	tcpstat.tcps_closed++;
826	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
827	so = inp->inp_socket;
828	soisdisconnected(so);
829	if (inp->inp_vflag & INP_SOCKREF) {
830		KASSERT(so->so_state & SS_PROTOREF,
831		    ("tcp_close: !SS_PROTOREF"));
832		inp->inp_vflag &= ~INP_SOCKREF;
833		INP_UNLOCK(inp);
834		ACCEPT_LOCK();
835		SOCK_LOCK(so);
836		so->so_state &= ~SS_PROTOREF;
837		sofree(so);
838		return (NULL);
839	}
840	return (tp);
841}
842
843void
844tcp_drain(void)
845{
846
847	if (do_tcpdrain) {
848		struct inpcb *inpb;
849		struct tcpcb *tcpb;
850		struct tseg_qent *te;
851
852	/*
853	 * Walk the tcpbs, if existing, and flush the reassembly queue,
854	 * if there is one...
855	 * XXX: The "Net/3" implementation doesn't imply that the TCP
856	 *      reassembly queue should be flushed, but in a situation
857	 *	where we're really low on mbufs, this is potentially
858	 *	usefull.
859	 */
860		INP_INFO_RLOCK(&tcbinfo);
861		LIST_FOREACH(inpb, tcbinfo.ipi_listhead, inp_list) {
862			if (inpb->inp_vflag & INP_TIMEWAIT)
863				continue;
864			INP_LOCK(inpb);
865			if ((tcpb = intotcpcb(inpb)) != NULL) {
866				while ((te = LIST_FIRST(&tcpb->t_segq))
867			            != NULL) {
868					LIST_REMOVE(te, tqe_q);
869					m_freem(te->tqe_m);
870					uma_zfree(tcp_reass_zone, te);
871					tcpb->t_segqlen--;
872					tcp_reass_qsize--;
873				}
874				tcp_clean_sackreport(tcpb);
875			}
876			INP_UNLOCK(inpb);
877		}
878		INP_INFO_RUNLOCK(&tcbinfo);
879	}
880}
881
882/*
883 * Notify a tcp user of an asynchronous error;
884 * store error as soft error, but wake up user
885 * (for now, won't do anything until can select for soft error).
886 *
887 * Do not wake up user since there currently is no mechanism for
888 * reporting soft errors (yet - a kqueue filter may be added).
889 */
890static struct inpcb *
891tcp_notify(struct inpcb *inp, int error)
892{
893	struct tcpcb *tp;
894
895	INP_INFO_WLOCK_ASSERT(&tcbinfo);
896	INP_LOCK_ASSERT(inp);
897
898	if ((inp->inp_vflag & INP_TIMEWAIT) ||
899	    (inp->inp_vflag & INP_DROPPED))
900		return (inp);
901
902	tp = intotcpcb(inp);
903	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
904
905	/*
906	 * Ignore some errors if we are hooked up.
907	 * If connection hasn't completed, has retransmitted several times,
908	 * and receives a second error, give up now.  This is better
909	 * than waiting a long time to establish a connection that
910	 * can never complete.
911	 */
912	if (tp->t_state == TCPS_ESTABLISHED &&
913	    (error == EHOSTUNREACH || error == ENETUNREACH ||
914	     error == EHOSTDOWN)) {
915		return (inp);
916	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
917	    tp->t_softerror) {
918		tp = tcp_drop(tp, error);
919		if (tp != NULL)
920			return (inp);
921		else
922			return (NULL);
923	} else {
924		tp->t_softerror = error;
925		return (inp);
926	}
927#if 0
928	wakeup( &so->so_timeo);
929	sorwakeup(so);
930	sowwakeup(so);
931#endif
932}
933
934static int
935tcp_pcblist(SYSCTL_HANDLER_ARGS)
936{
937	int error, i, n;
938	struct inpcb *inp, **inp_list;
939	inp_gen_t gencnt;
940	struct xinpgen xig;
941
942	/*
943	 * The process of preparing the TCB list is too time-consuming and
944	 * resource-intensive to repeat twice on every request.
945	 */
946	if (req->oldptr == NULL) {
947		n = tcbinfo.ipi_count;
948		req->oldidx = 2 * (sizeof xig)
949			+ (n + n/8) * sizeof(struct xtcpcb);
950		return (0);
951	}
952
953	if (req->newptr != NULL)
954		return (EPERM);
955
956	/*
957	 * OK, now we're committed to doing something.
958	 */
959	INP_INFO_RLOCK(&tcbinfo);
960	gencnt = tcbinfo.ipi_gencnt;
961	n = tcbinfo.ipi_count;
962	INP_INFO_RUNLOCK(&tcbinfo);
963
964	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
965		+ n * sizeof(struct xtcpcb));
966	if (error != 0)
967		return (error);
968
969	xig.xig_len = sizeof xig;
970	xig.xig_count = n;
971	xig.xig_gen = gencnt;
972	xig.xig_sogen = so_gencnt;
973	error = SYSCTL_OUT(req, &xig, sizeof xig);
974	if (error)
975		return (error);
976
977	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
978	if (inp_list == NULL)
979		return (ENOMEM);
980
981	INP_INFO_RLOCK(&tcbinfo);
982	for (inp = LIST_FIRST(tcbinfo.ipi_listhead), i = 0; inp != NULL && i
983	    < n; inp = LIST_NEXT(inp, inp_list)) {
984		INP_LOCK(inp);
985		if (inp->inp_gencnt <= gencnt) {
986			/*
987			 * XXX: This use of cr_cansee(), introduced with
988			 * TCP state changes, is not quite right, but for
989			 * now, better than nothing.
990			 */
991			if (inp->inp_vflag & INP_TIMEWAIT) {
992				if (intotw(inp) != NULL)
993					error = cr_cansee(req->td->td_ucred,
994					    intotw(inp)->tw_cred);
995				else
996					error = EINVAL;	/* Skip this inp. */
997			} else
998				error = cr_canseesocket(req->td->td_ucred,
999				    inp->inp_socket);
1000			if (error == 0)
1001				inp_list[i++] = inp;
1002		}
1003		INP_UNLOCK(inp);
1004	}
1005	INP_INFO_RUNLOCK(&tcbinfo);
1006	n = i;
1007
1008	error = 0;
1009	for (i = 0; i < n; i++) {
1010		inp = inp_list[i];
1011		INP_LOCK(inp);
1012		if (inp->inp_gencnt <= gencnt) {
1013			struct xtcpcb xt;
1014			void *inp_ppcb;
1015
1016			bzero(&xt, sizeof(xt));
1017			xt.xt_len = sizeof xt;
1018			/* XXX should avoid extra copy */
1019			bcopy(inp, &xt.xt_inp, sizeof *inp);
1020			inp_ppcb = inp->inp_ppcb;
1021			if (inp_ppcb == NULL)
1022				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1023			else if (inp->inp_vflag & INP_TIMEWAIT) {
1024				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1025				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1026			} else
1027				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1028			if (inp->inp_socket != NULL)
1029				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1030			else {
1031				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1032				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1033			}
1034			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1035			INP_UNLOCK(inp);
1036			error = SYSCTL_OUT(req, &xt, sizeof xt);
1037		} else
1038			INP_UNLOCK(inp);
1039
1040	}
1041	if (!error) {
1042		/*
1043		 * Give the user an updated idea of our state.
1044		 * If the generation differs from what we told
1045		 * her before, she knows that something happened
1046		 * while we were processing this request, and it
1047		 * might be necessary to retry.
1048		 */
1049		INP_INFO_RLOCK(&tcbinfo);
1050		xig.xig_gen = tcbinfo.ipi_gencnt;
1051		xig.xig_sogen = so_gencnt;
1052		xig.xig_count = tcbinfo.ipi_count;
1053		INP_INFO_RUNLOCK(&tcbinfo);
1054		error = SYSCTL_OUT(req, &xig, sizeof xig);
1055	}
1056	free(inp_list, M_TEMP);
1057	return (error);
1058}
1059
1060SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1061    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1062
1063static int
1064tcp_getcred(SYSCTL_HANDLER_ARGS)
1065{
1066	struct xucred xuc;
1067	struct sockaddr_in addrs[2];
1068	struct inpcb *inp;
1069	int error;
1070
1071	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1072	    SUSER_ALLOWJAIL);
1073	if (error)
1074		return (error);
1075	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1076	if (error)
1077		return (error);
1078	INP_INFO_RLOCK(&tcbinfo);
1079	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1080	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1081	if (inp == NULL) {
1082		error = ENOENT;
1083		goto outunlocked;
1084	}
1085	INP_LOCK(inp);
1086	if (inp->inp_socket == NULL) {
1087		error = ENOENT;
1088		goto out;
1089	}
1090	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1091	if (error)
1092		goto out;
1093	cru2x(inp->inp_socket->so_cred, &xuc);
1094out:
1095	INP_UNLOCK(inp);
1096outunlocked:
1097	INP_INFO_RUNLOCK(&tcbinfo);
1098	if (error == 0)
1099		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1100	return (error);
1101}
1102
1103SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1104    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1105    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1106
1107#ifdef INET6
1108static int
1109tcp6_getcred(SYSCTL_HANDLER_ARGS)
1110{
1111	struct xucred xuc;
1112	struct sockaddr_in6 addrs[2];
1113	struct inpcb *inp;
1114	int error, mapped = 0;
1115
1116	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1117	    SUSER_ALLOWJAIL);
1118	if (error)
1119		return (error);
1120	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1121	if (error)
1122		return (error);
1123	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1124	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1125		return (error);
1126	}
1127	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1128		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1129			mapped = 1;
1130		else
1131			return (EINVAL);
1132	}
1133
1134	INP_INFO_RLOCK(&tcbinfo);
1135	if (mapped == 1)
1136		inp = in_pcblookup_hash(&tcbinfo,
1137			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1138			addrs[1].sin6_port,
1139			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1140			addrs[0].sin6_port,
1141			0, NULL);
1142	else
1143		inp = in6_pcblookup_hash(&tcbinfo,
1144			&addrs[1].sin6_addr, addrs[1].sin6_port,
1145			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1146	if (inp == NULL) {
1147		error = ENOENT;
1148		goto outunlocked;
1149	}
1150	INP_LOCK(inp);
1151	if (inp->inp_socket == NULL) {
1152		error = ENOENT;
1153		goto out;
1154	}
1155	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1156	if (error)
1157		goto out;
1158	cru2x(inp->inp_socket->so_cred, &xuc);
1159out:
1160	INP_UNLOCK(inp);
1161outunlocked:
1162	INP_INFO_RUNLOCK(&tcbinfo);
1163	if (error == 0)
1164		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1165	return (error);
1166}
1167
1168SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1169    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1170    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1171#endif
1172
1173
1174void
1175tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1176{
1177	struct ip *ip = vip;
1178	struct tcphdr *th;
1179	struct in_addr faddr;
1180	struct inpcb *inp;
1181	struct tcpcb *tp;
1182	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1183	struct icmp *icp;
1184	struct in_conninfo inc;
1185	tcp_seq icmp_tcp_seq;
1186	int mtu;
1187
1188	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1189	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1190		return;
1191
1192	if (cmd == PRC_MSGSIZE)
1193		notify = tcp_mtudisc;
1194	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1195		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1196		notify = tcp_drop_syn_sent;
1197	/*
1198	 * Redirects don't need to be handled up here.
1199	 */
1200	else if (PRC_IS_REDIRECT(cmd))
1201		return;
1202	/*
1203	 * Source quench is depreciated.
1204	 */
1205	else if (cmd == PRC_QUENCH)
1206		return;
1207	/*
1208	 * Hostdead is ugly because it goes linearly through all PCBs.
1209	 * XXX: We never get this from ICMP, otherwise it makes an
1210	 * excellent DoS attack on machines with many connections.
1211	 */
1212	else if (cmd == PRC_HOSTDEAD)
1213		ip = NULL;
1214	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1215		return;
1216	if (ip != NULL) {
1217		icp = (struct icmp *)((caddr_t)ip
1218				      - offsetof(struct icmp, icmp_ip));
1219		th = (struct tcphdr *)((caddr_t)ip
1220				       + (ip->ip_hl << 2));
1221		INP_INFO_WLOCK(&tcbinfo);
1222		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1223		    ip->ip_src, th->th_sport, 0, NULL);
1224		if (inp != NULL)  {
1225			INP_LOCK(inp);
1226			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1227			    !(inp->inp_vflag & INP_DROPPED) &&
1228			    !(inp->inp_socket == NULL)) {
1229				icmp_tcp_seq = htonl(th->th_seq);
1230				tp = intotcpcb(inp);
1231				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1232				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1233					if (cmd == PRC_MSGSIZE) {
1234					    /*
1235					     * MTU discovery:
1236					     * If we got a needfrag set the MTU
1237					     * in the route to the suggested new
1238					     * value (if given) and then notify.
1239					     */
1240					    bzero(&inc, sizeof(inc));
1241					    inc.inc_flags = 0;	/* IPv4 */
1242					    inc.inc_faddr = faddr;
1243
1244					    mtu = ntohs(icp->icmp_nextmtu);
1245					    /*
1246					     * If no alternative MTU was
1247					     * proposed, try the next smaller
1248					     * one.  ip->ip_len has already
1249					     * been swapped in icmp_input().
1250					     */
1251					    if (!mtu)
1252						mtu = ip_next_mtu(ip->ip_len,
1253						 1);
1254					    if (mtu < max(296, (tcp_minmss)
1255						 + sizeof(struct tcpiphdr)))
1256						mtu = 0;
1257					    if (!mtu)
1258						mtu = tcp_mssdflt
1259						 + sizeof(struct tcpiphdr);
1260					    /*
1261					     * Only cache the the MTU if it
1262					     * is smaller than the interface
1263					     * or route MTU.  tcp_mtudisc()
1264					     * will do right thing by itself.
1265					     */
1266					    if (mtu <= tcp_maxmtu(&inc, NULL))
1267						tcp_hc_updatemtu(&inc, mtu);
1268					}
1269
1270					inp = (*notify)(inp, inetctlerrmap[cmd]);
1271				}
1272			}
1273			if (inp != NULL)
1274				INP_UNLOCK(inp);
1275		} else {
1276			inc.inc_fport = th->th_dport;
1277			inc.inc_lport = th->th_sport;
1278			inc.inc_faddr = faddr;
1279			inc.inc_laddr = ip->ip_src;
1280#ifdef INET6
1281			inc.inc_isipv6 = 0;
1282#endif
1283			syncache_unreach(&inc, th);
1284		}
1285		INP_INFO_WUNLOCK(&tcbinfo);
1286	} else
1287		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1288}
1289
1290#ifdef INET6
1291void
1292tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1293{
1294	struct tcphdr th;
1295	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1296	struct ip6_hdr *ip6;
1297	struct mbuf *m;
1298	struct ip6ctlparam *ip6cp = NULL;
1299	const struct sockaddr_in6 *sa6_src = NULL;
1300	int off;
1301	struct tcp_portonly {
1302		u_int16_t th_sport;
1303		u_int16_t th_dport;
1304	} *thp;
1305
1306	if (sa->sa_family != AF_INET6 ||
1307	    sa->sa_len != sizeof(struct sockaddr_in6))
1308		return;
1309
1310	if (cmd == PRC_MSGSIZE)
1311		notify = tcp_mtudisc;
1312	else if (!PRC_IS_REDIRECT(cmd) &&
1313		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1314		return;
1315	/* Source quench is depreciated. */
1316	else if (cmd == PRC_QUENCH)
1317		return;
1318
1319	/* if the parameter is from icmp6, decode it. */
1320	if (d != NULL) {
1321		ip6cp = (struct ip6ctlparam *)d;
1322		m = ip6cp->ip6c_m;
1323		ip6 = ip6cp->ip6c_ip6;
1324		off = ip6cp->ip6c_off;
1325		sa6_src = ip6cp->ip6c_src;
1326	} else {
1327		m = NULL;
1328		ip6 = NULL;
1329		off = 0;	/* fool gcc */
1330		sa6_src = &sa6_any;
1331	}
1332
1333	if (ip6 != NULL) {
1334		struct in_conninfo inc;
1335		/*
1336		 * XXX: We assume that when IPV6 is non NULL,
1337		 * M and OFF are valid.
1338		 */
1339
1340		/* check if we can safely examine src and dst ports */
1341		if (m->m_pkthdr.len < off + sizeof(*thp))
1342			return;
1343
1344		bzero(&th, sizeof(th));
1345		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1346
1347		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1348		    (struct sockaddr *)ip6cp->ip6c_src,
1349		    th.th_sport, cmd, NULL, notify);
1350
1351		inc.inc_fport = th.th_dport;
1352		inc.inc_lport = th.th_sport;
1353		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1354		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1355		inc.inc_isipv6 = 1;
1356		INP_INFO_WLOCK(&tcbinfo);
1357		syncache_unreach(&inc, &th);
1358		INP_INFO_WUNLOCK(&tcbinfo);
1359	} else
1360		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1361			      0, cmd, NULL, notify);
1362}
1363#endif /* INET6 */
1364
1365
1366/*
1367 * Following is where TCP initial sequence number generation occurs.
1368 *
1369 * There are two places where we must use initial sequence numbers:
1370 * 1.  In SYN-ACK packets.
1371 * 2.  In SYN packets.
1372 *
1373 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1374 * tcp_syncache.c for details.
1375 *
1376 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1377 * depends on this property.  In addition, these ISNs should be
1378 * unguessable so as to prevent connection hijacking.  To satisfy
1379 * the requirements of this situation, the algorithm outlined in
1380 * RFC 1948 is used, with only small modifications.
1381 *
1382 * Implementation details:
1383 *
1384 * Time is based off the system timer, and is corrected so that it
1385 * increases by one megabyte per second.  This allows for proper
1386 * recycling on high speed LANs while still leaving over an hour
1387 * before rollover.
1388 *
1389 * As reading the *exact* system time is too expensive to be done
1390 * whenever setting up a TCP connection, we increment the time
1391 * offset in two ways.  First, a small random positive increment
1392 * is added to isn_offset for each connection that is set up.
1393 * Second, the function tcp_isn_tick fires once per clock tick
1394 * and increments isn_offset as necessary so that sequence numbers
1395 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1396 * random positive increments serve only to ensure that the same
1397 * exact sequence number is never sent out twice (as could otherwise
1398 * happen when a port is recycled in less than the system tick
1399 * interval.)
1400 *
1401 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1402 * between seeding of isn_secret.  This is normally set to zero,
1403 * as reseeding should not be necessary.
1404 *
1405 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1406 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1407 * general, this means holding an exclusive (write) lock.
1408 */
1409
1410#define ISN_BYTES_PER_SECOND 1048576
1411#define ISN_STATIC_INCREMENT 4096
1412#define ISN_RANDOM_INCREMENT (4096 - 1)
1413
1414static u_char isn_secret[32];
1415static int isn_last_reseed;
1416static u_int32_t isn_offset, isn_offset_old;
1417static MD5_CTX isn_ctx;
1418
1419tcp_seq
1420tcp_new_isn(struct tcpcb *tp)
1421{
1422	u_int32_t md5_buffer[4];
1423	tcp_seq new_isn;
1424
1425	INP_LOCK_ASSERT(tp->t_inpcb);
1426
1427	ISN_LOCK();
1428	/* Seed if this is the first use, reseed if requested. */
1429	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1430	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1431		< (u_int)ticks))) {
1432		read_random(&isn_secret, sizeof(isn_secret));
1433		isn_last_reseed = ticks;
1434	}
1435
1436	/* Compute the md5 hash and return the ISN. */
1437	MD5Init(&isn_ctx);
1438	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1439	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1440#ifdef INET6
1441	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1442		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1443			  sizeof(struct in6_addr));
1444		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1445			  sizeof(struct in6_addr));
1446	} else
1447#endif
1448	{
1449		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1450			  sizeof(struct in_addr));
1451		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1452			  sizeof(struct in_addr));
1453	}
1454	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1455	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1456	new_isn = (tcp_seq) md5_buffer[0];
1457	isn_offset += ISN_STATIC_INCREMENT +
1458		(arc4random() & ISN_RANDOM_INCREMENT);
1459	new_isn += isn_offset;
1460	ISN_UNLOCK();
1461	return (new_isn);
1462}
1463
1464/*
1465 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1466 * to keep time flowing at a relatively constant rate.  If the random
1467 * increments have already pushed us past the projected offset, do nothing.
1468 */
1469static void
1470tcp_isn_tick(void *xtp)
1471{
1472	u_int32_t projected_offset;
1473
1474	ISN_LOCK();
1475	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1476
1477	if (projected_offset > isn_offset)
1478		isn_offset = projected_offset;
1479
1480	isn_offset_old = isn_offset;
1481	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1482	ISN_UNLOCK();
1483}
1484
1485/*
1486 * When a specific ICMP unreachable message is received and the
1487 * connection state is SYN-SENT, drop the connection.  This behavior
1488 * is controlled by the icmp_may_rst sysctl.
1489 */
1490struct inpcb *
1491tcp_drop_syn_sent(struct inpcb *inp, int errno)
1492{
1493	struct tcpcb *tp;
1494
1495	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1496	INP_LOCK_ASSERT(inp);
1497
1498	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1499	    (inp->inp_vflag & INP_DROPPED))
1500		return (inp);
1501
1502	tp = intotcpcb(inp);
1503	if (tp->t_state != TCPS_SYN_SENT)
1504		return (inp);
1505
1506	tp = tcp_drop(tp, errno);
1507	if (tp != NULL)
1508		return (inp);
1509	else
1510		return (NULL);
1511}
1512
1513/*
1514 * When `need fragmentation' ICMP is received, update our idea of the MSS
1515 * based on the new value in the route.  Also nudge TCP to send something,
1516 * since we know the packet we just sent was dropped.
1517 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1518 */
1519struct inpcb *
1520tcp_mtudisc(struct inpcb *inp, int errno)
1521{
1522	struct tcpcb *tp;
1523	struct socket *so = inp->inp_socket;
1524	u_int maxmtu;
1525	u_int romtu;
1526	int mss;
1527#ifdef INET6
1528	int isipv6;
1529#endif /* INET6 */
1530
1531	INP_LOCK_ASSERT(inp);
1532	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1533	    (inp->inp_vflag & INP_DROPPED))
1534		return (inp);
1535
1536	tp = intotcpcb(inp);
1537	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1538
1539#ifdef INET6
1540	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1541#endif
1542	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1543	romtu =
1544#ifdef INET6
1545	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1546#endif /* INET6 */
1547	    tcp_maxmtu(&inp->inp_inc, NULL);
1548	if (!maxmtu)
1549		maxmtu = romtu;
1550	else
1551		maxmtu = min(maxmtu, romtu);
1552	if (!maxmtu) {
1553		tp->t_maxopd = tp->t_maxseg =
1554#ifdef INET6
1555			isipv6 ? tcp_v6mssdflt :
1556#endif /* INET6 */
1557			tcp_mssdflt;
1558		return (inp);
1559	}
1560	mss = maxmtu -
1561#ifdef INET6
1562		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1563#endif /* INET6 */
1564		 sizeof(struct tcpiphdr)
1565#ifdef INET6
1566		 )
1567#endif /* INET6 */
1568		;
1569
1570	/*
1571	 * XXX - The above conditional probably violates the TCP
1572	 * spec.  The problem is that, since we don't know the
1573	 * other end's MSS, we are supposed to use a conservative
1574	 * default.  But, if we do that, then MTU discovery will
1575	 * never actually take place, because the conservative
1576	 * default is much less than the MTUs typically seen
1577	 * on the Internet today.  For the moment, we'll sweep
1578	 * this under the carpet.
1579	 *
1580	 * The conservative default might not actually be a problem
1581	 * if the only case this occurs is when sending an initial
1582	 * SYN with options and data to a host we've never talked
1583	 * to before.  Then, they will reply with an MSS value which
1584	 * will get recorded and the new parameters should get
1585	 * recomputed.  For Further Study.
1586	 */
1587	if (tp->t_maxopd <= mss)
1588		return (inp);
1589	tp->t_maxopd = mss;
1590
1591	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1592	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1593		mss -= TCPOLEN_TSTAMP_APPA;
1594#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1595	if (mss > MCLBYTES)
1596		mss &= ~(MCLBYTES-1);
1597#else
1598	if (mss > MCLBYTES)
1599		mss = mss / MCLBYTES * MCLBYTES;
1600#endif
1601	if (so->so_snd.sb_hiwat < mss)
1602		mss = so->so_snd.sb_hiwat;
1603
1604	tp->t_maxseg = mss;
1605
1606	tcpstat.tcps_mturesent++;
1607	tp->t_rtttime = 0;
1608	tp->snd_nxt = tp->snd_una;
1609	tcp_free_sackholes(tp);
1610	tp->snd_recover = tp->snd_max;
1611	if (tp->t_flags & TF_SACK_PERMIT)
1612		EXIT_FASTRECOVERY(tp);
1613	tcp_output(tp);
1614	return (inp);
1615}
1616
1617/*
1618 * Look-up the routing entry to the peer of this inpcb.  If no route
1619 * is found and it cannot be allocated, then return NULL.  This routine
1620 * is called by TCP routines that access the rmx structure and by tcp_mss
1621 * to get the interface MTU.
1622 */
1623u_long
1624tcp_maxmtu(struct in_conninfo *inc, int *flags)
1625{
1626	struct route sro;
1627	struct sockaddr_in *dst;
1628	struct ifnet *ifp;
1629	u_long maxmtu = 0;
1630
1631	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1632
1633	bzero(&sro, sizeof(sro));
1634	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1635	        dst = (struct sockaddr_in *)&sro.ro_dst;
1636		dst->sin_family = AF_INET;
1637		dst->sin_len = sizeof(*dst);
1638		dst->sin_addr = inc->inc_faddr;
1639		rtalloc_ign(&sro, RTF_CLONING);
1640	}
1641	if (sro.ro_rt != NULL) {
1642		ifp = sro.ro_rt->rt_ifp;
1643		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1644			maxmtu = ifp->if_mtu;
1645		else
1646			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1647
1648		/* Report additional interface capabilities. */
1649		if (flags != NULL) {
1650			if (ifp->if_capenable & IFCAP_TSO4 &&
1651			    ifp->if_hwassist & CSUM_TSO)
1652				*flags |= CSUM_TSO;
1653		}
1654		RTFREE(sro.ro_rt);
1655	}
1656	return (maxmtu);
1657}
1658
1659#ifdef INET6
1660u_long
1661tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1662{
1663	struct route_in6 sro6;
1664	struct ifnet *ifp;
1665	u_long maxmtu = 0;
1666
1667	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1668
1669	bzero(&sro6, sizeof(sro6));
1670	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1671		sro6.ro_dst.sin6_family = AF_INET6;
1672		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1673		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1674		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1675	}
1676	if (sro6.ro_rt != NULL) {
1677		ifp = sro6.ro_rt->rt_ifp;
1678		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1679			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1680		else
1681			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1682				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1683
1684		/* Report additional interface capabilities. */
1685		if (flags != NULL) {
1686			if (ifp->if_capenable & IFCAP_TSO6 &&
1687			    ifp->if_hwassist & CSUM_TSO)
1688				*flags |= CSUM_TSO;
1689		}
1690		RTFREE(sro6.ro_rt);
1691	}
1692
1693	return (maxmtu);
1694}
1695#endif /* INET6 */
1696
1697#ifdef IPSEC
1698/* compute ESP/AH header size for TCP, including outer IP header. */
1699size_t
1700ipsec_hdrsiz_tcp(struct tcpcb *tp)
1701{
1702	struct inpcb *inp;
1703	struct mbuf *m;
1704	size_t hdrsiz;
1705	struct ip *ip;
1706#ifdef INET6
1707	struct ip6_hdr *ip6;
1708#endif
1709	struct tcphdr *th;
1710
1711	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1712		return (0);
1713	MGETHDR(m, M_DONTWAIT, MT_DATA);
1714	if (!m)
1715		return (0);
1716
1717#ifdef INET6
1718	if ((inp->inp_vflag & INP_IPV6) != 0) {
1719		ip6 = mtod(m, struct ip6_hdr *);
1720		th = (struct tcphdr *)(ip6 + 1);
1721		m->m_pkthdr.len = m->m_len =
1722			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1723		tcpip_fillheaders(inp, ip6, th);
1724		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1725	} else
1726#endif /* INET6 */
1727	{
1728		ip = mtod(m, struct ip *);
1729		th = (struct tcphdr *)(ip + 1);
1730		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1731		tcpip_fillheaders(inp, ip, th);
1732		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1733	}
1734
1735	m_free(m);
1736	return (hdrsiz);
1737}
1738#endif /*IPSEC*/
1739
1740/*
1741 * Move a TCP connection into TIME_WAIT state.
1742 *    tcbinfo is locked.
1743 *    inp is locked, and is unlocked before returning.
1744 */
1745void
1746tcp_twstart(struct tcpcb *tp)
1747{
1748	struct tcptw *tw;
1749	struct inpcb *inp = tp->t_inpcb;
1750	int acknow;
1751	struct socket *so;
1752
1753	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1754	INP_LOCK_ASSERT(inp);
1755
1756	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1757		tp = tcp_close(tp);
1758		if (tp != NULL)
1759			INP_UNLOCK(inp);
1760		return;
1761	}
1762
1763	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1764	if (tw == NULL) {
1765		tw = tcp_timer_2msl_tw(1);
1766		if (tw == NULL) {
1767			tp = tcp_close(tp);
1768			if (tp != NULL)
1769				INP_UNLOCK(inp);
1770			return;
1771		}
1772	}
1773	tw->tw_inpcb = inp;
1774
1775	/*
1776	 * Recover last window size sent.
1777	 */
1778	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1779
1780	/*
1781	 * Set t_recent if timestamps are used on the connection.
1782	 */
1783	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1784	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1785		tw->t_recent = tp->ts_recent;
1786	else
1787		tw->t_recent = 0;
1788
1789	tw->snd_nxt = tp->snd_nxt;
1790	tw->rcv_nxt = tp->rcv_nxt;
1791	tw->iss     = tp->iss;
1792	tw->irs     = tp->irs;
1793	tw->t_starttime = tp->t_starttime;
1794	tw->tw_time = 0;
1795
1796/* XXX
1797 * If this code will
1798 * be used for fin-wait-2 state also, then we may need
1799 * a ts_recent from the last segment.
1800 */
1801	acknow = tp->t_flags & TF_ACKNOW;
1802
1803	/*
1804	 * First, discard tcpcb state, which includes stopping its timers and
1805	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1806	 * that work is now done in the caller.
1807	 *
1808	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1809	 * and might not be needed here any longer.
1810	 */
1811	tcp_discardcb(tp);
1812	so = inp->inp_socket;
1813	soisdisconnected(so);
1814	tw->tw_cred = crhold(so->so_cred);
1815	SOCK_LOCK(so);
1816	tw->tw_so_options = so->so_options;
1817	SOCK_UNLOCK(so);
1818	if (acknow)
1819		tcp_twrespond(tw, TH_ACK);
1820	inp->inp_ppcb = tw;
1821	inp->inp_vflag |= INP_TIMEWAIT;
1822	tcp_timer_2msl_reset(tw, 0);
1823
1824	/*
1825	 * If the inpcb owns the sole reference to the socket, then we can
1826	 * detach and free the socket as it is not needed in time wait.
1827	 */
1828	if (inp->inp_vflag & INP_SOCKREF) {
1829		KASSERT(so->so_state & SS_PROTOREF,
1830		    ("tcp_twstart: !SS_PROTOREF"));
1831		inp->inp_vflag &= ~INP_SOCKREF;
1832		INP_UNLOCK(inp);
1833		ACCEPT_LOCK();
1834		SOCK_LOCK(so);
1835		so->so_state &= ~SS_PROTOREF;
1836		sofree(so);
1837	} else
1838		INP_UNLOCK(inp);
1839}
1840
1841#if 0
1842/*
1843 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1844 * the actual rate is slightly higher due to the addition of
1845 * random positive increments.
1846 *
1847 * Most other new OSes use semi-randomized ISN values, so we
1848 * do not need to worry about them.
1849 */
1850#define MS_ISN_BYTES_PER_SECOND		250000
1851
1852/*
1853 * Determine if the ISN we will generate has advanced beyond the last
1854 * sequence number used by the previous connection.  If so, indicate
1855 * that it is safe to recycle this tw socket by returning 1.
1856 */
1857int
1858tcp_twrecycleable(struct tcptw *tw)
1859{
1860	tcp_seq new_iss = tw->iss;
1861	tcp_seq new_irs = tw->irs;
1862
1863	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1864	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1865	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1866
1867	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1868		return (1);
1869	else
1870		return (0);
1871}
1872#endif
1873
1874void
1875tcp_twclose(struct tcptw *tw, int reuse)
1876{
1877	struct socket *so;
1878	struct inpcb *inp;
1879
1880	/*
1881	 * At this point, we are in one of two situations:
1882	 *
1883	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1884	 *     all state.
1885	 *
1886	 * (2) We have a socket -- if we own a reference, release it and
1887	 *     notify the socket layer.
1888	 */
1889	inp = tw->tw_inpcb;
1890	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1891	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1892	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1893	INP_LOCK_ASSERT(inp);
1894
1895	tw->tw_inpcb = NULL;
1896	tcp_timer_2msl_stop(tw);
1897	inp->inp_ppcb = NULL;
1898	in_pcbdrop(inp);
1899
1900	so = inp->inp_socket;
1901	if (so != NULL) {
1902		/*
1903		 * If there's a socket, handle two cases: first, we own a
1904		 * strong reference, which we will now release, or we don't
1905		 * in which case another reference exists (XXXRW: think
1906		 * about this more), and we don't need to take action.
1907		 */
1908		if (inp->inp_vflag & INP_SOCKREF) {
1909			inp->inp_vflag &= ~INP_SOCKREF;
1910			INP_UNLOCK(inp);
1911			ACCEPT_LOCK();
1912			SOCK_LOCK(so);
1913			KASSERT(so->so_state & SS_PROTOREF,
1914			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1915			so->so_state &= ~SS_PROTOREF;
1916			sofree(so);
1917		} else {
1918			/*
1919			 * If we don't own the only reference, the socket and
1920			 * inpcb need to be left around to be handled by
1921			 * tcp_usr_detach() later.
1922			 */
1923			INP_UNLOCK(inp);
1924		}
1925	} else {
1926#ifdef INET6
1927		if (inp->inp_vflag & INP_IPV6PROTO)
1928			in6_pcbfree(inp);
1929		else
1930#endif
1931			in_pcbfree(inp);
1932	}
1933	tcpstat.tcps_closed++;
1934	crfree(tw->tw_cred);
1935	tw->tw_cred = NULL;
1936	if (reuse)
1937		return;
1938	uma_zfree(tcptw_zone, tw);
1939}
1940
1941int
1942tcp_twrespond(struct tcptw *tw, int flags)
1943{
1944	struct inpcb *inp = tw->tw_inpcb;
1945	struct tcphdr *th;
1946	struct mbuf *m;
1947	struct ip *ip = NULL;
1948	u_int hdrlen, optlen;
1949	int error;
1950	struct tcpopt to;
1951#ifdef INET6
1952	struct ip6_hdr *ip6 = NULL;
1953	int isipv6 = inp->inp_inc.inc_isipv6;
1954#endif
1955
1956	INP_LOCK_ASSERT(inp);
1957
1958	m = m_gethdr(M_DONTWAIT, MT_DATA);
1959	if (m == NULL)
1960		return (ENOBUFS);
1961	m->m_data += max_linkhdr;
1962
1963#ifdef MAC
1964	mac_create_mbuf_from_inpcb(inp, m);
1965#endif
1966
1967#ifdef INET6
1968	if (isipv6) {
1969		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1970		ip6 = mtod(m, struct ip6_hdr *);
1971		th = (struct tcphdr *)(ip6 + 1);
1972		tcpip_fillheaders(inp, ip6, th);
1973	} else
1974#endif
1975	{
1976		hdrlen = sizeof(struct tcpiphdr);
1977		ip = mtod(m, struct ip *);
1978		th = (struct tcphdr *)(ip + 1);
1979		tcpip_fillheaders(inp, ip, th);
1980	}
1981	to.to_flags = 0;
1982
1983	/*
1984	 * Send a timestamp and echo-reply if both our side and our peer
1985	 * have sent timestamps in our SYN's and this is not a RST.
1986	 */
1987	if (tw->t_recent && flags == TH_ACK) {
1988		to.to_flags |= TOF_TS;
1989		to.to_tsval = ticks;
1990		to.to_tsecr = tw->t_recent;
1991	}
1992	optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1993
1994	m->m_len = hdrlen + optlen;
1995	m->m_pkthdr.len = m->m_len;
1996
1997	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1998
1999	th->th_seq = htonl(tw->snd_nxt);
2000	th->th_ack = htonl(tw->rcv_nxt);
2001	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2002	th->th_flags = flags;
2003	th->th_win = htons(tw->last_win);
2004
2005#ifdef INET6
2006	if (isipv6) {
2007		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2008		    sizeof(struct tcphdr) + optlen);
2009		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2010		error = ip6_output(m, inp->in6p_outputopts, NULL,
2011		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2012	} else
2013#endif
2014	{
2015		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2016		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2017		m->m_pkthdr.csum_flags = CSUM_TCP;
2018		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2019		ip->ip_len = m->m_pkthdr.len;
2020		if (path_mtu_discovery)
2021			ip->ip_off |= IP_DF;
2022		error = ip_output(m, inp->inp_options, NULL,
2023		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2024		    NULL, inp);
2025	}
2026	if (flags & TH_ACK)
2027		tcpstat.tcps_sndacks++;
2028	else
2029		tcpstat.tcps_sndctrl++;
2030	tcpstat.tcps_sndtotal++;
2031	return (error);
2032}
2033
2034/*
2035 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2036 *
2037 * This code attempts to calculate the bandwidth-delay product as a
2038 * means of determining the optimal window size to maximize bandwidth,
2039 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2040 * routers.  This code also does a fairly good job keeping RTTs in check
2041 * across slow links like modems.  We implement an algorithm which is very
2042 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2043 * transmitter side of a TCP connection and so only effects the transmit
2044 * side of the connection.
2045 *
2046 * BACKGROUND:  TCP makes no provision for the management of buffer space
2047 * at the end points or at the intermediate routers and switches.  A TCP
2048 * stream, whether using NewReno or not, will eventually buffer as
2049 * many packets as it is able and the only reason this typically works is
2050 * due to the fairly small default buffers made available for a connection
2051 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2052 * scaling it is now fairly easy for even a single TCP connection to blow-out
2053 * all available buffer space not only on the local interface, but on
2054 * intermediate routers and switches as well.  NewReno makes a misguided
2055 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2056 * then backing off, then steadily increasing the window again until another
2057 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2058 * is only made worse as network loads increase and the idea of intentionally
2059 * blowing out network buffers is, frankly, a terrible way to manage network
2060 * resources.
2061 *
2062 * It is far better to limit the transmit window prior to the failure
2063 * condition being achieved.  There are two general ways to do this:  First
2064 * you can 'scan' through different transmit window sizes and locate the
2065 * point where the RTT stops increasing, indicating that you have filled the
2066 * pipe, then scan backwards until you note that RTT stops decreasing, then
2067 * repeat ad-infinitum.  This method works in principle but has severe
2068 * implementation issues due to RTT variances, timer granularity, and
2069 * instability in the algorithm which can lead to many false positives and
2070 * create oscillations as well as interact badly with other TCP streams
2071 * implementing the same algorithm.
2072 *
2073 * The second method is to limit the window to the bandwidth delay product
2074 * of the link.  This is the method we implement.  RTT variances and our
2075 * own manipulation of the congestion window, bwnd, can potentially
2076 * destabilize the algorithm.  For this reason we have to stabilize the
2077 * elements used to calculate the window.  We do this by using the minimum
2078 * observed RTT, the long term average of the observed bandwidth, and
2079 * by adding two segments worth of slop.  It isn't perfect but it is able
2080 * to react to changing conditions and gives us a very stable basis on
2081 * which to extend the algorithm.
2082 */
2083void
2084tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2085{
2086	u_long bw;
2087	u_long bwnd;
2088	int save_ticks;
2089
2090	INP_LOCK_ASSERT(tp->t_inpcb);
2091
2092	/*
2093	 * If inflight_enable is disabled in the middle of a tcp connection,
2094	 * make sure snd_bwnd is effectively disabled.
2095	 */
2096	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2097		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2098		tp->snd_bandwidth = 0;
2099		return;
2100	}
2101
2102	/*
2103	 * Figure out the bandwidth.  Due to the tick granularity this
2104	 * is a very rough number and it MUST be averaged over a fairly
2105	 * long period of time.  XXX we need to take into account a link
2106	 * that is not using all available bandwidth, but for now our
2107	 * slop will ramp us up if this case occurs and the bandwidth later
2108	 * increases.
2109	 *
2110	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2111	 * effectively reset t_bw_rtttime for this case.
2112	 */
2113	save_ticks = ticks;
2114	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2115		return;
2116
2117	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2118	    (save_ticks - tp->t_bw_rtttime);
2119	tp->t_bw_rtttime = save_ticks;
2120	tp->t_bw_rtseq = ack_seq;
2121	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2122		return;
2123	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2124
2125	tp->snd_bandwidth = bw;
2126
2127	/*
2128	 * Calculate the semi-static bandwidth delay product, plus two maximal
2129	 * segments.  The additional slop puts us squarely in the sweet
2130	 * spot and also handles the bandwidth run-up case and stabilization.
2131	 * Without the slop we could be locking ourselves into a lower
2132	 * bandwidth.
2133	 *
2134	 * Situations Handled:
2135	 *	(1) Prevents over-queueing of packets on LANs, especially on
2136	 *	    high speed LANs, allowing larger TCP buffers to be
2137	 *	    specified, and also does a good job preventing
2138	 *	    over-queueing of packets over choke points like modems
2139	 *	    (at least for the transmit side).
2140	 *
2141	 *	(2) Is able to handle changing network loads (bandwidth
2142	 *	    drops so bwnd drops, bandwidth increases so bwnd
2143	 *	    increases).
2144	 *
2145	 *	(3) Theoretically should stabilize in the face of multiple
2146	 *	    connections implementing the same algorithm (this may need
2147	 *	    a little work).
2148	 *
2149	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2150	 *	    be adjusted with a sysctl but typically only needs to be
2151	 *	    on very slow connections.  A value no smaller then 5
2152	 *	    should be used, but only reduce this default if you have
2153	 *	    no other choice.
2154	 */
2155#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2156	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2157#undef USERTT
2158
2159	if (tcp_inflight_debug > 0) {
2160		static int ltime;
2161		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2162			ltime = ticks;
2163			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2164			    tp,
2165			    bw,
2166			    tp->t_rttbest,
2167			    tp->t_srtt,
2168			    bwnd
2169			);
2170		}
2171	}
2172	if ((long)bwnd < tcp_inflight_min)
2173		bwnd = tcp_inflight_min;
2174	if (bwnd > tcp_inflight_max)
2175		bwnd = tcp_inflight_max;
2176	if ((long)bwnd < tp->t_maxseg * 2)
2177		bwnd = tp->t_maxseg * 2;
2178	tp->snd_bwnd = bwnd;
2179}
2180
2181#ifdef TCP_SIGNATURE
2182/*
2183 * Callback function invoked by m_apply() to digest TCP segment data
2184 * contained within an mbuf chain.
2185 */
2186static int
2187tcp_signature_apply(void *fstate, void *data, u_int len)
2188{
2189
2190	MD5Update(fstate, (u_char *)data, len);
2191	return (0);
2192}
2193
2194/*
2195 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2196 *
2197 * Parameters:
2198 * m		pointer to head of mbuf chain
2199 * off0		offset to TCP header within the mbuf chain
2200 * len		length of TCP segment data, excluding options
2201 * optlen	length of TCP segment options
2202 * buf		pointer to storage for computed MD5 digest
2203 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2204 *
2205 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2206 * When called from tcp_input(), we can be sure that th_sum has been
2207 * zeroed out and verified already.
2208 *
2209 * This function is for IPv4 use only. Calling this function with an
2210 * IPv6 packet in the mbuf chain will yield undefined results.
2211 *
2212 * Return 0 if successful, otherwise return -1.
2213 *
2214 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2215 * search with the destination IP address, and a 'magic SPI' to be
2216 * determined by the application. This is hardcoded elsewhere to 1179
2217 * right now. Another branch of this code exists which uses the SPD to
2218 * specify per-application flows but it is unstable.
2219 */
2220int
2221tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2222    u_char *buf, u_int direction)
2223{
2224	union sockaddr_union dst;
2225	struct ippseudo ippseudo;
2226	MD5_CTX ctx;
2227	int doff;
2228	struct ip *ip;
2229	struct ipovly *ipovly;
2230	struct secasvar *sav;
2231	struct tcphdr *th;
2232	u_short savecsum;
2233
2234	KASSERT(m != NULL, ("NULL mbuf chain"));
2235	KASSERT(buf != NULL, ("NULL signature pointer"));
2236
2237	/* Extract the destination from the IP header in the mbuf. */
2238	ip = mtod(m, struct ip *);
2239	bzero(&dst, sizeof(union sockaddr_union));
2240	dst.sa.sa_len = sizeof(struct sockaddr_in);
2241	dst.sa.sa_family = AF_INET;
2242	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2243	    ip->ip_src : ip->ip_dst;
2244
2245	/* Look up an SADB entry which matches the address of the peer. */
2246	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2247	if (sav == NULL) {
2248		printf("%s: SADB lookup failed for %s\n", __func__,
2249		    inet_ntoa(dst.sin.sin_addr));
2250		return (EINVAL);
2251	}
2252
2253	MD5Init(&ctx);
2254	ipovly = (struct ipovly *)ip;
2255	th = (struct tcphdr *)((u_char *)ip + off0);
2256	doff = off0 + sizeof(struct tcphdr) + optlen;
2257
2258	/*
2259	 * Step 1: Update MD5 hash with IP pseudo-header.
2260	 *
2261	 * XXX The ippseudo header MUST be digested in network byte order,
2262	 * or else we'll fail the regression test. Assume all fields we've
2263	 * been doing arithmetic on have been in host byte order.
2264	 * XXX One cannot depend on ipovly->ih_len here. When called from
2265	 * tcp_output(), the underlying ip_len member has not yet been set.
2266	 */
2267	ippseudo.ippseudo_src = ipovly->ih_src;
2268	ippseudo.ippseudo_dst = ipovly->ih_dst;
2269	ippseudo.ippseudo_pad = 0;
2270	ippseudo.ippseudo_p = IPPROTO_TCP;
2271	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2272	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2273
2274	/*
2275	 * Step 2: Update MD5 hash with TCP header, excluding options.
2276	 * The TCP checksum must be set to zero.
2277	 */
2278	savecsum = th->th_sum;
2279	th->th_sum = 0;
2280	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2281	th->th_sum = savecsum;
2282
2283	/*
2284	 * Step 3: Update MD5 hash with TCP segment data.
2285	 *         Use m_apply() to avoid an early m_pullup().
2286	 */
2287	if (len > 0)
2288		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2289
2290	/*
2291	 * Step 4: Update MD5 hash with shared secret.
2292	 */
2293	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2294	MD5Final(buf, &ctx);
2295
2296	key_sa_recordxfer(sav, m);
2297	KEY_FREESAV(&sav);
2298	return (0);
2299}
2300#endif /* TCP_SIGNATURE */
2301
2302static int
2303sysctl_drop(SYSCTL_HANDLER_ARGS)
2304{
2305	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2306	struct sockaddr_storage addrs[2];
2307	struct inpcb *inp;
2308	struct tcpcb *tp;
2309	struct tcptw *tw;
2310	struct sockaddr_in *fin, *lin;
2311#ifdef INET6
2312	struct sockaddr_in6 *fin6, *lin6;
2313	struct in6_addr f6, l6;
2314#endif
2315	int error;
2316
2317	inp = NULL;
2318	fin = lin = NULL;
2319#ifdef INET6
2320	fin6 = lin6 = NULL;
2321#endif
2322	error = 0;
2323
2324	if (req->oldptr != NULL || req->oldlen != 0)
2325		return (EINVAL);
2326	if (req->newptr == NULL)
2327		return (EPERM);
2328	if (req->newlen < sizeof(addrs))
2329		return (ENOMEM);
2330	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2331	if (error)
2332		return (error);
2333
2334	switch (addrs[0].ss_family) {
2335#ifdef INET6
2336	case AF_INET6:
2337		fin6 = (struct sockaddr_in6 *)&addrs[0];
2338		lin6 = (struct sockaddr_in6 *)&addrs[1];
2339		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2340		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2341			return (EINVAL);
2342		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2343			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2344				return (EINVAL);
2345			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2346			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2347			fin = (struct sockaddr_in *)&addrs[0];
2348			lin = (struct sockaddr_in *)&addrs[1];
2349			break;
2350		}
2351		error = sa6_embedscope(fin6, ip6_use_defzone);
2352		if (error)
2353			return (error);
2354		error = sa6_embedscope(lin6, ip6_use_defzone);
2355		if (error)
2356			return (error);
2357		break;
2358#endif
2359	case AF_INET:
2360		fin = (struct sockaddr_in *)&addrs[0];
2361		lin = (struct sockaddr_in *)&addrs[1];
2362		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2363		    lin->sin_len != sizeof(struct sockaddr_in))
2364			return (EINVAL);
2365		break;
2366	default:
2367		return (EINVAL);
2368	}
2369	INP_INFO_WLOCK(&tcbinfo);
2370	switch (addrs[0].ss_family) {
2371#ifdef INET6
2372	case AF_INET6:
2373		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2374		    &l6, lin6->sin6_port, 0, NULL);
2375		break;
2376#endif
2377	case AF_INET:
2378		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2379		    lin->sin_addr, lin->sin_port, 0, NULL);
2380		break;
2381	}
2382	if (inp != NULL) {
2383		INP_LOCK(inp);
2384		if (inp->inp_vflag & INP_TIMEWAIT) {
2385			/*
2386			 * XXXRW: There currently exists a state where an
2387			 * inpcb is present, but its timewait state has been
2388			 * discarded.  For now, don't allow dropping of this
2389			 * type of inpcb.
2390			 */
2391			tw = intotw(inp);
2392			if (tw != NULL)
2393				tcp_twclose(tw, 0);
2394		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2395			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2396			tp = intotcpcb(inp);
2397			tcp_drop(tp, ECONNABORTED);
2398		}
2399		INP_UNLOCK(inp);
2400	} else
2401		error = ESRCH;
2402	INP_INFO_WUNLOCK(&tcbinfo);
2403	return (error);
2404}
2405
2406SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2407    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2408    0, sysctl_drop, "", "Drop TCP connection");
2409