tcp_timewait.c revision 168845
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 168845 2007-04-18 18:14:39Z andre $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#ifdef INET6
48#include <sys/domain.h>
49#endif
50#include <sys/priv.h>
51#include <sys/proc.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/protosw.h>
55#include <sys/random.h>
56
57#include <vm/uma.h>
58
59#include <net/route.h>
60#include <net/if.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/ip.h>
65#ifdef INET6
66#include <netinet/ip6.h>
67#endif
68#include <netinet/in_pcb.h>
69#ifdef INET6
70#include <netinet6/in6_pcb.h>
71#endif
72#include <netinet/in_var.h>
73#include <netinet/ip_var.h>
74#ifdef INET6
75#include <netinet6/ip6_var.h>
76#include <netinet6/scope6_var.h>
77#include <netinet6/nd6.h>
78#endif
79#include <netinet/ip_icmp.h>
80#include <netinet/tcp.h>
81#include <netinet/tcp_fsm.h>
82#include <netinet/tcp_seq.h>
83#include <netinet/tcp_timer.h>
84#include <netinet/tcp_var.h>
85#ifdef INET6
86#include <netinet6/tcp6_var.h>
87#endif
88#include <netinet/tcpip.h>
89#ifdef TCPDEBUG
90#include <netinet/tcp_debug.h>
91#endif
92#include <netinet6/ip6protosw.h>
93
94#ifdef IPSEC
95#include <netinet6/ipsec.h>
96#ifdef INET6
97#include <netinet6/ipsec6.h>
98#endif
99#include <netkey/key.h>
100#endif /*IPSEC*/
101
102#ifdef FAST_IPSEC
103#include <netipsec/ipsec.h>
104#include <netipsec/xform.h>
105#ifdef INET6
106#include <netipsec/ipsec6.h>
107#endif
108#include <netipsec/key.h>
109#define	IPSEC
110#endif /*FAST_IPSEC*/
111
112#include <machine/in_cksum.h>
113#include <sys/md5.h>
114
115#include <security/mac/mac_framework.h>
116
117int	tcp_mssdflt = TCP_MSS;
118SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
119    &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
120
121#ifdef INET6
122int	tcp_v6mssdflt = TCP6_MSS;
123SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
124    CTLFLAG_RW, &tcp_v6mssdflt , 0,
125    "Default TCP Maximum Segment Size for IPv6");
126#endif
127
128/*
129 * Minimum MSS we accept and use. This prevents DoS attacks where
130 * we are forced to a ridiculous low MSS like 20 and send hundreds
131 * of packets instead of one. The effect scales with the available
132 * bandwidth and quickly saturates the CPU and network interface
133 * with packet generation and sending. Set to zero to disable MINMSS
134 * checking. This setting prevents us from sending too small packets.
135 */
136int	tcp_minmss = TCP_MINMSS;
137SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
138    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
139
140int	tcp_do_rfc1323 = 1;
141SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
142    &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
143
144static int	tcp_tcbhashsize = 0;
145SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
146    &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
147
148static int	do_tcpdrain = 1;
149SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW,
150    &do_tcpdrain, 0,
151    "Enable tcp_drain routine for extra help when low on mbufs");
152
153SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
154    &tcbinfo.ipi_count, 0, "Number of active PCBs");
155
156static int	icmp_may_rst = 1;
157SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
158    &icmp_may_rst, 0,
159    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
160
161static int	tcp_isn_reseed_interval = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
163    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
164
165static uma_zone_t tcptw_zone;
166static int	maxtcptw;
167
168static int
169tcptw_auto_size(void)
170{
171	int halfrange;
172
173	/*
174	 * Max out at half the ephemeral port range so that TIME_WAIT
175	 * sockets don't tie up too many ephemeral ports.
176	 */
177	if (ipport_lastauto > ipport_firstauto)
178		halfrange = (ipport_lastauto - ipport_firstauto) / 2;
179	else
180		halfrange = (ipport_firstauto - ipport_lastauto) / 2;
181	/* Protect against goofy port ranges smaller than 32. */
182	return (imin(imax(halfrange, 32), maxsockets / 5));
183}
184
185static int
186sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
187{
188	int error, new;
189
190	if (maxtcptw == 0)
191		new = tcptw_auto_size();
192	else
193		new = maxtcptw;
194	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
195	if (error == 0 && req->newptr)
196		if (new >= 32) {
197			maxtcptw = new;
198			uma_zone_set_max(tcptw_zone, maxtcptw);
199		}
200	return (error);
201}
202SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
203    &maxtcptw, 0, sysctl_maxtcptw, "IU",
204    "Maximum number of compressed TCP TIME_WAIT entries");
205
206static int	nolocaltimewait = 0;
207SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
208    &nolocaltimewait, 0,
209    "Do not create compressed TCP TIME_WAIT entries for local connections");
210
211/*
212 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
213 * 1024 exists only for debugging.  A good production default would be
214 * something like 6100.
215 */
216SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
217    "TCP inflight data limiting");
218
219static int	tcp_inflight_enable = 1;
220SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
221    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
222
223static int	tcp_inflight_debug = 0;
224SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
225    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
226
227static int	tcp_inflight_rttthresh;
228SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
229    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
230    "RTT threshold below which inflight will deactivate itself");
231
232static int	tcp_inflight_min = 6144;
233SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
234    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
235
236static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
237SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
238    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
239
240static int	tcp_inflight_stab = 20;
241SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
242    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
243
244uma_zone_t sack_hole_zone;
245
246static struct inpcb *tcp_notify(struct inpcb *, int);
247static void	tcp_isn_tick(void *);
248
249/*
250 * Target size of TCP PCB hash tables. Must be a power of two.
251 *
252 * Note that this can be overridden by the kernel environment
253 * variable net.inet.tcp.tcbhashsize
254 */
255#ifndef TCBHASHSIZE
256#define TCBHASHSIZE	512
257#endif
258
259/*
260 * XXX
261 * Callouts should be moved into struct tcp directly.  They are currently
262 * separate because the tcpcb structure is exported to userland for sysctl
263 * parsing purposes, which do not know about callouts.
264 */
265struct tcpcb_mem {
266	struct	tcpcb		tcb;
267	struct	tcp_timer	tt;
268};
269
270static uma_zone_t tcpcb_zone;
271struct callout isn_callout;
272static struct mtx isn_mtx;
273
274#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
275#define	ISN_LOCK()	mtx_lock(&isn_mtx)
276#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
277
278/*
279 * TCP initialization.
280 */
281static void
282tcp_zone_change(void *tag)
283{
284
285	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
286	uma_zone_set_max(tcpcb_zone, maxsockets);
287	if (maxtcptw == 0)
288		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
289}
290
291static int
292tcp_inpcb_init(void *mem, int size, int flags)
293{
294	struct inpcb *inp = mem;
295
296	INP_LOCK_INIT(inp, "inp", "tcpinp");
297	return (0);
298}
299
300void
301tcp_init(void)
302{
303	int hashsize = TCBHASHSIZE;
304
305	tcp_delacktime = TCPTV_DELACK;
306	tcp_keepinit = TCPTV_KEEP_INIT;
307	tcp_keepidle = TCPTV_KEEP_IDLE;
308	tcp_keepintvl = TCPTV_KEEPINTVL;
309	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
310	tcp_msl = TCPTV_MSL;
311	tcp_rexmit_min = TCPTV_MIN;
312	tcp_rexmit_slop = TCPTV_CPU_VAR;
313	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
314	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
315
316	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
317	LIST_INIT(&tcb);
318	tcbinfo.listhead = &tcb;
319	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
320	if (!powerof2(hashsize)) {
321		printf("WARNING: TCB hash size not a power of 2\n");
322		hashsize = 512; /* safe default */
323	}
324	tcp_tcbhashsize = hashsize;
325	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
326	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
327					&tcbinfo.porthashmask);
328	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
329	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
330	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
331#ifdef INET6
332#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
333#else /* INET6 */
334#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
335#endif /* INET6 */
336	if (max_protohdr < TCP_MINPROTOHDR)
337		max_protohdr = TCP_MINPROTOHDR;
338	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
339		panic("tcp_init");
340#undef TCP_MINPROTOHDR
341	/*
342	 * These have to be type stable for the benefit of the timers.
343	 */
344	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
345	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
346	uma_zone_set_max(tcpcb_zone, maxsockets);
347	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
348	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
349	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
350	if (maxtcptw == 0)
351		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
352	else
353		uma_zone_set_max(tcptw_zone, maxtcptw);
354	tcp_timer_init();
355	syncache_init();
356	tcp_hc_init();
357	tcp_reass_init();
358	ISN_LOCK_INIT();
359	callout_init(&isn_callout, CALLOUT_MPSAFE);
360	tcp_isn_tick(NULL);
361	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
362		SHUTDOWN_PRI_DEFAULT);
363	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
364	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
365	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
366		EVENTHANDLER_PRI_ANY);
367}
368
369void
370tcp_fini(void *xtp)
371{
372
373	callout_stop(&isn_callout);
374}
375
376/*
377 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
378 * tcp_template used to store this data in mbufs, but we now recopy it out
379 * of the tcpcb each time to conserve mbufs.
380 */
381void
382tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
383{
384	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
385
386	INP_LOCK_ASSERT(inp);
387
388#ifdef INET6
389	if ((inp->inp_vflag & INP_IPV6) != 0) {
390		struct ip6_hdr *ip6;
391
392		ip6 = (struct ip6_hdr *)ip_ptr;
393		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
394			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
395		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
396			(IPV6_VERSION & IPV6_VERSION_MASK);
397		ip6->ip6_nxt = IPPROTO_TCP;
398		ip6->ip6_plen = sizeof(struct tcphdr);
399		ip6->ip6_src = inp->in6p_laddr;
400		ip6->ip6_dst = inp->in6p_faddr;
401	} else
402#endif
403	{
404		struct ip *ip;
405
406		ip = (struct ip *)ip_ptr;
407		ip->ip_v = IPVERSION;
408		ip->ip_hl = 5;
409		ip->ip_tos = inp->inp_ip_tos;
410		ip->ip_len = 0;
411		ip->ip_id = 0;
412		ip->ip_off = 0;
413		ip->ip_ttl = inp->inp_ip_ttl;
414		ip->ip_sum = 0;
415		ip->ip_p = IPPROTO_TCP;
416		ip->ip_src = inp->inp_laddr;
417		ip->ip_dst = inp->inp_faddr;
418	}
419	th->th_sport = inp->inp_lport;
420	th->th_dport = inp->inp_fport;
421	th->th_seq = 0;
422	th->th_ack = 0;
423	th->th_x2 = 0;
424	th->th_off = 5;
425	th->th_flags = 0;
426	th->th_win = 0;
427	th->th_urp = 0;
428	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
429}
430
431/*
432 * Create template to be used to send tcp packets on a connection.
433 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
434 * use for this function is in keepalives, which use tcp_respond.
435 */
436struct tcptemp *
437tcpip_maketemplate(struct inpcb *inp)
438{
439	struct mbuf *m;
440	struct tcptemp *n;
441
442	m = m_get(M_DONTWAIT, MT_DATA);
443	if (m == NULL)
444		return (0);
445	m->m_len = sizeof(struct tcptemp);
446	n = mtod(m, struct tcptemp *);
447
448	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
449	return (n);
450}
451
452/*
453 * Send a single message to the TCP at address specified by
454 * the given TCP/IP header.  If m == NULL, then we make a copy
455 * of the tcpiphdr at ti and send directly to the addressed host.
456 * This is used to force keep alive messages out using the TCP
457 * template for a connection.  If flags are given then we send
458 * a message back to the TCP which originated the * segment ti,
459 * and discard the mbuf containing it and any other attached mbufs.
460 *
461 * In any case the ack and sequence number of the transmitted
462 * segment are as specified by the parameters.
463 *
464 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
465 */
466void
467tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th,
468    struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
469{
470	int tlen;
471	int win = 0;
472	struct ip *ip;
473	struct tcphdr *nth;
474#ifdef INET6
475	struct ip6_hdr *ip6;
476	int isipv6;
477#endif /* INET6 */
478	int ipflags = 0;
479	struct inpcb *inp;
480
481	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
482
483#ifdef INET6
484	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
485	ip6 = ipgen;
486#endif /* INET6 */
487	ip = ipgen;
488
489	if (tp != NULL) {
490		inp = tp->t_inpcb;
491		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
492		INP_LOCK_ASSERT(inp);
493	} else
494		inp = NULL;
495
496	if (tp != NULL) {
497		if (!(flags & TH_RST)) {
498			win = sbspace(&inp->inp_socket->so_rcv);
499			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
500				win = (long)TCP_MAXWIN << tp->rcv_scale;
501		}
502	}
503	if (m == NULL) {
504		m = m_gethdr(M_DONTWAIT, MT_DATA);
505		if (m == NULL)
506			return;
507		tlen = 0;
508		m->m_data += max_linkhdr;
509#ifdef INET6
510		if (isipv6) {
511			bcopy((caddr_t)ip6, mtod(m, caddr_t),
512			      sizeof(struct ip6_hdr));
513			ip6 = mtod(m, struct ip6_hdr *);
514			nth = (struct tcphdr *)(ip6 + 1);
515		} else
516#endif /* INET6 */
517	      {
518		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
519		ip = mtod(m, struct ip *);
520		nth = (struct tcphdr *)(ip + 1);
521	      }
522		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
523		flags = TH_ACK;
524	} else {
525		m_freem(m->m_next);
526		m->m_next = NULL;
527		m->m_data = (caddr_t)ipgen;
528		/* m_len is set later */
529		tlen = 0;
530#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
531#ifdef INET6
532		if (isipv6) {
533			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
534			nth = (struct tcphdr *)(ip6 + 1);
535		} else
536#endif /* INET6 */
537	      {
538		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
539		nth = (struct tcphdr *)(ip + 1);
540	      }
541		if (th != nth) {
542			/*
543			 * this is usually a case when an extension header
544			 * exists between the IPv6 header and the
545			 * TCP header.
546			 */
547			nth->th_sport = th->th_sport;
548			nth->th_dport = th->th_dport;
549		}
550		xchg(nth->th_dport, nth->th_sport, n_short);
551#undef xchg
552	}
553#ifdef INET6
554	if (isipv6) {
555		ip6->ip6_flow = 0;
556		ip6->ip6_vfc = IPV6_VERSION;
557		ip6->ip6_nxt = IPPROTO_TCP;
558		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
559						tlen));
560		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
561	} else
562#endif
563	{
564		tlen += sizeof (struct tcpiphdr);
565		ip->ip_len = tlen;
566		ip->ip_ttl = ip_defttl;
567		if (path_mtu_discovery)
568			ip->ip_off |= IP_DF;
569	}
570	m->m_len = tlen;
571	m->m_pkthdr.len = tlen;
572	m->m_pkthdr.rcvif = NULL;
573#ifdef MAC
574	if (inp != NULL) {
575		/*
576		 * Packet is associated with a socket, so allow the
577		 * label of the response to reflect the socket label.
578		 */
579		INP_LOCK_ASSERT(inp);
580		mac_create_mbuf_from_inpcb(inp, m);
581	} else {
582		/*
583		 * Packet is not associated with a socket, so possibly
584		 * update the label in place.
585		 */
586		mac_reflect_mbuf_tcp(m);
587	}
588#endif
589	nth->th_seq = htonl(seq);
590	nth->th_ack = htonl(ack);
591	nth->th_x2 = 0;
592	nth->th_off = sizeof (struct tcphdr) >> 2;
593	nth->th_flags = flags;
594	if (tp != NULL)
595		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
596	else
597		nth->th_win = htons((u_short)win);
598	nth->th_urp = 0;
599#ifdef INET6
600	if (isipv6) {
601		nth->th_sum = 0;
602		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
603					sizeof(struct ip6_hdr),
604					tlen - sizeof(struct ip6_hdr));
605		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
606		    NULL, NULL);
607	} else
608#endif /* INET6 */
609	{
610		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
611		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
612		m->m_pkthdr.csum_flags = CSUM_TCP;
613		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
614	}
615#ifdef TCPDEBUG
616	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
617		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
618#endif
619#ifdef INET6
620	if (isipv6)
621		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
622	else
623#endif /* INET6 */
624	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
625}
626
627/*
628 * Create a new TCP control block, making an
629 * empty reassembly queue and hooking it to the argument
630 * protocol control block.  The `inp' parameter must have
631 * come from the zone allocator set up in tcp_init().
632 */
633struct tcpcb *
634tcp_newtcpcb(struct inpcb *inp)
635{
636	struct tcpcb_mem *tm;
637	struct tcpcb *tp;
638#ifdef INET6
639	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
640#endif /* INET6 */
641
642	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
643	if (tm == NULL)
644		return (NULL);
645	tp = &tm->tcb;
646	tp->t_timers = &tm->tt;
647	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
648	tp->t_maxseg = tp->t_maxopd =
649#ifdef INET6
650		isipv6 ? tcp_v6mssdflt :
651#endif /* INET6 */
652		tcp_mssdflt;
653
654	/* Set up our timeouts. */
655	callout_init_mtx(&tp->t_timers->tt_timer, &inp->inp_mtx,
656			 CALLOUT_RETURNUNLOCKED);
657
658	if (tcp_do_rfc1323)
659		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
660	tp->sack_enable = tcp_do_sack;
661	TAILQ_INIT(&tp->snd_holes);
662	tp->t_inpcb = inp;	/* XXX */
663	/*
664	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
665	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
666	 * reasonable initial retransmit time.
667	 */
668	tp->t_srtt = TCPTV_SRTTBASE;
669	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
670	tp->t_rttmin = tcp_rexmit_min;
671	tp->t_rxtcur = TCPTV_RTOBASE;
672	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
673	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
674	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
675	tp->t_rcvtime = ticks;
676	tp->t_bw_rtttime = ticks;
677	/*
678	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
679	 * because the socket may be bound to an IPv6 wildcard address,
680	 * which may match an IPv4-mapped IPv6 address.
681	 */
682	inp->inp_ip_ttl = ip_defttl;
683	inp->inp_ppcb = tp;
684	return (tp);		/* XXX */
685}
686
687/*
688 * Drop a TCP connection, reporting
689 * the specified error.  If connection is synchronized,
690 * then send a RST to peer.
691 */
692struct tcpcb *
693tcp_drop(struct tcpcb *tp, int errno)
694{
695	struct socket *so = tp->t_inpcb->inp_socket;
696
697	INP_INFO_WLOCK_ASSERT(&tcbinfo);
698	INP_LOCK_ASSERT(tp->t_inpcb);
699
700	if (TCPS_HAVERCVDSYN(tp->t_state)) {
701		tp->t_state = TCPS_CLOSED;
702		(void) tcp_output(tp);
703		tcpstat.tcps_drops++;
704	} else
705		tcpstat.tcps_conndrops++;
706	if (errno == ETIMEDOUT && tp->t_softerror)
707		errno = tp->t_softerror;
708	so->so_error = errno;
709	return (tcp_close(tp));
710}
711
712void
713tcp_discardcb(struct tcpcb *tp)
714{
715	struct tseg_qent *q;
716	struct inpcb *inp = tp->t_inpcb;
717	struct socket *so = inp->inp_socket;
718#ifdef INET6
719	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
720#endif /* INET6 */
721
722	INP_LOCK_ASSERT(inp);
723
724	/*
725	 * Make sure that all of our timers are stopped before we
726	 * delete the PCB.
727	 *
728	 * XXX: callout_stop() may race and a callout may already
729	 * try to obtain the INP_LOCK.  Only callout_drain() would
730	 * stop this but it would cause a LOR thus we can't use it.
731	 * The tcp_timer() function contains a lot of checks to
732	 * handle this case rather gracefully.
733	 */
734	tp->t_timers->tt_active = 0;
735	callout_stop(&tp->t_timers->tt_timer);
736
737	/*
738	 * If we got enough samples through the srtt filter,
739	 * save the rtt and rttvar in the routing entry.
740	 * 'Enough' is arbitrarily defined as 4 rtt samples.
741	 * 4 samples is enough for the srtt filter to converge
742	 * to within enough % of the correct value; fewer samples
743	 * and we could save a bogus rtt. The danger is not high
744	 * as tcp quickly recovers from everything.
745	 * XXX: Works very well but needs some more statistics!
746	 */
747	if (tp->t_rttupdated >= 4) {
748		struct hc_metrics_lite metrics;
749		u_long ssthresh;
750
751		bzero(&metrics, sizeof(metrics));
752		/*
753		 * Update the ssthresh always when the conditions below
754		 * are satisfied. This gives us better new start value
755		 * for the congestion avoidance for new connections.
756		 * ssthresh is only set if packet loss occured on a session.
757		 *
758		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
759		 * being torn down.  Ideally this code would not use 'so'.
760		 */
761		ssthresh = tp->snd_ssthresh;
762		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
763			/*
764			 * convert the limit from user data bytes to
765			 * packets then to packet data bytes.
766			 */
767			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
768			if (ssthresh < 2)
769				ssthresh = 2;
770			ssthresh *= (u_long)(tp->t_maxseg +
771#ifdef INET6
772				      (isipv6 ? sizeof (struct ip6_hdr) +
773					       sizeof (struct tcphdr) :
774#endif
775				       sizeof (struct tcpiphdr)
776#ifdef INET6
777				       )
778#endif
779				      );
780		} else
781			ssthresh = 0;
782		metrics.rmx_ssthresh = ssthresh;
783
784		metrics.rmx_rtt = tp->t_srtt;
785		metrics.rmx_rttvar = tp->t_rttvar;
786		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
787		metrics.rmx_bandwidth = tp->snd_bandwidth;
788		metrics.rmx_cwnd = tp->snd_cwnd;
789		metrics.rmx_sendpipe = 0;
790		metrics.rmx_recvpipe = 0;
791
792		tcp_hc_update(&inp->inp_inc, &metrics);
793	}
794
795	/* free the reassembly queue, if any */
796	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
797		LIST_REMOVE(q, tqe_q);
798		m_freem(q->tqe_m);
799		uma_zfree(tcp_reass_zone, q);
800		tp->t_segqlen--;
801		tcp_reass_qsize--;
802	}
803	tcp_free_sackholes(tp);
804	inp->inp_ppcb = NULL;
805	tp->t_inpcb = NULL;
806	uma_zfree(tcpcb_zone, tp);
807}
808
809/*
810 * Attempt to close a TCP control block, marking it as dropped, and freeing
811 * the socket if we hold the only reference.
812 */
813struct tcpcb *
814tcp_close(struct tcpcb *tp)
815{
816	struct inpcb *inp = tp->t_inpcb;
817	struct socket *so;
818
819	INP_INFO_WLOCK_ASSERT(&tcbinfo);
820	INP_LOCK_ASSERT(inp);
821
822	in_pcbdrop(inp);
823	tcpstat.tcps_closed++;
824	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
825	so = inp->inp_socket;
826	soisdisconnected(so);
827	if (inp->inp_vflag & INP_SOCKREF) {
828		KASSERT(so->so_state & SS_PROTOREF,
829		    ("tcp_close: !SS_PROTOREF"));
830		inp->inp_vflag &= ~INP_SOCKREF;
831		INP_UNLOCK(inp);
832		ACCEPT_LOCK();
833		SOCK_LOCK(so);
834		so->so_state &= ~SS_PROTOREF;
835		sofree(so);
836		return (NULL);
837	}
838	return (tp);
839}
840
841void
842tcp_drain(void)
843{
844
845	if (do_tcpdrain) {
846		struct inpcb *inpb;
847		struct tcpcb *tcpb;
848		struct tseg_qent *te;
849
850	/*
851	 * Walk the tcpbs, if existing, and flush the reassembly queue,
852	 * if there is one...
853	 * XXX: The "Net/3" implementation doesn't imply that the TCP
854	 *      reassembly queue should be flushed, but in a situation
855	 *	where we're really low on mbufs, this is potentially
856	 *	usefull.
857	 */
858		INP_INFO_RLOCK(&tcbinfo);
859		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
860			if (inpb->inp_vflag & INP_TIMEWAIT)
861				continue;
862			INP_LOCK(inpb);
863			if ((tcpb = intotcpcb(inpb)) != NULL) {
864				while ((te = LIST_FIRST(&tcpb->t_segq))
865			            != NULL) {
866					LIST_REMOVE(te, tqe_q);
867					m_freem(te->tqe_m);
868					uma_zfree(tcp_reass_zone, te);
869					tcpb->t_segqlen--;
870					tcp_reass_qsize--;
871				}
872				tcp_clean_sackreport(tcpb);
873			}
874			INP_UNLOCK(inpb);
875		}
876		INP_INFO_RUNLOCK(&tcbinfo);
877	}
878}
879
880/*
881 * Notify a tcp user of an asynchronous error;
882 * store error as soft error, but wake up user
883 * (for now, won't do anything until can select for soft error).
884 *
885 * Do not wake up user since there currently is no mechanism for
886 * reporting soft errors (yet - a kqueue filter may be added).
887 */
888static struct inpcb *
889tcp_notify(struct inpcb *inp, int error)
890{
891	struct tcpcb *tp;
892
893	INP_INFO_WLOCK_ASSERT(&tcbinfo);
894	INP_LOCK_ASSERT(inp);
895
896	if ((inp->inp_vflag & INP_TIMEWAIT) ||
897	    (inp->inp_vflag & INP_DROPPED))
898		return (inp);
899
900	tp = intotcpcb(inp);
901	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
902
903	/*
904	 * Ignore some errors if we are hooked up.
905	 * If connection hasn't completed, has retransmitted several times,
906	 * and receives a second error, give up now.  This is better
907	 * than waiting a long time to establish a connection that
908	 * can never complete.
909	 */
910	if (tp->t_state == TCPS_ESTABLISHED &&
911	    (error == EHOSTUNREACH || error == ENETUNREACH ||
912	     error == EHOSTDOWN)) {
913		return (inp);
914	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
915	    tp->t_softerror) {
916		tp = tcp_drop(tp, error);
917		if (tp != NULL)
918			return (inp);
919		else
920			return (NULL);
921	} else {
922		tp->t_softerror = error;
923		return (inp);
924	}
925#if 0
926	wakeup( &so->so_timeo);
927	sorwakeup(so);
928	sowwakeup(so);
929#endif
930}
931
932static int
933tcp_pcblist(SYSCTL_HANDLER_ARGS)
934{
935	int error, i, n;
936	struct inpcb *inp, **inp_list;
937	inp_gen_t gencnt;
938	struct xinpgen xig;
939
940	/*
941	 * The process of preparing the TCB list is too time-consuming and
942	 * resource-intensive to repeat twice on every request.
943	 */
944	if (req->oldptr == NULL) {
945		n = tcbinfo.ipi_count;
946		req->oldidx = 2 * (sizeof xig)
947			+ (n + n/8) * sizeof(struct xtcpcb);
948		return (0);
949	}
950
951	if (req->newptr != NULL)
952		return (EPERM);
953
954	/*
955	 * OK, now we're committed to doing something.
956	 */
957	INP_INFO_RLOCK(&tcbinfo);
958	gencnt = tcbinfo.ipi_gencnt;
959	n = tcbinfo.ipi_count;
960	INP_INFO_RUNLOCK(&tcbinfo);
961
962	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
963		+ n * sizeof(struct xtcpcb));
964	if (error != 0)
965		return (error);
966
967	xig.xig_len = sizeof xig;
968	xig.xig_count = n;
969	xig.xig_gen = gencnt;
970	xig.xig_sogen = so_gencnt;
971	error = SYSCTL_OUT(req, &xig, sizeof xig);
972	if (error)
973		return (error);
974
975	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
976	if (inp_list == NULL)
977		return (ENOMEM);
978
979	INP_INFO_RLOCK(&tcbinfo);
980	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
981	     inp = LIST_NEXT(inp, inp_list)) {
982		INP_LOCK(inp);
983		if (inp->inp_gencnt <= gencnt) {
984			/*
985			 * XXX: This use of cr_cansee(), introduced with
986			 * TCP state changes, is not quite right, but for
987			 * now, better than nothing.
988			 */
989			if (inp->inp_vflag & INP_TIMEWAIT) {
990				if (intotw(inp) != NULL)
991					error = cr_cansee(req->td->td_ucred,
992					    intotw(inp)->tw_cred);
993				else
994					error = EINVAL;	/* Skip this inp. */
995			} else
996				error = cr_canseesocket(req->td->td_ucred,
997				    inp->inp_socket);
998			if (error == 0)
999				inp_list[i++] = inp;
1000		}
1001		INP_UNLOCK(inp);
1002	}
1003	INP_INFO_RUNLOCK(&tcbinfo);
1004	n = i;
1005
1006	error = 0;
1007	for (i = 0; i < n; i++) {
1008		inp = inp_list[i];
1009		INP_LOCK(inp);
1010		if (inp->inp_gencnt <= gencnt) {
1011			struct xtcpcb xt;
1012			void *inp_ppcb;
1013
1014			bzero(&xt, sizeof(xt));
1015			xt.xt_len = sizeof xt;
1016			/* XXX should avoid extra copy */
1017			bcopy(inp, &xt.xt_inp, sizeof *inp);
1018			inp_ppcb = inp->inp_ppcb;
1019			if (inp_ppcb == NULL)
1020				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1021			else if (inp->inp_vflag & INP_TIMEWAIT) {
1022				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1023				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1024			} else
1025				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1026			if (inp->inp_socket != NULL)
1027				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1028			else {
1029				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1030				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1031			}
1032			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1033			INP_UNLOCK(inp);
1034			error = SYSCTL_OUT(req, &xt, sizeof xt);
1035		} else
1036			INP_UNLOCK(inp);
1037
1038	}
1039	if (!error) {
1040		/*
1041		 * Give the user an updated idea of our state.
1042		 * If the generation differs from what we told
1043		 * her before, she knows that something happened
1044		 * while we were processing this request, and it
1045		 * might be necessary to retry.
1046		 */
1047		INP_INFO_RLOCK(&tcbinfo);
1048		xig.xig_gen = tcbinfo.ipi_gencnt;
1049		xig.xig_sogen = so_gencnt;
1050		xig.xig_count = tcbinfo.ipi_count;
1051		INP_INFO_RUNLOCK(&tcbinfo);
1052		error = SYSCTL_OUT(req, &xig, sizeof xig);
1053	}
1054	free(inp_list, M_TEMP);
1055	return (error);
1056}
1057
1058SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1059    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1060
1061static int
1062tcp_getcred(SYSCTL_HANDLER_ARGS)
1063{
1064	struct xucred xuc;
1065	struct sockaddr_in addrs[2];
1066	struct inpcb *inp;
1067	int error;
1068
1069	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1070	    SUSER_ALLOWJAIL);
1071	if (error)
1072		return (error);
1073	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1074	if (error)
1075		return (error);
1076	INP_INFO_RLOCK(&tcbinfo);
1077	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1078	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1079	if (inp == NULL) {
1080		error = ENOENT;
1081		goto outunlocked;
1082	}
1083	INP_LOCK(inp);
1084	if (inp->inp_socket == NULL) {
1085		error = ENOENT;
1086		goto out;
1087	}
1088	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1089	if (error)
1090		goto out;
1091	cru2x(inp->inp_socket->so_cred, &xuc);
1092out:
1093	INP_UNLOCK(inp);
1094outunlocked:
1095	INP_INFO_RUNLOCK(&tcbinfo);
1096	if (error == 0)
1097		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1098	return (error);
1099}
1100
1101SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1102    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1103    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1104
1105#ifdef INET6
1106static int
1107tcp6_getcred(SYSCTL_HANDLER_ARGS)
1108{
1109	struct xucred xuc;
1110	struct sockaddr_in6 addrs[2];
1111	struct inpcb *inp;
1112	int error, mapped = 0;
1113
1114	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1115	    SUSER_ALLOWJAIL);
1116	if (error)
1117		return (error);
1118	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1119	if (error)
1120		return (error);
1121	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1122	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1123		return (error);
1124	}
1125	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1126		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1127			mapped = 1;
1128		else
1129			return (EINVAL);
1130	}
1131
1132	INP_INFO_RLOCK(&tcbinfo);
1133	if (mapped == 1)
1134		inp = in_pcblookup_hash(&tcbinfo,
1135			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1136			addrs[1].sin6_port,
1137			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1138			addrs[0].sin6_port,
1139			0, NULL);
1140	else
1141		inp = in6_pcblookup_hash(&tcbinfo,
1142			&addrs[1].sin6_addr, addrs[1].sin6_port,
1143			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1144	if (inp == NULL) {
1145		error = ENOENT;
1146		goto outunlocked;
1147	}
1148	INP_LOCK(inp);
1149	if (inp->inp_socket == NULL) {
1150		error = ENOENT;
1151		goto out;
1152	}
1153	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1154	if (error)
1155		goto out;
1156	cru2x(inp->inp_socket->so_cred, &xuc);
1157out:
1158	INP_UNLOCK(inp);
1159outunlocked:
1160	INP_INFO_RUNLOCK(&tcbinfo);
1161	if (error == 0)
1162		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1163	return (error);
1164}
1165
1166SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1167    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1168    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1169#endif
1170
1171
1172void
1173tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1174{
1175	struct ip *ip = vip;
1176	struct tcphdr *th;
1177	struct in_addr faddr;
1178	struct inpcb *inp;
1179	struct tcpcb *tp;
1180	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1181	struct icmp *icp;
1182	struct in_conninfo inc;
1183	tcp_seq icmp_tcp_seq;
1184	int mtu;
1185
1186	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1187	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1188		return;
1189
1190	if (cmd == PRC_MSGSIZE)
1191		notify = tcp_mtudisc;
1192	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1193		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1194		notify = tcp_drop_syn_sent;
1195	/*
1196	 * Redirects don't need to be handled up here.
1197	 */
1198	else if (PRC_IS_REDIRECT(cmd))
1199		return;
1200	/*
1201	 * Source quench is depreciated.
1202	 */
1203	else if (cmd == PRC_QUENCH)
1204		return;
1205	/*
1206	 * Hostdead is ugly because it goes linearly through all PCBs.
1207	 * XXX: We never get this from ICMP, otherwise it makes an
1208	 * excellent DoS attack on machines with many connections.
1209	 */
1210	else if (cmd == PRC_HOSTDEAD)
1211		ip = NULL;
1212	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1213		return;
1214	if (ip != NULL) {
1215		icp = (struct icmp *)((caddr_t)ip
1216				      - offsetof(struct icmp, icmp_ip));
1217		th = (struct tcphdr *)((caddr_t)ip
1218				       + (ip->ip_hl << 2));
1219		INP_INFO_WLOCK(&tcbinfo);
1220		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1221		    ip->ip_src, th->th_sport, 0, NULL);
1222		if (inp != NULL)  {
1223			INP_LOCK(inp);
1224			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1225			    !(inp->inp_vflag & INP_DROPPED) &&
1226			    !(inp->inp_socket == NULL)) {
1227				icmp_tcp_seq = htonl(th->th_seq);
1228				tp = intotcpcb(inp);
1229				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1230				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1231					if (cmd == PRC_MSGSIZE) {
1232					    /*
1233					     * MTU discovery:
1234					     * If we got a needfrag set the MTU
1235					     * in the route to the suggested new
1236					     * value (if given) and then notify.
1237					     */
1238					    bzero(&inc, sizeof(inc));
1239					    inc.inc_flags = 0;	/* IPv4 */
1240					    inc.inc_faddr = faddr;
1241
1242					    mtu = ntohs(icp->icmp_nextmtu);
1243					    /*
1244					     * If no alternative MTU was
1245					     * proposed, try the next smaller
1246					     * one.  ip->ip_len has already
1247					     * been swapped in icmp_input().
1248					     */
1249					    if (!mtu)
1250						mtu = ip_next_mtu(ip->ip_len,
1251						 1);
1252					    if (mtu < max(296, (tcp_minmss)
1253						 + sizeof(struct tcpiphdr)))
1254						mtu = 0;
1255					    if (!mtu)
1256						mtu = tcp_mssdflt
1257						 + sizeof(struct tcpiphdr);
1258					    /*
1259					     * Only cache the the MTU if it
1260					     * is smaller than the interface
1261					     * or route MTU.  tcp_mtudisc()
1262					     * will do right thing by itself.
1263					     */
1264					    if (mtu <= tcp_maxmtu(&inc, NULL))
1265						tcp_hc_updatemtu(&inc, mtu);
1266					}
1267
1268					inp = (*notify)(inp, inetctlerrmap[cmd]);
1269				}
1270			}
1271			if (inp != NULL)
1272				INP_UNLOCK(inp);
1273		} else {
1274			inc.inc_fport = th->th_dport;
1275			inc.inc_lport = th->th_sport;
1276			inc.inc_faddr = faddr;
1277			inc.inc_laddr = ip->ip_src;
1278#ifdef INET6
1279			inc.inc_isipv6 = 0;
1280#endif
1281			syncache_unreach(&inc, th);
1282		}
1283		INP_INFO_WUNLOCK(&tcbinfo);
1284	} else
1285		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1286}
1287
1288#ifdef INET6
1289void
1290tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1291{
1292	struct tcphdr th;
1293	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1294	struct ip6_hdr *ip6;
1295	struct mbuf *m;
1296	struct ip6ctlparam *ip6cp = NULL;
1297	const struct sockaddr_in6 *sa6_src = NULL;
1298	int off;
1299	struct tcp_portonly {
1300		u_int16_t th_sport;
1301		u_int16_t th_dport;
1302	} *thp;
1303
1304	if (sa->sa_family != AF_INET6 ||
1305	    sa->sa_len != sizeof(struct sockaddr_in6))
1306		return;
1307
1308	if (cmd == PRC_MSGSIZE)
1309		notify = tcp_mtudisc;
1310	else if (!PRC_IS_REDIRECT(cmd) &&
1311		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1312		return;
1313	/* Source quench is depreciated. */
1314	else if (cmd == PRC_QUENCH)
1315		return;
1316
1317	/* if the parameter is from icmp6, decode it. */
1318	if (d != NULL) {
1319		ip6cp = (struct ip6ctlparam *)d;
1320		m = ip6cp->ip6c_m;
1321		ip6 = ip6cp->ip6c_ip6;
1322		off = ip6cp->ip6c_off;
1323		sa6_src = ip6cp->ip6c_src;
1324	} else {
1325		m = NULL;
1326		ip6 = NULL;
1327		off = 0;	/* fool gcc */
1328		sa6_src = &sa6_any;
1329	}
1330
1331	if (ip6 != NULL) {
1332		struct in_conninfo inc;
1333		/*
1334		 * XXX: We assume that when IPV6 is non NULL,
1335		 * M and OFF are valid.
1336		 */
1337
1338		/* check if we can safely examine src and dst ports */
1339		if (m->m_pkthdr.len < off + sizeof(*thp))
1340			return;
1341
1342		bzero(&th, sizeof(th));
1343		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1344
1345		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1346		    (struct sockaddr *)ip6cp->ip6c_src,
1347		    th.th_sport, cmd, NULL, notify);
1348
1349		inc.inc_fport = th.th_dport;
1350		inc.inc_lport = th.th_sport;
1351		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1352		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1353		inc.inc_isipv6 = 1;
1354		INP_INFO_WLOCK(&tcbinfo);
1355		syncache_unreach(&inc, &th);
1356		INP_INFO_WUNLOCK(&tcbinfo);
1357	} else
1358		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1359			      0, cmd, NULL, notify);
1360}
1361#endif /* INET6 */
1362
1363
1364/*
1365 * Following is where TCP initial sequence number generation occurs.
1366 *
1367 * There are two places where we must use initial sequence numbers:
1368 * 1.  In SYN-ACK packets.
1369 * 2.  In SYN packets.
1370 *
1371 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1372 * tcp_syncache.c for details.
1373 *
1374 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1375 * depends on this property.  In addition, these ISNs should be
1376 * unguessable so as to prevent connection hijacking.  To satisfy
1377 * the requirements of this situation, the algorithm outlined in
1378 * RFC 1948 is used, with only small modifications.
1379 *
1380 * Implementation details:
1381 *
1382 * Time is based off the system timer, and is corrected so that it
1383 * increases by one megabyte per second.  This allows for proper
1384 * recycling on high speed LANs while still leaving over an hour
1385 * before rollover.
1386 *
1387 * As reading the *exact* system time is too expensive to be done
1388 * whenever setting up a TCP connection, we increment the time
1389 * offset in two ways.  First, a small random positive increment
1390 * is added to isn_offset for each connection that is set up.
1391 * Second, the function tcp_isn_tick fires once per clock tick
1392 * and increments isn_offset as necessary so that sequence numbers
1393 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1394 * random positive increments serve only to ensure that the same
1395 * exact sequence number is never sent out twice (as could otherwise
1396 * happen when a port is recycled in less than the system tick
1397 * interval.)
1398 *
1399 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1400 * between seeding of isn_secret.  This is normally set to zero,
1401 * as reseeding should not be necessary.
1402 *
1403 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1404 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1405 * general, this means holding an exclusive (write) lock.
1406 */
1407
1408#define ISN_BYTES_PER_SECOND 1048576
1409#define ISN_STATIC_INCREMENT 4096
1410#define ISN_RANDOM_INCREMENT (4096 - 1)
1411
1412static u_char isn_secret[32];
1413static int isn_last_reseed;
1414static u_int32_t isn_offset, isn_offset_old;
1415static MD5_CTX isn_ctx;
1416
1417tcp_seq
1418tcp_new_isn(struct tcpcb *tp)
1419{
1420	u_int32_t md5_buffer[4];
1421	tcp_seq new_isn;
1422
1423	INP_LOCK_ASSERT(tp->t_inpcb);
1424
1425	ISN_LOCK();
1426	/* Seed if this is the first use, reseed if requested. */
1427	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1428	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1429		< (u_int)ticks))) {
1430		read_random(&isn_secret, sizeof(isn_secret));
1431		isn_last_reseed = ticks;
1432	}
1433
1434	/* Compute the md5 hash and return the ISN. */
1435	MD5Init(&isn_ctx);
1436	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1437	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1438#ifdef INET6
1439	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1440		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1441			  sizeof(struct in6_addr));
1442		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1443			  sizeof(struct in6_addr));
1444	} else
1445#endif
1446	{
1447		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1448			  sizeof(struct in_addr));
1449		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1450			  sizeof(struct in_addr));
1451	}
1452	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1453	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1454	new_isn = (tcp_seq) md5_buffer[0];
1455	isn_offset += ISN_STATIC_INCREMENT +
1456		(arc4random() & ISN_RANDOM_INCREMENT);
1457	new_isn += isn_offset;
1458	ISN_UNLOCK();
1459	return (new_isn);
1460}
1461
1462/*
1463 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1464 * to keep time flowing at a relatively constant rate.  If the random
1465 * increments have already pushed us past the projected offset, do nothing.
1466 */
1467static void
1468tcp_isn_tick(void *xtp)
1469{
1470	u_int32_t projected_offset;
1471
1472	ISN_LOCK();
1473	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1474
1475	if (projected_offset > isn_offset)
1476		isn_offset = projected_offset;
1477
1478	isn_offset_old = isn_offset;
1479	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1480	ISN_UNLOCK();
1481}
1482
1483/*
1484 * When a specific ICMP unreachable message is received and the
1485 * connection state is SYN-SENT, drop the connection.  This behavior
1486 * is controlled by the icmp_may_rst sysctl.
1487 */
1488struct inpcb *
1489tcp_drop_syn_sent(struct inpcb *inp, int errno)
1490{
1491	struct tcpcb *tp;
1492
1493	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1494	INP_LOCK_ASSERT(inp);
1495
1496	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1497	    (inp->inp_vflag & INP_DROPPED))
1498		return (inp);
1499
1500	tp = intotcpcb(inp);
1501	if (tp->t_state != TCPS_SYN_SENT)
1502		return (inp);
1503
1504	tp = tcp_drop(tp, errno);
1505	if (tp != NULL)
1506		return (inp);
1507	else
1508		return (NULL);
1509}
1510
1511/*
1512 * When `need fragmentation' ICMP is received, update our idea of the MSS
1513 * based on the new value in the route.  Also nudge TCP to send something,
1514 * since we know the packet we just sent was dropped.
1515 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1516 */
1517struct inpcb *
1518tcp_mtudisc(struct inpcb *inp, int errno)
1519{
1520	struct tcpcb *tp;
1521	struct socket *so = inp->inp_socket;
1522	u_int maxmtu;
1523	u_int romtu;
1524	int mss;
1525#ifdef INET6
1526	int isipv6;
1527#endif /* INET6 */
1528
1529	INP_LOCK_ASSERT(inp);
1530	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1531	    (inp->inp_vflag & INP_DROPPED))
1532		return (inp);
1533
1534	tp = intotcpcb(inp);
1535	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1536
1537#ifdef INET6
1538	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1539#endif
1540	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1541	romtu =
1542#ifdef INET6
1543	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1544#endif /* INET6 */
1545	    tcp_maxmtu(&inp->inp_inc, NULL);
1546	if (!maxmtu)
1547		maxmtu = romtu;
1548	else
1549		maxmtu = min(maxmtu, romtu);
1550	if (!maxmtu) {
1551		tp->t_maxopd = tp->t_maxseg =
1552#ifdef INET6
1553			isipv6 ? tcp_v6mssdflt :
1554#endif /* INET6 */
1555			tcp_mssdflt;
1556		return (inp);
1557	}
1558	mss = maxmtu -
1559#ifdef INET6
1560		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1561#endif /* INET6 */
1562		 sizeof(struct tcpiphdr)
1563#ifdef INET6
1564		 )
1565#endif /* INET6 */
1566		;
1567
1568	/*
1569	 * XXX - The above conditional probably violates the TCP
1570	 * spec.  The problem is that, since we don't know the
1571	 * other end's MSS, we are supposed to use a conservative
1572	 * default.  But, if we do that, then MTU discovery will
1573	 * never actually take place, because the conservative
1574	 * default is much less than the MTUs typically seen
1575	 * on the Internet today.  For the moment, we'll sweep
1576	 * this under the carpet.
1577	 *
1578	 * The conservative default might not actually be a problem
1579	 * if the only case this occurs is when sending an initial
1580	 * SYN with options and data to a host we've never talked
1581	 * to before.  Then, they will reply with an MSS value which
1582	 * will get recorded and the new parameters should get
1583	 * recomputed.  For Further Study.
1584	 */
1585	if (tp->t_maxopd <= mss)
1586		return (inp);
1587	tp->t_maxopd = mss;
1588
1589	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1590	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1591		mss -= TCPOLEN_TSTAMP_APPA;
1592#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1593	if (mss > MCLBYTES)
1594		mss &= ~(MCLBYTES-1);
1595#else
1596	if (mss > MCLBYTES)
1597		mss = mss / MCLBYTES * MCLBYTES;
1598#endif
1599	if (so->so_snd.sb_hiwat < mss)
1600		mss = so->so_snd.sb_hiwat;
1601
1602	tp->t_maxseg = mss;
1603
1604	tcpstat.tcps_mturesent++;
1605	tp->t_rtttime = 0;
1606	tp->snd_nxt = tp->snd_una;
1607	tcp_free_sackholes(tp);
1608	tp->snd_recover = tp->snd_max;
1609	if (tp->sack_enable)
1610		EXIT_FASTRECOVERY(tp);
1611	tcp_output(tp);
1612	return (inp);
1613}
1614
1615/*
1616 * Look-up the routing entry to the peer of this inpcb.  If no route
1617 * is found and it cannot be allocated, then return NULL.  This routine
1618 * is called by TCP routines that access the rmx structure and by tcp_mss
1619 * to get the interface MTU.
1620 */
1621u_long
1622tcp_maxmtu(struct in_conninfo *inc, int *flags)
1623{
1624	struct route sro;
1625	struct sockaddr_in *dst;
1626	struct ifnet *ifp;
1627	u_long maxmtu = 0;
1628
1629	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1630
1631	bzero(&sro, sizeof(sro));
1632	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1633	        dst = (struct sockaddr_in *)&sro.ro_dst;
1634		dst->sin_family = AF_INET;
1635		dst->sin_len = sizeof(*dst);
1636		dst->sin_addr = inc->inc_faddr;
1637		rtalloc_ign(&sro, RTF_CLONING);
1638	}
1639	if (sro.ro_rt != NULL) {
1640		ifp = sro.ro_rt->rt_ifp;
1641		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1642			maxmtu = ifp->if_mtu;
1643		else
1644			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1645
1646		/* Report additional interface capabilities. */
1647		if (flags != NULL) {
1648			if (ifp->if_capenable & IFCAP_TSO4 &&
1649			    ifp->if_hwassist & CSUM_TSO)
1650				*flags |= CSUM_TSO;
1651		}
1652		RTFREE(sro.ro_rt);
1653	}
1654	return (maxmtu);
1655}
1656
1657#ifdef INET6
1658u_long
1659tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1660{
1661	struct route_in6 sro6;
1662	struct ifnet *ifp;
1663	u_long maxmtu = 0;
1664
1665	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1666
1667	bzero(&sro6, sizeof(sro6));
1668	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1669		sro6.ro_dst.sin6_family = AF_INET6;
1670		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1671		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1672		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1673	}
1674	if (sro6.ro_rt != NULL) {
1675		ifp = sro6.ro_rt->rt_ifp;
1676		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1677			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1678		else
1679			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1680				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1681
1682		/* Report additional interface capabilities. */
1683		if (flags != NULL) {
1684			if (ifp->if_capenable & IFCAP_TSO6 &&
1685			    ifp->if_hwassist & CSUM_TSO)
1686				*flags |= CSUM_TSO;
1687		}
1688		RTFREE(sro6.ro_rt);
1689	}
1690
1691	return (maxmtu);
1692}
1693#endif /* INET6 */
1694
1695#ifdef IPSEC
1696/* compute ESP/AH header size for TCP, including outer IP header. */
1697size_t
1698ipsec_hdrsiz_tcp(struct tcpcb *tp)
1699{
1700	struct inpcb *inp;
1701	struct mbuf *m;
1702	size_t hdrsiz;
1703	struct ip *ip;
1704#ifdef INET6
1705	struct ip6_hdr *ip6;
1706#endif
1707	struct tcphdr *th;
1708
1709	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1710		return (0);
1711	MGETHDR(m, M_DONTWAIT, MT_DATA);
1712	if (!m)
1713		return (0);
1714
1715#ifdef INET6
1716	if ((inp->inp_vflag & INP_IPV6) != 0) {
1717		ip6 = mtod(m, struct ip6_hdr *);
1718		th = (struct tcphdr *)(ip6 + 1);
1719		m->m_pkthdr.len = m->m_len =
1720			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1721		tcpip_fillheaders(inp, ip6, th);
1722		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1723	} else
1724#endif /* INET6 */
1725	{
1726		ip = mtod(m, struct ip *);
1727		th = (struct tcphdr *)(ip + 1);
1728		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1729		tcpip_fillheaders(inp, ip, th);
1730		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1731	}
1732
1733	m_free(m);
1734	return (hdrsiz);
1735}
1736#endif /*IPSEC*/
1737
1738/*
1739 * Move a TCP connection into TIME_WAIT state.
1740 *    tcbinfo is locked.
1741 *    inp is locked, and is unlocked before returning.
1742 */
1743void
1744tcp_twstart(struct tcpcb *tp)
1745{
1746	struct tcptw *tw;
1747	struct inpcb *inp = tp->t_inpcb;
1748	int acknow;
1749	struct socket *so;
1750
1751	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1752	INP_LOCK_ASSERT(inp);
1753
1754	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1755		tp = tcp_close(tp);
1756		if (tp != NULL)
1757			INP_UNLOCK(inp);
1758		return;
1759	}
1760
1761	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1762	if (tw == NULL) {
1763		tw = tcp_timer_2msl_tw(1);
1764		if (tw == NULL) {
1765			tp = tcp_close(tp);
1766			if (tp != NULL)
1767				INP_UNLOCK(inp);
1768			return;
1769		}
1770	}
1771	tw->tw_inpcb = inp;
1772
1773	/*
1774	 * Recover last window size sent.
1775	 */
1776	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1777
1778	/*
1779	 * Set t_recent if timestamps are used on the connection.
1780	 */
1781	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1782	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1783		tw->t_recent = tp->ts_recent;
1784	else
1785		tw->t_recent = 0;
1786
1787	tw->snd_nxt = tp->snd_nxt;
1788	tw->rcv_nxt = tp->rcv_nxt;
1789	tw->iss     = tp->iss;
1790	tw->irs     = tp->irs;
1791	tw->t_starttime = tp->t_starttime;
1792	tw->tw_time = 0;
1793
1794/* XXX
1795 * If this code will
1796 * be used for fin-wait-2 state also, then we may need
1797 * a ts_recent from the last segment.
1798 */
1799	acknow = tp->t_flags & TF_ACKNOW;
1800
1801	/*
1802	 * First, discard tcpcb state, which includes stopping its timers and
1803	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1804	 * that work is now done in the caller.
1805	 *
1806	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1807	 * and might not be needed here any longer.
1808	 */
1809	tcp_discardcb(tp);
1810	so = inp->inp_socket;
1811	soisdisconnected(so);
1812	SOCK_LOCK(so);
1813	tw->tw_cred = crhold(so->so_cred);
1814	tw->tw_so_options = so->so_options;
1815	SOCK_UNLOCK(so);
1816	if (acknow)
1817		tcp_twrespond(tw, TH_ACK);
1818	inp->inp_ppcb = tw;
1819	inp->inp_vflag |= INP_TIMEWAIT;
1820	tcp_timer_2msl_reset(tw, 0);
1821
1822	/*
1823	 * If the inpcb owns the sole reference to the socket, then we can
1824	 * detach and free the socket as it is not needed in time wait.
1825	 */
1826	if (inp->inp_vflag & INP_SOCKREF) {
1827		KASSERT(so->so_state & SS_PROTOREF,
1828		    ("tcp_twstart: !SS_PROTOREF"));
1829		inp->inp_vflag &= ~INP_SOCKREF;
1830		INP_UNLOCK(inp);
1831		ACCEPT_LOCK();
1832		SOCK_LOCK(so);
1833		so->so_state &= ~SS_PROTOREF;
1834		sofree(so);
1835	} else
1836		INP_UNLOCK(inp);
1837}
1838
1839#if 0
1840/*
1841 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1842 * the actual rate is slightly higher due to the addition of
1843 * random positive increments.
1844 *
1845 * Most other new OSes use semi-randomized ISN values, so we
1846 * do not need to worry about them.
1847 */
1848#define MS_ISN_BYTES_PER_SECOND		250000
1849
1850/*
1851 * Determine if the ISN we will generate has advanced beyond the last
1852 * sequence number used by the previous connection.  If so, indicate
1853 * that it is safe to recycle this tw socket by returning 1.
1854 */
1855int
1856tcp_twrecycleable(struct tcptw *tw)
1857{
1858	tcp_seq new_iss = tw->iss;
1859	tcp_seq new_irs = tw->irs;
1860
1861	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1862	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1863	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1864
1865	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1866		return (1);
1867	else
1868		return (0);
1869}
1870#endif
1871
1872void
1873tcp_twclose(struct tcptw *tw, int reuse)
1874{
1875	struct socket *so;
1876	struct inpcb *inp;
1877
1878	/*
1879	 * At this point, we are in one of two situations:
1880	 *
1881	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1882	 *     all state.
1883	 *
1884	 * (2) We have a socket -- if we own a reference, release it and
1885	 *     notify the socket layer.
1886	 */
1887	inp = tw->tw_inpcb;
1888	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1889	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1890	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1891	INP_LOCK_ASSERT(inp);
1892
1893	tw->tw_inpcb = NULL;
1894	tcp_timer_2msl_stop(tw);
1895	inp->inp_ppcb = NULL;
1896	in_pcbdrop(inp);
1897
1898	so = inp->inp_socket;
1899	if (so != NULL) {
1900		/*
1901		 * If there's a socket, handle two cases: first, we own a
1902		 * strong reference, which we will now release, or we don't
1903		 * in which case another reference exists (XXXRW: think
1904		 * about this more), and we don't need to take action.
1905		 */
1906		if (inp->inp_vflag & INP_SOCKREF) {
1907			inp->inp_vflag &= ~INP_SOCKREF;
1908			INP_UNLOCK(inp);
1909			ACCEPT_LOCK();
1910			SOCK_LOCK(so);
1911			KASSERT(so->so_state & SS_PROTOREF,
1912			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1913			so->so_state &= ~SS_PROTOREF;
1914			sofree(so);
1915		} else {
1916			/*
1917			 * If we don't own the only reference, the socket and
1918			 * inpcb need to be left around to be handled by
1919			 * tcp_usr_detach() later.
1920			 */
1921			INP_UNLOCK(inp);
1922		}
1923	} else {
1924#ifdef INET6
1925		if (inp->inp_vflag & INP_IPV6PROTO)
1926			in6_pcbfree(inp);
1927		else
1928#endif
1929			in_pcbfree(inp);
1930	}
1931	tcpstat.tcps_closed++;
1932	crfree(tw->tw_cred);
1933	tw->tw_cred = NULL;
1934	if (reuse)
1935		return;
1936	uma_zfree(tcptw_zone, tw);
1937}
1938
1939int
1940tcp_twrespond(struct tcptw *tw, int flags)
1941{
1942	struct inpcb *inp = tw->tw_inpcb;
1943	struct tcphdr *th;
1944	struct mbuf *m;
1945	struct ip *ip = NULL;
1946	u_int hdrlen, optlen;
1947	int error;
1948	struct tcpopt to;
1949#ifdef INET6
1950	struct ip6_hdr *ip6 = NULL;
1951	int isipv6 = inp->inp_inc.inc_isipv6;
1952#endif
1953
1954	INP_LOCK_ASSERT(inp);
1955
1956	m = m_gethdr(M_DONTWAIT, MT_DATA);
1957	if (m == NULL)
1958		return (ENOBUFS);
1959	m->m_data += max_linkhdr;
1960
1961#ifdef MAC
1962	mac_create_mbuf_from_inpcb(inp, m);
1963#endif
1964
1965#ifdef INET6
1966	if (isipv6) {
1967		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1968		ip6 = mtod(m, struct ip6_hdr *);
1969		th = (struct tcphdr *)(ip6 + 1);
1970		tcpip_fillheaders(inp, ip6, th);
1971	} else
1972#endif
1973	{
1974		hdrlen = sizeof(struct tcpiphdr);
1975		ip = mtod(m, struct ip *);
1976		th = (struct tcphdr *)(ip + 1);
1977		tcpip_fillheaders(inp, ip, th);
1978	}
1979	to.to_flags = 0;
1980
1981	/*
1982	 * Send a timestamp and echo-reply if both our side and our peer
1983	 * have sent timestamps in our SYN's and this is not a RST.
1984	 */
1985	if (tw->t_recent && flags == TH_ACK) {
1986		to.to_flags |= TOF_TS;
1987		to.to_tsval = ticks;
1988		to.to_tsecr = tw->t_recent;
1989	}
1990	optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1991
1992	m->m_len = hdrlen + optlen;
1993	m->m_pkthdr.len = m->m_len;
1994
1995	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1996
1997	th->th_seq = htonl(tw->snd_nxt);
1998	th->th_ack = htonl(tw->rcv_nxt);
1999	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2000	th->th_flags = flags;
2001	th->th_win = htons(tw->last_win);
2002
2003#ifdef INET6
2004	if (isipv6) {
2005		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2006		    sizeof(struct tcphdr) + optlen);
2007		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2008		error = ip6_output(m, inp->in6p_outputopts, NULL,
2009		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2010	} else
2011#endif
2012	{
2013		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2014		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2015		m->m_pkthdr.csum_flags = CSUM_TCP;
2016		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2017		ip->ip_len = m->m_pkthdr.len;
2018		if (path_mtu_discovery)
2019			ip->ip_off |= IP_DF;
2020		error = ip_output(m, inp->inp_options, NULL,
2021		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2022		    NULL, inp);
2023	}
2024	if (flags & TH_ACK)
2025		tcpstat.tcps_sndacks++;
2026	else
2027		tcpstat.tcps_sndctrl++;
2028	tcpstat.tcps_sndtotal++;
2029	return (error);
2030}
2031
2032/*
2033 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2034 *
2035 * This code attempts to calculate the bandwidth-delay product as a
2036 * means of determining the optimal window size to maximize bandwidth,
2037 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2038 * routers.  This code also does a fairly good job keeping RTTs in check
2039 * across slow links like modems.  We implement an algorithm which is very
2040 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2041 * transmitter side of a TCP connection and so only effects the transmit
2042 * side of the connection.
2043 *
2044 * BACKGROUND:  TCP makes no provision for the management of buffer space
2045 * at the end points or at the intermediate routers and switches.  A TCP
2046 * stream, whether using NewReno or not, will eventually buffer as
2047 * many packets as it is able and the only reason this typically works is
2048 * due to the fairly small default buffers made available for a connection
2049 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2050 * scaling it is now fairly easy for even a single TCP connection to blow-out
2051 * all available buffer space not only on the local interface, but on
2052 * intermediate routers and switches as well.  NewReno makes a misguided
2053 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2054 * then backing off, then steadily increasing the window again until another
2055 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2056 * is only made worse as network loads increase and the idea of intentionally
2057 * blowing out network buffers is, frankly, a terrible way to manage network
2058 * resources.
2059 *
2060 * It is far better to limit the transmit window prior to the failure
2061 * condition being achieved.  There are two general ways to do this:  First
2062 * you can 'scan' through different transmit window sizes and locate the
2063 * point where the RTT stops increasing, indicating that you have filled the
2064 * pipe, then scan backwards until you note that RTT stops decreasing, then
2065 * repeat ad-infinitum.  This method works in principle but has severe
2066 * implementation issues due to RTT variances, timer granularity, and
2067 * instability in the algorithm which can lead to many false positives and
2068 * create oscillations as well as interact badly with other TCP streams
2069 * implementing the same algorithm.
2070 *
2071 * The second method is to limit the window to the bandwidth delay product
2072 * of the link.  This is the method we implement.  RTT variances and our
2073 * own manipulation of the congestion window, bwnd, can potentially
2074 * destabilize the algorithm.  For this reason we have to stabilize the
2075 * elements used to calculate the window.  We do this by using the minimum
2076 * observed RTT, the long term average of the observed bandwidth, and
2077 * by adding two segments worth of slop.  It isn't perfect but it is able
2078 * to react to changing conditions and gives us a very stable basis on
2079 * which to extend the algorithm.
2080 */
2081void
2082tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2083{
2084	u_long bw;
2085	u_long bwnd;
2086	int save_ticks;
2087
2088	INP_LOCK_ASSERT(tp->t_inpcb);
2089
2090	/*
2091	 * If inflight_enable is disabled in the middle of a tcp connection,
2092	 * make sure snd_bwnd is effectively disabled.
2093	 */
2094	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2095		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2096		tp->snd_bandwidth = 0;
2097		return;
2098	}
2099
2100	/*
2101	 * Figure out the bandwidth.  Due to the tick granularity this
2102	 * is a very rough number and it MUST be averaged over a fairly
2103	 * long period of time.  XXX we need to take into account a link
2104	 * that is not using all available bandwidth, but for now our
2105	 * slop will ramp us up if this case occurs and the bandwidth later
2106	 * increases.
2107	 *
2108	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2109	 * effectively reset t_bw_rtttime for this case.
2110	 */
2111	save_ticks = ticks;
2112	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2113		return;
2114
2115	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2116	    (save_ticks - tp->t_bw_rtttime);
2117	tp->t_bw_rtttime = save_ticks;
2118	tp->t_bw_rtseq = ack_seq;
2119	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2120		return;
2121	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2122
2123	tp->snd_bandwidth = bw;
2124
2125	/*
2126	 * Calculate the semi-static bandwidth delay product, plus two maximal
2127	 * segments.  The additional slop puts us squarely in the sweet
2128	 * spot and also handles the bandwidth run-up case and stabilization.
2129	 * Without the slop we could be locking ourselves into a lower
2130	 * bandwidth.
2131	 *
2132	 * Situations Handled:
2133	 *	(1) Prevents over-queueing of packets on LANs, especially on
2134	 *	    high speed LANs, allowing larger TCP buffers to be
2135	 *	    specified, and also does a good job preventing
2136	 *	    over-queueing of packets over choke points like modems
2137	 *	    (at least for the transmit side).
2138	 *
2139	 *	(2) Is able to handle changing network loads (bandwidth
2140	 *	    drops so bwnd drops, bandwidth increases so bwnd
2141	 *	    increases).
2142	 *
2143	 *	(3) Theoretically should stabilize in the face of multiple
2144	 *	    connections implementing the same algorithm (this may need
2145	 *	    a little work).
2146	 *
2147	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2148	 *	    be adjusted with a sysctl but typically only needs to be
2149	 *	    on very slow connections.  A value no smaller then 5
2150	 *	    should be used, but only reduce this default if you have
2151	 *	    no other choice.
2152	 */
2153#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2154	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2155#undef USERTT
2156
2157	if (tcp_inflight_debug > 0) {
2158		static int ltime;
2159		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2160			ltime = ticks;
2161			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2162			    tp,
2163			    bw,
2164			    tp->t_rttbest,
2165			    tp->t_srtt,
2166			    bwnd
2167			);
2168		}
2169	}
2170	if ((long)bwnd < tcp_inflight_min)
2171		bwnd = tcp_inflight_min;
2172	if (bwnd > tcp_inflight_max)
2173		bwnd = tcp_inflight_max;
2174	if ((long)bwnd < tp->t_maxseg * 2)
2175		bwnd = tp->t_maxseg * 2;
2176	tp->snd_bwnd = bwnd;
2177}
2178
2179#ifdef TCP_SIGNATURE
2180/*
2181 * Callback function invoked by m_apply() to digest TCP segment data
2182 * contained within an mbuf chain.
2183 */
2184static int
2185tcp_signature_apply(void *fstate, void *data, u_int len)
2186{
2187
2188	MD5Update(fstate, (u_char *)data, len);
2189	return (0);
2190}
2191
2192/*
2193 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2194 *
2195 * Parameters:
2196 * m		pointer to head of mbuf chain
2197 * off0		offset to TCP header within the mbuf chain
2198 * len		length of TCP segment data, excluding options
2199 * optlen	length of TCP segment options
2200 * buf		pointer to storage for computed MD5 digest
2201 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2202 *
2203 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2204 * When called from tcp_input(), we can be sure that th_sum has been
2205 * zeroed out and verified already.
2206 *
2207 * This function is for IPv4 use only. Calling this function with an
2208 * IPv6 packet in the mbuf chain will yield undefined results.
2209 *
2210 * Return 0 if successful, otherwise return -1.
2211 *
2212 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2213 * search with the destination IP address, and a 'magic SPI' to be
2214 * determined by the application. This is hardcoded elsewhere to 1179
2215 * right now. Another branch of this code exists which uses the SPD to
2216 * specify per-application flows but it is unstable.
2217 */
2218int
2219tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2220    u_char *buf, u_int direction)
2221{
2222	union sockaddr_union dst;
2223	struct ippseudo ippseudo;
2224	MD5_CTX ctx;
2225	int doff;
2226	struct ip *ip;
2227	struct ipovly *ipovly;
2228	struct secasvar *sav;
2229	struct tcphdr *th;
2230	u_short savecsum;
2231
2232	KASSERT(m != NULL, ("NULL mbuf chain"));
2233	KASSERT(buf != NULL, ("NULL signature pointer"));
2234
2235	/* Extract the destination from the IP header in the mbuf. */
2236	ip = mtod(m, struct ip *);
2237	bzero(&dst, sizeof(union sockaddr_union));
2238	dst.sa.sa_len = sizeof(struct sockaddr_in);
2239	dst.sa.sa_family = AF_INET;
2240	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2241	    ip->ip_src : ip->ip_dst;
2242
2243	/* Look up an SADB entry which matches the address of the peer. */
2244	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2245	if (sav == NULL) {
2246		printf("%s: SADB lookup failed for %s\n", __func__,
2247		    inet_ntoa(dst.sin.sin_addr));
2248		return (EINVAL);
2249	}
2250
2251	MD5Init(&ctx);
2252	ipovly = (struct ipovly *)ip;
2253	th = (struct tcphdr *)((u_char *)ip + off0);
2254	doff = off0 + sizeof(struct tcphdr) + optlen;
2255
2256	/*
2257	 * Step 1: Update MD5 hash with IP pseudo-header.
2258	 *
2259	 * XXX The ippseudo header MUST be digested in network byte order,
2260	 * or else we'll fail the regression test. Assume all fields we've
2261	 * been doing arithmetic on have been in host byte order.
2262	 * XXX One cannot depend on ipovly->ih_len here. When called from
2263	 * tcp_output(), the underlying ip_len member has not yet been set.
2264	 */
2265	ippseudo.ippseudo_src = ipovly->ih_src;
2266	ippseudo.ippseudo_dst = ipovly->ih_dst;
2267	ippseudo.ippseudo_pad = 0;
2268	ippseudo.ippseudo_p = IPPROTO_TCP;
2269	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2270	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2271
2272	/*
2273	 * Step 2: Update MD5 hash with TCP header, excluding options.
2274	 * The TCP checksum must be set to zero.
2275	 */
2276	savecsum = th->th_sum;
2277	th->th_sum = 0;
2278	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2279	th->th_sum = savecsum;
2280
2281	/*
2282	 * Step 3: Update MD5 hash with TCP segment data.
2283	 *         Use m_apply() to avoid an early m_pullup().
2284	 */
2285	if (len > 0)
2286		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2287
2288	/*
2289	 * Step 4: Update MD5 hash with shared secret.
2290	 */
2291	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2292	MD5Final(buf, &ctx);
2293
2294	key_sa_recordxfer(sav, m);
2295	KEY_FREESAV(&sav);
2296	return (0);
2297}
2298#endif /* TCP_SIGNATURE */
2299
2300static int
2301sysctl_drop(SYSCTL_HANDLER_ARGS)
2302{
2303	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2304	struct sockaddr_storage addrs[2];
2305	struct inpcb *inp;
2306	struct tcpcb *tp;
2307	struct tcptw *tw;
2308	struct sockaddr_in *fin, *lin;
2309#ifdef INET6
2310	struct sockaddr_in6 *fin6, *lin6;
2311	struct in6_addr f6, l6;
2312#endif
2313	int error;
2314
2315	inp = NULL;
2316	fin = lin = NULL;
2317#ifdef INET6
2318	fin6 = lin6 = NULL;
2319#endif
2320	error = 0;
2321
2322	if (req->oldptr != NULL || req->oldlen != 0)
2323		return (EINVAL);
2324	if (req->newptr == NULL)
2325		return (EPERM);
2326	if (req->newlen < sizeof(addrs))
2327		return (ENOMEM);
2328	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2329	if (error)
2330		return (error);
2331
2332	switch (addrs[0].ss_family) {
2333#ifdef INET6
2334	case AF_INET6:
2335		fin6 = (struct sockaddr_in6 *)&addrs[0];
2336		lin6 = (struct sockaddr_in6 *)&addrs[1];
2337		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2338		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2339			return (EINVAL);
2340		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2341			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2342				return (EINVAL);
2343			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2344			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2345			fin = (struct sockaddr_in *)&addrs[0];
2346			lin = (struct sockaddr_in *)&addrs[1];
2347			break;
2348		}
2349		error = sa6_embedscope(fin6, ip6_use_defzone);
2350		if (error)
2351			return (error);
2352		error = sa6_embedscope(lin6, ip6_use_defzone);
2353		if (error)
2354			return (error);
2355		break;
2356#endif
2357	case AF_INET:
2358		fin = (struct sockaddr_in *)&addrs[0];
2359		lin = (struct sockaddr_in *)&addrs[1];
2360		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2361		    lin->sin_len != sizeof(struct sockaddr_in))
2362			return (EINVAL);
2363		break;
2364	default:
2365		return (EINVAL);
2366	}
2367	INP_INFO_WLOCK(&tcbinfo);
2368	switch (addrs[0].ss_family) {
2369#ifdef INET6
2370	case AF_INET6:
2371		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2372		    &l6, lin6->sin6_port, 0, NULL);
2373		break;
2374#endif
2375	case AF_INET:
2376		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2377		    lin->sin_addr, lin->sin_port, 0, NULL);
2378		break;
2379	}
2380	if (inp != NULL) {
2381		INP_LOCK(inp);
2382		if (inp->inp_vflag & INP_TIMEWAIT) {
2383			/*
2384			 * XXXRW: There currently exists a state where an
2385			 * inpcb is present, but its timewait state has been
2386			 * discarded.  For now, don't allow dropping of this
2387			 * type of inpcb.
2388			 */
2389			tw = intotw(inp);
2390			if (tw != NULL)
2391				tcp_twclose(tw, 0);
2392		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2393			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2394			tp = intotcpcb(inp);
2395			tcp_drop(tp, ECONNABORTED);
2396		}
2397		INP_UNLOCK(inp);
2398	} else
2399		error = ESRCH;
2400	INP_INFO_WUNLOCK(&tcbinfo);
2401	return (error);
2402}
2403
2404SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2405    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2406    0, sysctl_drop, "", "Drop TCP connection");
2407