tcp_timewait.c revision 164033
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 164033 2006-11-06 13:42:10Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#ifdef INET6
49#include <sys/domain.h>
50#endif
51#include <sys/priv.h>
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116#include <security/mac/mac_framework.h>
117
118int	tcp_mssdflt = TCP_MSS;
119SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
120    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
121
122#ifdef INET6
123int	tcp_v6mssdflt = TCP6_MSS;
124SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
125	CTLFLAG_RW, &tcp_v6mssdflt , 0,
126	"Default TCP Maximum Segment Size for IPv6");
127#endif
128
129/*
130 * Minimum MSS we accept and use. This prevents DoS attacks where
131 * we are forced to a ridiculous low MSS like 20 and send hundreds
132 * of packets instead of one. The effect scales with the available
133 * bandwidth and quickly saturates the CPU and network interface
134 * with packet generation and sending. Set to zero to disable MINMSS
135 * checking. This setting prevents us from sending too small packets.
136 */
137int	tcp_minmss = TCP_MINMSS;
138SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
139    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
140/*
141 * Number of TCP segments per second we accept from remote host
142 * before we start to calculate average segment size. If average
143 * segment size drops below the minimum TCP MSS we assume a DoS
144 * attack and reset+drop the connection. Care has to be taken not to
145 * set this value too small to not kill interactive type connections
146 * (telnet, SSH) which send many small packets.
147 */
148int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
149SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
150    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
151    "be under the MINMSS Size");
152
153#if 0
154static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
155SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
156    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
157#endif
158
159int	tcp_do_rfc1323 = 1;
160SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
161    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
162
163static int	tcp_tcbhashsize = 0;
164SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
165     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
166
167static int	do_tcpdrain = 1;
168SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
169     "Enable tcp_drain routine for extra help when low on mbufs");
170
171SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
172    &tcbinfo.ipi_count, 0, "Number of active PCBs");
173
174static int	icmp_may_rst = 1;
175SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
176    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
177
178static int	tcp_isn_reseed_interval = 0;
179SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
180    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
181
182static uma_zone_t tcptw_zone;
183static int	maxtcptw;
184
185static int
186tcptw_auto_size(void)
187{
188	int halfrange;
189
190	/*
191	 * Max out at half the ephemeral port range so that TIME_WAIT
192	 * sockets don't tie up too many ephemeral ports.
193	 */
194	if (ipport_lastauto > ipport_firstauto)
195		halfrange = (ipport_lastauto - ipport_firstauto) / 2;
196	else
197		halfrange = (ipport_firstauto - ipport_lastauto) / 2;
198	/* Protect against goofy port ranges smaller than 32. */
199	return (imin(imax(halfrange, 32), maxsockets / 5));
200}
201
202static int
203sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
204{
205	int error, new;
206
207	if (maxtcptw == 0)
208		new = tcptw_auto_size();
209	else
210		new = maxtcptw;
211	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
212	if (error == 0 && req->newptr)
213		if (new >= 32) {
214			maxtcptw = new;
215			uma_zone_set_max(tcptw_zone, maxtcptw);
216		}
217	return (error);
218}
219SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
220    &maxtcptw, 0, sysctl_maxtcptw, "IU",
221    "Maximum number of compressed TCP TIME_WAIT entries");
222
223static int	nolocaltimewait = 0;
224SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
225    &nolocaltimewait, 0, "Do not create compressed TCP TIME_WAIT entries"
226			 "for local connections");
227
228/*
229 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
230 * 1024 exists only for debugging.  A good production default would be
231 * something like 6100.
232 */
233SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
234    "TCP inflight data limiting");
235
236static int	tcp_inflight_enable = 1;
237SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
238    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
239
240static int	tcp_inflight_debug = 0;
241SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
242    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
243
244static int	tcp_inflight_rttthresh;
245SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
246    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
247    "RTT threshold below which inflight will deactivate itself");
248
249static int	tcp_inflight_min = 6144;
250SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
251    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
252
253static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
254SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
255    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
256
257static int	tcp_inflight_stab = 20;
258SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
259    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
260
261uma_zone_t sack_hole_zone;
262
263static struct inpcb *tcp_notify(struct inpcb *, int);
264static void	tcp_isn_tick(void *);
265
266/*
267 * Target size of TCP PCB hash tables. Must be a power of two.
268 *
269 * Note that this can be overridden by the kernel environment
270 * variable net.inet.tcp.tcbhashsize
271 */
272#ifndef TCBHASHSIZE
273#define TCBHASHSIZE	512
274#endif
275
276/*
277 * XXX
278 * Callouts should be moved into struct tcp directly.  They are currently
279 * separate because the tcpcb structure is exported to userland for sysctl
280 * parsing purposes, which do not know about callouts.
281 */
282struct	tcpcb_mem {
283	struct	tcpcb tcb;
284	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
285	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
286};
287
288static uma_zone_t tcpcb_zone;
289struct callout isn_callout;
290static struct mtx isn_mtx;
291
292#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
293#define	ISN_LOCK()	mtx_lock(&isn_mtx)
294#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
295
296/*
297 * TCP initialization.
298 */
299static void
300tcp_zone_change(void *tag)
301{
302
303	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
304	uma_zone_set_max(tcpcb_zone, maxsockets);
305	if (maxtcptw == 0)
306		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
307}
308
309static int
310tcp_inpcb_init(void *mem, int size, int flags)
311{
312	struct inpcb *inp = (struct inpcb *) mem;
313	INP_LOCK_INIT(inp, "inp", "tcpinp");
314	return (0);
315}
316
317void
318tcp_init(void)
319{
320	int hashsize = TCBHASHSIZE;
321
322	tcp_delacktime = TCPTV_DELACK;
323	tcp_keepinit = TCPTV_KEEP_INIT;
324	tcp_keepidle = TCPTV_KEEP_IDLE;
325	tcp_keepintvl = TCPTV_KEEPINTVL;
326	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
327	tcp_msl = TCPTV_MSL;
328	tcp_rexmit_min = TCPTV_MIN;
329	tcp_rexmit_slop = TCPTV_CPU_VAR;
330	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
331
332	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
333	LIST_INIT(&tcb);
334	tcbinfo.listhead = &tcb;
335	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
336	if (!powerof2(hashsize)) {
337		printf("WARNING: TCB hash size not a power of 2\n");
338		hashsize = 512; /* safe default */
339	}
340	tcp_tcbhashsize = hashsize;
341	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
342	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
343					&tcbinfo.porthashmask);
344	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
345	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
346	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
347#ifdef INET6
348#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
349#else /* INET6 */
350#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
351#endif /* INET6 */
352	if (max_protohdr < TCP_MINPROTOHDR)
353		max_protohdr = TCP_MINPROTOHDR;
354	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
355		panic("tcp_init");
356#undef TCP_MINPROTOHDR
357	/*
358	 * These have to be type stable for the benefit of the timers.
359	 */
360	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
361	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
362	uma_zone_set_max(tcpcb_zone, maxsockets);
363	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
364	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
365	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
366	if (maxtcptw == 0)
367		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
368	else
369		uma_zone_set_max(tcptw_zone, maxtcptw);
370	tcp_timer_init();
371	syncache_init();
372	tcp_hc_init();
373	tcp_reass_init();
374	ISN_LOCK_INIT();
375	callout_init(&isn_callout, CALLOUT_MPSAFE);
376	tcp_isn_tick(NULL);
377	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
378		SHUTDOWN_PRI_DEFAULT);
379	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
380	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
381	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
382		EVENTHANDLER_PRI_ANY);
383}
384
385void
386tcp_fini(void *xtp)
387{
388
389	callout_stop(&isn_callout);
390}
391
392/*
393 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
394 * tcp_template used to store this data in mbufs, but we now recopy it out
395 * of the tcpcb each time to conserve mbufs.
396 */
397void
398tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
399{
400	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
401
402	INP_LOCK_ASSERT(inp);
403
404#ifdef INET6
405	if ((inp->inp_vflag & INP_IPV6) != 0) {
406		struct ip6_hdr *ip6;
407
408		ip6 = (struct ip6_hdr *)ip_ptr;
409		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
410			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
411		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
412			(IPV6_VERSION & IPV6_VERSION_MASK);
413		ip6->ip6_nxt = IPPROTO_TCP;
414		ip6->ip6_plen = sizeof(struct tcphdr);
415		ip6->ip6_src = inp->in6p_laddr;
416		ip6->ip6_dst = inp->in6p_faddr;
417	} else
418#endif
419	{
420		struct ip *ip;
421
422		ip = (struct ip *)ip_ptr;
423		ip->ip_v = IPVERSION;
424		ip->ip_hl = 5;
425		ip->ip_tos = inp->inp_ip_tos;
426		ip->ip_len = 0;
427		ip->ip_id = 0;
428		ip->ip_off = 0;
429		ip->ip_ttl = inp->inp_ip_ttl;
430		ip->ip_sum = 0;
431		ip->ip_p = IPPROTO_TCP;
432		ip->ip_src = inp->inp_laddr;
433		ip->ip_dst = inp->inp_faddr;
434	}
435	th->th_sport = inp->inp_lport;
436	th->th_dport = inp->inp_fport;
437	th->th_seq = 0;
438	th->th_ack = 0;
439	th->th_x2 = 0;
440	th->th_off = 5;
441	th->th_flags = 0;
442	th->th_win = 0;
443	th->th_urp = 0;
444	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
445}
446
447/*
448 * Create template to be used to send tcp packets on a connection.
449 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
450 * use for this function is in keepalives, which use tcp_respond.
451 */
452struct tcptemp *
453tcpip_maketemplate(struct inpcb *inp)
454{
455	struct mbuf *m;
456	struct tcptemp *n;
457
458	m = m_get(M_DONTWAIT, MT_DATA);
459	if (m == NULL)
460		return (0);
461	m->m_len = sizeof(struct tcptemp);
462	n = mtod(m, struct tcptemp *);
463
464	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
465	return (n);
466}
467
468/*
469 * Send a single message to the TCP at address specified by
470 * the given TCP/IP header.  If m == NULL, then we make a copy
471 * of the tcpiphdr at ti and send directly to the addressed host.
472 * This is used to force keep alive messages out using the TCP
473 * template for a connection.  If flags are given then we send
474 * a message back to the TCP which originated the * segment ti,
475 * and discard the mbuf containing it and any other attached mbufs.
476 *
477 * In any case the ack and sequence number of the transmitted
478 * segment are as specified by the parameters.
479 *
480 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
481 */
482void
483tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
484    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
485{
486	register int tlen;
487	int win = 0;
488	struct ip *ip;
489	struct tcphdr *nth;
490#ifdef INET6
491	struct ip6_hdr *ip6;
492	int isipv6;
493#endif /* INET6 */
494	int ipflags = 0;
495	struct inpcb *inp;
496
497	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
498
499#ifdef INET6
500	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
501	ip6 = ipgen;
502#endif /* INET6 */
503	ip = ipgen;
504
505	if (tp != NULL) {
506		inp = tp->t_inpcb;
507		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
508		INP_INFO_WLOCK_ASSERT(&tcbinfo);
509		INP_LOCK_ASSERT(inp);
510	} else
511		inp = NULL;
512
513	if (tp != NULL) {
514		if (!(flags & TH_RST)) {
515			win = sbspace(&inp->inp_socket->so_rcv);
516			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
517				win = (long)TCP_MAXWIN << tp->rcv_scale;
518		}
519	}
520	if (m == NULL) {
521		m = m_gethdr(M_DONTWAIT, MT_DATA);
522		if (m == NULL)
523			return;
524		tlen = 0;
525		m->m_data += max_linkhdr;
526#ifdef INET6
527		if (isipv6) {
528			bcopy((caddr_t)ip6, mtod(m, caddr_t),
529			      sizeof(struct ip6_hdr));
530			ip6 = mtod(m, struct ip6_hdr *);
531			nth = (struct tcphdr *)(ip6 + 1);
532		} else
533#endif /* INET6 */
534	      {
535		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
536		ip = mtod(m, struct ip *);
537		nth = (struct tcphdr *)(ip + 1);
538	      }
539		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
540		flags = TH_ACK;
541	} else {
542		m_freem(m->m_next);
543		m->m_next = NULL;
544		m->m_data = (caddr_t)ipgen;
545		/* m_len is set later */
546		tlen = 0;
547#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
548#ifdef INET6
549		if (isipv6) {
550			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
551			nth = (struct tcphdr *)(ip6 + 1);
552		} else
553#endif /* INET6 */
554	      {
555		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
556		nth = (struct tcphdr *)(ip + 1);
557	      }
558		if (th != nth) {
559			/*
560			 * this is usually a case when an extension header
561			 * exists between the IPv6 header and the
562			 * TCP header.
563			 */
564			nth->th_sport = th->th_sport;
565			nth->th_dport = th->th_dport;
566		}
567		xchg(nth->th_dport, nth->th_sport, n_short);
568#undef xchg
569	}
570#ifdef INET6
571	if (isipv6) {
572		ip6->ip6_flow = 0;
573		ip6->ip6_vfc = IPV6_VERSION;
574		ip6->ip6_nxt = IPPROTO_TCP;
575		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
576						tlen));
577		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
578	} else
579#endif
580	{
581		tlen += sizeof (struct tcpiphdr);
582		ip->ip_len = tlen;
583		ip->ip_ttl = ip_defttl;
584		if (path_mtu_discovery)
585			ip->ip_off |= IP_DF;
586	}
587	m->m_len = tlen;
588	m->m_pkthdr.len = tlen;
589	m->m_pkthdr.rcvif = NULL;
590#ifdef MAC
591	if (inp != NULL) {
592		/*
593		 * Packet is associated with a socket, so allow the
594		 * label of the response to reflect the socket label.
595		 */
596		INP_LOCK_ASSERT(inp);
597		mac_create_mbuf_from_inpcb(inp, m);
598	} else {
599		/*
600		 * Packet is not associated with a socket, so possibly
601		 * update the label in place.
602		 */
603		mac_reflect_mbuf_tcp(m);
604	}
605#endif
606	nth->th_seq = htonl(seq);
607	nth->th_ack = htonl(ack);
608	nth->th_x2 = 0;
609	nth->th_off = sizeof (struct tcphdr) >> 2;
610	nth->th_flags = flags;
611	if (tp != NULL)
612		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
613	else
614		nth->th_win = htons((u_short)win);
615	nth->th_urp = 0;
616#ifdef INET6
617	if (isipv6) {
618		nth->th_sum = 0;
619		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
620					sizeof(struct ip6_hdr),
621					tlen - sizeof(struct ip6_hdr));
622		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
623		    NULL, NULL);
624	} else
625#endif /* INET6 */
626	{
627		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
628		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
629		m->m_pkthdr.csum_flags = CSUM_TCP;
630		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
631	}
632#ifdef TCPDEBUG
633	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
634		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
635#endif
636#ifdef INET6
637	if (isipv6)
638		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
639	else
640#endif /* INET6 */
641	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
642}
643
644/*
645 * Create a new TCP control block, making an
646 * empty reassembly queue and hooking it to the argument
647 * protocol control block.  The `inp' parameter must have
648 * come from the zone allocator set up in tcp_init().
649 */
650struct tcpcb *
651tcp_newtcpcb(struct inpcb *inp)
652{
653	struct tcpcb_mem *tm;
654	struct tcpcb *tp;
655#ifdef INET6
656	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
657#endif /* INET6 */
658
659	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
660	if (tm == NULL)
661		return (NULL);
662	tp = &tm->tcb;
663	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
664	tp->t_maxseg = tp->t_maxopd =
665#ifdef INET6
666		isipv6 ? tcp_v6mssdflt :
667#endif /* INET6 */
668		tcp_mssdflt;
669
670	/* Set up our timeouts. */
671	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
672	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
673	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
674	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
675	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
676
677	if (tcp_do_rfc1323)
678		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
679	tp->sack_enable = tcp_do_sack;
680	TAILQ_INIT(&tp->snd_holes);
681	tp->t_inpcb = inp;	/* XXX */
682	/*
683	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
684	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
685	 * reasonable initial retransmit time.
686	 */
687	tp->t_srtt = TCPTV_SRTTBASE;
688	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
689	tp->t_rttmin = tcp_rexmit_min;
690	tp->t_rxtcur = TCPTV_RTOBASE;
691	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
692	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
693	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
694	tp->t_rcvtime = ticks;
695	tp->t_bw_rtttime = ticks;
696	/*
697	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
698	 * because the socket may be bound to an IPv6 wildcard address,
699	 * which may match an IPv4-mapped IPv6 address.
700	 */
701	inp->inp_ip_ttl = ip_defttl;
702	inp->inp_ppcb = tp;
703	return (tp);		/* XXX */
704}
705
706/*
707 * Drop a TCP connection, reporting
708 * the specified error.  If connection is synchronized,
709 * then send a RST to peer.
710 */
711struct tcpcb *
712tcp_drop(struct tcpcb *tp, int errno)
713{
714	struct socket *so = tp->t_inpcb->inp_socket;
715
716	INP_INFO_WLOCK_ASSERT(&tcbinfo);
717	INP_LOCK_ASSERT(tp->t_inpcb);
718
719	if (TCPS_HAVERCVDSYN(tp->t_state)) {
720		tp->t_state = TCPS_CLOSED;
721		(void) tcp_output(tp);
722		tcpstat.tcps_drops++;
723	} else
724		tcpstat.tcps_conndrops++;
725	if (errno == ETIMEDOUT && tp->t_softerror)
726		errno = tp->t_softerror;
727	so->so_error = errno;
728	return (tcp_close(tp));
729}
730
731void
732tcp_discardcb(struct tcpcb *tp)
733{
734	struct tseg_qent *q;
735	struct inpcb *inp = tp->t_inpcb;
736	struct socket *so = inp->inp_socket;
737#ifdef INET6
738	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
739#endif /* INET6 */
740
741	INP_LOCK_ASSERT(inp);
742
743	/*
744	 * Make sure that all of our timers are stopped before we
745	 * delete the PCB.
746	 */
747	callout_stop(tp->tt_rexmt);
748	callout_stop(tp->tt_persist);
749	callout_stop(tp->tt_keep);
750	callout_stop(tp->tt_2msl);
751	callout_stop(tp->tt_delack);
752
753	/*
754	 * If we got enough samples through the srtt filter,
755	 * save the rtt and rttvar in the routing entry.
756	 * 'Enough' is arbitrarily defined as 4 rtt samples.
757	 * 4 samples is enough for the srtt filter to converge
758	 * to within enough % of the correct value; fewer samples
759	 * and we could save a bogus rtt. The danger is not high
760	 * as tcp quickly recovers from everything.
761	 * XXX: Works very well but needs some more statistics!
762	 */
763	if (tp->t_rttupdated >= 4) {
764		struct hc_metrics_lite metrics;
765		u_long ssthresh;
766
767		bzero(&metrics, sizeof(metrics));
768		/*
769		 * Update the ssthresh always when the conditions below
770		 * are satisfied. This gives us better new start value
771		 * for the congestion avoidance for new connections.
772		 * ssthresh is only set if packet loss occured on a session.
773		 *
774		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
775		 * being torn down.  Ideally this code would not use 'so'.
776		 */
777		ssthresh = tp->snd_ssthresh;
778		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
779			/*
780			 * convert the limit from user data bytes to
781			 * packets then to packet data bytes.
782			 */
783			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
784			if (ssthresh < 2)
785				ssthresh = 2;
786			ssthresh *= (u_long)(tp->t_maxseg +
787#ifdef INET6
788				      (isipv6 ? sizeof (struct ip6_hdr) +
789					       sizeof (struct tcphdr) :
790#endif
791				       sizeof (struct tcpiphdr)
792#ifdef INET6
793				       )
794#endif
795				      );
796		} else
797			ssthresh = 0;
798		metrics.rmx_ssthresh = ssthresh;
799
800		metrics.rmx_rtt = tp->t_srtt;
801		metrics.rmx_rttvar = tp->t_rttvar;
802		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
803		metrics.rmx_bandwidth = tp->snd_bandwidth;
804		metrics.rmx_cwnd = tp->snd_cwnd;
805		metrics.rmx_sendpipe = 0;
806		metrics.rmx_recvpipe = 0;
807
808		tcp_hc_update(&inp->inp_inc, &metrics);
809	}
810
811	/* free the reassembly queue, if any */
812	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
813		LIST_REMOVE(q, tqe_q);
814		m_freem(q->tqe_m);
815		uma_zfree(tcp_reass_zone, q);
816		tp->t_segqlen--;
817		tcp_reass_qsize--;
818	}
819	tcp_free_sackholes(tp);
820	inp->inp_ppcb = NULL;
821	tp->t_inpcb = NULL;
822	uma_zfree(tcpcb_zone, tp);
823}
824
825/*
826 * Attempt to close a TCP control block, marking it as dropped, and freeing
827 * the socket if we hold the only reference.
828 */
829struct tcpcb *
830tcp_close(struct tcpcb *tp)
831{
832	struct inpcb *inp = tp->t_inpcb;
833	struct socket *so;
834
835	INP_INFO_WLOCK_ASSERT(&tcbinfo);
836	INP_LOCK_ASSERT(inp);
837
838	in_pcbdrop(inp);
839	tcpstat.tcps_closed++;
840	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
841	so = inp->inp_socket;
842	soisdisconnected(so);
843	if (inp->inp_vflag & INP_SOCKREF) {
844		KASSERT(so->so_state & SS_PROTOREF,
845		    ("tcp_close: !SS_PROTOREF"));
846		inp->inp_vflag &= ~INP_SOCKREF;
847		INP_UNLOCK(inp);
848		ACCEPT_LOCK();
849		SOCK_LOCK(so);
850		so->so_state &= ~SS_PROTOREF;
851		sofree(so);
852		return (NULL);
853	}
854	return (tp);
855}
856
857void
858tcp_drain(void)
859{
860
861	if (do_tcpdrain) {
862		struct inpcb *inpb;
863		struct tcpcb *tcpb;
864		struct tseg_qent *te;
865
866	/*
867	 * Walk the tcpbs, if existing, and flush the reassembly queue,
868	 * if there is one...
869	 * XXX: The "Net/3" implementation doesn't imply that the TCP
870	 *      reassembly queue should be flushed, but in a situation
871	 *	where we're really low on mbufs, this is potentially
872	 *	usefull.
873	 */
874		INP_INFO_RLOCK(&tcbinfo);
875		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
876			if (inpb->inp_vflag & INP_TIMEWAIT)
877				continue;
878			INP_LOCK(inpb);
879			if ((tcpb = intotcpcb(inpb)) != NULL) {
880				while ((te = LIST_FIRST(&tcpb->t_segq))
881			            != NULL) {
882					LIST_REMOVE(te, tqe_q);
883					m_freem(te->tqe_m);
884					uma_zfree(tcp_reass_zone, te);
885					tcpb->t_segqlen--;
886					tcp_reass_qsize--;
887				}
888				tcp_clean_sackreport(tcpb);
889			}
890			INP_UNLOCK(inpb);
891		}
892		INP_INFO_RUNLOCK(&tcbinfo);
893	}
894}
895
896/*
897 * Notify a tcp user of an asynchronous error;
898 * store error as soft error, but wake up user
899 * (for now, won't do anything until can select for soft error).
900 *
901 * Do not wake up user since there currently is no mechanism for
902 * reporting soft errors (yet - a kqueue filter may be added).
903 */
904static struct inpcb *
905tcp_notify(struct inpcb *inp, int error)
906{
907	struct tcpcb *tp;
908
909	INP_INFO_WLOCK_ASSERT(&tcbinfo);
910	INP_LOCK_ASSERT(inp);
911
912	if ((inp->inp_vflag & INP_TIMEWAIT) ||
913	    (inp->inp_vflag & INP_DROPPED))
914		return (inp);
915
916	tp = intotcpcb(inp);
917	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
918
919	/*
920	 * Ignore some errors if we are hooked up.
921	 * If connection hasn't completed, has retransmitted several times,
922	 * and receives a second error, give up now.  This is better
923	 * than waiting a long time to establish a connection that
924	 * can never complete.
925	 */
926	if (tp->t_state == TCPS_ESTABLISHED &&
927	    (error == EHOSTUNREACH || error == ENETUNREACH ||
928	     error == EHOSTDOWN)) {
929		return (inp);
930	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
931	    tp->t_softerror) {
932		tp = tcp_drop(tp, error);
933		if (tp != NULL)
934			return (inp);
935		else
936			return (NULL);
937	} else {
938		tp->t_softerror = error;
939		return (inp);
940	}
941#if 0
942	wakeup( &so->so_timeo);
943	sorwakeup(so);
944	sowwakeup(so);
945#endif
946}
947
948static int
949tcp_pcblist(SYSCTL_HANDLER_ARGS)
950{
951	int error, i, n;
952	struct inpcb *inp, **inp_list;
953	inp_gen_t gencnt;
954	struct xinpgen xig;
955
956	/*
957	 * The process of preparing the TCB list is too time-consuming and
958	 * resource-intensive to repeat twice on every request.
959	 */
960	if (req->oldptr == NULL) {
961		n = tcbinfo.ipi_count;
962		req->oldidx = 2 * (sizeof xig)
963			+ (n + n/8) * sizeof(struct xtcpcb);
964		return (0);
965	}
966
967	if (req->newptr != NULL)
968		return (EPERM);
969
970	/*
971	 * OK, now we're committed to doing something.
972	 */
973	INP_INFO_RLOCK(&tcbinfo);
974	gencnt = tcbinfo.ipi_gencnt;
975	n = tcbinfo.ipi_count;
976	INP_INFO_RUNLOCK(&tcbinfo);
977
978	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
979		+ n * sizeof(struct xtcpcb));
980	if (error != 0)
981		return (error);
982
983	xig.xig_len = sizeof xig;
984	xig.xig_count = n;
985	xig.xig_gen = gencnt;
986	xig.xig_sogen = so_gencnt;
987	error = SYSCTL_OUT(req, &xig, sizeof xig);
988	if (error)
989		return (error);
990
991	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
992	if (inp_list == NULL)
993		return (ENOMEM);
994
995	INP_INFO_RLOCK(&tcbinfo);
996	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
997	     inp = LIST_NEXT(inp, inp_list)) {
998		INP_LOCK(inp);
999		if (inp->inp_gencnt <= gencnt) {
1000			/*
1001			 * XXX: This use of cr_cansee(), introduced with
1002			 * TCP state changes, is not quite right, but for
1003			 * now, better than nothing.
1004			 */
1005			if (inp->inp_vflag & INP_TIMEWAIT) {
1006				if (intotw(inp) != NULL)
1007					error = cr_cansee(req->td->td_ucred,
1008					    intotw(inp)->tw_cred);
1009				else
1010					error = EINVAL;	/* Skip this inp. */
1011			} else
1012				error = cr_canseesocket(req->td->td_ucred,
1013				    inp->inp_socket);
1014			if (error == 0)
1015				inp_list[i++] = inp;
1016		}
1017		INP_UNLOCK(inp);
1018	}
1019	INP_INFO_RUNLOCK(&tcbinfo);
1020	n = i;
1021
1022	error = 0;
1023	for (i = 0; i < n; i++) {
1024		inp = inp_list[i];
1025		INP_LOCK(inp);
1026		if (inp->inp_gencnt <= gencnt) {
1027			struct xtcpcb xt;
1028			void *inp_ppcb;
1029
1030			bzero(&xt, sizeof(xt));
1031			xt.xt_len = sizeof xt;
1032			/* XXX should avoid extra copy */
1033			bcopy(inp, &xt.xt_inp, sizeof *inp);
1034			inp_ppcb = inp->inp_ppcb;
1035			if (inp_ppcb == NULL)
1036				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1037			else if (inp->inp_vflag & INP_TIMEWAIT) {
1038				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1039				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1040			} else
1041				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1042			if (inp->inp_socket != NULL)
1043				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1044			else {
1045				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1046				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1047			}
1048			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1049			INP_UNLOCK(inp);
1050			error = SYSCTL_OUT(req, &xt, sizeof xt);
1051		} else
1052			INP_UNLOCK(inp);
1053
1054	}
1055	if (!error) {
1056		/*
1057		 * Give the user an updated idea of our state.
1058		 * If the generation differs from what we told
1059		 * her before, she knows that something happened
1060		 * while we were processing this request, and it
1061		 * might be necessary to retry.
1062		 */
1063		INP_INFO_RLOCK(&tcbinfo);
1064		xig.xig_gen = tcbinfo.ipi_gencnt;
1065		xig.xig_sogen = so_gencnt;
1066		xig.xig_count = tcbinfo.ipi_count;
1067		INP_INFO_RUNLOCK(&tcbinfo);
1068		error = SYSCTL_OUT(req, &xig, sizeof xig);
1069	}
1070	free(inp_list, M_TEMP);
1071	return (error);
1072}
1073
1074SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1075	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1076
1077static int
1078tcp_getcred(SYSCTL_HANDLER_ARGS)
1079{
1080	struct xucred xuc;
1081	struct sockaddr_in addrs[2];
1082	struct inpcb *inp;
1083	int error;
1084
1085	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1086	    SUSER_ALLOWJAIL);
1087	if (error)
1088		return (error);
1089	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1090	if (error)
1091		return (error);
1092	INP_INFO_RLOCK(&tcbinfo);
1093	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1094	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1095	if (inp == NULL) {
1096		error = ENOENT;
1097		goto outunlocked;
1098	}
1099	INP_LOCK(inp);
1100	if (inp->inp_socket == NULL) {
1101		error = ENOENT;
1102		goto out;
1103	}
1104	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1105	if (error)
1106		goto out;
1107	cru2x(inp->inp_socket->so_cred, &xuc);
1108out:
1109	INP_UNLOCK(inp);
1110outunlocked:
1111	INP_INFO_RUNLOCK(&tcbinfo);
1112	if (error == 0)
1113		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1114	return (error);
1115}
1116
1117SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1118    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1119    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1120
1121#ifdef INET6
1122static int
1123tcp6_getcred(SYSCTL_HANDLER_ARGS)
1124{
1125	struct xucred xuc;
1126	struct sockaddr_in6 addrs[2];
1127	struct inpcb *inp;
1128	int error, mapped = 0;
1129
1130	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1131	    SUSER_ALLOWJAIL);
1132	if (error)
1133		return (error);
1134	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1135	if (error)
1136		return (error);
1137	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1138	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1139		return (error);
1140	}
1141	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1142		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1143			mapped = 1;
1144		else
1145			return (EINVAL);
1146	}
1147
1148	INP_INFO_RLOCK(&tcbinfo);
1149	if (mapped == 1)
1150		inp = in_pcblookup_hash(&tcbinfo,
1151			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1152			addrs[1].sin6_port,
1153			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1154			addrs[0].sin6_port,
1155			0, NULL);
1156	else
1157		inp = in6_pcblookup_hash(&tcbinfo,
1158			&addrs[1].sin6_addr, addrs[1].sin6_port,
1159			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1160	if (inp == NULL) {
1161		error = ENOENT;
1162		goto outunlocked;
1163	}
1164	INP_LOCK(inp);
1165	if (inp->inp_socket == NULL) {
1166		error = ENOENT;
1167		goto out;
1168	}
1169	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1170	if (error)
1171		goto out;
1172	cru2x(inp->inp_socket->so_cred, &xuc);
1173out:
1174	INP_UNLOCK(inp);
1175outunlocked:
1176	INP_INFO_RUNLOCK(&tcbinfo);
1177	if (error == 0)
1178		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1179	return (error);
1180}
1181
1182SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1183    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1184    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1185#endif
1186
1187
1188void
1189tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1190{
1191	struct ip *ip = vip;
1192	struct tcphdr *th;
1193	struct in_addr faddr;
1194	struct inpcb *inp;
1195	struct tcpcb *tp;
1196	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1197	struct icmp *icp;
1198	struct in_conninfo inc;
1199	tcp_seq icmp_tcp_seq;
1200	int mtu;
1201
1202	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1203	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1204		return;
1205
1206	if (cmd == PRC_MSGSIZE)
1207		notify = tcp_mtudisc;
1208	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1209		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1210		notify = tcp_drop_syn_sent;
1211	/*
1212	 * Redirects don't need to be handled up here.
1213	 */
1214	else if (PRC_IS_REDIRECT(cmd))
1215		return;
1216	/*
1217	 * Source quench is depreciated.
1218	 */
1219	else if (cmd == PRC_QUENCH)
1220		return;
1221	/*
1222	 * Hostdead is ugly because it goes linearly through all PCBs.
1223	 * XXX: We never get this from ICMP, otherwise it makes an
1224	 * excellent DoS attack on machines with many connections.
1225	 */
1226	else if (cmd == PRC_HOSTDEAD)
1227		ip = NULL;
1228	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1229		return;
1230	if (ip != NULL) {
1231		icp = (struct icmp *)((caddr_t)ip
1232				      - offsetof(struct icmp, icmp_ip));
1233		th = (struct tcphdr *)((caddr_t)ip
1234				       + (ip->ip_hl << 2));
1235		INP_INFO_WLOCK(&tcbinfo);
1236		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1237		    ip->ip_src, th->th_sport, 0, NULL);
1238		if (inp != NULL)  {
1239			INP_LOCK(inp);
1240			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1241			    !(inp->inp_vflag & INP_DROPPED) &&
1242			    !(inp->inp_socket == NULL)) {
1243				icmp_tcp_seq = htonl(th->th_seq);
1244				tp = intotcpcb(inp);
1245				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1246				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1247					if (cmd == PRC_MSGSIZE) {
1248					    /*
1249					     * MTU discovery:
1250					     * If we got a needfrag set the MTU
1251					     * in the route to the suggested new
1252					     * value (if given) and then notify.
1253					     */
1254					    bzero(&inc, sizeof(inc));
1255					    inc.inc_flags = 0;	/* IPv4 */
1256					    inc.inc_faddr = faddr;
1257
1258					    mtu = ntohs(icp->icmp_nextmtu);
1259					    /*
1260					     * If no alternative MTU was
1261					     * proposed, try the next smaller
1262					     * one.  ip->ip_len has already
1263					     * been swapped in icmp_input().
1264					     */
1265					    if (!mtu)
1266						mtu = ip_next_mtu(ip->ip_len,
1267						 1);
1268					    if (mtu < max(296, (tcp_minmss)
1269						 + sizeof(struct tcpiphdr)))
1270						mtu = 0;
1271					    if (!mtu)
1272						mtu = tcp_mssdflt
1273						 + sizeof(struct tcpiphdr);
1274					    /*
1275					     * Only cache the the MTU if it
1276					     * is smaller than the interface
1277					     * or route MTU.  tcp_mtudisc()
1278					     * will do right thing by itself.
1279					     */
1280					    if (mtu <= tcp_maxmtu(&inc, NULL))
1281						tcp_hc_updatemtu(&inc, mtu);
1282					}
1283
1284					inp = (*notify)(inp, inetctlerrmap[cmd]);
1285				}
1286			}
1287			if (inp != NULL)
1288				INP_UNLOCK(inp);
1289		} else {
1290			inc.inc_fport = th->th_dport;
1291			inc.inc_lport = th->th_sport;
1292			inc.inc_faddr = faddr;
1293			inc.inc_laddr = ip->ip_src;
1294#ifdef INET6
1295			inc.inc_isipv6 = 0;
1296#endif
1297			syncache_unreach(&inc, th);
1298		}
1299		INP_INFO_WUNLOCK(&tcbinfo);
1300	} else
1301		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1302}
1303
1304#ifdef INET6
1305void
1306tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1307{
1308	struct tcphdr th;
1309	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1310	struct ip6_hdr *ip6;
1311	struct mbuf *m;
1312	struct ip6ctlparam *ip6cp = NULL;
1313	const struct sockaddr_in6 *sa6_src = NULL;
1314	int off;
1315	struct tcp_portonly {
1316		u_int16_t th_sport;
1317		u_int16_t th_dport;
1318	} *thp;
1319
1320	if (sa->sa_family != AF_INET6 ||
1321	    sa->sa_len != sizeof(struct sockaddr_in6))
1322		return;
1323
1324	if (cmd == PRC_MSGSIZE)
1325		notify = tcp_mtudisc;
1326	else if (!PRC_IS_REDIRECT(cmd) &&
1327		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1328		return;
1329	/* Source quench is depreciated. */
1330	else if (cmd == PRC_QUENCH)
1331		return;
1332
1333	/* if the parameter is from icmp6, decode it. */
1334	if (d != NULL) {
1335		ip6cp = (struct ip6ctlparam *)d;
1336		m = ip6cp->ip6c_m;
1337		ip6 = ip6cp->ip6c_ip6;
1338		off = ip6cp->ip6c_off;
1339		sa6_src = ip6cp->ip6c_src;
1340	} else {
1341		m = NULL;
1342		ip6 = NULL;
1343		off = 0;	/* fool gcc */
1344		sa6_src = &sa6_any;
1345	}
1346
1347	if (ip6 != NULL) {
1348		struct in_conninfo inc;
1349		/*
1350		 * XXX: We assume that when IPV6 is non NULL,
1351		 * M and OFF are valid.
1352		 */
1353
1354		/* check if we can safely examine src and dst ports */
1355		if (m->m_pkthdr.len < off + sizeof(*thp))
1356			return;
1357
1358		bzero(&th, sizeof(th));
1359		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1360
1361		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1362		    (struct sockaddr *)ip6cp->ip6c_src,
1363		    th.th_sport, cmd, NULL, notify);
1364
1365		inc.inc_fport = th.th_dport;
1366		inc.inc_lport = th.th_sport;
1367		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1368		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1369		inc.inc_isipv6 = 1;
1370		INP_INFO_WLOCK(&tcbinfo);
1371		syncache_unreach(&inc, &th);
1372		INP_INFO_WUNLOCK(&tcbinfo);
1373	} else
1374		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1375			      0, cmd, NULL, notify);
1376}
1377#endif /* INET6 */
1378
1379
1380/*
1381 * Following is where TCP initial sequence number generation occurs.
1382 *
1383 * There are two places where we must use initial sequence numbers:
1384 * 1.  In SYN-ACK packets.
1385 * 2.  In SYN packets.
1386 *
1387 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1388 * tcp_syncache.c for details.
1389 *
1390 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1391 * depends on this property.  In addition, these ISNs should be
1392 * unguessable so as to prevent connection hijacking.  To satisfy
1393 * the requirements of this situation, the algorithm outlined in
1394 * RFC 1948 is used, with only small modifications.
1395 *
1396 * Implementation details:
1397 *
1398 * Time is based off the system timer, and is corrected so that it
1399 * increases by one megabyte per second.  This allows for proper
1400 * recycling on high speed LANs while still leaving over an hour
1401 * before rollover.
1402 *
1403 * As reading the *exact* system time is too expensive to be done
1404 * whenever setting up a TCP connection, we increment the time
1405 * offset in two ways.  First, a small random positive increment
1406 * is added to isn_offset for each connection that is set up.
1407 * Second, the function tcp_isn_tick fires once per clock tick
1408 * and increments isn_offset as necessary so that sequence numbers
1409 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1410 * random positive increments serve only to ensure that the same
1411 * exact sequence number is never sent out twice (as could otherwise
1412 * happen when a port is recycled in less than the system tick
1413 * interval.)
1414 *
1415 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1416 * between seeding of isn_secret.  This is normally set to zero,
1417 * as reseeding should not be necessary.
1418 *
1419 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1420 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1421 * general, this means holding an exclusive (write) lock.
1422 */
1423
1424#define ISN_BYTES_PER_SECOND 1048576
1425#define ISN_STATIC_INCREMENT 4096
1426#define ISN_RANDOM_INCREMENT (4096 - 1)
1427
1428static u_char isn_secret[32];
1429static int isn_last_reseed;
1430static u_int32_t isn_offset, isn_offset_old;
1431static MD5_CTX isn_ctx;
1432
1433tcp_seq
1434tcp_new_isn(struct tcpcb *tp)
1435{
1436	u_int32_t md5_buffer[4];
1437	tcp_seq new_isn;
1438
1439	INP_LOCK_ASSERT(tp->t_inpcb);
1440
1441	ISN_LOCK();
1442	/* Seed if this is the first use, reseed if requested. */
1443	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1444	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1445		< (u_int)ticks))) {
1446		read_random(&isn_secret, sizeof(isn_secret));
1447		isn_last_reseed = ticks;
1448	}
1449
1450	/* Compute the md5 hash and return the ISN. */
1451	MD5Init(&isn_ctx);
1452	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1453	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1454#ifdef INET6
1455	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1456		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1457			  sizeof(struct in6_addr));
1458		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1459			  sizeof(struct in6_addr));
1460	} else
1461#endif
1462	{
1463		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1464			  sizeof(struct in_addr));
1465		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1466			  sizeof(struct in_addr));
1467	}
1468	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1469	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1470	new_isn = (tcp_seq) md5_buffer[0];
1471	isn_offset += ISN_STATIC_INCREMENT +
1472		(arc4random() & ISN_RANDOM_INCREMENT);
1473	new_isn += isn_offset;
1474	ISN_UNLOCK();
1475	return (new_isn);
1476}
1477
1478/*
1479 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1480 * to keep time flowing at a relatively constant rate.  If the random
1481 * increments have already pushed us past the projected offset, do nothing.
1482 */
1483static void
1484tcp_isn_tick(void *xtp)
1485{
1486	u_int32_t projected_offset;
1487
1488	ISN_LOCK();
1489	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1490
1491	if (projected_offset > isn_offset)
1492		isn_offset = projected_offset;
1493
1494	isn_offset_old = isn_offset;
1495	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1496	ISN_UNLOCK();
1497}
1498
1499/*
1500 * When a specific ICMP unreachable message is received and the
1501 * connection state is SYN-SENT, drop the connection.  This behavior
1502 * is controlled by the icmp_may_rst sysctl.
1503 */
1504struct inpcb *
1505tcp_drop_syn_sent(struct inpcb *inp, int errno)
1506{
1507	struct tcpcb *tp;
1508
1509	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1510	INP_LOCK_ASSERT(inp);
1511
1512	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1513	    (inp->inp_vflag & INP_DROPPED))
1514		return (inp);
1515
1516	tp = intotcpcb(inp);
1517	if (tp->t_state != TCPS_SYN_SENT)
1518		return (inp);
1519
1520	tp = tcp_drop(tp, errno);
1521	if (tp != NULL)
1522		return (inp);
1523	else
1524		return (NULL);
1525}
1526
1527/*
1528 * When `need fragmentation' ICMP is received, update our idea of the MSS
1529 * based on the new value in the route.  Also nudge TCP to send something,
1530 * since we know the packet we just sent was dropped.
1531 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1532 */
1533struct inpcb *
1534tcp_mtudisc(struct inpcb *inp, int errno)
1535{
1536	struct tcpcb *tp;
1537	struct socket *so = inp->inp_socket;
1538	u_int maxmtu;
1539	u_int romtu;
1540	int mss;
1541#ifdef INET6
1542	int isipv6;
1543#endif /* INET6 */
1544
1545	INP_LOCK_ASSERT(inp);
1546	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1547	    (inp->inp_vflag & INP_DROPPED))
1548		return (inp);
1549
1550	tp = intotcpcb(inp);
1551	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1552
1553#ifdef INET6
1554	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1555#endif
1556	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1557	romtu =
1558#ifdef INET6
1559	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1560#endif /* INET6 */
1561	    tcp_maxmtu(&inp->inp_inc, NULL);
1562	if (!maxmtu)
1563		maxmtu = romtu;
1564	else
1565		maxmtu = min(maxmtu, romtu);
1566	if (!maxmtu) {
1567		tp->t_maxopd = tp->t_maxseg =
1568#ifdef INET6
1569			isipv6 ? tcp_v6mssdflt :
1570#endif /* INET6 */
1571			tcp_mssdflt;
1572		return (inp);
1573	}
1574	mss = maxmtu -
1575#ifdef INET6
1576		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1577#endif /* INET6 */
1578		 sizeof(struct tcpiphdr)
1579#ifdef INET6
1580		 )
1581#endif /* INET6 */
1582		;
1583
1584	/*
1585	 * XXX - The above conditional probably violates the TCP
1586	 * spec.  The problem is that, since we don't know the
1587	 * other end's MSS, we are supposed to use a conservative
1588	 * default.  But, if we do that, then MTU discovery will
1589	 * never actually take place, because the conservative
1590	 * default is much less than the MTUs typically seen
1591	 * on the Internet today.  For the moment, we'll sweep
1592	 * this under the carpet.
1593	 *
1594	 * The conservative default might not actually be a problem
1595	 * if the only case this occurs is when sending an initial
1596	 * SYN with options and data to a host we've never talked
1597	 * to before.  Then, they will reply with an MSS value which
1598	 * will get recorded and the new parameters should get
1599	 * recomputed.  For Further Study.
1600	 */
1601	if (tp->t_maxopd <= mss)
1602		return (inp);
1603	tp->t_maxopd = mss;
1604
1605	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1606	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1607		mss -= TCPOLEN_TSTAMP_APPA;
1608#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1609	if (mss > MCLBYTES)
1610		mss &= ~(MCLBYTES-1);
1611#else
1612	if (mss > MCLBYTES)
1613		mss = mss / MCLBYTES * MCLBYTES;
1614#endif
1615	if (so->so_snd.sb_hiwat < mss)
1616		mss = so->so_snd.sb_hiwat;
1617
1618	tp->t_maxseg = mss;
1619
1620	tcpstat.tcps_mturesent++;
1621	tp->t_rtttime = 0;
1622	tp->snd_nxt = tp->snd_una;
1623	tcp_free_sackholes(tp);
1624	tp->snd_recover = tp->snd_max;
1625	if (tp->sack_enable)
1626		EXIT_FASTRECOVERY(tp);
1627	tcp_output(tp);
1628	return (inp);
1629}
1630
1631/*
1632 * Look-up the routing entry to the peer of this inpcb.  If no route
1633 * is found and it cannot be allocated, then return NULL.  This routine
1634 * is called by TCP routines that access the rmx structure and by tcp_mss
1635 * to get the interface MTU.
1636 */
1637u_long
1638tcp_maxmtu(struct in_conninfo *inc, int *flags)
1639{
1640	struct route sro;
1641	struct sockaddr_in *dst;
1642	struct ifnet *ifp;
1643	u_long maxmtu = 0;
1644
1645	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1646
1647	bzero(&sro, sizeof(sro));
1648	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1649	        dst = (struct sockaddr_in *)&sro.ro_dst;
1650		dst->sin_family = AF_INET;
1651		dst->sin_len = sizeof(*dst);
1652		dst->sin_addr = inc->inc_faddr;
1653		rtalloc_ign(&sro, RTF_CLONING);
1654	}
1655	if (sro.ro_rt != NULL) {
1656		ifp = sro.ro_rt->rt_ifp;
1657		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1658			maxmtu = ifp->if_mtu;
1659		else
1660			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1661
1662		/* Report additional interface capabilities. */
1663		if (flags != NULL) {
1664			if (ifp->if_capenable & IFCAP_TSO4 &&
1665			    ifp->if_hwassist & CSUM_TSO)
1666				*flags |= CSUM_TSO;
1667		}
1668		RTFREE(sro.ro_rt);
1669	}
1670	return (maxmtu);
1671}
1672
1673#ifdef INET6
1674u_long
1675tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1676{
1677	struct route_in6 sro6;
1678	struct ifnet *ifp;
1679	u_long maxmtu = 0;
1680
1681	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1682
1683	bzero(&sro6, sizeof(sro6));
1684	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1685		sro6.ro_dst.sin6_family = AF_INET6;
1686		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1687		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1688		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1689	}
1690	if (sro6.ro_rt != NULL) {
1691		ifp = sro6.ro_rt->rt_ifp;
1692		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1693			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1694		else
1695			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1696				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1697
1698		/* Report additional interface capabilities. */
1699		if (flags != NULL) {
1700			if (ifp->if_capenable & IFCAP_TSO6 &&
1701			    ifp->if_hwassist & CSUM_TSO)
1702				*flags |= CSUM_TSO;
1703		}
1704		RTFREE(sro6.ro_rt);
1705	}
1706
1707	return (maxmtu);
1708}
1709#endif /* INET6 */
1710
1711#ifdef IPSEC
1712/* compute ESP/AH header size for TCP, including outer IP header. */
1713size_t
1714ipsec_hdrsiz_tcp(struct tcpcb *tp)
1715{
1716	struct inpcb *inp;
1717	struct mbuf *m;
1718	size_t hdrsiz;
1719	struct ip *ip;
1720#ifdef INET6
1721	struct ip6_hdr *ip6;
1722#endif
1723	struct tcphdr *th;
1724
1725	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1726		return (0);
1727	MGETHDR(m, M_DONTWAIT, MT_DATA);
1728	if (!m)
1729		return (0);
1730
1731#ifdef INET6
1732	if ((inp->inp_vflag & INP_IPV6) != 0) {
1733		ip6 = mtod(m, struct ip6_hdr *);
1734		th = (struct tcphdr *)(ip6 + 1);
1735		m->m_pkthdr.len = m->m_len =
1736			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1737		tcpip_fillheaders(inp, ip6, th);
1738		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1739	} else
1740#endif /* INET6 */
1741	{
1742		ip = mtod(m, struct ip *);
1743		th = (struct tcphdr *)(ip + 1);
1744		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1745		tcpip_fillheaders(inp, ip, th);
1746		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1747	}
1748
1749	m_free(m);
1750	return (hdrsiz);
1751}
1752#endif /*IPSEC*/
1753
1754/*
1755 * Move a TCP connection into TIME_WAIT state.
1756 *    tcbinfo is locked.
1757 *    inp is locked, and is unlocked before returning.
1758 */
1759void
1760tcp_twstart(struct tcpcb *tp)
1761{
1762	struct tcptw *tw;
1763	struct inpcb *inp = tp->t_inpcb;
1764	int acknow;
1765	struct socket *so;
1766
1767	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1768	INP_LOCK_ASSERT(inp);
1769
1770	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1771		tp = tcp_close(tp);
1772		if (tp != NULL)
1773			INP_UNLOCK(inp);
1774		return;
1775	}
1776
1777	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1778	if (tw == NULL) {
1779		tw = tcp_timer_2msl_tw(1);
1780		if (tw == NULL) {
1781			tp = tcp_close(tp);
1782			if (tp != NULL)
1783				INP_UNLOCK(inp);
1784			return;
1785		}
1786	}
1787	tw->tw_inpcb = inp;
1788
1789	/*
1790	 * Recover last window size sent.
1791	 */
1792	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1793
1794	/*
1795	 * Set t_recent if timestamps are used on the connection.
1796	 */
1797	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1798	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1799		tw->t_recent = tp->ts_recent;
1800	else
1801		tw->t_recent = 0;
1802
1803	tw->snd_nxt = tp->snd_nxt;
1804	tw->rcv_nxt = tp->rcv_nxt;
1805	tw->iss     = tp->iss;
1806	tw->irs     = tp->irs;
1807	tw->t_starttime = tp->t_starttime;
1808	tw->tw_time = 0;
1809
1810/* XXX
1811 * If this code will
1812 * be used for fin-wait-2 state also, then we may need
1813 * a ts_recent from the last segment.
1814 */
1815	acknow = tp->t_flags & TF_ACKNOW;
1816
1817	/*
1818	 * First, discard tcpcb state, which includes stopping its timers and
1819	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1820	 * that work is now done in the caller.
1821	 *
1822	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1823	 * and might not be needed here any longer.
1824	 */
1825	tcp_discardcb(tp);
1826	so = inp->inp_socket;
1827	soisdisconnected(so);
1828	SOCK_LOCK(so);
1829	tw->tw_cred = crhold(so->so_cred);
1830	tw->tw_so_options = so->so_options;
1831	SOCK_UNLOCK(so);
1832	if (acknow)
1833		tcp_twrespond(tw, TH_ACK);
1834	inp->inp_ppcb = tw;
1835	inp->inp_vflag |= INP_TIMEWAIT;
1836	tcp_timer_2msl_reset(tw, 0);
1837
1838	/*
1839	 * If the inpcb owns the sole reference to the socket, then we can
1840	 * detach and free the socket as it is not needed in time wait.
1841	 */
1842	if (inp->inp_vflag & INP_SOCKREF) {
1843		KASSERT(so->so_state & SS_PROTOREF,
1844		    ("tcp_twstart: !SS_PROTOREF"));
1845		inp->inp_vflag &= ~INP_SOCKREF;
1846		INP_UNLOCK(inp);
1847		ACCEPT_LOCK();
1848		SOCK_LOCK(so);
1849		so->so_state &= ~SS_PROTOREF;
1850		sofree(so);
1851	} else
1852		INP_UNLOCK(inp);
1853}
1854
1855#if 0
1856/*
1857 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1858 * the actual rate is slightly higher due to the addition of
1859 * random positive increments.
1860 *
1861 * Most other new OSes use semi-randomized ISN values, so we
1862 * do not need to worry about them.
1863 */
1864#define MS_ISN_BYTES_PER_SECOND		250000
1865
1866/*
1867 * Determine if the ISN we will generate has advanced beyond the last
1868 * sequence number used by the previous connection.  If so, indicate
1869 * that it is safe to recycle this tw socket by returning 1.
1870 */
1871int
1872tcp_twrecycleable(struct tcptw *tw)
1873{
1874	tcp_seq new_iss = tw->iss;
1875	tcp_seq new_irs = tw->irs;
1876
1877	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1878	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1879	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1880
1881	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1882		return (1);
1883	else
1884		return (0);
1885}
1886#endif
1887
1888void
1889tcp_twclose(struct tcptw *tw, int reuse)
1890{
1891	struct socket *so;
1892	struct inpcb *inp;
1893
1894	/*
1895	 * At this point, we are in one of two situations:
1896	 *
1897	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1898	 *     all state.
1899	 *
1900	 * (2) We have a socket -- if we own a reference, release it and
1901	 *     notify the socket layer.
1902	 */
1903	inp = tw->tw_inpcb;
1904	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1905	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1906	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1907	INP_LOCK_ASSERT(inp);
1908
1909	tw->tw_inpcb = NULL;
1910	tcp_timer_2msl_stop(tw);
1911	inp->inp_ppcb = NULL;
1912	in_pcbdrop(inp);
1913
1914	so = inp->inp_socket;
1915	if (so != NULL) {
1916		/*
1917		 * If there's a socket, handle two cases: first, we own a
1918		 * strong reference, which we will now release, or we don't
1919		 * in which case another reference exists (XXXRW: think
1920		 * about this more), and we don't need to take action.
1921		 */
1922		if (inp->inp_vflag & INP_SOCKREF) {
1923			inp->inp_vflag &= ~INP_SOCKREF;
1924			INP_UNLOCK(inp);
1925			ACCEPT_LOCK();
1926			SOCK_LOCK(so);
1927			KASSERT(so->so_state & SS_PROTOREF,
1928			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1929			so->so_state &= ~SS_PROTOREF;
1930			sofree(so);
1931		} else {
1932			/*
1933			 * If we don't own the only reference, the socket and
1934			 * inpcb need to be left around to be handled by
1935			 * tcp_usr_detach() later.
1936			 */
1937			INP_UNLOCK(inp);
1938		}
1939	} else {
1940#ifdef INET6
1941		if (inp->inp_vflag & INP_IPV6PROTO)
1942			in6_pcbfree(inp);
1943		else
1944#endif
1945			in_pcbfree(inp);
1946	}
1947	tcpstat.tcps_closed++;
1948	crfree(tw->tw_cred);
1949	tw->tw_cred = NULL;
1950	if (reuse)
1951		return;
1952	uma_zfree(tcptw_zone, tw);
1953}
1954
1955int
1956tcp_twrespond(struct tcptw *tw, int flags)
1957{
1958	struct inpcb *inp = tw->tw_inpcb;
1959	struct tcphdr *th;
1960	struct mbuf *m;
1961	struct ip *ip = NULL;
1962	u_int8_t *optp;
1963	u_int hdrlen, optlen;
1964	int error;
1965#ifdef INET6
1966	struct ip6_hdr *ip6 = NULL;
1967	int isipv6 = inp->inp_inc.inc_isipv6;
1968#endif
1969
1970	INP_LOCK_ASSERT(inp);
1971
1972	m = m_gethdr(M_DONTWAIT, MT_DATA);
1973	if (m == NULL)
1974		return (ENOBUFS);
1975	m->m_data += max_linkhdr;
1976
1977#ifdef MAC
1978	mac_create_mbuf_from_inpcb(inp, m);
1979#endif
1980
1981#ifdef INET6
1982	if (isipv6) {
1983		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1984		ip6 = mtod(m, struct ip6_hdr *);
1985		th = (struct tcphdr *)(ip6 + 1);
1986		tcpip_fillheaders(inp, ip6, th);
1987	} else
1988#endif
1989	{
1990		hdrlen = sizeof(struct tcpiphdr);
1991		ip = mtod(m, struct ip *);
1992		th = (struct tcphdr *)(ip + 1);
1993		tcpip_fillheaders(inp, ip, th);
1994	}
1995	optp = (u_int8_t *)(th + 1);
1996
1997	/*
1998	 * Send a timestamp and echo-reply if both our side and our peer
1999	 * have sent timestamps in our SYN's and this is not a RST.
2000	 */
2001	if (tw->t_recent && flags == TH_ACK) {
2002		u_int32_t *lp = (u_int32_t *)optp;
2003
2004		/* Form timestamp option as shown in appendix A of RFC 1323. */
2005		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
2006		*lp++ = htonl(ticks);
2007		*lp   = htonl(tw->t_recent);
2008		optp += TCPOLEN_TSTAMP_APPA;
2009	}
2010
2011	optlen = optp - (u_int8_t *)(th + 1);
2012
2013	m->m_len = hdrlen + optlen;
2014	m->m_pkthdr.len = m->m_len;
2015
2016	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
2017
2018	th->th_seq = htonl(tw->snd_nxt);
2019	th->th_ack = htonl(tw->rcv_nxt);
2020	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2021	th->th_flags = flags;
2022	th->th_win = htons(tw->last_win);
2023
2024#ifdef INET6
2025	if (isipv6) {
2026		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2027		    sizeof(struct tcphdr) + optlen);
2028		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2029		error = ip6_output(m, inp->in6p_outputopts, NULL,
2030		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2031	} else
2032#endif
2033	{
2034		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2035		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2036		m->m_pkthdr.csum_flags = CSUM_TCP;
2037		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2038		ip->ip_len = m->m_pkthdr.len;
2039		if (path_mtu_discovery)
2040			ip->ip_off |= IP_DF;
2041		error = ip_output(m, inp->inp_options, NULL,
2042		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2043		    NULL, inp);
2044	}
2045	if (flags & TH_ACK)
2046		tcpstat.tcps_sndacks++;
2047	else
2048		tcpstat.tcps_sndctrl++;
2049	tcpstat.tcps_sndtotal++;
2050	return (error);
2051}
2052
2053/*
2054 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2055 *
2056 * This code attempts to calculate the bandwidth-delay product as a
2057 * means of determining the optimal window size to maximize bandwidth,
2058 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2059 * routers.  This code also does a fairly good job keeping RTTs in check
2060 * across slow links like modems.  We implement an algorithm which is very
2061 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2062 * transmitter side of a TCP connection and so only effects the transmit
2063 * side of the connection.
2064 *
2065 * BACKGROUND:  TCP makes no provision for the management of buffer space
2066 * at the end points or at the intermediate routers and switches.  A TCP
2067 * stream, whether using NewReno or not, will eventually buffer as
2068 * many packets as it is able and the only reason this typically works is
2069 * due to the fairly small default buffers made available for a connection
2070 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2071 * scaling it is now fairly easy for even a single TCP connection to blow-out
2072 * all available buffer space not only on the local interface, but on
2073 * intermediate routers and switches as well.  NewReno makes a misguided
2074 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2075 * then backing off, then steadily increasing the window again until another
2076 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2077 * is only made worse as network loads increase and the idea of intentionally
2078 * blowing out network buffers is, frankly, a terrible way to manage network
2079 * resources.
2080 *
2081 * It is far better to limit the transmit window prior to the failure
2082 * condition being achieved.  There are two general ways to do this:  First
2083 * you can 'scan' through different transmit window sizes and locate the
2084 * point where the RTT stops increasing, indicating that you have filled the
2085 * pipe, then scan backwards until you note that RTT stops decreasing, then
2086 * repeat ad-infinitum.  This method works in principle but has severe
2087 * implementation issues due to RTT variances, timer granularity, and
2088 * instability in the algorithm which can lead to many false positives and
2089 * create oscillations as well as interact badly with other TCP streams
2090 * implementing the same algorithm.
2091 *
2092 * The second method is to limit the window to the bandwidth delay product
2093 * of the link.  This is the method we implement.  RTT variances and our
2094 * own manipulation of the congestion window, bwnd, can potentially
2095 * destabilize the algorithm.  For this reason we have to stabilize the
2096 * elements used to calculate the window.  We do this by using the minimum
2097 * observed RTT, the long term average of the observed bandwidth, and
2098 * by adding two segments worth of slop.  It isn't perfect but it is able
2099 * to react to changing conditions and gives us a very stable basis on
2100 * which to extend the algorithm.
2101 */
2102void
2103tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2104{
2105	u_long bw;
2106	u_long bwnd;
2107	int save_ticks;
2108
2109	INP_LOCK_ASSERT(tp->t_inpcb);
2110
2111	/*
2112	 * If inflight_enable is disabled in the middle of a tcp connection,
2113	 * make sure snd_bwnd is effectively disabled.
2114	 */
2115	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2116		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2117		tp->snd_bandwidth = 0;
2118		return;
2119	}
2120
2121	/*
2122	 * Figure out the bandwidth.  Due to the tick granularity this
2123	 * is a very rough number and it MUST be averaged over a fairly
2124	 * long period of time.  XXX we need to take into account a link
2125	 * that is not using all available bandwidth, but for now our
2126	 * slop will ramp us up if this case occurs and the bandwidth later
2127	 * increases.
2128	 *
2129	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2130	 * effectively reset t_bw_rtttime for this case.
2131	 */
2132	save_ticks = ticks;
2133	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2134		return;
2135
2136	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2137	    (save_ticks - tp->t_bw_rtttime);
2138	tp->t_bw_rtttime = save_ticks;
2139	tp->t_bw_rtseq = ack_seq;
2140	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2141		return;
2142	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2143
2144	tp->snd_bandwidth = bw;
2145
2146	/*
2147	 * Calculate the semi-static bandwidth delay product, plus two maximal
2148	 * segments.  The additional slop puts us squarely in the sweet
2149	 * spot and also handles the bandwidth run-up case and stabilization.
2150	 * Without the slop we could be locking ourselves into a lower
2151	 * bandwidth.
2152	 *
2153	 * Situations Handled:
2154	 *	(1) Prevents over-queueing of packets on LANs, especially on
2155	 *	    high speed LANs, allowing larger TCP buffers to be
2156	 *	    specified, and also does a good job preventing
2157	 *	    over-queueing of packets over choke points like modems
2158	 *	    (at least for the transmit side).
2159	 *
2160	 *	(2) Is able to handle changing network loads (bandwidth
2161	 *	    drops so bwnd drops, bandwidth increases so bwnd
2162	 *	    increases).
2163	 *
2164	 *	(3) Theoretically should stabilize in the face of multiple
2165	 *	    connections implementing the same algorithm (this may need
2166	 *	    a little work).
2167	 *
2168	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2169	 *	    be adjusted with a sysctl but typically only needs to be
2170	 *	    on very slow connections.  A value no smaller then 5
2171	 *	    should be used, but only reduce this default if you have
2172	 *	    no other choice.
2173	 */
2174#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2175	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2176#undef USERTT
2177
2178	if (tcp_inflight_debug > 0) {
2179		static int ltime;
2180		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2181			ltime = ticks;
2182			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2183			    tp,
2184			    bw,
2185			    tp->t_rttbest,
2186			    tp->t_srtt,
2187			    bwnd
2188			);
2189		}
2190	}
2191	if ((long)bwnd < tcp_inflight_min)
2192		bwnd = tcp_inflight_min;
2193	if (bwnd > tcp_inflight_max)
2194		bwnd = tcp_inflight_max;
2195	if ((long)bwnd < tp->t_maxseg * 2)
2196		bwnd = tp->t_maxseg * 2;
2197	tp->snd_bwnd = bwnd;
2198}
2199
2200#ifdef TCP_SIGNATURE
2201/*
2202 * Callback function invoked by m_apply() to digest TCP segment data
2203 * contained within an mbuf chain.
2204 */
2205static int
2206tcp_signature_apply(void *fstate, void *data, u_int len)
2207{
2208
2209	MD5Update(fstate, (u_char *)data, len);
2210	return (0);
2211}
2212
2213/*
2214 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2215 *
2216 * Parameters:
2217 * m		pointer to head of mbuf chain
2218 * off0		offset to TCP header within the mbuf chain
2219 * len		length of TCP segment data, excluding options
2220 * optlen	length of TCP segment options
2221 * buf		pointer to storage for computed MD5 digest
2222 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2223 *
2224 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2225 * When called from tcp_input(), we can be sure that th_sum has been
2226 * zeroed out and verified already.
2227 *
2228 * This function is for IPv4 use only. Calling this function with an
2229 * IPv6 packet in the mbuf chain will yield undefined results.
2230 *
2231 * Return 0 if successful, otherwise return -1.
2232 *
2233 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2234 * search with the destination IP address, and a 'magic SPI' to be
2235 * determined by the application. This is hardcoded elsewhere to 1179
2236 * right now. Another branch of this code exists which uses the SPD to
2237 * specify per-application flows but it is unstable.
2238 */
2239int
2240tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2241    u_char *buf, u_int direction)
2242{
2243	union sockaddr_union dst;
2244	struct ippseudo ippseudo;
2245	MD5_CTX ctx;
2246	int doff;
2247	struct ip *ip;
2248	struct ipovly *ipovly;
2249	struct secasvar *sav;
2250	struct tcphdr *th;
2251	u_short savecsum;
2252
2253	KASSERT(m != NULL, ("NULL mbuf chain"));
2254	KASSERT(buf != NULL, ("NULL signature pointer"));
2255
2256	/* Extract the destination from the IP header in the mbuf. */
2257	ip = mtod(m, struct ip *);
2258	bzero(&dst, sizeof(union sockaddr_union));
2259	dst.sa.sa_len = sizeof(struct sockaddr_in);
2260	dst.sa.sa_family = AF_INET;
2261	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2262	    ip->ip_src : ip->ip_dst;
2263
2264	/* Look up an SADB entry which matches the address of the peer. */
2265	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2266	if (sav == NULL) {
2267		printf("%s: SADB lookup failed for %s\n", __func__,
2268		    inet_ntoa(dst.sin.sin_addr));
2269		return (EINVAL);
2270	}
2271
2272	MD5Init(&ctx);
2273	ipovly = (struct ipovly *)ip;
2274	th = (struct tcphdr *)((u_char *)ip + off0);
2275	doff = off0 + sizeof(struct tcphdr) + optlen;
2276
2277	/*
2278	 * Step 1: Update MD5 hash with IP pseudo-header.
2279	 *
2280	 * XXX The ippseudo header MUST be digested in network byte order,
2281	 * or else we'll fail the regression test. Assume all fields we've
2282	 * been doing arithmetic on have been in host byte order.
2283	 * XXX One cannot depend on ipovly->ih_len here. When called from
2284	 * tcp_output(), the underlying ip_len member has not yet been set.
2285	 */
2286	ippseudo.ippseudo_src = ipovly->ih_src;
2287	ippseudo.ippseudo_dst = ipovly->ih_dst;
2288	ippseudo.ippseudo_pad = 0;
2289	ippseudo.ippseudo_p = IPPROTO_TCP;
2290	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2291	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2292
2293	/*
2294	 * Step 2: Update MD5 hash with TCP header, excluding options.
2295	 * The TCP checksum must be set to zero.
2296	 */
2297	savecsum = th->th_sum;
2298	th->th_sum = 0;
2299	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2300	th->th_sum = savecsum;
2301
2302	/*
2303	 * Step 3: Update MD5 hash with TCP segment data.
2304	 *         Use m_apply() to avoid an early m_pullup().
2305	 */
2306	if (len > 0)
2307		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2308
2309	/*
2310	 * Step 4: Update MD5 hash with shared secret.
2311	 */
2312	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2313	MD5Final(buf, &ctx);
2314
2315	key_sa_recordxfer(sav, m);
2316	KEY_FREESAV(&sav);
2317	return (0);
2318}
2319#endif /* TCP_SIGNATURE */
2320
2321static int
2322sysctl_drop(SYSCTL_HANDLER_ARGS)
2323{
2324	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2325	struct sockaddr_storage addrs[2];
2326	struct inpcb *inp;
2327	struct tcpcb *tp;
2328	struct tcptw *tw;
2329	struct sockaddr_in *fin, *lin;
2330#ifdef INET6
2331	struct sockaddr_in6 *fin6, *lin6;
2332	struct in6_addr f6, l6;
2333#endif
2334	int error;
2335
2336	inp = NULL;
2337	fin = lin = NULL;
2338#ifdef INET6
2339	fin6 = lin6 = NULL;
2340#endif
2341	error = 0;
2342
2343	if (req->oldptr != NULL || req->oldlen != 0)
2344		return (EINVAL);
2345	if (req->newptr == NULL)
2346		return (EPERM);
2347	if (req->newlen < sizeof(addrs))
2348		return (ENOMEM);
2349	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2350	if (error)
2351		return (error);
2352
2353	switch (addrs[0].ss_family) {
2354#ifdef INET6
2355	case AF_INET6:
2356		fin6 = (struct sockaddr_in6 *)&addrs[0];
2357		lin6 = (struct sockaddr_in6 *)&addrs[1];
2358		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2359		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2360			return (EINVAL);
2361		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2362			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2363				return (EINVAL);
2364			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2365			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2366			fin = (struct sockaddr_in *)&addrs[0];
2367			lin = (struct sockaddr_in *)&addrs[1];
2368			break;
2369		}
2370		error = sa6_embedscope(fin6, ip6_use_defzone);
2371		if (error)
2372			return (error);
2373		error = sa6_embedscope(lin6, ip6_use_defzone);
2374		if (error)
2375			return (error);
2376		break;
2377#endif
2378	case AF_INET:
2379		fin = (struct sockaddr_in *)&addrs[0];
2380		lin = (struct sockaddr_in *)&addrs[1];
2381		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2382		    lin->sin_len != sizeof(struct sockaddr_in))
2383			return (EINVAL);
2384		break;
2385	default:
2386		return (EINVAL);
2387	}
2388	INP_INFO_WLOCK(&tcbinfo);
2389	switch (addrs[0].ss_family) {
2390#ifdef INET6
2391	case AF_INET6:
2392		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2393		    &l6, lin6->sin6_port, 0, NULL);
2394		break;
2395#endif
2396	case AF_INET:
2397		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2398		    lin->sin_addr, lin->sin_port, 0, NULL);
2399		break;
2400	}
2401	if (inp != NULL) {
2402		INP_LOCK(inp);
2403		if (inp->inp_vflag & INP_TIMEWAIT) {
2404			/*
2405			 * XXXRW: There currently exists a state where an
2406			 * inpcb is present, but its timewait state has been
2407			 * discarded.  For now, don't allow dropping of this
2408			 * type of inpcb.
2409			 */
2410			tw = intotw(inp);
2411			if (tw != NULL)
2412				tcp_twclose(tw, 0);
2413		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2414			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2415			tp = intotcpcb(inp);
2416			tcp_drop(tp, ECONNABORTED);
2417		}
2418		INP_UNLOCK(inp);
2419	} else
2420		error = ESRCH;
2421	INP_INFO_WUNLOCK(&tcbinfo);
2422	return (error);
2423}
2424
2425SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2426    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2427    0, sysctl_drop, "", "Drop TCP connection");
2428