tcp_timewait.c revision 162084
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 162084 2006-09-06 21:51:59Z andre $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180static uma_zone_t tcptw_zone;
181static int	maxtcptw;
182static int
183sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
184{
185	int error, new;
186
187	if (maxtcptw == 0)
188		new = maxsockets / 5;
189	else
190		new = maxtcptw;
191	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
192	if (error == 0 && req->newptr) {
193		if (new > maxtcptw) {
194			maxtcptw = new;
195			uma_zone_set_max(tcptw_zone, maxtcptw);
196		} else
197			error = EINVAL;
198	}
199	return (error);
200}
201SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
202    &maxtcptw, 0, sysctl_maxtcptw, "IU",
203    "Maximum number of compressed TCP TIME_WAIT entries");
204
205/*
206 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
207 * 1024 exists only for debugging.  A good production default would be
208 * something like 6100.
209 */
210SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
211    "TCP inflight data limiting");
212
213static int	tcp_inflight_enable = 1;
214SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
215    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
216
217static int	tcp_inflight_debug = 0;
218SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
219    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
220
221static int	tcp_inflight_rttthresh;
222SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
223    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
224    "RTT threshold below which inflight will deactivate itself");
225
226static int	tcp_inflight_min = 6144;
227SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
228    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
229
230static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
231SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
232    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
233
234static int	tcp_inflight_stab = 20;
235SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
236    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
237
238uma_zone_t sack_hole_zone;
239
240static struct inpcb *tcp_notify(struct inpcb *, int);
241static void	tcp_isn_tick(void *);
242
243/*
244 * Target size of TCP PCB hash tables. Must be a power of two.
245 *
246 * Note that this can be overridden by the kernel environment
247 * variable net.inet.tcp.tcbhashsize
248 */
249#ifndef TCBHASHSIZE
250#define TCBHASHSIZE	512
251#endif
252
253/*
254 * XXX
255 * Callouts should be moved into struct tcp directly.  They are currently
256 * separate because the tcpcb structure is exported to userland for sysctl
257 * parsing purposes, which do not know about callouts.
258 */
259struct	tcpcb_mem {
260	struct	tcpcb tcb;
261	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
262	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
263};
264
265static uma_zone_t tcpcb_zone;
266struct callout isn_callout;
267static struct mtx isn_mtx;
268
269#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
270#define	ISN_LOCK()	mtx_lock(&isn_mtx)
271#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
272
273/*
274 * TCP initialization.
275 */
276static void
277tcp_zone_change(void *tag)
278{
279
280	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
281	uma_zone_set_max(tcpcb_zone, maxsockets);
282	if (maxtcptw == 0)
283		uma_zone_set_max(tcptw_zone, maxsockets / 5);
284}
285
286static int
287tcp_inpcb_init(void *mem, int size, int flags)
288{
289	struct inpcb *inp = (struct inpcb *) mem;
290	INP_LOCK_INIT(inp, "inp", "tcpinp");
291	return (0);
292}
293
294void
295tcp_init(void)
296{
297	int hashsize = TCBHASHSIZE;
298
299	tcp_delacktime = TCPTV_DELACK;
300	tcp_keepinit = TCPTV_KEEP_INIT;
301	tcp_keepidle = TCPTV_KEEP_IDLE;
302	tcp_keepintvl = TCPTV_KEEPINTVL;
303	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
304	tcp_msl = TCPTV_MSL;
305	tcp_rexmit_min = TCPTV_MIN;
306	tcp_rexmit_slop = TCPTV_CPU_VAR;
307	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
308
309	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
310	LIST_INIT(&tcb);
311	tcbinfo.listhead = &tcb;
312	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
313	if (!powerof2(hashsize)) {
314		printf("WARNING: TCB hash size not a power of 2\n");
315		hashsize = 512; /* safe default */
316	}
317	tcp_tcbhashsize = hashsize;
318	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
319	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
320					&tcbinfo.porthashmask);
321	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
322	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
323	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
324#ifdef INET6
325#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
326#else /* INET6 */
327#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
328#endif /* INET6 */
329	if (max_protohdr < TCP_MINPROTOHDR)
330		max_protohdr = TCP_MINPROTOHDR;
331	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
332		panic("tcp_init");
333#undef TCP_MINPROTOHDR
334	/*
335	 * These have to be type stable for the benefit of the timers.
336	 */
337	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
338	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
339	uma_zone_set_max(tcpcb_zone, maxsockets);
340	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
341	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
342	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
343	if (maxtcptw == 0)
344		uma_zone_set_max(tcptw_zone, maxsockets / 5);
345	else
346		uma_zone_set_max(tcptw_zone, maxtcptw);
347	tcp_timer_init();
348	syncache_init();
349	tcp_hc_init();
350	tcp_reass_init();
351	ISN_LOCK_INIT();
352	callout_init(&isn_callout, CALLOUT_MPSAFE);
353	tcp_isn_tick(NULL);
354	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
355		SHUTDOWN_PRI_DEFAULT);
356	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
357	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
358	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
359		EVENTHANDLER_PRI_ANY);
360}
361
362void
363tcp_fini(void *xtp)
364{
365
366	callout_stop(&isn_callout);
367}
368
369/*
370 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
371 * tcp_template used to store this data in mbufs, but we now recopy it out
372 * of the tcpcb each time to conserve mbufs.
373 */
374void
375tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
376{
377	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
378
379	INP_LOCK_ASSERT(inp);
380
381#ifdef INET6
382	if ((inp->inp_vflag & INP_IPV6) != 0) {
383		struct ip6_hdr *ip6;
384
385		ip6 = (struct ip6_hdr *)ip_ptr;
386		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
387			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
388		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
389			(IPV6_VERSION & IPV6_VERSION_MASK);
390		ip6->ip6_nxt = IPPROTO_TCP;
391		ip6->ip6_plen = sizeof(struct tcphdr);
392		ip6->ip6_src = inp->in6p_laddr;
393		ip6->ip6_dst = inp->in6p_faddr;
394	} else
395#endif
396	{
397		struct ip *ip;
398
399		ip = (struct ip *)ip_ptr;
400		ip->ip_v = IPVERSION;
401		ip->ip_hl = 5;
402		ip->ip_tos = inp->inp_ip_tos;
403		ip->ip_len = 0;
404		ip->ip_id = 0;
405		ip->ip_off = 0;
406		ip->ip_ttl = inp->inp_ip_ttl;
407		ip->ip_sum = 0;
408		ip->ip_p = IPPROTO_TCP;
409		ip->ip_src = inp->inp_laddr;
410		ip->ip_dst = inp->inp_faddr;
411	}
412	th->th_sport = inp->inp_lport;
413	th->th_dport = inp->inp_fport;
414	th->th_seq = 0;
415	th->th_ack = 0;
416	th->th_x2 = 0;
417	th->th_off = 5;
418	th->th_flags = 0;
419	th->th_win = 0;
420	th->th_urp = 0;
421	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
422}
423
424/*
425 * Create template to be used to send tcp packets on a connection.
426 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
427 * use for this function is in keepalives, which use tcp_respond.
428 */
429struct tcptemp *
430tcpip_maketemplate(struct inpcb *inp)
431{
432	struct mbuf *m;
433	struct tcptemp *n;
434
435	m = m_get(M_DONTWAIT, MT_DATA);
436	if (m == NULL)
437		return (0);
438	m->m_len = sizeof(struct tcptemp);
439	n = mtod(m, struct tcptemp *);
440
441	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
442	return (n);
443}
444
445/*
446 * Send a single message to the TCP at address specified by
447 * the given TCP/IP header.  If m == NULL, then we make a copy
448 * of the tcpiphdr at ti and send directly to the addressed host.
449 * This is used to force keep alive messages out using the TCP
450 * template for a connection.  If flags are given then we send
451 * a message back to the TCP which originated the * segment ti,
452 * and discard the mbuf containing it and any other attached mbufs.
453 *
454 * In any case the ack and sequence number of the transmitted
455 * segment are as specified by the parameters.
456 *
457 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
458 */
459void
460tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
461    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
462{
463	register int tlen;
464	int win = 0;
465	struct ip *ip;
466	struct tcphdr *nth;
467#ifdef INET6
468	struct ip6_hdr *ip6;
469	int isipv6;
470#endif /* INET6 */
471	int ipflags = 0;
472	struct inpcb *inp;
473
474	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
475
476#ifdef INET6
477	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
478	ip6 = ipgen;
479#endif /* INET6 */
480	ip = ipgen;
481
482	if (tp != NULL) {
483		inp = tp->t_inpcb;
484		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
485		INP_INFO_WLOCK_ASSERT(&tcbinfo);
486		INP_LOCK_ASSERT(inp);
487	} else
488		inp = NULL;
489
490	if (tp != NULL) {
491		if (!(flags & TH_RST)) {
492			win = sbspace(&inp->inp_socket->so_rcv);
493			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
494				win = (long)TCP_MAXWIN << tp->rcv_scale;
495		}
496	}
497	if (m == NULL) {
498		m = m_gethdr(M_DONTWAIT, MT_DATA);
499		if (m == NULL)
500			return;
501		tlen = 0;
502		m->m_data += max_linkhdr;
503#ifdef INET6
504		if (isipv6) {
505			bcopy((caddr_t)ip6, mtod(m, caddr_t),
506			      sizeof(struct ip6_hdr));
507			ip6 = mtod(m, struct ip6_hdr *);
508			nth = (struct tcphdr *)(ip6 + 1);
509		} else
510#endif /* INET6 */
511	      {
512		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
513		ip = mtod(m, struct ip *);
514		nth = (struct tcphdr *)(ip + 1);
515	      }
516		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
517		flags = TH_ACK;
518	} else {
519		m_freem(m->m_next);
520		m->m_next = NULL;
521		m->m_data = (caddr_t)ipgen;
522		/* m_len is set later */
523		tlen = 0;
524#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
525#ifdef INET6
526		if (isipv6) {
527			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
528			nth = (struct tcphdr *)(ip6 + 1);
529		} else
530#endif /* INET6 */
531	      {
532		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
533		nth = (struct tcphdr *)(ip + 1);
534	      }
535		if (th != nth) {
536			/*
537			 * this is usually a case when an extension header
538			 * exists between the IPv6 header and the
539			 * TCP header.
540			 */
541			nth->th_sport = th->th_sport;
542			nth->th_dport = th->th_dport;
543		}
544		xchg(nth->th_dport, nth->th_sport, n_short);
545#undef xchg
546	}
547#ifdef INET6
548	if (isipv6) {
549		ip6->ip6_flow = 0;
550		ip6->ip6_vfc = IPV6_VERSION;
551		ip6->ip6_nxt = IPPROTO_TCP;
552		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
553						tlen));
554		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
555	} else
556#endif
557	{
558		tlen += sizeof (struct tcpiphdr);
559		ip->ip_len = tlen;
560		ip->ip_ttl = ip_defttl;
561		if (path_mtu_discovery)
562			ip->ip_off |= IP_DF;
563	}
564	m->m_len = tlen;
565	m->m_pkthdr.len = tlen;
566	m->m_pkthdr.rcvif = NULL;
567#ifdef MAC
568	if (inp != NULL) {
569		/*
570		 * Packet is associated with a socket, so allow the
571		 * label of the response to reflect the socket label.
572		 */
573		INP_LOCK_ASSERT(inp);
574		mac_create_mbuf_from_inpcb(inp, m);
575	} else {
576		/*
577		 * Packet is not associated with a socket, so possibly
578		 * update the label in place.
579		 */
580		mac_reflect_mbuf_tcp(m);
581	}
582#endif
583	nth->th_seq = htonl(seq);
584	nth->th_ack = htonl(ack);
585	nth->th_x2 = 0;
586	nth->th_off = sizeof (struct tcphdr) >> 2;
587	nth->th_flags = flags;
588	if (tp != NULL)
589		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
590	else
591		nth->th_win = htons((u_short)win);
592	nth->th_urp = 0;
593#ifdef INET6
594	if (isipv6) {
595		nth->th_sum = 0;
596		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
597					sizeof(struct ip6_hdr),
598					tlen - sizeof(struct ip6_hdr));
599		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
600		    NULL, NULL);
601	} else
602#endif /* INET6 */
603	{
604		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
605		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
606		m->m_pkthdr.csum_flags = CSUM_TCP;
607		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
608	}
609#ifdef TCPDEBUG
610	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
611		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
612#endif
613#ifdef INET6
614	if (isipv6)
615		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
616	else
617#endif /* INET6 */
618	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
619}
620
621/*
622 * Create a new TCP control block, making an
623 * empty reassembly queue and hooking it to the argument
624 * protocol control block.  The `inp' parameter must have
625 * come from the zone allocator set up in tcp_init().
626 */
627struct tcpcb *
628tcp_newtcpcb(struct inpcb *inp)
629{
630	struct tcpcb_mem *tm;
631	struct tcpcb *tp;
632#ifdef INET6
633	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
634#endif /* INET6 */
635
636	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
637	if (tm == NULL)
638		return (NULL);
639	tp = &tm->tcb;
640	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
641	tp->t_maxseg = tp->t_maxopd =
642#ifdef INET6
643		isipv6 ? tcp_v6mssdflt :
644#endif /* INET6 */
645		tcp_mssdflt;
646
647	/* Set up our timeouts. */
648	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
649	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
650	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
651	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
652	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
653
654	if (tcp_do_rfc1323)
655		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
656	tp->sack_enable = tcp_do_sack;
657	TAILQ_INIT(&tp->snd_holes);
658	tp->t_inpcb = inp;	/* XXX */
659	/*
660	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
661	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
662	 * reasonable initial retransmit time.
663	 */
664	tp->t_srtt = TCPTV_SRTTBASE;
665	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
666	tp->t_rttmin = tcp_rexmit_min;
667	tp->t_rxtcur = TCPTV_RTOBASE;
668	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
669	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
670	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
671	tp->t_rcvtime = ticks;
672	tp->t_bw_rtttime = ticks;
673	/*
674	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
675	 * because the socket may be bound to an IPv6 wildcard address,
676	 * which may match an IPv4-mapped IPv6 address.
677	 */
678	inp->inp_ip_ttl = ip_defttl;
679	inp->inp_ppcb = tp;
680	return (tp);		/* XXX */
681}
682
683/*
684 * Drop a TCP connection, reporting
685 * the specified error.  If connection is synchronized,
686 * then send a RST to peer.
687 */
688struct tcpcb *
689tcp_drop(struct tcpcb *tp, int errno)
690{
691	struct socket *so = tp->t_inpcb->inp_socket;
692
693	INP_INFO_WLOCK_ASSERT(&tcbinfo);
694	INP_LOCK_ASSERT(tp->t_inpcb);
695
696	if (TCPS_HAVERCVDSYN(tp->t_state)) {
697		tp->t_state = TCPS_CLOSED;
698		(void) tcp_output(tp);
699		tcpstat.tcps_drops++;
700	} else
701		tcpstat.tcps_conndrops++;
702	if (errno == ETIMEDOUT && tp->t_softerror)
703		errno = tp->t_softerror;
704	so->so_error = errno;
705	return (tcp_close(tp));
706}
707
708void
709tcp_discardcb(struct tcpcb *tp)
710{
711	struct tseg_qent *q;
712	struct inpcb *inp = tp->t_inpcb;
713	struct socket *so = inp->inp_socket;
714#ifdef INET6
715	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
716#endif /* INET6 */
717
718	INP_LOCK_ASSERT(inp);
719
720	/*
721	 * Make sure that all of our timers are stopped before we
722	 * delete the PCB.
723	 */
724	callout_stop(tp->tt_rexmt);
725	callout_stop(tp->tt_persist);
726	callout_stop(tp->tt_keep);
727	callout_stop(tp->tt_2msl);
728	callout_stop(tp->tt_delack);
729
730	/*
731	 * If we got enough samples through the srtt filter,
732	 * save the rtt and rttvar in the routing entry.
733	 * 'Enough' is arbitrarily defined as 4 rtt samples.
734	 * 4 samples is enough for the srtt filter to converge
735	 * to within enough % of the correct value; fewer samples
736	 * and we could save a bogus rtt. The danger is not high
737	 * as tcp quickly recovers from everything.
738	 * XXX: Works very well but needs some more statistics!
739	 */
740	if (tp->t_rttupdated >= 4) {
741		struct hc_metrics_lite metrics;
742		u_long ssthresh;
743
744		bzero(&metrics, sizeof(metrics));
745		/*
746		 * Update the ssthresh always when the conditions below
747		 * are satisfied. This gives us better new start value
748		 * for the congestion avoidance for new connections.
749		 * ssthresh is only set if packet loss occured on a session.
750		 *
751		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
752		 * being torn down.  Ideally this code would not use 'so'.
753		 */
754		ssthresh = tp->snd_ssthresh;
755		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
756			/*
757			 * convert the limit from user data bytes to
758			 * packets then to packet data bytes.
759			 */
760			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
761			if (ssthresh < 2)
762				ssthresh = 2;
763			ssthresh *= (u_long)(tp->t_maxseg +
764#ifdef INET6
765				      (isipv6 ? sizeof (struct ip6_hdr) +
766					       sizeof (struct tcphdr) :
767#endif
768				       sizeof (struct tcpiphdr)
769#ifdef INET6
770				       )
771#endif
772				      );
773		} else
774			ssthresh = 0;
775		metrics.rmx_ssthresh = ssthresh;
776
777		metrics.rmx_rtt = tp->t_srtt;
778		metrics.rmx_rttvar = tp->t_rttvar;
779		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
780		metrics.rmx_bandwidth = tp->snd_bandwidth;
781		metrics.rmx_cwnd = tp->snd_cwnd;
782		metrics.rmx_sendpipe = 0;
783		metrics.rmx_recvpipe = 0;
784
785		tcp_hc_update(&inp->inp_inc, &metrics);
786	}
787
788	/* free the reassembly queue, if any */
789	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
790		LIST_REMOVE(q, tqe_q);
791		m_freem(q->tqe_m);
792		uma_zfree(tcp_reass_zone, q);
793		tp->t_segqlen--;
794		tcp_reass_qsize--;
795	}
796	tcp_free_sackholes(tp);
797	inp->inp_ppcb = NULL;
798	tp->t_inpcb = NULL;
799	uma_zfree(tcpcb_zone, tp);
800}
801
802/*
803 * Attempt to close a TCP control block, marking it as dropped, and freeing
804 * the socket if we hold the only reference.
805 */
806struct tcpcb *
807tcp_close(struct tcpcb *tp)
808{
809	struct inpcb *inp = tp->t_inpcb;
810	struct socket *so;
811
812	INP_INFO_WLOCK_ASSERT(&tcbinfo);
813	INP_LOCK_ASSERT(inp);
814
815	in_pcbdrop(inp);
816	tcpstat.tcps_closed++;
817	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
818	so = inp->inp_socket;
819	soisdisconnected(so);
820	if (inp->inp_vflag & INP_SOCKREF) {
821		KASSERT(so->so_state & SS_PROTOREF,
822		    ("tcp_close: !SS_PROTOREF"));
823		inp->inp_vflag &= ~INP_SOCKREF;
824		INP_UNLOCK(inp);
825		ACCEPT_LOCK();
826		SOCK_LOCK(so);
827		so->so_state &= ~SS_PROTOREF;
828		sofree(so);
829		return (NULL);
830	}
831	return (tp);
832}
833
834void
835tcp_drain(void)
836{
837
838	if (do_tcpdrain) {
839		struct inpcb *inpb;
840		struct tcpcb *tcpb;
841		struct tseg_qent *te;
842
843	/*
844	 * Walk the tcpbs, if existing, and flush the reassembly queue,
845	 * if there is one...
846	 * XXX: The "Net/3" implementation doesn't imply that the TCP
847	 *      reassembly queue should be flushed, but in a situation
848	 *	where we're really low on mbufs, this is potentially
849	 *	usefull.
850	 */
851		INP_INFO_RLOCK(&tcbinfo);
852		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
853			if (inpb->inp_vflag & INP_TIMEWAIT)
854				continue;
855			INP_LOCK(inpb);
856			if ((tcpb = intotcpcb(inpb)) != NULL) {
857				while ((te = LIST_FIRST(&tcpb->t_segq))
858			            != NULL) {
859					LIST_REMOVE(te, tqe_q);
860					m_freem(te->tqe_m);
861					uma_zfree(tcp_reass_zone, te);
862					tcpb->t_segqlen--;
863					tcp_reass_qsize--;
864				}
865				tcp_clean_sackreport(tcpb);
866			}
867			INP_UNLOCK(inpb);
868		}
869		INP_INFO_RUNLOCK(&tcbinfo);
870	}
871}
872
873/*
874 * Notify a tcp user of an asynchronous error;
875 * store error as soft error, but wake up user
876 * (for now, won't do anything until can select for soft error).
877 *
878 * Do not wake up user since there currently is no mechanism for
879 * reporting soft errors (yet - a kqueue filter may be added).
880 */
881static struct inpcb *
882tcp_notify(struct inpcb *inp, int error)
883{
884	struct tcpcb *tp;
885
886	INP_INFO_WLOCK_ASSERT(&tcbinfo);
887	INP_LOCK_ASSERT(inp);
888
889	if ((inp->inp_vflag & INP_TIMEWAIT) ||
890	    (inp->inp_vflag & INP_DROPPED))
891		return (inp);
892
893	tp = intotcpcb(inp);
894	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
895
896	/*
897	 * Ignore some errors if we are hooked up.
898	 * If connection hasn't completed, has retransmitted several times,
899	 * and receives a second error, give up now.  This is better
900	 * than waiting a long time to establish a connection that
901	 * can never complete.
902	 */
903	if (tp->t_state == TCPS_ESTABLISHED &&
904	    (error == EHOSTUNREACH || error == ENETUNREACH ||
905	     error == EHOSTDOWN)) {
906		return (inp);
907	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
908	    tp->t_softerror) {
909		tp = tcp_drop(tp, error);
910		if (tp != NULL)
911			return (inp);
912		else
913			return (NULL);
914	} else {
915		tp->t_softerror = error;
916		return (inp);
917	}
918#if 0
919	wakeup( &so->so_timeo);
920	sorwakeup(so);
921	sowwakeup(so);
922#endif
923}
924
925static int
926tcp_pcblist(SYSCTL_HANDLER_ARGS)
927{
928	int error, i, n;
929	struct inpcb *inp, **inp_list;
930	inp_gen_t gencnt;
931	struct xinpgen xig;
932
933	/*
934	 * The process of preparing the TCB list is too time-consuming and
935	 * resource-intensive to repeat twice on every request.
936	 */
937	if (req->oldptr == NULL) {
938		n = tcbinfo.ipi_count;
939		req->oldidx = 2 * (sizeof xig)
940			+ (n + n/8) * sizeof(struct xtcpcb);
941		return (0);
942	}
943
944	if (req->newptr != NULL)
945		return (EPERM);
946
947	/*
948	 * OK, now we're committed to doing something.
949	 */
950	INP_INFO_RLOCK(&tcbinfo);
951	gencnt = tcbinfo.ipi_gencnt;
952	n = tcbinfo.ipi_count;
953	INP_INFO_RUNLOCK(&tcbinfo);
954
955	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
956		+ n * sizeof(struct xtcpcb));
957	if (error != 0)
958		return (error);
959
960	xig.xig_len = sizeof xig;
961	xig.xig_count = n;
962	xig.xig_gen = gencnt;
963	xig.xig_sogen = so_gencnt;
964	error = SYSCTL_OUT(req, &xig, sizeof xig);
965	if (error)
966		return (error);
967
968	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
969	if (inp_list == NULL)
970		return (ENOMEM);
971
972	INP_INFO_RLOCK(&tcbinfo);
973	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
974	     inp = LIST_NEXT(inp, inp_list)) {
975		INP_LOCK(inp);
976		if (inp->inp_gencnt <= gencnt) {
977			/*
978			 * XXX: This use of cr_cansee(), introduced with
979			 * TCP state changes, is not quite right, but for
980			 * now, better than nothing.
981			 */
982			if (inp->inp_vflag & INP_TIMEWAIT) {
983				if (intotw(inp) != NULL)
984					error = cr_cansee(req->td->td_ucred,
985					    intotw(inp)->tw_cred);
986				else
987					error = EINVAL;	/* Skip this inp. */
988			} else
989				error = cr_canseesocket(req->td->td_ucred,
990				    inp->inp_socket);
991			if (error == 0)
992				inp_list[i++] = inp;
993		}
994		INP_UNLOCK(inp);
995	}
996	INP_INFO_RUNLOCK(&tcbinfo);
997	n = i;
998
999	error = 0;
1000	for (i = 0; i < n; i++) {
1001		inp = inp_list[i];
1002		INP_LOCK(inp);
1003		if (inp->inp_gencnt <= gencnt) {
1004			struct xtcpcb xt;
1005			void *inp_ppcb;
1006
1007			bzero(&xt, sizeof(xt));
1008			xt.xt_len = sizeof xt;
1009			/* XXX should avoid extra copy */
1010			bcopy(inp, &xt.xt_inp, sizeof *inp);
1011			inp_ppcb = inp->inp_ppcb;
1012			if (inp_ppcb == NULL)
1013				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1014			else if (inp->inp_vflag & INP_TIMEWAIT) {
1015				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1016				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1017			} else
1018				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1019			if (inp->inp_socket != NULL)
1020				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1021			else {
1022				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1023				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1024			}
1025			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1026			INP_UNLOCK(inp);
1027			error = SYSCTL_OUT(req, &xt, sizeof xt);
1028		} else
1029			INP_UNLOCK(inp);
1030
1031	}
1032	if (!error) {
1033		/*
1034		 * Give the user an updated idea of our state.
1035		 * If the generation differs from what we told
1036		 * her before, she knows that something happened
1037		 * while we were processing this request, and it
1038		 * might be necessary to retry.
1039		 */
1040		INP_INFO_RLOCK(&tcbinfo);
1041		xig.xig_gen = tcbinfo.ipi_gencnt;
1042		xig.xig_sogen = so_gencnt;
1043		xig.xig_count = tcbinfo.ipi_count;
1044		INP_INFO_RUNLOCK(&tcbinfo);
1045		error = SYSCTL_OUT(req, &xig, sizeof xig);
1046	}
1047	free(inp_list, M_TEMP);
1048	return (error);
1049}
1050
1051SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1052	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1053
1054static int
1055tcp_getcred(SYSCTL_HANDLER_ARGS)
1056{
1057	struct xucred xuc;
1058	struct sockaddr_in addrs[2];
1059	struct inpcb *inp;
1060	int error;
1061
1062	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1063	if (error)
1064		return (error);
1065	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1066	if (error)
1067		return (error);
1068	INP_INFO_RLOCK(&tcbinfo);
1069	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1070	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1071	if (inp == NULL) {
1072		error = ENOENT;
1073		goto outunlocked;
1074	}
1075	INP_LOCK(inp);
1076	if (inp->inp_socket == NULL) {
1077		error = ENOENT;
1078		goto out;
1079	}
1080	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1081	if (error)
1082		goto out;
1083	cru2x(inp->inp_socket->so_cred, &xuc);
1084out:
1085	INP_UNLOCK(inp);
1086outunlocked:
1087	INP_INFO_RUNLOCK(&tcbinfo);
1088	if (error == 0)
1089		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1090	return (error);
1091}
1092
1093SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1094    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1095    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1096
1097#ifdef INET6
1098static int
1099tcp6_getcred(SYSCTL_HANDLER_ARGS)
1100{
1101	struct xucred xuc;
1102	struct sockaddr_in6 addrs[2];
1103	struct inpcb *inp;
1104	int error, mapped = 0;
1105
1106	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1107	if (error)
1108		return (error);
1109	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1110	if (error)
1111		return (error);
1112	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1113	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1114		return (error);
1115	}
1116	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1117		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1118			mapped = 1;
1119		else
1120			return (EINVAL);
1121	}
1122
1123	INP_INFO_RLOCK(&tcbinfo);
1124	if (mapped == 1)
1125		inp = in_pcblookup_hash(&tcbinfo,
1126			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1127			addrs[1].sin6_port,
1128			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1129			addrs[0].sin6_port,
1130			0, NULL);
1131	else
1132		inp = in6_pcblookup_hash(&tcbinfo,
1133			&addrs[1].sin6_addr, addrs[1].sin6_port,
1134			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1135	if (inp == NULL) {
1136		error = ENOENT;
1137		goto outunlocked;
1138	}
1139	INP_LOCK(inp);
1140	if (inp->inp_socket == NULL) {
1141		error = ENOENT;
1142		goto out;
1143	}
1144	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1145	if (error)
1146		goto out;
1147	cru2x(inp->inp_socket->so_cred, &xuc);
1148out:
1149	INP_UNLOCK(inp);
1150outunlocked:
1151	INP_INFO_RUNLOCK(&tcbinfo);
1152	if (error == 0)
1153		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1154	return (error);
1155}
1156
1157SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1158    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1159    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1160#endif
1161
1162
1163void
1164tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1165{
1166	struct ip *ip = vip;
1167	struct tcphdr *th;
1168	struct in_addr faddr;
1169	struct inpcb *inp;
1170	struct tcpcb *tp;
1171	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1172	struct icmp *icp;
1173	struct in_conninfo inc;
1174	tcp_seq icmp_tcp_seq;
1175	int mtu;
1176
1177	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1178	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1179		return;
1180
1181	if (cmd == PRC_MSGSIZE)
1182		notify = tcp_mtudisc;
1183	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1184		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1185		notify = tcp_drop_syn_sent;
1186	/*
1187	 * Redirects don't need to be handled up here.
1188	 */
1189	else if (PRC_IS_REDIRECT(cmd))
1190		return;
1191	/*
1192	 * Source quench is depreciated.
1193	 */
1194	else if (cmd == PRC_QUENCH)
1195		return;
1196	/*
1197	 * Hostdead is ugly because it goes linearly through all PCBs.
1198	 * XXX: We never get this from ICMP, otherwise it makes an
1199	 * excellent DoS attack on machines with many connections.
1200	 */
1201	else if (cmd == PRC_HOSTDEAD)
1202		ip = NULL;
1203	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1204		return;
1205	if (ip != NULL) {
1206		icp = (struct icmp *)((caddr_t)ip
1207				      - offsetof(struct icmp, icmp_ip));
1208		th = (struct tcphdr *)((caddr_t)ip
1209				       + (ip->ip_hl << 2));
1210		INP_INFO_WLOCK(&tcbinfo);
1211		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1212		    ip->ip_src, th->th_sport, 0, NULL);
1213		if (inp != NULL)  {
1214			INP_LOCK(inp);
1215			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1216			    !(inp->inp_vflag & INP_DROPPED) &&
1217			    !(inp->inp_socket == NULL)) {
1218				icmp_tcp_seq = htonl(th->th_seq);
1219				tp = intotcpcb(inp);
1220				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1221				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1222					if (cmd == PRC_MSGSIZE) {
1223					    /*
1224					     * MTU discovery:
1225					     * If we got a needfrag set the MTU
1226					     * in the route to the suggested new
1227					     * value (if given) and then notify.
1228					     */
1229					    bzero(&inc, sizeof(inc));
1230					    inc.inc_flags = 0;	/* IPv4 */
1231					    inc.inc_faddr = faddr;
1232
1233					    mtu = ntohs(icp->icmp_nextmtu);
1234					    /*
1235					     * If no alternative MTU was
1236					     * proposed, try the next smaller
1237					     * one.  ip->ip_len has already
1238					     * been swapped in icmp_input().
1239					     */
1240					    if (!mtu)
1241						mtu = ip_next_mtu(ip->ip_len,
1242						 1);
1243					    if (mtu < max(296, (tcp_minmss)
1244						 + sizeof(struct tcpiphdr)))
1245						mtu = 0;
1246					    if (!mtu)
1247						mtu = tcp_mssdflt
1248						 + sizeof(struct tcpiphdr);
1249					    /*
1250					     * Only cache the the MTU if it
1251					     * is smaller than the interface
1252					     * or route MTU.  tcp_mtudisc()
1253					     * will do right thing by itself.
1254					     */
1255					    if (mtu <= tcp_maxmtu(&inc, NULL))
1256						tcp_hc_updatemtu(&inc, mtu);
1257					}
1258
1259					inp = (*notify)(inp, inetctlerrmap[cmd]);
1260				}
1261			}
1262			if (inp != NULL)
1263				INP_UNLOCK(inp);
1264		} else {
1265			inc.inc_fport = th->th_dport;
1266			inc.inc_lport = th->th_sport;
1267			inc.inc_faddr = faddr;
1268			inc.inc_laddr = ip->ip_src;
1269#ifdef INET6
1270			inc.inc_isipv6 = 0;
1271#endif
1272			syncache_unreach(&inc, th);
1273		}
1274		INP_INFO_WUNLOCK(&tcbinfo);
1275	} else
1276		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1277}
1278
1279#ifdef INET6
1280void
1281tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1282{
1283	struct tcphdr th;
1284	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1285	struct ip6_hdr *ip6;
1286	struct mbuf *m;
1287	struct ip6ctlparam *ip6cp = NULL;
1288	const struct sockaddr_in6 *sa6_src = NULL;
1289	int off;
1290	struct tcp_portonly {
1291		u_int16_t th_sport;
1292		u_int16_t th_dport;
1293	} *thp;
1294
1295	if (sa->sa_family != AF_INET6 ||
1296	    sa->sa_len != sizeof(struct sockaddr_in6))
1297		return;
1298
1299	if (cmd == PRC_MSGSIZE)
1300		notify = tcp_mtudisc;
1301	else if (!PRC_IS_REDIRECT(cmd) &&
1302		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1303		return;
1304	/* Source quench is depreciated. */
1305	else if (cmd == PRC_QUENCH)
1306		return;
1307
1308	/* if the parameter is from icmp6, decode it. */
1309	if (d != NULL) {
1310		ip6cp = (struct ip6ctlparam *)d;
1311		m = ip6cp->ip6c_m;
1312		ip6 = ip6cp->ip6c_ip6;
1313		off = ip6cp->ip6c_off;
1314		sa6_src = ip6cp->ip6c_src;
1315	} else {
1316		m = NULL;
1317		ip6 = NULL;
1318		off = 0;	/* fool gcc */
1319		sa6_src = &sa6_any;
1320	}
1321
1322	if (ip6 != NULL) {
1323		struct in_conninfo inc;
1324		/*
1325		 * XXX: We assume that when IPV6 is non NULL,
1326		 * M and OFF are valid.
1327		 */
1328
1329		/* check if we can safely examine src and dst ports */
1330		if (m->m_pkthdr.len < off + sizeof(*thp))
1331			return;
1332
1333		bzero(&th, sizeof(th));
1334		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1335
1336		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1337		    (struct sockaddr *)ip6cp->ip6c_src,
1338		    th.th_sport, cmd, NULL, notify);
1339
1340		inc.inc_fport = th.th_dport;
1341		inc.inc_lport = th.th_sport;
1342		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1343		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1344		inc.inc_isipv6 = 1;
1345		INP_INFO_WLOCK(&tcbinfo);
1346		syncache_unreach(&inc, &th);
1347		INP_INFO_WUNLOCK(&tcbinfo);
1348	} else
1349		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1350			      0, cmd, NULL, notify);
1351}
1352#endif /* INET6 */
1353
1354
1355/*
1356 * Following is where TCP initial sequence number generation occurs.
1357 *
1358 * There are two places where we must use initial sequence numbers:
1359 * 1.  In SYN-ACK packets.
1360 * 2.  In SYN packets.
1361 *
1362 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1363 * tcp_syncache.c for details.
1364 *
1365 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1366 * depends on this property.  In addition, these ISNs should be
1367 * unguessable so as to prevent connection hijacking.  To satisfy
1368 * the requirements of this situation, the algorithm outlined in
1369 * RFC 1948 is used, with only small modifications.
1370 *
1371 * Implementation details:
1372 *
1373 * Time is based off the system timer, and is corrected so that it
1374 * increases by one megabyte per second.  This allows for proper
1375 * recycling on high speed LANs while still leaving over an hour
1376 * before rollover.
1377 *
1378 * As reading the *exact* system time is too expensive to be done
1379 * whenever setting up a TCP connection, we increment the time
1380 * offset in two ways.  First, a small random positive increment
1381 * is added to isn_offset for each connection that is set up.
1382 * Second, the function tcp_isn_tick fires once per clock tick
1383 * and increments isn_offset as necessary so that sequence numbers
1384 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1385 * random positive increments serve only to ensure that the same
1386 * exact sequence number is never sent out twice (as could otherwise
1387 * happen when a port is recycled in less than the system tick
1388 * interval.)
1389 *
1390 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1391 * between seeding of isn_secret.  This is normally set to zero,
1392 * as reseeding should not be necessary.
1393 *
1394 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1395 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1396 * general, this means holding an exclusive (write) lock.
1397 */
1398
1399#define ISN_BYTES_PER_SECOND 1048576
1400#define ISN_STATIC_INCREMENT 4096
1401#define ISN_RANDOM_INCREMENT (4096 - 1)
1402
1403static u_char isn_secret[32];
1404static int isn_last_reseed;
1405static u_int32_t isn_offset, isn_offset_old;
1406static MD5_CTX isn_ctx;
1407
1408tcp_seq
1409tcp_new_isn(struct tcpcb *tp)
1410{
1411	u_int32_t md5_buffer[4];
1412	tcp_seq new_isn;
1413
1414	INP_LOCK_ASSERT(tp->t_inpcb);
1415
1416	ISN_LOCK();
1417	/* Seed if this is the first use, reseed if requested. */
1418	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1419	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1420		< (u_int)ticks))) {
1421		read_random(&isn_secret, sizeof(isn_secret));
1422		isn_last_reseed = ticks;
1423	}
1424
1425	/* Compute the md5 hash and return the ISN. */
1426	MD5Init(&isn_ctx);
1427	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1428	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1429#ifdef INET6
1430	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1431		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1432			  sizeof(struct in6_addr));
1433		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1434			  sizeof(struct in6_addr));
1435	} else
1436#endif
1437	{
1438		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1439			  sizeof(struct in_addr));
1440		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1441			  sizeof(struct in_addr));
1442	}
1443	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1444	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1445	new_isn = (tcp_seq) md5_buffer[0];
1446	isn_offset += ISN_STATIC_INCREMENT +
1447		(arc4random() & ISN_RANDOM_INCREMENT);
1448	new_isn += isn_offset;
1449	ISN_UNLOCK();
1450	return (new_isn);
1451}
1452
1453/*
1454 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1455 * to keep time flowing at a relatively constant rate.  If the random
1456 * increments have already pushed us past the projected offset, do nothing.
1457 */
1458static void
1459tcp_isn_tick(void *xtp)
1460{
1461	u_int32_t projected_offset;
1462
1463	ISN_LOCK();
1464	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1465
1466	if (projected_offset > isn_offset)
1467		isn_offset = projected_offset;
1468
1469	isn_offset_old = isn_offset;
1470	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1471	ISN_UNLOCK();
1472}
1473
1474/*
1475 * When a specific ICMP unreachable message is received and the
1476 * connection state is SYN-SENT, drop the connection.  This behavior
1477 * is controlled by the icmp_may_rst sysctl.
1478 */
1479struct inpcb *
1480tcp_drop_syn_sent(struct inpcb *inp, int errno)
1481{
1482	struct tcpcb *tp;
1483
1484	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1485	INP_LOCK_ASSERT(inp);
1486
1487	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1488	    (inp->inp_vflag & INP_DROPPED))
1489		return (inp);
1490
1491	tp = intotcpcb(inp);
1492	if (tp->t_state != TCPS_SYN_SENT)
1493		return (inp);
1494
1495	tp = tcp_drop(tp, errno);
1496	if (tp != NULL)
1497		return (inp);
1498	else
1499		return (NULL);
1500}
1501
1502/*
1503 * When `need fragmentation' ICMP is received, update our idea of the MSS
1504 * based on the new value in the route.  Also nudge TCP to send something,
1505 * since we know the packet we just sent was dropped.
1506 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1507 */
1508struct inpcb *
1509tcp_mtudisc(struct inpcb *inp, int errno)
1510{
1511	struct tcpcb *tp;
1512	struct socket *so = inp->inp_socket;
1513	u_int maxmtu;
1514	u_int romtu;
1515	int mss;
1516#ifdef INET6
1517	int isipv6;
1518#endif /* INET6 */
1519
1520	INP_LOCK_ASSERT(inp);
1521	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1522	    (inp->inp_vflag & INP_DROPPED))
1523		return (inp);
1524
1525	tp = intotcpcb(inp);
1526	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1527
1528#ifdef INET6
1529	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1530#endif
1531	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1532	romtu =
1533#ifdef INET6
1534	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1535#endif /* INET6 */
1536	    tcp_maxmtu(&inp->inp_inc, NULL);
1537	if (!maxmtu)
1538		maxmtu = romtu;
1539	else
1540		maxmtu = min(maxmtu, romtu);
1541	if (!maxmtu) {
1542		tp->t_maxopd = tp->t_maxseg =
1543#ifdef INET6
1544			isipv6 ? tcp_v6mssdflt :
1545#endif /* INET6 */
1546			tcp_mssdflt;
1547		return (inp);
1548	}
1549	mss = maxmtu -
1550#ifdef INET6
1551		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1552#endif /* INET6 */
1553		 sizeof(struct tcpiphdr)
1554#ifdef INET6
1555		 )
1556#endif /* INET6 */
1557		;
1558
1559	/*
1560	 * XXX - The above conditional probably violates the TCP
1561	 * spec.  The problem is that, since we don't know the
1562	 * other end's MSS, we are supposed to use a conservative
1563	 * default.  But, if we do that, then MTU discovery will
1564	 * never actually take place, because the conservative
1565	 * default is much less than the MTUs typically seen
1566	 * on the Internet today.  For the moment, we'll sweep
1567	 * this under the carpet.
1568	 *
1569	 * The conservative default might not actually be a problem
1570	 * if the only case this occurs is when sending an initial
1571	 * SYN with options and data to a host we've never talked
1572	 * to before.  Then, they will reply with an MSS value which
1573	 * will get recorded and the new parameters should get
1574	 * recomputed.  For Further Study.
1575	 */
1576	if (tp->t_maxopd <= mss)
1577		return (inp);
1578	tp->t_maxopd = mss;
1579
1580	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1581	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1582		mss -= TCPOLEN_TSTAMP_APPA;
1583#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1584	if (mss > MCLBYTES)
1585		mss &= ~(MCLBYTES-1);
1586#else
1587	if (mss > MCLBYTES)
1588		mss = mss / MCLBYTES * MCLBYTES;
1589#endif
1590	if (so->so_snd.sb_hiwat < mss)
1591		mss = so->so_snd.sb_hiwat;
1592
1593	tp->t_maxseg = mss;
1594
1595	tcpstat.tcps_mturesent++;
1596	tp->t_rtttime = 0;
1597	tp->snd_nxt = tp->snd_una;
1598	tcp_free_sackholes(tp);
1599	tp->snd_recover = tp->snd_max;
1600	if (tp->sack_enable)
1601		EXIT_FASTRECOVERY(tp);
1602	tcp_output(tp);
1603	return (inp);
1604}
1605
1606/*
1607 * Look-up the routing entry to the peer of this inpcb.  If no route
1608 * is found and it cannot be allocated, then return NULL.  This routine
1609 * is called by TCP routines that access the rmx structure and by tcp_mss
1610 * to get the interface MTU.
1611 */
1612u_long
1613tcp_maxmtu(struct in_conninfo *inc, int *flags)
1614{
1615	struct route sro;
1616	struct sockaddr_in *dst;
1617	struct ifnet *ifp;
1618	u_long maxmtu = 0;
1619
1620	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1621
1622	bzero(&sro, sizeof(sro));
1623	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1624	        dst = (struct sockaddr_in *)&sro.ro_dst;
1625		dst->sin_family = AF_INET;
1626		dst->sin_len = sizeof(*dst);
1627		dst->sin_addr = inc->inc_faddr;
1628		rtalloc_ign(&sro, RTF_CLONING);
1629	}
1630	if (sro.ro_rt != NULL) {
1631		ifp = sro.ro_rt->rt_ifp;
1632		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1633			maxmtu = ifp->if_mtu;
1634		else
1635			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1636
1637		/* Report additional interface capabilities. */
1638		if (flags != NULL) {
1639			if (ifp->if_capenable & IFCAP_TSO4 &&
1640			    ifp->if_hwassist & CSUM_TSO)
1641				*flags |= CSUM_TSO;
1642		}
1643		RTFREE(sro.ro_rt);
1644	}
1645	return (maxmtu);
1646}
1647
1648#ifdef INET6
1649u_long
1650tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1651{
1652	struct route_in6 sro6;
1653	struct ifnet *ifp;
1654	u_long maxmtu = 0;
1655
1656	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1657
1658	bzero(&sro6, sizeof(sro6));
1659	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1660		sro6.ro_dst.sin6_family = AF_INET6;
1661		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1662		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1663		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1664	}
1665	if (sro6.ro_rt != NULL) {
1666		ifp = sro6.ro_rt->rt_ifp;
1667		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1668			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1669		else
1670			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1671				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1672
1673		/* Report additional interface capabilities. */
1674		if (flags != NULL) {
1675			if (ifp->if_capenable & IFCAP_TSO6 &&
1676			    ifp->if_hwassist & CSUM_TSO)
1677				*flags |= CSUM_TSO;
1678		}
1679		RTFREE(sro6.ro_rt);
1680	}
1681
1682	return (maxmtu);
1683}
1684#endif /* INET6 */
1685
1686#ifdef IPSEC
1687/* compute ESP/AH header size for TCP, including outer IP header. */
1688size_t
1689ipsec_hdrsiz_tcp(struct tcpcb *tp)
1690{
1691	struct inpcb *inp;
1692	struct mbuf *m;
1693	size_t hdrsiz;
1694	struct ip *ip;
1695#ifdef INET6
1696	struct ip6_hdr *ip6;
1697#endif
1698	struct tcphdr *th;
1699
1700	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1701		return (0);
1702	MGETHDR(m, M_DONTWAIT, MT_DATA);
1703	if (!m)
1704		return (0);
1705
1706#ifdef INET6
1707	if ((inp->inp_vflag & INP_IPV6) != 0) {
1708		ip6 = mtod(m, struct ip6_hdr *);
1709		th = (struct tcphdr *)(ip6 + 1);
1710		m->m_pkthdr.len = m->m_len =
1711			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1712		tcpip_fillheaders(inp, ip6, th);
1713		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1714	} else
1715#endif /* INET6 */
1716	{
1717		ip = mtod(m, struct ip *);
1718		th = (struct tcphdr *)(ip + 1);
1719		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1720		tcpip_fillheaders(inp, ip, th);
1721		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1722	}
1723
1724	m_free(m);
1725	return (hdrsiz);
1726}
1727#endif /*IPSEC*/
1728
1729/*
1730 * Move a TCP connection into TIME_WAIT state.
1731 *    tcbinfo is locked.
1732 *    inp is locked, and is unlocked before returning.
1733 */
1734void
1735tcp_twstart(struct tcpcb *tp)
1736{
1737	struct tcptw *tw;
1738	struct inpcb *inp;
1739	int tw_time, acknow;
1740	struct socket *so;
1741
1742	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1743	INP_LOCK_ASSERT(tp->t_inpcb);
1744
1745	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1746	if (tw == NULL) {
1747		tw = tcp_timer_2msl_tw(1);
1748		if (tw == NULL) {
1749			tp = tcp_close(tp);
1750			if (tp != NULL)
1751				INP_UNLOCK(tp->t_inpcb);
1752			return;
1753		}
1754	}
1755	inp = tp->t_inpcb;
1756	tw->tw_inpcb = inp;
1757
1758	/*
1759	 * Recover last window size sent.
1760	 */
1761	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1762
1763	/*
1764	 * Set t_recent if timestamps are used on the connection.
1765	 */
1766	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1767	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1768		tw->t_recent = tp->ts_recent;
1769	else
1770		tw->t_recent = 0;
1771
1772	tw->snd_nxt = tp->snd_nxt;
1773	tw->rcv_nxt = tp->rcv_nxt;
1774	tw->iss     = tp->iss;
1775	tw->irs     = tp->irs;
1776	tw->t_starttime = tp->t_starttime;
1777	tw->tw_time = 0;
1778
1779/* XXX
1780 * If this code will
1781 * be used for fin-wait-2 state also, then we may need
1782 * a ts_recent from the last segment.
1783 */
1784	tw_time = 2 * tcp_msl;
1785	acknow = tp->t_flags & TF_ACKNOW;
1786
1787	/*
1788	 * First, discard tcpcb state, which includes stopping its timers and
1789	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1790	 * that work is now done in the caller.
1791	 *
1792	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1793	 * and might not be needed here any longer.
1794	 */
1795	tcp_discardcb(tp);
1796	so = inp->inp_socket;
1797	soisdisconnected(so);
1798	SOCK_LOCK(so);
1799	tw->tw_cred = crhold(so->so_cred);
1800	tw->tw_so_options = so->so_options;
1801	SOCK_UNLOCK(so);
1802	if (acknow)
1803		tcp_twrespond(tw, TH_ACK);
1804	inp->inp_ppcb = tw;
1805	inp->inp_vflag |= INP_TIMEWAIT;
1806	tcp_timer_2msl_reset(tw, tw_time, 0);
1807
1808	/*
1809	 * If the inpcb owns the sole reference to the socket, then we can
1810	 * detach and free the socket as it is not needed in time wait.
1811	 */
1812	if (inp->inp_vflag & INP_SOCKREF) {
1813		KASSERT(so->so_state & SS_PROTOREF,
1814		    ("tcp_twstart: !SS_PROTOREF"));
1815		inp->inp_vflag &= ~INP_SOCKREF;
1816		INP_UNLOCK(inp);
1817		ACCEPT_LOCK();
1818		SOCK_LOCK(so);
1819		so->so_state &= ~SS_PROTOREF;
1820		sofree(so);
1821	} else
1822		INP_UNLOCK(inp);
1823}
1824
1825#if 0
1826/*
1827 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1828 * the actual rate is slightly higher due to the addition of
1829 * random positive increments.
1830 *
1831 * Most other new OSes use semi-randomized ISN values, so we
1832 * do not need to worry about them.
1833 */
1834#define MS_ISN_BYTES_PER_SECOND		250000
1835
1836/*
1837 * Determine if the ISN we will generate has advanced beyond the last
1838 * sequence number used by the previous connection.  If so, indicate
1839 * that it is safe to recycle this tw socket by returning 1.
1840 */
1841int
1842tcp_twrecycleable(struct tcptw *tw)
1843{
1844	tcp_seq new_iss = tw->iss;
1845	tcp_seq new_irs = tw->irs;
1846
1847	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1848	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1849	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1850
1851	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1852		return (1);
1853	else
1854		return (0);
1855}
1856#endif
1857
1858void
1859tcp_twclose(struct tcptw *tw, int reuse)
1860{
1861	struct socket *so;
1862	struct inpcb *inp;
1863
1864	/*
1865	 * At this point, we are in one of two situations:
1866	 *
1867	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1868	 *     all state.
1869	 *
1870	 * (2) We have a socket -- if we own a reference, release it and
1871	 *     notify the socket layer.
1872	 */
1873	inp = tw->tw_inpcb;
1874	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1875	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1876	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1877	INP_LOCK_ASSERT(inp);
1878
1879	tw->tw_inpcb = NULL;
1880	tcp_timer_2msl_stop(tw);
1881	inp->inp_ppcb = NULL;
1882	in_pcbdrop(inp);
1883
1884	so = inp->inp_socket;
1885	if (so != NULL) {
1886		/*
1887		 * If there's a socket, handle two cases: first, we own a
1888		 * strong reference, which we will now release, or we don't
1889		 * in which case another reference exists (XXXRW: think
1890		 * about this more), and we don't need to take action.
1891		 */
1892		if (inp->inp_vflag & INP_SOCKREF) {
1893			inp->inp_vflag &= ~INP_SOCKREF;
1894			INP_UNLOCK(inp);
1895			ACCEPT_LOCK();
1896			SOCK_LOCK(so);
1897			KASSERT(so->so_state & SS_PROTOREF,
1898			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1899			so->so_state &= ~SS_PROTOREF;
1900			sofree(so);
1901		} else {
1902			/*
1903			 * If we don't own the only reference, the socket and
1904			 * inpcb need to be left around to be handled by
1905			 * tcp_usr_detach() later.
1906			 */
1907			INP_UNLOCK(inp);
1908		}
1909	} else {
1910#ifdef INET6
1911		if (inp->inp_vflag & INP_IPV6PROTO)
1912			in6_pcbfree(inp);
1913		else
1914#endif
1915			in_pcbfree(inp);
1916	}
1917	tcpstat.tcps_closed++;
1918	crfree(tw->tw_cred);
1919	tw->tw_cred = NULL;
1920	if (reuse)
1921		return;
1922	uma_zfree(tcptw_zone, tw);
1923}
1924
1925int
1926tcp_twrespond(struct tcptw *tw, int flags)
1927{
1928	struct inpcb *inp = tw->tw_inpcb;
1929	struct tcphdr *th;
1930	struct mbuf *m;
1931	struct ip *ip = NULL;
1932	u_int8_t *optp;
1933	u_int hdrlen, optlen;
1934	int error;
1935#ifdef INET6
1936	struct ip6_hdr *ip6 = NULL;
1937	int isipv6 = inp->inp_inc.inc_isipv6;
1938#endif
1939
1940	INP_LOCK_ASSERT(inp);
1941
1942	m = m_gethdr(M_DONTWAIT, MT_DATA);
1943	if (m == NULL)
1944		return (ENOBUFS);
1945	m->m_data += max_linkhdr;
1946
1947#ifdef MAC
1948	mac_create_mbuf_from_inpcb(inp, m);
1949#endif
1950
1951#ifdef INET6
1952	if (isipv6) {
1953		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1954		ip6 = mtod(m, struct ip6_hdr *);
1955		th = (struct tcphdr *)(ip6 + 1);
1956		tcpip_fillheaders(inp, ip6, th);
1957	} else
1958#endif
1959	{
1960		hdrlen = sizeof(struct tcpiphdr);
1961		ip = mtod(m, struct ip *);
1962		th = (struct tcphdr *)(ip + 1);
1963		tcpip_fillheaders(inp, ip, th);
1964	}
1965	optp = (u_int8_t *)(th + 1);
1966
1967	/*
1968	 * Send a timestamp and echo-reply if both our side and our peer
1969	 * have sent timestamps in our SYN's and this is not a RST.
1970	 */
1971	if (tw->t_recent && flags == TH_ACK) {
1972		u_int32_t *lp = (u_int32_t *)optp;
1973
1974		/* Form timestamp option as shown in appendix A of RFC 1323. */
1975		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1976		*lp++ = htonl(ticks);
1977		*lp   = htonl(tw->t_recent);
1978		optp += TCPOLEN_TSTAMP_APPA;
1979	}
1980
1981	optlen = optp - (u_int8_t *)(th + 1);
1982
1983	m->m_len = hdrlen + optlen;
1984	m->m_pkthdr.len = m->m_len;
1985
1986	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1987
1988	th->th_seq = htonl(tw->snd_nxt);
1989	th->th_ack = htonl(tw->rcv_nxt);
1990	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1991	th->th_flags = flags;
1992	th->th_win = htons(tw->last_win);
1993
1994#ifdef INET6
1995	if (isipv6) {
1996		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1997		    sizeof(struct tcphdr) + optlen);
1998		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1999		error = ip6_output(m, inp->in6p_outputopts, NULL,
2000		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2001	} else
2002#endif
2003	{
2004		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2005		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2006		m->m_pkthdr.csum_flags = CSUM_TCP;
2007		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2008		ip->ip_len = m->m_pkthdr.len;
2009		if (path_mtu_discovery)
2010			ip->ip_off |= IP_DF;
2011		error = ip_output(m, inp->inp_options, NULL,
2012		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2013		    NULL, inp);
2014	}
2015	if (flags & TH_ACK)
2016		tcpstat.tcps_sndacks++;
2017	else
2018		tcpstat.tcps_sndctrl++;
2019	tcpstat.tcps_sndtotal++;
2020	return (error);
2021}
2022
2023/*
2024 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2025 *
2026 * This code attempts to calculate the bandwidth-delay product as a
2027 * means of determining the optimal window size to maximize bandwidth,
2028 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2029 * routers.  This code also does a fairly good job keeping RTTs in check
2030 * across slow links like modems.  We implement an algorithm which is very
2031 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2032 * transmitter side of a TCP connection and so only effects the transmit
2033 * side of the connection.
2034 *
2035 * BACKGROUND:  TCP makes no provision for the management of buffer space
2036 * at the end points or at the intermediate routers and switches.  A TCP
2037 * stream, whether using NewReno or not, will eventually buffer as
2038 * many packets as it is able and the only reason this typically works is
2039 * due to the fairly small default buffers made available for a connection
2040 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2041 * scaling it is now fairly easy for even a single TCP connection to blow-out
2042 * all available buffer space not only on the local interface, but on
2043 * intermediate routers and switches as well.  NewReno makes a misguided
2044 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2045 * then backing off, then steadily increasing the window again until another
2046 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2047 * is only made worse as network loads increase and the idea of intentionally
2048 * blowing out network buffers is, frankly, a terrible way to manage network
2049 * resources.
2050 *
2051 * It is far better to limit the transmit window prior to the failure
2052 * condition being achieved.  There are two general ways to do this:  First
2053 * you can 'scan' through different transmit window sizes and locate the
2054 * point where the RTT stops increasing, indicating that you have filled the
2055 * pipe, then scan backwards until you note that RTT stops decreasing, then
2056 * repeat ad-infinitum.  This method works in principle but has severe
2057 * implementation issues due to RTT variances, timer granularity, and
2058 * instability in the algorithm which can lead to many false positives and
2059 * create oscillations as well as interact badly with other TCP streams
2060 * implementing the same algorithm.
2061 *
2062 * The second method is to limit the window to the bandwidth delay product
2063 * of the link.  This is the method we implement.  RTT variances and our
2064 * own manipulation of the congestion window, bwnd, can potentially
2065 * destabilize the algorithm.  For this reason we have to stabilize the
2066 * elements used to calculate the window.  We do this by using the minimum
2067 * observed RTT, the long term average of the observed bandwidth, and
2068 * by adding two segments worth of slop.  It isn't perfect but it is able
2069 * to react to changing conditions and gives us a very stable basis on
2070 * which to extend the algorithm.
2071 */
2072void
2073tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2074{
2075	u_long bw;
2076	u_long bwnd;
2077	int save_ticks;
2078
2079	INP_LOCK_ASSERT(tp->t_inpcb);
2080
2081	/*
2082	 * If inflight_enable is disabled in the middle of a tcp connection,
2083	 * make sure snd_bwnd is effectively disabled.
2084	 */
2085	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2086		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2087		tp->snd_bandwidth = 0;
2088		return;
2089	}
2090
2091	/*
2092	 * Figure out the bandwidth.  Due to the tick granularity this
2093	 * is a very rough number and it MUST be averaged over a fairly
2094	 * long period of time.  XXX we need to take into account a link
2095	 * that is not using all available bandwidth, but for now our
2096	 * slop will ramp us up if this case occurs and the bandwidth later
2097	 * increases.
2098	 *
2099	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2100	 * effectively reset t_bw_rtttime for this case.
2101	 */
2102	save_ticks = ticks;
2103	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2104		return;
2105
2106	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2107	    (save_ticks - tp->t_bw_rtttime);
2108	tp->t_bw_rtttime = save_ticks;
2109	tp->t_bw_rtseq = ack_seq;
2110	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2111		return;
2112	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2113
2114	tp->snd_bandwidth = bw;
2115
2116	/*
2117	 * Calculate the semi-static bandwidth delay product, plus two maximal
2118	 * segments.  The additional slop puts us squarely in the sweet
2119	 * spot and also handles the bandwidth run-up case and stabilization.
2120	 * Without the slop we could be locking ourselves into a lower
2121	 * bandwidth.
2122	 *
2123	 * Situations Handled:
2124	 *	(1) Prevents over-queueing of packets on LANs, especially on
2125	 *	    high speed LANs, allowing larger TCP buffers to be
2126	 *	    specified, and also does a good job preventing
2127	 *	    over-queueing of packets over choke points like modems
2128	 *	    (at least for the transmit side).
2129	 *
2130	 *	(2) Is able to handle changing network loads (bandwidth
2131	 *	    drops so bwnd drops, bandwidth increases so bwnd
2132	 *	    increases).
2133	 *
2134	 *	(3) Theoretically should stabilize in the face of multiple
2135	 *	    connections implementing the same algorithm (this may need
2136	 *	    a little work).
2137	 *
2138	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2139	 *	    be adjusted with a sysctl but typically only needs to be
2140	 *	    on very slow connections.  A value no smaller then 5
2141	 *	    should be used, but only reduce this default if you have
2142	 *	    no other choice.
2143	 */
2144#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2145	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2146#undef USERTT
2147
2148	if (tcp_inflight_debug > 0) {
2149		static int ltime;
2150		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2151			ltime = ticks;
2152			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2153			    tp,
2154			    bw,
2155			    tp->t_rttbest,
2156			    tp->t_srtt,
2157			    bwnd
2158			);
2159		}
2160	}
2161	if ((long)bwnd < tcp_inflight_min)
2162		bwnd = tcp_inflight_min;
2163	if (bwnd > tcp_inflight_max)
2164		bwnd = tcp_inflight_max;
2165	if ((long)bwnd < tp->t_maxseg * 2)
2166		bwnd = tp->t_maxseg * 2;
2167	tp->snd_bwnd = bwnd;
2168}
2169
2170#ifdef TCP_SIGNATURE
2171/*
2172 * Callback function invoked by m_apply() to digest TCP segment data
2173 * contained within an mbuf chain.
2174 */
2175static int
2176tcp_signature_apply(void *fstate, void *data, u_int len)
2177{
2178
2179	MD5Update(fstate, (u_char *)data, len);
2180	return (0);
2181}
2182
2183/*
2184 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2185 *
2186 * Parameters:
2187 * m		pointer to head of mbuf chain
2188 * off0		offset to TCP header within the mbuf chain
2189 * len		length of TCP segment data, excluding options
2190 * optlen	length of TCP segment options
2191 * buf		pointer to storage for computed MD5 digest
2192 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2193 *
2194 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2195 * When called from tcp_input(), we can be sure that th_sum has been
2196 * zeroed out and verified already.
2197 *
2198 * This function is for IPv4 use only. Calling this function with an
2199 * IPv6 packet in the mbuf chain will yield undefined results.
2200 *
2201 * Return 0 if successful, otherwise return -1.
2202 *
2203 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2204 * search with the destination IP address, and a 'magic SPI' to be
2205 * determined by the application. This is hardcoded elsewhere to 1179
2206 * right now. Another branch of this code exists which uses the SPD to
2207 * specify per-application flows but it is unstable.
2208 */
2209int
2210tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2211    u_char *buf, u_int direction)
2212{
2213	union sockaddr_union dst;
2214	struct ippseudo ippseudo;
2215	MD5_CTX ctx;
2216	int doff;
2217	struct ip *ip;
2218	struct ipovly *ipovly;
2219	struct secasvar *sav;
2220	struct tcphdr *th;
2221	u_short savecsum;
2222
2223	KASSERT(m != NULL, ("NULL mbuf chain"));
2224	KASSERT(buf != NULL, ("NULL signature pointer"));
2225
2226	/* Extract the destination from the IP header in the mbuf. */
2227	ip = mtod(m, struct ip *);
2228	bzero(&dst, sizeof(union sockaddr_union));
2229	dst.sa.sa_len = sizeof(struct sockaddr_in);
2230	dst.sa.sa_family = AF_INET;
2231	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2232	    ip->ip_src : ip->ip_dst;
2233
2234	/* Look up an SADB entry which matches the address of the peer. */
2235	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2236	if (sav == NULL) {
2237		printf("%s: SADB lookup failed for %s\n", __func__,
2238		    inet_ntoa(dst.sin.sin_addr));
2239		return (EINVAL);
2240	}
2241
2242	MD5Init(&ctx);
2243	ipovly = (struct ipovly *)ip;
2244	th = (struct tcphdr *)((u_char *)ip + off0);
2245	doff = off0 + sizeof(struct tcphdr) + optlen;
2246
2247	/*
2248	 * Step 1: Update MD5 hash with IP pseudo-header.
2249	 *
2250	 * XXX The ippseudo header MUST be digested in network byte order,
2251	 * or else we'll fail the regression test. Assume all fields we've
2252	 * been doing arithmetic on have been in host byte order.
2253	 * XXX One cannot depend on ipovly->ih_len here. When called from
2254	 * tcp_output(), the underlying ip_len member has not yet been set.
2255	 */
2256	ippseudo.ippseudo_src = ipovly->ih_src;
2257	ippseudo.ippseudo_dst = ipovly->ih_dst;
2258	ippseudo.ippseudo_pad = 0;
2259	ippseudo.ippseudo_p = IPPROTO_TCP;
2260	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2261	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2262
2263	/*
2264	 * Step 2: Update MD5 hash with TCP header, excluding options.
2265	 * The TCP checksum must be set to zero.
2266	 */
2267	savecsum = th->th_sum;
2268	th->th_sum = 0;
2269	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2270	th->th_sum = savecsum;
2271
2272	/*
2273	 * Step 3: Update MD5 hash with TCP segment data.
2274	 *         Use m_apply() to avoid an early m_pullup().
2275	 */
2276	if (len > 0)
2277		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2278
2279	/*
2280	 * Step 4: Update MD5 hash with shared secret.
2281	 */
2282	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2283	MD5Final(buf, &ctx);
2284
2285	key_sa_recordxfer(sav, m);
2286	KEY_FREESAV(&sav);
2287	return (0);
2288}
2289#endif /* TCP_SIGNATURE */
2290
2291static int
2292sysctl_drop(SYSCTL_HANDLER_ARGS)
2293{
2294	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2295	struct sockaddr_storage addrs[2];
2296	struct inpcb *inp;
2297	struct tcpcb *tp;
2298	struct tcptw *tw;
2299	struct sockaddr_in *fin, *lin;
2300#ifdef INET6
2301	struct sockaddr_in6 *fin6, *lin6;
2302	struct in6_addr f6, l6;
2303#endif
2304	int error;
2305
2306	inp = NULL;
2307	fin = lin = NULL;
2308#ifdef INET6
2309	fin6 = lin6 = NULL;
2310#endif
2311	error = 0;
2312
2313	if (req->oldptr != NULL || req->oldlen != 0)
2314		return (EINVAL);
2315	if (req->newptr == NULL)
2316		return (EPERM);
2317	if (req->newlen < sizeof(addrs))
2318		return (ENOMEM);
2319	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2320	if (error)
2321		return (error);
2322
2323	switch (addrs[0].ss_family) {
2324#ifdef INET6
2325	case AF_INET6:
2326		fin6 = (struct sockaddr_in6 *)&addrs[0];
2327		lin6 = (struct sockaddr_in6 *)&addrs[1];
2328		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2329		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2330			return (EINVAL);
2331		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2332			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2333				return (EINVAL);
2334			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2335			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2336			fin = (struct sockaddr_in *)&addrs[0];
2337			lin = (struct sockaddr_in *)&addrs[1];
2338			break;
2339		}
2340		error = sa6_embedscope(fin6, ip6_use_defzone);
2341		if (error)
2342			return (error);
2343		error = sa6_embedscope(lin6, ip6_use_defzone);
2344		if (error)
2345			return (error);
2346		break;
2347#endif
2348	case AF_INET:
2349		fin = (struct sockaddr_in *)&addrs[0];
2350		lin = (struct sockaddr_in *)&addrs[1];
2351		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2352		    lin->sin_len != sizeof(struct sockaddr_in))
2353			return (EINVAL);
2354		break;
2355	default:
2356		return (EINVAL);
2357	}
2358	INP_INFO_WLOCK(&tcbinfo);
2359	switch (addrs[0].ss_family) {
2360#ifdef INET6
2361	case AF_INET6:
2362		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2363		    &l6, lin6->sin6_port, 0, NULL);
2364		break;
2365#endif
2366	case AF_INET:
2367		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2368		    lin->sin_addr, lin->sin_port, 0, NULL);
2369		break;
2370	}
2371	if (inp != NULL) {
2372		INP_LOCK(inp);
2373		if (inp->inp_vflag & INP_TIMEWAIT) {
2374			/*
2375			 * XXXRW: There currently exists a state where an
2376			 * inpcb is present, but its timewait state has been
2377			 * discarded.  For now, don't allow dropping of this
2378			 * type of inpcb.
2379			 */
2380			tw = intotw(inp);
2381			if (tw != NULL)
2382				tcp_twclose(tw, 0);
2383		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2384			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2385			tp = intotcpcb(inp);
2386			tcp_drop(tp, ECONNABORTED);
2387		}
2388		INP_UNLOCK(inp);
2389	} else
2390		error = ESRCH;
2391	INP_INFO_WUNLOCK(&tcbinfo);
2392	return (error);
2393}
2394
2395SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2396    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2397    0, sysctl_drop, "", "Drop TCP connection");
2398