tcp_timewait.c revision 158009
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 158009 2006-04-25 11:17:35Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180static int	maxtcptw;
181SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxtcptw, CTLFLAG_RDTUN,
182    &maxtcptw, 0, "Maximum number of compressed TCP TIME_WAIT entries");
183
184/*
185 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
186 * 1024 exists only for debugging.  A good production default would be
187 * something like 6100.
188 */
189SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
190    "TCP inflight data limiting");
191
192static int	tcp_inflight_enable = 1;
193SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
194    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
195
196static int	tcp_inflight_debug = 0;
197SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
198    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
199
200static int	tcp_inflight_rttthresh;
201SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
202    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
203    "RTT threshold below which inflight will deactivate itself");
204
205static int	tcp_inflight_min = 6144;
206SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
207    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
208
209static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
210SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
211    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
212
213static int	tcp_inflight_stab = 20;
214SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
215    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
216
217uma_zone_t sack_hole_zone;
218
219static struct inpcb *tcp_notify(struct inpcb *, int);
220static void	tcp_isn_tick(void *);
221
222/*
223 * Target size of TCP PCB hash tables. Must be a power of two.
224 *
225 * Note that this can be overridden by the kernel environment
226 * variable net.inet.tcp.tcbhashsize
227 */
228#ifndef TCBHASHSIZE
229#define TCBHASHSIZE	512
230#endif
231
232/*
233 * XXX
234 * Callouts should be moved into struct tcp directly.  They are currently
235 * separate because the tcpcb structure is exported to userland for sysctl
236 * parsing purposes, which do not know about callouts.
237 */
238struct	tcpcb_mem {
239	struct	tcpcb tcb;
240	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
241	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
242};
243
244static uma_zone_t tcpcb_zone;
245static uma_zone_t tcptw_zone;
246struct callout isn_callout;
247static struct mtx isn_mtx;
248
249#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
250#define	ISN_LOCK()	mtx_lock(&isn_mtx)
251#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
252
253/*
254 * TCP initialization.
255 */
256static void
257tcp_zone_change(void *tag)
258{
259
260	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
261	uma_zone_set_max(tcpcb_zone, maxsockets);
262	uma_zone_set_max(tcptw_zone, maxsockets / 5);
263}
264
265void
266tcp_init(void)
267{
268	int hashsize = TCBHASHSIZE;
269
270	tcp_delacktime = TCPTV_DELACK;
271	tcp_keepinit = TCPTV_KEEP_INIT;
272	tcp_keepidle = TCPTV_KEEP_IDLE;
273	tcp_keepintvl = TCPTV_KEEPINTVL;
274	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
275	tcp_msl = TCPTV_MSL;
276	tcp_rexmit_min = TCPTV_MIN;
277	tcp_rexmit_slop = TCPTV_CPU_VAR;
278	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
279
280	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
281	LIST_INIT(&tcb);
282	tcbinfo.listhead = &tcb;
283	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
284	if (!powerof2(hashsize)) {
285		printf("WARNING: TCB hash size not a power of 2\n");
286		hashsize = 512; /* safe default */
287	}
288	tcp_tcbhashsize = hashsize;
289	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
290	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
291					&tcbinfo.porthashmask);
292	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
293	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
294	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
295#ifdef INET6
296#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
297#else /* INET6 */
298#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
299#endif /* INET6 */
300	if (max_protohdr < TCP_MINPROTOHDR)
301		max_protohdr = TCP_MINPROTOHDR;
302	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
303		panic("tcp_init");
304#undef TCP_MINPROTOHDR
305	/*
306	 * These have to be type stable for the benefit of the timers.
307	 */
308	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
309	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
310	uma_zone_set_max(tcpcb_zone, maxsockets);
311	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
312	if (maxtcptw == 0)
313		maxtcptw = maxsockets / 5;
314	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
315	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
316	uma_zone_set_max(tcptw_zone, maxtcptw);
317	tcp_timer_init();
318	syncache_init();
319	tcp_hc_init();
320	tcp_reass_init();
321	ISN_LOCK_INIT();
322	callout_init(&isn_callout, CALLOUT_MPSAFE);
323	tcp_isn_tick(NULL);
324	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
325		SHUTDOWN_PRI_DEFAULT);
326	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
327	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
328	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
329		EVENTHANDLER_PRI_ANY);
330}
331
332void
333tcp_fini(void *xtp)
334{
335
336	callout_stop(&isn_callout);
337}
338
339/*
340 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
341 * tcp_template used to store this data in mbufs, but we now recopy it out
342 * of the tcpcb each time to conserve mbufs.
343 */
344void
345tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
346{
347	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
348
349	INP_LOCK_ASSERT(inp);
350
351#ifdef INET6
352	if ((inp->inp_vflag & INP_IPV6) != 0) {
353		struct ip6_hdr *ip6;
354
355		ip6 = (struct ip6_hdr *)ip_ptr;
356		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
357			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
358		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
359			(IPV6_VERSION & IPV6_VERSION_MASK);
360		ip6->ip6_nxt = IPPROTO_TCP;
361		ip6->ip6_plen = sizeof(struct tcphdr);
362		ip6->ip6_src = inp->in6p_laddr;
363		ip6->ip6_dst = inp->in6p_faddr;
364	} else
365#endif
366	{
367		struct ip *ip;
368
369		ip = (struct ip *)ip_ptr;
370		ip->ip_v = IPVERSION;
371		ip->ip_hl = 5;
372		ip->ip_tos = inp->inp_ip_tos;
373		ip->ip_len = 0;
374		ip->ip_id = 0;
375		ip->ip_off = 0;
376		ip->ip_ttl = inp->inp_ip_ttl;
377		ip->ip_sum = 0;
378		ip->ip_p = IPPROTO_TCP;
379		ip->ip_src = inp->inp_laddr;
380		ip->ip_dst = inp->inp_faddr;
381	}
382	th->th_sport = inp->inp_lport;
383	th->th_dport = inp->inp_fport;
384	th->th_seq = 0;
385	th->th_ack = 0;
386	th->th_x2 = 0;
387	th->th_off = 5;
388	th->th_flags = 0;
389	th->th_win = 0;
390	th->th_urp = 0;
391	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
392}
393
394/*
395 * Create template to be used to send tcp packets on a connection.
396 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
397 * use for this function is in keepalives, which use tcp_respond.
398 */
399struct tcptemp *
400tcpip_maketemplate(struct inpcb *inp)
401{
402	struct mbuf *m;
403	struct tcptemp *n;
404
405	m = m_get(M_DONTWAIT, MT_DATA);
406	if (m == NULL)
407		return (0);
408	m->m_len = sizeof(struct tcptemp);
409	n = mtod(m, struct tcptemp *);
410
411	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
412	return (n);
413}
414
415/*
416 * Send a single message to the TCP at address specified by
417 * the given TCP/IP header.  If m == NULL, then we make a copy
418 * of the tcpiphdr at ti and send directly to the addressed host.
419 * This is used to force keep alive messages out using the TCP
420 * template for a connection.  If flags are given then we send
421 * a message back to the TCP which originated the * segment ti,
422 * and discard the mbuf containing it and any other attached mbufs.
423 *
424 * In any case the ack and sequence number of the transmitted
425 * segment are as specified by the parameters.
426 *
427 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
428 */
429void
430tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
431    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
432{
433	register int tlen;
434	int win = 0;
435	struct ip *ip;
436	struct tcphdr *nth;
437#ifdef INET6
438	struct ip6_hdr *ip6;
439	int isipv6;
440#endif /* INET6 */
441	int ipflags = 0;
442	struct inpcb *inp;
443
444	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
445
446#ifdef INET6
447	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
448	ip6 = ipgen;
449#endif /* INET6 */
450	ip = ipgen;
451
452	if (tp != NULL) {
453		inp = tp->t_inpcb;
454		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
455		INP_INFO_WLOCK_ASSERT(&tcbinfo);
456		INP_LOCK_ASSERT(inp);
457	} else
458		inp = NULL;
459
460	if (tp != NULL) {
461		if (!(flags & TH_RST)) {
462			win = sbspace(&inp->inp_socket->so_rcv);
463			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
464				win = (long)TCP_MAXWIN << tp->rcv_scale;
465		}
466	}
467	if (m == NULL) {
468		m = m_gethdr(M_DONTWAIT, MT_DATA);
469		if (m == NULL)
470			return;
471		tlen = 0;
472		m->m_data += max_linkhdr;
473#ifdef INET6
474		if (isipv6) {
475			bcopy((caddr_t)ip6, mtod(m, caddr_t),
476			      sizeof(struct ip6_hdr));
477			ip6 = mtod(m, struct ip6_hdr *);
478			nth = (struct tcphdr *)(ip6 + 1);
479		} else
480#endif /* INET6 */
481	      {
482		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
483		ip = mtod(m, struct ip *);
484		nth = (struct tcphdr *)(ip + 1);
485	      }
486		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
487		flags = TH_ACK;
488	} else {
489		m_freem(m->m_next);
490		m->m_next = NULL;
491		m->m_data = (caddr_t)ipgen;
492		/* m_len is set later */
493		tlen = 0;
494#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
495#ifdef INET6
496		if (isipv6) {
497			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
498			nth = (struct tcphdr *)(ip6 + 1);
499		} else
500#endif /* INET6 */
501	      {
502		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
503		nth = (struct tcphdr *)(ip + 1);
504	      }
505		if (th != nth) {
506			/*
507			 * this is usually a case when an extension header
508			 * exists between the IPv6 header and the
509			 * TCP header.
510			 */
511			nth->th_sport = th->th_sport;
512			nth->th_dport = th->th_dport;
513		}
514		xchg(nth->th_dport, nth->th_sport, n_short);
515#undef xchg
516	}
517#ifdef INET6
518	if (isipv6) {
519		ip6->ip6_flow = 0;
520		ip6->ip6_vfc = IPV6_VERSION;
521		ip6->ip6_nxt = IPPROTO_TCP;
522		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
523						tlen));
524		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
525	} else
526#endif
527	{
528		tlen += sizeof (struct tcpiphdr);
529		ip->ip_len = tlen;
530		ip->ip_ttl = ip_defttl;
531		if (path_mtu_discovery)
532			ip->ip_off |= IP_DF;
533	}
534	m->m_len = tlen;
535	m->m_pkthdr.len = tlen;
536	m->m_pkthdr.rcvif = NULL;
537#ifdef MAC
538	if (inp != NULL) {
539		/*
540		 * Packet is associated with a socket, so allow the
541		 * label of the response to reflect the socket label.
542		 */
543		INP_LOCK_ASSERT(inp);
544		mac_create_mbuf_from_inpcb(inp, m);
545	} else {
546		/*
547		 * Packet is not associated with a socket, so possibly
548		 * update the label in place.
549		 */
550		mac_reflect_mbuf_tcp(m);
551	}
552#endif
553	nth->th_seq = htonl(seq);
554	nth->th_ack = htonl(ack);
555	nth->th_x2 = 0;
556	nth->th_off = sizeof (struct tcphdr) >> 2;
557	nth->th_flags = flags;
558	if (tp != NULL)
559		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
560	else
561		nth->th_win = htons((u_short)win);
562	nth->th_urp = 0;
563#ifdef INET6
564	if (isipv6) {
565		nth->th_sum = 0;
566		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
567					sizeof(struct ip6_hdr),
568					tlen - sizeof(struct ip6_hdr));
569		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
570		    NULL, NULL);
571	} else
572#endif /* INET6 */
573	{
574		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
575		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
576		m->m_pkthdr.csum_flags = CSUM_TCP;
577		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
578	}
579#ifdef TCPDEBUG
580	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
581		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
582#endif
583#ifdef INET6
584	if (isipv6)
585		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
586	else
587#endif /* INET6 */
588	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
589}
590
591/*
592 * Create a new TCP control block, making an
593 * empty reassembly queue and hooking it to the argument
594 * protocol control block.  The `inp' parameter must have
595 * come from the zone allocator set up in tcp_init().
596 */
597struct tcpcb *
598tcp_newtcpcb(struct inpcb *inp)
599{
600	struct tcpcb_mem *tm;
601	struct tcpcb *tp;
602#ifdef INET6
603	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
604#endif /* INET6 */
605
606	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
607	if (tm == NULL)
608		return (NULL);
609	tp = &tm->tcb;
610	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
611	tp->t_maxseg = tp->t_maxopd =
612#ifdef INET6
613		isipv6 ? tcp_v6mssdflt :
614#endif /* INET6 */
615		tcp_mssdflt;
616
617	/* Set up our timeouts. */
618	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
619	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
620	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
621	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
622	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
623
624	if (tcp_do_rfc1323)
625		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
626	tp->sack_enable = tcp_do_sack;
627	TAILQ_INIT(&tp->snd_holes);
628	tp->t_inpcb = inp;	/* XXX */
629	/*
630	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
631	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
632	 * reasonable initial retransmit time.
633	 */
634	tp->t_srtt = TCPTV_SRTTBASE;
635	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
636	tp->t_rttmin = tcp_rexmit_min;
637	tp->t_rxtcur = TCPTV_RTOBASE;
638	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
639	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
640	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
641	tp->t_rcvtime = ticks;
642	tp->t_bw_rtttime = ticks;
643	/*
644	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
645	 * because the socket may be bound to an IPv6 wildcard address,
646	 * which may match an IPv4-mapped IPv6 address.
647	 */
648	inp->inp_ip_ttl = ip_defttl;
649	inp->inp_ppcb = tp;
650	return (tp);		/* XXX */
651}
652
653/*
654 * Drop a TCP connection, reporting
655 * the specified error.  If connection is synchronized,
656 * then send a RST to peer.
657 */
658struct tcpcb *
659tcp_drop(struct tcpcb *tp, int errno)
660{
661	struct socket *so = tp->t_inpcb->inp_socket;
662
663	INP_INFO_WLOCK_ASSERT(&tcbinfo);
664	INP_LOCK_ASSERT(tp->t_inpcb);
665
666	if (TCPS_HAVERCVDSYN(tp->t_state)) {
667		tp->t_state = TCPS_CLOSED;
668		(void) tcp_output(tp);
669		tcpstat.tcps_drops++;
670	} else
671		tcpstat.tcps_conndrops++;
672	if (errno == ETIMEDOUT && tp->t_softerror)
673		errno = tp->t_softerror;
674	so->so_error = errno;
675	return (tcp_close(tp));
676}
677
678void
679tcp_discardcb(struct tcpcb *tp)
680{
681	struct tseg_qent *q;
682	struct inpcb *inp = tp->t_inpcb;
683	struct socket *so = inp->inp_socket;
684#ifdef INET6
685	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
686#endif /* INET6 */
687
688	/*
689	 * XXXRW: This is all very well and good, but actually, we might be
690	 * discarding the tcpcb after the socket is gone, so we can't do
691	 * this:
692	KASSERT(so != NULL, ("tcp_discardcb: so == NULL"));
693	 */
694	INP_LOCK_ASSERT(inp);
695
696	/*
697	 * Make sure that all of our timers are stopped before we
698	 * delete the PCB.
699	 */
700	callout_stop(tp->tt_rexmt);
701	callout_stop(tp->tt_persist);
702	callout_stop(tp->tt_keep);
703	callout_stop(tp->tt_2msl);
704	callout_stop(tp->tt_delack);
705
706	/*
707	 * If we got enough samples through the srtt filter,
708	 * save the rtt and rttvar in the routing entry.
709	 * 'Enough' is arbitrarily defined as 4 rtt samples.
710	 * 4 samples is enough for the srtt filter to converge
711	 * to within enough % of the correct value; fewer samples
712	 * and we could save a bogus rtt. The danger is not high
713	 * as tcp quickly recovers from everything.
714	 * XXX: Works very well but needs some more statistics!
715	 */
716	if (tp->t_rttupdated >= 4) {
717		struct hc_metrics_lite metrics;
718		u_long ssthresh;
719
720		bzero(&metrics, sizeof(metrics));
721		/*
722		 * Update the ssthresh always when the conditions below
723		 * are satisfied. This gives us better new start value
724		 * for the congestion avoidance for new connections.
725		 * ssthresh is only set if packet loss occured on a session.
726		 */
727		ssthresh = tp->snd_ssthresh;
728		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
729			/*
730			 * convert the limit from user data bytes to
731			 * packets then to packet data bytes.
732			 */
733			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
734			if (ssthresh < 2)
735				ssthresh = 2;
736			ssthresh *= (u_long)(tp->t_maxseg +
737#ifdef INET6
738				      (isipv6 ? sizeof (struct ip6_hdr) +
739					       sizeof (struct tcphdr) :
740#endif
741				       sizeof (struct tcpiphdr)
742#ifdef INET6
743				       )
744#endif
745				      );
746		} else
747			ssthresh = 0;
748		metrics.rmx_ssthresh = ssthresh;
749
750		metrics.rmx_rtt = tp->t_srtt;
751		metrics.rmx_rttvar = tp->t_rttvar;
752		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
753		metrics.rmx_bandwidth = tp->snd_bandwidth;
754		metrics.rmx_cwnd = tp->snd_cwnd;
755		metrics.rmx_sendpipe = 0;
756		metrics.rmx_recvpipe = 0;
757
758		tcp_hc_update(&inp->inp_inc, &metrics);
759	}
760
761	/* free the reassembly queue, if any */
762	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
763		LIST_REMOVE(q, tqe_q);
764		m_freem(q->tqe_m);
765		uma_zfree(tcp_reass_zone, q);
766		tp->t_segqlen--;
767		tcp_reass_qsize--;
768	}
769	tcp_free_sackholes(tp);
770	inp->inp_ppcb = NULL;
771	tp->t_inpcb = NULL;
772	uma_zfree(tcpcb_zone, tp);
773
774	/*
775	 * XXXRW: This seems a bit unclean.
776	 */
777	if (so != NULL)
778		soisdisconnected(so);
779}
780
781/*
782 * Attempt to close a TCP control block, marking it as dropped, and freeing
783 * the socket if we hold the only reference.
784 */
785struct tcpcb *
786tcp_close(struct tcpcb *tp)
787{
788	struct inpcb *inp = tp->t_inpcb;
789	struct socket *so;
790
791	INP_INFO_WLOCK_ASSERT(&tcbinfo);
792	INP_LOCK_ASSERT(inp);
793
794	in_pcbdrop(inp);
795	tcpstat.tcps_closed++;
796	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
797	so = inp->inp_socket;
798	soisdisconnected(so);
799	if (inp->inp_vflag & INP_SOCKREF) {
800		KASSERT(so->so_state & SS_PROTOREF,
801		    ("tcp_close: !SS_PROTOREF"));
802		inp->inp_vflag &= ~INP_SOCKREF;
803		tcp_discardcb(tp);
804#ifdef INET6
805		if (inp->inp_vflag & INP_IPV6PROTO) {
806			in6_pcbdetach(inp);
807			in6_pcbfree(inp);
808		} else {
809#endif
810			in_pcbdetach(inp);
811			in_pcbfree(inp);
812#ifdef INET6
813		}
814#endif
815		ACCEPT_LOCK();
816		SOCK_LOCK(so);
817		so->so_state &= ~SS_PROTOREF;
818		sofree(so);
819		return (NULL);
820	}
821	return (tp);
822}
823
824void
825tcp_drain(void)
826{
827
828	if (do_tcpdrain) {
829		struct inpcb *inpb;
830		struct tcpcb *tcpb;
831		struct tseg_qent *te;
832
833	/*
834	 * Walk the tcpbs, if existing, and flush the reassembly queue,
835	 * if there is one...
836	 * XXX: The "Net/3" implementation doesn't imply that the TCP
837	 *      reassembly queue should be flushed, but in a situation
838	 *	where we're really low on mbufs, this is potentially
839	 *	usefull.
840	 */
841		INP_INFO_RLOCK(&tcbinfo);
842		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
843			if (inpb->inp_vflag & INP_TIMEWAIT)
844				continue;
845			INP_LOCK(inpb);
846			if ((tcpb = intotcpcb(inpb)) != NULL) {
847				while ((te = LIST_FIRST(&tcpb->t_segq))
848			            != NULL) {
849					LIST_REMOVE(te, tqe_q);
850					m_freem(te->tqe_m);
851					uma_zfree(tcp_reass_zone, te);
852					tcpb->t_segqlen--;
853					tcp_reass_qsize--;
854				}
855				tcp_clean_sackreport(tcpb);
856			}
857			INP_UNLOCK(inpb);
858		}
859		INP_INFO_RUNLOCK(&tcbinfo);
860	}
861}
862
863/*
864 * Notify a tcp user of an asynchronous error;
865 * store error as soft error, but wake up user
866 * (for now, won't do anything until can select for soft error).
867 *
868 * Do not wake up user since there currently is no mechanism for
869 * reporting soft errors (yet - a kqueue filter may be added).
870 */
871static struct inpcb *
872tcp_notify(struct inpcb *inp, int error)
873{
874	struct tcpcb *tp;
875
876	INP_INFO_WLOCK_ASSERT(&tcbinfo);
877	INP_LOCK_ASSERT(inp);
878
879	if ((inp->inp_vflag & INP_TIMEWAIT) ||
880	    (inp->inp_vflag & INP_DROPPED))
881		return (inp);
882
883	tp = intotcpcb(inp);
884	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
885
886	/*
887	 * Ignore some errors if we are hooked up.
888	 * If connection hasn't completed, has retransmitted several times,
889	 * and receives a second error, give up now.  This is better
890	 * than waiting a long time to establish a connection that
891	 * can never complete.
892	 */
893	if (tp->t_state == TCPS_ESTABLISHED &&
894	    (error == EHOSTUNREACH || error == ENETUNREACH ||
895	     error == EHOSTDOWN)) {
896		return (inp);
897	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
898	    tp->t_softerror) {
899		tp = tcp_drop(tp, error);
900		if (tp != NULL)
901			return (inp);
902		else
903			return (NULL);
904	} else {
905		tp->t_softerror = error;
906		return (inp);
907	}
908#if 0
909	wakeup( &so->so_timeo);
910	sorwakeup(so);
911	sowwakeup(so);
912#endif
913}
914
915static int
916tcp_pcblist(SYSCTL_HANDLER_ARGS)
917{
918	int error, i, n;
919	struct inpcb *inp, **inp_list;
920	inp_gen_t gencnt;
921	struct xinpgen xig;
922
923	/*
924	 * The process of preparing the TCB list is too time-consuming and
925	 * resource-intensive to repeat twice on every request.
926	 */
927	if (req->oldptr == NULL) {
928		n = tcbinfo.ipi_count;
929		req->oldidx = 2 * (sizeof xig)
930			+ (n + n/8) * sizeof(struct xtcpcb);
931		return (0);
932	}
933
934	if (req->newptr != NULL)
935		return (EPERM);
936
937	/*
938	 * OK, now we're committed to doing something.
939	 */
940	INP_INFO_RLOCK(&tcbinfo);
941	gencnt = tcbinfo.ipi_gencnt;
942	n = tcbinfo.ipi_count;
943	INP_INFO_RUNLOCK(&tcbinfo);
944
945	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
946		+ n * sizeof(struct xtcpcb));
947	if (error != 0)
948		return (error);
949
950	xig.xig_len = sizeof xig;
951	xig.xig_count = n;
952	xig.xig_gen = gencnt;
953	xig.xig_sogen = so_gencnt;
954	error = SYSCTL_OUT(req, &xig, sizeof xig);
955	if (error)
956		return (error);
957
958	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
959	if (inp_list == NULL)
960		return (ENOMEM);
961
962	INP_INFO_RLOCK(&tcbinfo);
963	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
964	     inp = LIST_NEXT(inp, inp_list)) {
965		INP_LOCK(inp);
966		if (inp->inp_gencnt <= gencnt) {
967			/*
968			 * XXX: This use of cr_cansee(), introduced with
969			 * TCP state changes, is not quite right, but for
970			 * now, better than nothing.
971			 */
972			if (inp->inp_vflag & INP_TIMEWAIT) {
973				if (intotw(inp) != NULL)
974					error = cr_cansee(req->td->td_ucred,
975					    intotw(inp)->tw_cred);
976				else
977					error = EINVAL;	/* Skip this inp. */
978			} else
979				error = cr_canseesocket(req->td->td_ucred,
980				    inp->inp_socket);
981			if (error == 0)
982				inp_list[i++] = inp;
983		}
984		INP_UNLOCK(inp);
985	}
986	INP_INFO_RUNLOCK(&tcbinfo);
987	n = i;
988
989	error = 0;
990	for (i = 0; i < n; i++) {
991		inp = inp_list[i];
992		if (inp->inp_gencnt <= gencnt) {
993			struct xtcpcb xt;
994			void *inp_ppcb;
995
996			bzero(&xt, sizeof(xt));
997			xt.xt_len = sizeof xt;
998			/* XXX should avoid extra copy */
999			bcopy(inp, &xt.xt_inp, sizeof *inp);
1000			inp_ppcb = inp->inp_ppcb;
1001			if (inp_ppcb == NULL)
1002				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1003			else if (inp->inp_vflag & INP_TIMEWAIT) {
1004				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1005				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1006			} else
1007				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1008			if (inp->inp_socket != NULL)
1009				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1010			else {
1011				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1012				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1013			}
1014			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1015			error = SYSCTL_OUT(req, &xt, sizeof xt);
1016		}
1017	}
1018	if (!error) {
1019		/*
1020		 * Give the user an updated idea of our state.
1021		 * If the generation differs from what we told
1022		 * her before, she knows that something happened
1023		 * while we were processing this request, and it
1024		 * might be necessary to retry.
1025		 */
1026		INP_INFO_RLOCK(&tcbinfo);
1027		xig.xig_gen = tcbinfo.ipi_gencnt;
1028		xig.xig_sogen = so_gencnt;
1029		xig.xig_count = tcbinfo.ipi_count;
1030		INP_INFO_RUNLOCK(&tcbinfo);
1031		error = SYSCTL_OUT(req, &xig, sizeof xig);
1032	}
1033	free(inp_list, M_TEMP);
1034	return (error);
1035}
1036
1037SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1038	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1039
1040static int
1041tcp_getcred(SYSCTL_HANDLER_ARGS)
1042{
1043	struct xucred xuc;
1044	struct sockaddr_in addrs[2];
1045	struct inpcb *inp;
1046	int error;
1047
1048	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1049	if (error)
1050		return (error);
1051	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1052	if (error)
1053		return (error);
1054	INP_INFO_RLOCK(&tcbinfo);
1055	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1056	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1057	if (inp == NULL) {
1058		error = ENOENT;
1059		goto outunlocked;
1060	}
1061	INP_LOCK(inp);
1062	if (inp->inp_socket == NULL) {
1063		error = ENOENT;
1064		goto out;
1065	}
1066	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1067	if (error)
1068		goto out;
1069	cru2x(inp->inp_socket->so_cred, &xuc);
1070out:
1071	INP_UNLOCK(inp);
1072outunlocked:
1073	INP_INFO_RUNLOCK(&tcbinfo);
1074	if (error == 0)
1075		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1076	return (error);
1077}
1078
1079SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1080    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1081    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1082
1083#ifdef INET6
1084static int
1085tcp6_getcred(SYSCTL_HANDLER_ARGS)
1086{
1087	struct xucred xuc;
1088	struct sockaddr_in6 addrs[2];
1089	struct inpcb *inp;
1090	int error, mapped = 0;
1091
1092	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1093	if (error)
1094		return (error);
1095	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1096	if (error)
1097		return (error);
1098	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1099	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1100		return (error);
1101	}
1102	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1103		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1104			mapped = 1;
1105		else
1106			return (EINVAL);
1107	}
1108
1109	INP_INFO_RLOCK(&tcbinfo);
1110	if (mapped == 1)
1111		inp = in_pcblookup_hash(&tcbinfo,
1112			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1113			addrs[1].sin6_port,
1114			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1115			addrs[0].sin6_port,
1116			0, NULL);
1117	else
1118		inp = in6_pcblookup_hash(&tcbinfo,
1119			&addrs[1].sin6_addr, addrs[1].sin6_port,
1120			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1121	if (inp == NULL) {
1122		error = ENOENT;
1123		goto outunlocked;
1124	}
1125	INP_LOCK(inp);
1126	if (inp->inp_socket == NULL) {
1127		error = ENOENT;
1128		goto out;
1129	}
1130	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1131	if (error)
1132		goto out;
1133	cru2x(inp->inp_socket->so_cred, &xuc);
1134out:
1135	INP_UNLOCK(inp);
1136outunlocked:
1137	INP_INFO_RUNLOCK(&tcbinfo);
1138	if (error == 0)
1139		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1140	return (error);
1141}
1142
1143SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1144    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1145    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1146#endif
1147
1148
1149void
1150tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1151{
1152	struct ip *ip = vip;
1153	struct tcphdr *th;
1154	struct in_addr faddr;
1155	struct inpcb *inp;
1156	struct tcpcb *tp;
1157	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1158	struct icmp *icp;
1159	struct in_conninfo inc;
1160	tcp_seq icmp_tcp_seq;
1161	int mtu;
1162
1163	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1164	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1165		return;
1166
1167	if (cmd == PRC_MSGSIZE)
1168		notify = tcp_mtudisc;
1169	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1170		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1171		notify = tcp_drop_syn_sent;
1172	/*
1173	 * Redirects don't need to be handled up here.
1174	 */
1175	else if (PRC_IS_REDIRECT(cmd))
1176		return;
1177	/*
1178	 * Source quench is depreciated.
1179	 */
1180	else if (cmd == PRC_QUENCH)
1181		return;
1182	/*
1183	 * Hostdead is ugly because it goes linearly through all PCBs.
1184	 * XXX: We never get this from ICMP, otherwise it makes an
1185	 * excellent DoS attack on machines with many connections.
1186	 */
1187	else if (cmd == PRC_HOSTDEAD)
1188		ip = NULL;
1189	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1190		return;
1191	if (ip != NULL) {
1192		icp = (struct icmp *)((caddr_t)ip
1193				      - offsetof(struct icmp, icmp_ip));
1194		th = (struct tcphdr *)((caddr_t)ip
1195				       + (ip->ip_hl << 2));
1196		INP_INFO_WLOCK(&tcbinfo);
1197		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1198		    ip->ip_src, th->th_sport, 0, NULL);
1199		if (inp != NULL)  {
1200			INP_LOCK(inp);
1201			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1202			    !(inp->inp_vflag & INP_DROPPED) &&
1203			    !(inp->inp_socket == NULL)) {
1204				icmp_tcp_seq = htonl(th->th_seq);
1205				tp = intotcpcb(inp);
1206				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1207				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1208					if (cmd == PRC_MSGSIZE) {
1209					    /*
1210					     * MTU discovery:
1211					     * If we got a needfrag set the MTU
1212					     * in the route to the suggested new
1213					     * value (if given) and then notify.
1214					     */
1215					    bzero(&inc, sizeof(inc));
1216					    inc.inc_flags = 0;	/* IPv4 */
1217					    inc.inc_faddr = faddr;
1218
1219					    mtu = ntohs(icp->icmp_nextmtu);
1220					    /*
1221					     * If no alternative MTU was
1222					     * proposed, try the next smaller
1223					     * one.  ip->ip_len has already
1224					     * been swapped in icmp_input().
1225					     */
1226					    if (!mtu)
1227						mtu = ip_next_mtu(ip->ip_len,
1228						 1);
1229					    if (mtu < max(296, (tcp_minmss)
1230						 + sizeof(struct tcpiphdr)))
1231						mtu = 0;
1232					    if (!mtu)
1233						mtu = tcp_mssdflt
1234						 + sizeof(struct tcpiphdr);
1235					    /*
1236					     * Only cache the the MTU if it
1237					     * is smaller than the interface
1238					     * or route MTU.  tcp_mtudisc()
1239					     * will do right thing by itself.
1240					     */
1241					    if (mtu <= tcp_maxmtu(&inc))
1242						tcp_hc_updatemtu(&inc, mtu);
1243					}
1244
1245					inp = (*notify)(inp, inetctlerrmap[cmd]);
1246				}
1247			}
1248			if (inp != NULL)
1249				INP_UNLOCK(inp);
1250		} else {
1251			inc.inc_fport = th->th_dport;
1252			inc.inc_lport = th->th_sport;
1253			inc.inc_faddr = faddr;
1254			inc.inc_laddr = ip->ip_src;
1255#ifdef INET6
1256			inc.inc_isipv6 = 0;
1257#endif
1258			syncache_unreach(&inc, th);
1259		}
1260		INP_INFO_WUNLOCK(&tcbinfo);
1261	} else
1262		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1263}
1264
1265#ifdef INET6
1266void
1267tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1268{
1269	struct tcphdr th;
1270	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1271	struct ip6_hdr *ip6;
1272	struct mbuf *m;
1273	struct ip6ctlparam *ip6cp = NULL;
1274	const struct sockaddr_in6 *sa6_src = NULL;
1275	int off;
1276	struct tcp_portonly {
1277		u_int16_t th_sport;
1278		u_int16_t th_dport;
1279	} *thp;
1280
1281	if (sa->sa_family != AF_INET6 ||
1282	    sa->sa_len != sizeof(struct sockaddr_in6))
1283		return;
1284
1285	if (cmd == PRC_MSGSIZE)
1286		notify = tcp_mtudisc;
1287	else if (!PRC_IS_REDIRECT(cmd) &&
1288		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1289		return;
1290	/* Source quench is depreciated. */
1291	else if (cmd == PRC_QUENCH)
1292		return;
1293
1294	/* if the parameter is from icmp6, decode it. */
1295	if (d != NULL) {
1296		ip6cp = (struct ip6ctlparam *)d;
1297		m = ip6cp->ip6c_m;
1298		ip6 = ip6cp->ip6c_ip6;
1299		off = ip6cp->ip6c_off;
1300		sa6_src = ip6cp->ip6c_src;
1301	} else {
1302		m = NULL;
1303		ip6 = NULL;
1304		off = 0;	/* fool gcc */
1305		sa6_src = &sa6_any;
1306	}
1307
1308	if (ip6 != NULL) {
1309		struct in_conninfo inc;
1310		/*
1311		 * XXX: We assume that when IPV6 is non NULL,
1312		 * M and OFF are valid.
1313		 */
1314
1315		/* check if we can safely examine src and dst ports */
1316		if (m->m_pkthdr.len < off + sizeof(*thp))
1317			return;
1318
1319		bzero(&th, sizeof(th));
1320		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1321
1322		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1323		    (struct sockaddr *)ip6cp->ip6c_src,
1324		    th.th_sport, cmd, NULL, notify);
1325
1326		inc.inc_fport = th.th_dport;
1327		inc.inc_lport = th.th_sport;
1328		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1329		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1330		inc.inc_isipv6 = 1;
1331		INP_INFO_WLOCK(&tcbinfo);
1332		syncache_unreach(&inc, &th);
1333		INP_INFO_WUNLOCK(&tcbinfo);
1334	} else
1335		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1336			      0, cmd, NULL, notify);
1337}
1338#endif /* INET6 */
1339
1340
1341/*
1342 * Following is where TCP initial sequence number generation occurs.
1343 *
1344 * There are two places where we must use initial sequence numbers:
1345 * 1.  In SYN-ACK packets.
1346 * 2.  In SYN packets.
1347 *
1348 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1349 * tcp_syncache.c for details.
1350 *
1351 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1352 * depends on this property.  In addition, these ISNs should be
1353 * unguessable so as to prevent connection hijacking.  To satisfy
1354 * the requirements of this situation, the algorithm outlined in
1355 * RFC 1948 is used, with only small modifications.
1356 *
1357 * Implementation details:
1358 *
1359 * Time is based off the system timer, and is corrected so that it
1360 * increases by one megabyte per second.  This allows for proper
1361 * recycling on high speed LANs while still leaving over an hour
1362 * before rollover.
1363 *
1364 * As reading the *exact* system time is too expensive to be done
1365 * whenever setting up a TCP connection, we increment the time
1366 * offset in two ways.  First, a small random positive increment
1367 * is added to isn_offset for each connection that is set up.
1368 * Second, the function tcp_isn_tick fires once per clock tick
1369 * and increments isn_offset as necessary so that sequence numbers
1370 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1371 * random positive increments serve only to ensure that the same
1372 * exact sequence number is never sent out twice (as could otherwise
1373 * happen when a port is recycled in less than the system tick
1374 * interval.)
1375 *
1376 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1377 * between seeding of isn_secret.  This is normally set to zero,
1378 * as reseeding should not be necessary.
1379 *
1380 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1381 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1382 * general, this means holding an exclusive (write) lock.
1383 */
1384
1385#define ISN_BYTES_PER_SECOND 1048576
1386#define ISN_STATIC_INCREMENT 4096
1387#define ISN_RANDOM_INCREMENT (4096 - 1)
1388
1389static u_char isn_secret[32];
1390static int isn_last_reseed;
1391static u_int32_t isn_offset, isn_offset_old;
1392static MD5_CTX isn_ctx;
1393
1394tcp_seq
1395tcp_new_isn(struct tcpcb *tp)
1396{
1397	u_int32_t md5_buffer[4];
1398	tcp_seq new_isn;
1399
1400	INP_LOCK_ASSERT(tp->t_inpcb);
1401
1402	ISN_LOCK();
1403	/* Seed if this is the first use, reseed if requested. */
1404	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1405	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1406		< (u_int)ticks))) {
1407		read_random(&isn_secret, sizeof(isn_secret));
1408		isn_last_reseed = ticks;
1409	}
1410
1411	/* Compute the md5 hash and return the ISN. */
1412	MD5Init(&isn_ctx);
1413	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1414	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1415#ifdef INET6
1416	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1417		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1418			  sizeof(struct in6_addr));
1419		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1420			  sizeof(struct in6_addr));
1421	} else
1422#endif
1423	{
1424		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1425			  sizeof(struct in_addr));
1426		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1427			  sizeof(struct in_addr));
1428	}
1429	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1430	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1431	new_isn = (tcp_seq) md5_buffer[0];
1432	isn_offset += ISN_STATIC_INCREMENT +
1433		(arc4random() & ISN_RANDOM_INCREMENT);
1434	new_isn += isn_offset;
1435	ISN_UNLOCK();
1436	return (new_isn);
1437}
1438
1439/*
1440 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1441 * to keep time flowing at a relatively constant rate.  If the random
1442 * increments have already pushed us past the projected offset, do nothing.
1443 */
1444static void
1445tcp_isn_tick(void *xtp)
1446{
1447	u_int32_t projected_offset;
1448
1449	ISN_LOCK();
1450	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1451
1452	if (projected_offset > isn_offset)
1453		isn_offset = projected_offset;
1454
1455	isn_offset_old = isn_offset;
1456	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1457	ISN_UNLOCK();
1458}
1459
1460/*
1461 * When a specific ICMP unreachable message is received and the
1462 * connection state is SYN-SENT, drop the connection.  This behavior
1463 * is controlled by the icmp_may_rst sysctl.
1464 */
1465struct inpcb *
1466tcp_drop_syn_sent(struct inpcb *inp, int errno)
1467{
1468	struct tcpcb *tp;
1469
1470	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1471	INP_LOCK_ASSERT(inp);
1472
1473	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1474	    (inp->inp_vflag & INP_DROPPED))
1475		return (inp);
1476
1477	tp = intotcpcb(inp);
1478	if (tp->t_state != TCPS_SYN_SENT)
1479		return (inp);
1480
1481	tp = tcp_drop(tp, errno);
1482	if (tp != NULL)
1483		return (inp);
1484	else
1485		return (NULL);
1486}
1487
1488/*
1489 * When `need fragmentation' ICMP is received, update our idea of the MSS
1490 * based on the new value in the route.  Also nudge TCP to send something,
1491 * since we know the packet we just sent was dropped.
1492 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1493 */
1494struct inpcb *
1495tcp_mtudisc(struct inpcb *inp, int errno)
1496{
1497	struct tcpcb *tp;
1498	struct socket *so = inp->inp_socket;
1499	u_int maxmtu;
1500	u_int romtu;
1501	int mss;
1502#ifdef INET6
1503	int isipv6;
1504#endif /* INET6 */
1505
1506	INP_LOCK_ASSERT(inp);
1507	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1508	    (inp->inp_vflag & INP_DROPPED))
1509		return (inp);
1510
1511	tp = intotcpcb(inp);
1512	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1513
1514#ifdef INET6
1515	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1516#endif
1517	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1518	romtu =
1519#ifdef INET6
1520	    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1521#endif /* INET6 */
1522	    tcp_maxmtu(&inp->inp_inc);
1523	if (!maxmtu)
1524		maxmtu = romtu;
1525	else
1526		maxmtu = min(maxmtu, romtu);
1527	if (!maxmtu) {
1528		tp->t_maxopd = tp->t_maxseg =
1529#ifdef INET6
1530			isipv6 ? tcp_v6mssdflt :
1531#endif /* INET6 */
1532			tcp_mssdflt;
1533		return (inp);
1534	}
1535	mss = maxmtu -
1536#ifdef INET6
1537		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1538#endif /* INET6 */
1539		 sizeof(struct tcpiphdr)
1540#ifdef INET6
1541		 )
1542#endif /* INET6 */
1543		;
1544
1545	/*
1546	 * XXX - The above conditional probably violates the TCP
1547	 * spec.  The problem is that, since we don't know the
1548	 * other end's MSS, we are supposed to use a conservative
1549	 * default.  But, if we do that, then MTU discovery will
1550	 * never actually take place, because the conservative
1551	 * default is much less than the MTUs typically seen
1552	 * on the Internet today.  For the moment, we'll sweep
1553	 * this under the carpet.
1554	 *
1555	 * The conservative default might not actually be a problem
1556	 * if the only case this occurs is when sending an initial
1557	 * SYN with options and data to a host we've never talked
1558	 * to before.  Then, they will reply with an MSS value which
1559	 * will get recorded and the new parameters should get
1560	 * recomputed.  For Further Study.
1561	 */
1562	if (tp->t_maxopd <= mss)
1563		return (inp);
1564	tp->t_maxopd = mss;
1565
1566	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1567	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1568		mss -= TCPOLEN_TSTAMP_APPA;
1569#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1570	if (mss > MCLBYTES)
1571		mss &= ~(MCLBYTES-1);
1572#else
1573	if (mss > MCLBYTES)
1574		mss = mss / MCLBYTES * MCLBYTES;
1575#endif
1576	if (so->so_snd.sb_hiwat < mss)
1577		mss = so->so_snd.sb_hiwat;
1578
1579	tp->t_maxseg = mss;
1580
1581	tcpstat.tcps_mturesent++;
1582	tp->t_rtttime = 0;
1583	tp->snd_nxt = tp->snd_una;
1584	tcp_output(tp);
1585	return (inp);
1586}
1587
1588/*
1589 * Look-up the routing entry to the peer of this inpcb.  If no route
1590 * is found and it cannot be allocated, then return NULL.  This routine
1591 * is called by TCP routines that access the rmx structure and by tcp_mss
1592 * to get the interface MTU.
1593 */
1594u_long
1595tcp_maxmtu(struct in_conninfo *inc)
1596{
1597	struct route sro;
1598	struct sockaddr_in *dst;
1599	struct ifnet *ifp;
1600	u_long maxmtu = 0;
1601
1602	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1603
1604	bzero(&sro, sizeof(sro));
1605	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1606	        dst = (struct sockaddr_in *)&sro.ro_dst;
1607		dst->sin_family = AF_INET;
1608		dst->sin_len = sizeof(*dst);
1609		dst->sin_addr = inc->inc_faddr;
1610		rtalloc_ign(&sro, RTF_CLONING);
1611	}
1612	if (sro.ro_rt != NULL) {
1613		ifp = sro.ro_rt->rt_ifp;
1614		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1615			maxmtu = ifp->if_mtu;
1616		else
1617			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1618		RTFREE(sro.ro_rt);
1619	}
1620	return (maxmtu);
1621}
1622
1623#ifdef INET6
1624u_long
1625tcp_maxmtu6(struct in_conninfo *inc)
1626{
1627	struct route_in6 sro6;
1628	struct ifnet *ifp;
1629	u_long maxmtu = 0;
1630
1631	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1632
1633	bzero(&sro6, sizeof(sro6));
1634	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1635		sro6.ro_dst.sin6_family = AF_INET6;
1636		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1637		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1638		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1639	}
1640	if (sro6.ro_rt != NULL) {
1641		ifp = sro6.ro_rt->rt_ifp;
1642		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1643			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1644		else
1645			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1646				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1647		RTFREE(sro6.ro_rt);
1648	}
1649
1650	return (maxmtu);
1651}
1652#endif /* INET6 */
1653
1654#ifdef IPSEC
1655/* compute ESP/AH header size for TCP, including outer IP header. */
1656size_t
1657ipsec_hdrsiz_tcp(struct tcpcb *tp)
1658{
1659	struct inpcb *inp;
1660	struct mbuf *m;
1661	size_t hdrsiz;
1662	struct ip *ip;
1663#ifdef INET6
1664	struct ip6_hdr *ip6;
1665#endif
1666	struct tcphdr *th;
1667
1668	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1669		return (0);
1670	MGETHDR(m, M_DONTWAIT, MT_DATA);
1671	if (!m)
1672		return (0);
1673
1674#ifdef INET6
1675	if ((inp->inp_vflag & INP_IPV6) != 0) {
1676		ip6 = mtod(m, struct ip6_hdr *);
1677		th = (struct tcphdr *)(ip6 + 1);
1678		m->m_pkthdr.len = m->m_len =
1679			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1680		tcpip_fillheaders(inp, ip6, th);
1681		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1682	} else
1683#endif /* INET6 */
1684	{
1685		ip = mtod(m, struct ip *);
1686		th = (struct tcphdr *)(ip + 1);
1687		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1688		tcpip_fillheaders(inp, ip, th);
1689		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1690	}
1691
1692	m_free(m);
1693	return (hdrsiz);
1694}
1695#endif /*IPSEC*/
1696
1697/*
1698 * Move a TCP connection into TIME_WAIT state.
1699 *    tcbinfo is locked.
1700 *    inp is locked, and is unlocked before returning.
1701 */
1702void
1703tcp_twstart(struct tcpcb *tp)
1704{
1705	struct tcptw *tw;
1706	struct inpcb *inp;
1707	int tw_time, acknow;
1708	struct socket *so;
1709
1710	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1711	INP_LOCK_ASSERT(tp->t_inpcb);
1712
1713	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1714	if (tw == NULL) {
1715		tw = tcp_timer_2msl_tw(1);
1716		if (tw == NULL) {
1717			tp = tcp_close(tp);
1718			if (tp != NULL)
1719				INP_UNLOCK(tp->t_inpcb);
1720			return;
1721		}
1722	}
1723	inp = tp->t_inpcb;
1724	tw->tw_inpcb = inp;
1725
1726	/*
1727	 * Recover last window size sent.
1728	 */
1729	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1730
1731	/*
1732	 * Set t_recent if timestamps are used on the connection.
1733	 */
1734	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1735	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1736		tw->t_recent = tp->ts_recent;
1737	else
1738		tw->t_recent = 0;
1739
1740	tw->snd_nxt = tp->snd_nxt;
1741	tw->rcv_nxt = tp->rcv_nxt;
1742	tw->iss     = tp->iss;
1743	tw->irs     = tp->irs;
1744	tw->t_starttime = tp->t_starttime;
1745	tw->tw_time = 0;
1746
1747/* XXX
1748 * If this code will
1749 * be used for fin-wait-2 state also, then we may need
1750 * a ts_recent from the last segment.
1751 */
1752	tw_time = 2 * tcp_msl;
1753	acknow = tp->t_flags & TF_ACKNOW;
1754
1755	/*
1756	 * First, discard tcpcb state, which includes stopping its timers and
1757	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1758	 * that work is now done in the caller.
1759	 */
1760	tcp_discardcb(tp);
1761	so = inp->inp_socket;
1762	SOCK_LOCK(so);
1763	tw->tw_cred = crhold(so->so_cred);
1764	tw->tw_so_options = so->so_options;
1765	SOCK_UNLOCK(so);
1766	if (acknow)
1767		tcp_twrespond(tw, TH_ACK);
1768	inp->inp_ppcb = tw;
1769	inp->inp_vflag |= INP_TIMEWAIT;
1770	tcp_timer_2msl_reset(tw, tw_time);
1771
1772	/*
1773	 * If the inpcb owns the sole reference to the socket, then we can
1774	 * detach and free the socket as it is not needed in time wait.
1775	 */
1776	if (inp->inp_vflag & INP_SOCKREF) {
1777		KASSERT(so->so_state & SS_PROTOREF,
1778		    ("tcp_twstart: !SS_PROTOREF"));
1779		inp->inp_vflag &= ~INP_SOCKREF;
1780#ifdef INET6
1781		if (inp->inp_vflag & INP_IPV6PROTO)
1782			in6_pcbdetach(inp);
1783		else
1784#endif
1785			in_pcbdetach(inp);
1786		INP_UNLOCK(inp);
1787		ACCEPT_LOCK();
1788		SOCK_LOCK(so);
1789		so->so_state &= ~SS_PROTOREF;
1790		sofree(so);
1791	} else
1792		INP_UNLOCK(inp);
1793}
1794
1795/*
1796 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1797 * the actual rate is slightly higher due to the addition of
1798 * random positive increments.
1799 *
1800 * Most other new OSes use semi-randomized ISN values, so we
1801 * do not need to worry about them.
1802 */
1803#define MS_ISN_BYTES_PER_SECOND		250000
1804
1805/*
1806 * Determine if the ISN we will generate has advanced beyond the last
1807 * sequence number used by the previous connection.  If so, indicate
1808 * that it is safe to recycle this tw socket by returning 1.
1809 *
1810 * XXXRW: This function should assert the inpcb lock as it does multiple
1811 * non-atomic reads from the tcptw, but is currently called without it from
1812 * in_pcb.c:in_pcblookup_local().
1813 */
1814int
1815tcp_twrecycleable(struct tcptw *tw)
1816{
1817	tcp_seq new_iss = tw->iss;
1818	tcp_seq new_irs = tw->irs;
1819
1820	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1821	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1822
1823	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1824		return (1);
1825	else
1826		return (0);
1827}
1828
1829void
1830tcp_twclose(struct tcptw *tw, int reuse)
1831{
1832	struct socket *so;
1833	struct inpcb *inp;
1834
1835	/*
1836	 * At this point, we are in one of two situations:
1837	 *
1838	 * (1) We have no socket, just an inpcb<->twtcp pair.  Release it all
1839	 * after validating.
1840	 *
1841	 * (2) We have a socket, which we may or may now own the reference
1842	 * for.  If we own the reference, release all the state after
1843	 * validating.  If not, leave it for the socket close to clean up.
1844	 */
1845	inp = tw->tw_inpcb;
1846	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1847	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1848	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1849	INP_LOCK_ASSERT(inp);
1850
1851	tw->tw_inpcb = NULL;
1852	tcp_timer_2msl_stop(tw);
1853	inp->inp_ppcb = NULL;
1854	in_pcbdrop(inp);
1855
1856	so = inp->inp_socket;
1857	if (so != NULL) {
1858		if (inp->inp_vflag & INP_SOCKREF) {
1859			/*
1860			 * If a socket is present, and we own the only
1861			 * reference, we need to tear down the socket and the
1862			 * inpcb.
1863			 */
1864			inp->inp_vflag &= ~INP_SOCKREF;
1865#ifdef INET6
1866			if (inp->inp_vflag & INP_IPV6PROTO) {
1867				in6_pcbdetach(inp);
1868				in6_pcbfree(inp);
1869			} else {
1870				in_pcbdetach(inp);
1871				in_pcbfree(inp);
1872			}
1873#endif
1874			ACCEPT_LOCK();
1875			SOCK_LOCK(so);
1876			KASSERT(so->so_state & SS_PROTOREF,
1877			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1878			so->so_state &= ~SS_PROTOREF;
1879			sofree(so);
1880		} else {
1881			/*
1882			 * If we don't own the only reference, the socket and
1883			 * inpcb need to be left around to be handled by
1884			 * tcp_usr_detach() later.
1885			 */
1886			INP_UNLOCK(inp);
1887		}
1888	} else {
1889#ifdef INET6
1890		if (inp->inp_vflag & INP_IPV6PROTO)
1891			in6_pcbfree(inp);
1892		else
1893#endif
1894			in_pcbfree(inp);
1895	}
1896	tcpstat.tcps_closed++;
1897	crfree(tw->tw_cred);
1898	tw->tw_cred = NULL;
1899	if (reuse)
1900		return;
1901	uma_zfree(tcptw_zone, tw);
1902}
1903
1904int
1905tcp_twrespond(struct tcptw *tw, int flags)
1906{
1907	struct inpcb *inp = tw->tw_inpcb;
1908	struct tcphdr *th;
1909	struct mbuf *m;
1910	struct ip *ip = NULL;
1911	u_int8_t *optp;
1912	u_int hdrlen, optlen;
1913	int error;
1914#ifdef INET6
1915	struct ip6_hdr *ip6 = NULL;
1916	int isipv6 = inp->inp_inc.inc_isipv6;
1917#endif
1918
1919	INP_LOCK_ASSERT(inp);
1920
1921	m = m_gethdr(M_DONTWAIT, MT_DATA);
1922	if (m == NULL)
1923		return (ENOBUFS);
1924	m->m_data += max_linkhdr;
1925
1926#ifdef MAC
1927	mac_create_mbuf_from_inpcb(inp, m);
1928#endif
1929
1930#ifdef INET6
1931	if (isipv6) {
1932		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1933		ip6 = mtod(m, struct ip6_hdr *);
1934		th = (struct tcphdr *)(ip6 + 1);
1935		tcpip_fillheaders(inp, ip6, th);
1936	} else
1937#endif
1938	{
1939		hdrlen = sizeof(struct tcpiphdr);
1940		ip = mtod(m, struct ip *);
1941		th = (struct tcphdr *)(ip + 1);
1942		tcpip_fillheaders(inp, ip, th);
1943	}
1944	optp = (u_int8_t *)(th + 1);
1945
1946	/*
1947	 * Send a timestamp and echo-reply if both our side and our peer
1948	 * have sent timestamps in our SYN's and this is not a RST.
1949	 */
1950	if (tw->t_recent && flags == TH_ACK) {
1951		u_int32_t *lp = (u_int32_t *)optp;
1952
1953		/* Form timestamp option as shown in appendix A of RFC 1323. */
1954		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1955		*lp++ = htonl(ticks);
1956		*lp   = htonl(tw->t_recent);
1957		optp += TCPOLEN_TSTAMP_APPA;
1958	}
1959
1960	optlen = optp - (u_int8_t *)(th + 1);
1961
1962	m->m_len = hdrlen + optlen;
1963	m->m_pkthdr.len = m->m_len;
1964
1965	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1966
1967	th->th_seq = htonl(tw->snd_nxt);
1968	th->th_ack = htonl(tw->rcv_nxt);
1969	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1970	th->th_flags = flags;
1971	th->th_win = htons(tw->last_win);
1972
1973#ifdef INET6
1974	if (isipv6) {
1975		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1976		    sizeof(struct tcphdr) + optlen);
1977		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1978		error = ip6_output(m, inp->in6p_outputopts, NULL,
1979		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1980	} else
1981#endif
1982	{
1983		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1984		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1985		m->m_pkthdr.csum_flags = CSUM_TCP;
1986		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1987		ip->ip_len = m->m_pkthdr.len;
1988		if (path_mtu_discovery)
1989			ip->ip_off |= IP_DF;
1990		error = ip_output(m, inp->inp_options, NULL,
1991		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1992		    NULL, inp);
1993	}
1994	if (flags & TH_ACK)
1995		tcpstat.tcps_sndacks++;
1996	else
1997		tcpstat.tcps_sndctrl++;
1998	tcpstat.tcps_sndtotal++;
1999	return (error);
2000}
2001
2002/*
2003 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2004 *
2005 * This code attempts to calculate the bandwidth-delay product as a
2006 * means of determining the optimal window size to maximize bandwidth,
2007 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2008 * routers.  This code also does a fairly good job keeping RTTs in check
2009 * across slow links like modems.  We implement an algorithm which is very
2010 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2011 * transmitter side of a TCP connection and so only effects the transmit
2012 * side of the connection.
2013 *
2014 * BACKGROUND:  TCP makes no provision for the management of buffer space
2015 * at the end points or at the intermediate routers and switches.  A TCP
2016 * stream, whether using NewReno or not, will eventually buffer as
2017 * many packets as it is able and the only reason this typically works is
2018 * due to the fairly small default buffers made available for a connection
2019 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2020 * scaling it is now fairly easy for even a single TCP connection to blow-out
2021 * all available buffer space not only on the local interface, but on
2022 * intermediate routers and switches as well.  NewReno makes a misguided
2023 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2024 * then backing off, then steadily increasing the window again until another
2025 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2026 * is only made worse as network loads increase and the idea of intentionally
2027 * blowing out network buffers is, frankly, a terrible way to manage network
2028 * resources.
2029 *
2030 * It is far better to limit the transmit window prior to the failure
2031 * condition being achieved.  There are two general ways to do this:  First
2032 * you can 'scan' through different transmit window sizes and locate the
2033 * point where the RTT stops increasing, indicating that you have filled the
2034 * pipe, then scan backwards until you note that RTT stops decreasing, then
2035 * repeat ad-infinitum.  This method works in principle but has severe
2036 * implementation issues due to RTT variances, timer granularity, and
2037 * instability in the algorithm which can lead to many false positives and
2038 * create oscillations as well as interact badly with other TCP streams
2039 * implementing the same algorithm.
2040 *
2041 * The second method is to limit the window to the bandwidth delay product
2042 * of the link.  This is the method we implement.  RTT variances and our
2043 * own manipulation of the congestion window, bwnd, can potentially
2044 * destabilize the algorithm.  For this reason we have to stabilize the
2045 * elements used to calculate the window.  We do this by using the minimum
2046 * observed RTT, the long term average of the observed bandwidth, and
2047 * by adding two segments worth of slop.  It isn't perfect but it is able
2048 * to react to changing conditions and gives us a very stable basis on
2049 * which to extend the algorithm.
2050 */
2051void
2052tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2053{
2054	u_long bw;
2055	u_long bwnd;
2056	int save_ticks;
2057
2058	INP_LOCK_ASSERT(tp->t_inpcb);
2059
2060	/*
2061	 * If inflight_enable is disabled in the middle of a tcp connection,
2062	 * make sure snd_bwnd is effectively disabled.
2063	 */
2064	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2065		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2066		tp->snd_bandwidth = 0;
2067		return;
2068	}
2069
2070	/*
2071	 * Figure out the bandwidth.  Due to the tick granularity this
2072	 * is a very rough number and it MUST be averaged over a fairly
2073	 * long period of time.  XXX we need to take into account a link
2074	 * that is not using all available bandwidth, but for now our
2075	 * slop will ramp us up if this case occurs and the bandwidth later
2076	 * increases.
2077	 *
2078	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2079	 * effectively reset t_bw_rtttime for this case.
2080	 */
2081	save_ticks = ticks;
2082	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2083		return;
2084
2085	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2086	    (save_ticks - tp->t_bw_rtttime);
2087	tp->t_bw_rtttime = save_ticks;
2088	tp->t_bw_rtseq = ack_seq;
2089	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2090		return;
2091	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2092
2093	tp->snd_bandwidth = bw;
2094
2095	/*
2096	 * Calculate the semi-static bandwidth delay product, plus two maximal
2097	 * segments.  The additional slop puts us squarely in the sweet
2098	 * spot and also handles the bandwidth run-up case and stabilization.
2099	 * Without the slop we could be locking ourselves into a lower
2100	 * bandwidth.
2101	 *
2102	 * Situations Handled:
2103	 *	(1) Prevents over-queueing of packets on LANs, especially on
2104	 *	    high speed LANs, allowing larger TCP buffers to be
2105	 *	    specified, and also does a good job preventing
2106	 *	    over-queueing of packets over choke points like modems
2107	 *	    (at least for the transmit side).
2108	 *
2109	 *	(2) Is able to handle changing network loads (bandwidth
2110	 *	    drops so bwnd drops, bandwidth increases so bwnd
2111	 *	    increases).
2112	 *
2113	 *	(3) Theoretically should stabilize in the face of multiple
2114	 *	    connections implementing the same algorithm (this may need
2115	 *	    a little work).
2116	 *
2117	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2118	 *	    be adjusted with a sysctl but typically only needs to be
2119	 *	    on very slow connections.  A value no smaller then 5
2120	 *	    should be used, but only reduce this default if you have
2121	 *	    no other choice.
2122	 */
2123#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2124	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2125#undef USERTT
2126
2127	if (tcp_inflight_debug > 0) {
2128		static int ltime;
2129		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2130			ltime = ticks;
2131			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2132			    tp,
2133			    bw,
2134			    tp->t_rttbest,
2135			    tp->t_srtt,
2136			    bwnd
2137			);
2138		}
2139	}
2140	if ((long)bwnd < tcp_inflight_min)
2141		bwnd = tcp_inflight_min;
2142	if (bwnd > tcp_inflight_max)
2143		bwnd = tcp_inflight_max;
2144	if ((long)bwnd < tp->t_maxseg * 2)
2145		bwnd = tp->t_maxseg * 2;
2146	tp->snd_bwnd = bwnd;
2147}
2148
2149#ifdef TCP_SIGNATURE
2150/*
2151 * Callback function invoked by m_apply() to digest TCP segment data
2152 * contained within an mbuf chain.
2153 */
2154static int
2155tcp_signature_apply(void *fstate, void *data, u_int len)
2156{
2157
2158	MD5Update(fstate, (u_char *)data, len);
2159	return (0);
2160}
2161
2162/*
2163 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2164 *
2165 * Parameters:
2166 * m		pointer to head of mbuf chain
2167 * off0		offset to TCP header within the mbuf chain
2168 * len		length of TCP segment data, excluding options
2169 * optlen	length of TCP segment options
2170 * buf		pointer to storage for computed MD5 digest
2171 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2172 *
2173 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2174 * When called from tcp_input(), we can be sure that th_sum has been
2175 * zeroed out and verified already.
2176 *
2177 * This function is for IPv4 use only. Calling this function with an
2178 * IPv6 packet in the mbuf chain will yield undefined results.
2179 *
2180 * Return 0 if successful, otherwise return -1.
2181 *
2182 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2183 * search with the destination IP address, and a 'magic SPI' to be
2184 * determined by the application. This is hardcoded elsewhere to 1179
2185 * right now. Another branch of this code exists which uses the SPD to
2186 * specify per-application flows but it is unstable.
2187 */
2188int
2189tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2190    u_char *buf, u_int direction)
2191{
2192	union sockaddr_union dst;
2193	struct ippseudo ippseudo;
2194	MD5_CTX ctx;
2195	int doff;
2196	struct ip *ip;
2197	struct ipovly *ipovly;
2198	struct secasvar *sav;
2199	struct tcphdr *th;
2200	u_short savecsum;
2201
2202	KASSERT(m != NULL, ("NULL mbuf chain"));
2203	KASSERT(buf != NULL, ("NULL signature pointer"));
2204
2205	/* Extract the destination from the IP header in the mbuf. */
2206	ip = mtod(m, struct ip *);
2207	bzero(&dst, sizeof(union sockaddr_union));
2208	dst.sa.sa_len = sizeof(struct sockaddr_in);
2209	dst.sa.sa_family = AF_INET;
2210	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2211	    ip->ip_src : ip->ip_dst;
2212
2213	/* Look up an SADB entry which matches the address of the peer. */
2214	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2215	if (sav == NULL) {
2216		printf("%s: SADB lookup failed for %s\n", __func__,
2217		    inet_ntoa(dst.sin.sin_addr));
2218		return (EINVAL);
2219	}
2220
2221	MD5Init(&ctx);
2222	ipovly = (struct ipovly *)ip;
2223	th = (struct tcphdr *)((u_char *)ip + off0);
2224	doff = off0 + sizeof(struct tcphdr) + optlen;
2225
2226	/*
2227	 * Step 1: Update MD5 hash with IP pseudo-header.
2228	 *
2229	 * XXX The ippseudo header MUST be digested in network byte order,
2230	 * or else we'll fail the regression test. Assume all fields we've
2231	 * been doing arithmetic on have been in host byte order.
2232	 * XXX One cannot depend on ipovly->ih_len here. When called from
2233	 * tcp_output(), the underlying ip_len member has not yet been set.
2234	 */
2235	ippseudo.ippseudo_src = ipovly->ih_src;
2236	ippseudo.ippseudo_dst = ipovly->ih_dst;
2237	ippseudo.ippseudo_pad = 0;
2238	ippseudo.ippseudo_p = IPPROTO_TCP;
2239	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2240	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2241
2242	/*
2243	 * Step 2: Update MD5 hash with TCP header, excluding options.
2244	 * The TCP checksum must be set to zero.
2245	 */
2246	savecsum = th->th_sum;
2247	th->th_sum = 0;
2248	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2249	th->th_sum = savecsum;
2250
2251	/*
2252	 * Step 3: Update MD5 hash with TCP segment data.
2253	 *         Use m_apply() to avoid an early m_pullup().
2254	 */
2255	if (len > 0)
2256		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2257
2258	/*
2259	 * Step 4: Update MD5 hash with shared secret.
2260	 */
2261	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2262	MD5Final(buf, &ctx);
2263
2264	key_sa_recordxfer(sav, m);
2265	KEY_FREESAV(&sav);
2266	return (0);
2267}
2268#endif /* TCP_SIGNATURE */
2269
2270static int
2271sysctl_drop(SYSCTL_HANDLER_ARGS)
2272{
2273	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2274	struct sockaddr_storage addrs[2];
2275	struct inpcb *inp;
2276	struct tcpcb *tp;
2277	struct tcptw *tw;
2278	struct sockaddr_in *fin, *lin;
2279#ifdef INET6
2280	struct sockaddr_in6 *fin6, *lin6;
2281	struct in6_addr f6, l6;
2282#endif
2283	int error;
2284
2285	inp = NULL;
2286	fin = lin = NULL;
2287#ifdef INET6
2288	fin6 = lin6 = NULL;
2289#endif
2290	error = 0;
2291
2292	if (req->oldptr != NULL || req->oldlen != 0)
2293		return (EINVAL);
2294	if (req->newptr == NULL)
2295		return (EPERM);
2296	if (req->newlen < sizeof(addrs))
2297		return (ENOMEM);
2298	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2299	if (error)
2300		return (error);
2301
2302	switch (addrs[0].ss_family) {
2303#ifdef INET6
2304	case AF_INET6:
2305		fin6 = (struct sockaddr_in6 *)&addrs[0];
2306		lin6 = (struct sockaddr_in6 *)&addrs[1];
2307		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2308		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2309			return (EINVAL);
2310		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2311			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2312				return (EINVAL);
2313			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2314			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2315			fin = (struct sockaddr_in *)&addrs[0];
2316			lin = (struct sockaddr_in *)&addrs[1];
2317			break;
2318		}
2319		error = sa6_embedscope(fin6, ip6_use_defzone);
2320		if (error)
2321			return (error);
2322		error = sa6_embedscope(lin6, ip6_use_defzone);
2323		if (error)
2324			return (error);
2325		break;
2326#endif
2327	case AF_INET:
2328		fin = (struct sockaddr_in *)&addrs[0];
2329		lin = (struct sockaddr_in *)&addrs[1];
2330		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2331		    lin->sin_len != sizeof(struct sockaddr_in))
2332			return (EINVAL);
2333		break;
2334	default:
2335		return (EINVAL);
2336	}
2337	INP_INFO_WLOCK(&tcbinfo);
2338	switch (addrs[0].ss_family) {
2339#ifdef INET6
2340	case AF_INET6:
2341		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2342		    &l6, lin6->sin6_port, 0, NULL);
2343		break;
2344#endif
2345	case AF_INET:
2346		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2347		    lin->sin_addr, lin->sin_port, 0, NULL);
2348		break;
2349	}
2350	if (inp != NULL) {
2351		INP_LOCK(inp);
2352		if (inp->inp_vflag & INP_TIMEWAIT) {
2353			/*
2354			 * XXXRW: There currently exists a state where an
2355			 * inpcb is present, but its timewait state has been
2356			 * discarded.  For now, don't allow dropping of this
2357			 * type of inpcb.
2358			 */
2359			tw = intotw(inp);
2360			if (tw != NULL)
2361				tcp_twclose(tw, 0);
2362		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2363			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2364			tp = intotcpcb(inp);
2365			tcp_drop(tp, ECONNABORTED);
2366		}
2367		INP_UNLOCK(inp);
2368	} else
2369		error = ESRCH;
2370	INP_INFO_WUNLOCK(&tcbinfo);
2371	return (error);
2372}
2373
2374SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2375    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2376    0, sysctl_drop, "", "Drop TCP connection");
2377