tcp_timewait.c revision 157427
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 157427 2006-04-03 11:57:12Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180/*
181 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
182 * 1024 exists only for debugging.  A good production default would be
183 * something like 6100.
184 */
185SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
186    "TCP inflight data limiting");
187
188static int	tcp_inflight_enable = 1;
189SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
190    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
191
192static int	tcp_inflight_debug = 0;
193SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
194    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
195
196static int	tcp_inflight_rttthresh;
197SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
198    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
199    "RTT threshold below which inflight will deactivate itself");
200
201static int	tcp_inflight_min = 6144;
202SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
203    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
204
205static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
206SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
207    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
208
209static int	tcp_inflight_stab = 20;
210SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
211    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
212
213uma_zone_t sack_hole_zone;
214
215static struct inpcb *tcp_notify(struct inpcb *, int);
216static void	tcp_isn_tick(void *);
217
218/*
219 * Target size of TCP PCB hash tables. Must be a power of two.
220 *
221 * Note that this can be overridden by the kernel environment
222 * variable net.inet.tcp.tcbhashsize
223 */
224#ifndef TCBHASHSIZE
225#define TCBHASHSIZE	512
226#endif
227
228/*
229 * XXX
230 * Callouts should be moved into struct tcp directly.  They are currently
231 * separate because the tcpcb structure is exported to userland for sysctl
232 * parsing purposes, which do not know about callouts.
233 */
234struct	tcpcb_mem {
235	struct	tcpcb tcb;
236	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
237	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
238};
239
240static uma_zone_t tcpcb_zone;
241static uma_zone_t tcptw_zone;
242struct callout isn_callout;
243
244/*
245 * Tcp initialization
246 */
247void
248tcp_init()
249{
250	int hashsize = TCBHASHSIZE;
251
252	tcp_delacktime = TCPTV_DELACK;
253	tcp_keepinit = TCPTV_KEEP_INIT;
254	tcp_keepidle = TCPTV_KEEP_IDLE;
255	tcp_keepintvl = TCPTV_KEEPINTVL;
256	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
257	tcp_msl = TCPTV_MSL;
258	tcp_rexmit_min = TCPTV_MIN;
259	tcp_rexmit_slop = TCPTV_CPU_VAR;
260	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
261
262	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
263	LIST_INIT(&tcb);
264	tcbinfo.listhead = &tcb;
265	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
266	if (!powerof2(hashsize)) {
267		printf("WARNING: TCB hash size not a power of 2\n");
268		hashsize = 512; /* safe default */
269	}
270	tcp_tcbhashsize = hashsize;
271	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
272	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
273					&tcbinfo.porthashmask);
274	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
275	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
276	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
277#ifdef INET6
278#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
279#else /* INET6 */
280#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
281#endif /* INET6 */
282	if (max_protohdr < TCP_MINPROTOHDR)
283		max_protohdr = TCP_MINPROTOHDR;
284	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
285		panic("tcp_init");
286#undef TCP_MINPROTOHDR
287	/*
288	 * These have to be type stable for the benefit of the timers.
289	 */
290	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
291	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
292	uma_zone_set_max(tcpcb_zone, maxsockets);
293	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
294	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
295	uma_zone_set_max(tcptw_zone, maxsockets / 5);
296	tcp_timer_init();
297	syncache_init();
298	tcp_hc_init();
299	tcp_reass_init();
300	callout_init(&isn_callout, CALLOUT_MPSAFE);
301	tcp_isn_tick(NULL);
302	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
303		SHUTDOWN_PRI_DEFAULT);
304	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
305	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306}
307
308void
309tcp_fini(xtp)
310	void *xtp;
311{
312	callout_stop(&isn_callout);
313
314}
315
316/*
317 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
318 * tcp_template used to store this data in mbufs, but we now recopy it out
319 * of the tcpcb each time to conserve mbufs.
320 */
321void
322tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
323	struct inpcb *inp;
324	void *ip_ptr;
325	void *tcp_ptr;
326{
327	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
328
329	INP_LOCK_ASSERT(inp);
330
331#ifdef INET6
332	if ((inp->inp_vflag & INP_IPV6) != 0) {
333		struct ip6_hdr *ip6;
334
335		ip6 = (struct ip6_hdr *)ip_ptr;
336		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
337			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
338		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
339			(IPV6_VERSION & IPV6_VERSION_MASK);
340		ip6->ip6_nxt = IPPROTO_TCP;
341		ip6->ip6_plen = sizeof(struct tcphdr);
342		ip6->ip6_src = inp->in6p_laddr;
343		ip6->ip6_dst = inp->in6p_faddr;
344	} else
345#endif
346	{
347		struct ip *ip;
348
349		ip = (struct ip *)ip_ptr;
350		ip->ip_v = IPVERSION;
351		ip->ip_hl = 5;
352		ip->ip_tos = inp->inp_ip_tos;
353		ip->ip_len = 0;
354		ip->ip_id = 0;
355		ip->ip_off = 0;
356		ip->ip_ttl = inp->inp_ip_ttl;
357		ip->ip_sum = 0;
358		ip->ip_p = IPPROTO_TCP;
359		ip->ip_src = inp->inp_laddr;
360		ip->ip_dst = inp->inp_faddr;
361	}
362	th->th_sport = inp->inp_lport;
363	th->th_dport = inp->inp_fport;
364	th->th_seq = 0;
365	th->th_ack = 0;
366	th->th_x2 = 0;
367	th->th_off = 5;
368	th->th_flags = 0;
369	th->th_win = 0;
370	th->th_urp = 0;
371	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
372}
373
374/*
375 * Create template to be used to send tcp packets on a connection.
376 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
377 * use for this function is in keepalives, which use tcp_respond.
378 */
379struct tcptemp *
380tcpip_maketemplate(inp)
381	struct inpcb *inp;
382{
383	struct mbuf *m;
384	struct tcptemp *n;
385
386	m = m_get(M_DONTWAIT, MT_DATA);
387	if (m == NULL)
388		return (0);
389	m->m_len = sizeof(struct tcptemp);
390	n = mtod(m, struct tcptemp *);
391
392	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
393	return (n);
394}
395
396/*
397 * Send a single message to the TCP at address specified by
398 * the given TCP/IP header.  If m == NULL, then we make a copy
399 * of the tcpiphdr at ti and send directly to the addressed host.
400 * This is used to force keep alive messages out using the TCP
401 * template for a connection.  If flags are given then we send
402 * a message back to the TCP which originated the * segment ti,
403 * and discard the mbuf containing it and any other attached mbufs.
404 *
405 * In any case the ack and sequence number of the transmitted
406 * segment are as specified by the parameters.
407 *
408 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
409 */
410void
411tcp_respond(tp, ipgen, th, m, ack, seq, flags)
412	struct tcpcb *tp;
413	void *ipgen;
414	register struct tcphdr *th;
415	register struct mbuf *m;
416	tcp_seq ack, seq;
417	int flags;
418{
419	register int tlen;
420	int win = 0;
421	struct ip *ip;
422	struct tcphdr *nth;
423#ifdef INET6
424	struct ip6_hdr *ip6;
425	int isipv6;
426#endif /* INET6 */
427	int ipflags = 0;
428	struct inpcb *inp;
429
430	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
431
432#ifdef INET6
433	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
434	ip6 = ipgen;
435#endif /* INET6 */
436	ip = ipgen;
437
438	if (tp != NULL) {
439		inp = tp->t_inpcb;
440		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
441		INP_INFO_WLOCK_ASSERT(&tcbinfo);
442		INP_LOCK_ASSERT(inp);
443	} else
444		inp = NULL;
445
446	if (tp != NULL) {
447		if (!(flags & TH_RST)) {
448			win = sbspace(&inp->inp_socket->so_rcv);
449			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
450				win = (long)TCP_MAXWIN << tp->rcv_scale;
451		}
452	}
453	if (m == NULL) {
454		m = m_gethdr(M_DONTWAIT, MT_DATA);
455		if (m == NULL)
456			return;
457		tlen = 0;
458		m->m_data += max_linkhdr;
459#ifdef INET6
460		if (isipv6) {
461			bcopy((caddr_t)ip6, mtod(m, caddr_t),
462			      sizeof(struct ip6_hdr));
463			ip6 = mtod(m, struct ip6_hdr *);
464			nth = (struct tcphdr *)(ip6 + 1);
465		} else
466#endif /* INET6 */
467	      {
468		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
469		ip = mtod(m, struct ip *);
470		nth = (struct tcphdr *)(ip + 1);
471	      }
472		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
473		flags = TH_ACK;
474	} else {
475		m_freem(m->m_next);
476		m->m_next = NULL;
477		m->m_data = (caddr_t)ipgen;
478		/* m_len is set later */
479		tlen = 0;
480#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
481#ifdef INET6
482		if (isipv6) {
483			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
484			nth = (struct tcphdr *)(ip6 + 1);
485		} else
486#endif /* INET6 */
487	      {
488		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
489		nth = (struct tcphdr *)(ip + 1);
490	      }
491		if (th != nth) {
492			/*
493			 * this is usually a case when an extension header
494			 * exists between the IPv6 header and the
495			 * TCP header.
496			 */
497			nth->th_sport = th->th_sport;
498			nth->th_dport = th->th_dport;
499		}
500		xchg(nth->th_dport, nth->th_sport, n_short);
501#undef xchg
502	}
503#ifdef INET6
504	if (isipv6) {
505		ip6->ip6_flow = 0;
506		ip6->ip6_vfc = IPV6_VERSION;
507		ip6->ip6_nxt = IPPROTO_TCP;
508		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
509						tlen));
510		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
511	} else
512#endif
513	{
514		tlen += sizeof (struct tcpiphdr);
515		ip->ip_len = tlen;
516		ip->ip_ttl = ip_defttl;
517		if (path_mtu_discovery)
518			ip->ip_off |= IP_DF;
519	}
520	m->m_len = tlen;
521	m->m_pkthdr.len = tlen;
522	m->m_pkthdr.rcvif = NULL;
523#ifdef MAC
524	if (inp != NULL) {
525		/*
526		 * Packet is associated with a socket, so allow the
527		 * label of the response to reflect the socket label.
528		 */
529		INP_LOCK_ASSERT(inp);
530		mac_create_mbuf_from_inpcb(inp, m);
531	} else {
532		/*
533		 * Packet is not associated with a socket, so possibly
534		 * update the label in place.
535		 */
536		mac_reflect_mbuf_tcp(m);
537	}
538#endif
539	nth->th_seq = htonl(seq);
540	nth->th_ack = htonl(ack);
541	nth->th_x2 = 0;
542	nth->th_off = sizeof (struct tcphdr) >> 2;
543	nth->th_flags = flags;
544	if (tp != NULL)
545		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
546	else
547		nth->th_win = htons((u_short)win);
548	nth->th_urp = 0;
549#ifdef INET6
550	if (isipv6) {
551		nth->th_sum = 0;
552		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
553					sizeof(struct ip6_hdr),
554					tlen - sizeof(struct ip6_hdr));
555		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
556		    NULL, NULL);
557	} else
558#endif /* INET6 */
559	{
560		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
561		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
562		m->m_pkthdr.csum_flags = CSUM_TCP;
563		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
564	}
565#ifdef TCPDEBUG
566	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
567		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
568#endif
569#ifdef INET6
570	if (isipv6)
571		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
572	else
573#endif /* INET6 */
574	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
575}
576
577/*
578 * Create a new TCP control block, making an
579 * empty reassembly queue and hooking it to the argument
580 * protocol control block.  The `inp' parameter must have
581 * come from the zone allocator set up in tcp_init().
582 */
583struct tcpcb *
584tcp_newtcpcb(inp)
585	struct inpcb *inp;
586{
587	struct tcpcb_mem *tm;
588	struct tcpcb *tp;
589#ifdef INET6
590	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
591#endif /* INET6 */
592
593	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
594	if (tm == NULL)
595		return (NULL);
596	tp = &tm->tcb;
597	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
598	tp->t_maxseg = tp->t_maxopd =
599#ifdef INET6
600		isipv6 ? tcp_v6mssdflt :
601#endif /* INET6 */
602		tcp_mssdflt;
603
604	/* Set up our timeouts. */
605	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
606	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
607	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
608	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
609	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
610
611	if (tcp_do_rfc1323)
612		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
613	tp->sack_enable = tcp_do_sack;
614	TAILQ_INIT(&tp->snd_holes);
615	tp->t_inpcb = inp;	/* XXX */
616	/*
617	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
618	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
619	 * reasonable initial retransmit time.
620	 */
621	tp->t_srtt = TCPTV_SRTTBASE;
622	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
623	tp->t_rttmin = tcp_rexmit_min;
624	tp->t_rxtcur = TCPTV_RTOBASE;
625	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
626	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
627	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
628	tp->t_rcvtime = ticks;
629	tp->t_bw_rtttime = ticks;
630	/*
631	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
632	 * because the socket may be bound to an IPv6 wildcard address,
633	 * which may match an IPv4-mapped IPv6 address.
634	 */
635	inp->inp_ip_ttl = ip_defttl;
636	inp->inp_ppcb = (caddr_t)tp;
637	return (tp);		/* XXX */
638}
639
640/*
641 * Drop a TCP connection, reporting
642 * the specified error.  If connection is synchronized,
643 * then send a RST to peer.
644 */
645struct tcpcb *
646tcp_drop(tp, errno)
647	register struct tcpcb *tp;
648	int errno;
649{
650	struct socket *so = tp->t_inpcb->inp_socket;
651
652	INP_INFO_WLOCK_ASSERT(&tcbinfo);
653	INP_LOCK_ASSERT(tp->t_inpcb);
654
655	if (TCPS_HAVERCVDSYN(tp->t_state)) {
656		tp->t_state = TCPS_CLOSED;
657		(void) tcp_output(tp);
658		tcpstat.tcps_drops++;
659	} else
660		tcpstat.tcps_conndrops++;
661	if (errno == ETIMEDOUT && tp->t_softerror)
662		errno = tp->t_softerror;
663	so->so_error = errno;
664	return (tcp_close(tp));
665}
666
667void
668tcp_discardcb(tp)
669	struct tcpcb *tp;
670{
671	struct tseg_qent *q;
672	struct inpcb *inp = tp->t_inpcb;
673	struct socket *so = inp->inp_socket;
674#ifdef INET6
675	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
676#endif /* INET6 */
677
678	/*
679	 * XXXRW: This is all very well and good, but actually, we might be
680	 * discarding the tcpcb after the socket is gone, so we can't do
681	 * this:
682	KASSERT(so != NULL, ("tcp_discardcb: so == NULL"));
683	 */
684	INP_LOCK_ASSERT(inp);
685
686	/*
687	 * Make sure that all of our timers are stopped before we
688	 * delete the PCB.
689	 */
690	callout_stop(tp->tt_rexmt);
691	callout_stop(tp->tt_persist);
692	callout_stop(tp->tt_keep);
693	callout_stop(tp->tt_2msl);
694	callout_stop(tp->tt_delack);
695
696	/*
697	 * If we got enough samples through the srtt filter,
698	 * save the rtt and rttvar in the routing entry.
699	 * 'Enough' is arbitrarily defined as 4 rtt samples.
700	 * 4 samples is enough for the srtt filter to converge
701	 * to within enough % of the correct value; fewer samples
702	 * and we could save a bogus rtt. The danger is not high
703	 * as tcp quickly recovers from everything.
704	 * XXX: Works very well but needs some more statistics!
705	 */
706	if (tp->t_rttupdated >= 4) {
707		struct hc_metrics_lite metrics;
708		u_long ssthresh;
709
710		bzero(&metrics, sizeof(metrics));
711		/*
712		 * Update the ssthresh always when the conditions below
713		 * are satisfied. This gives us better new start value
714		 * for the congestion avoidance for new connections.
715		 * ssthresh is only set if packet loss occured on a session.
716		 */
717		ssthresh = tp->snd_ssthresh;
718		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
719			/*
720			 * convert the limit from user data bytes to
721			 * packets then to packet data bytes.
722			 */
723			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
724			if (ssthresh < 2)
725				ssthresh = 2;
726			ssthresh *= (u_long)(tp->t_maxseg +
727#ifdef INET6
728				      (isipv6 ? sizeof (struct ip6_hdr) +
729					       sizeof (struct tcphdr) :
730#endif
731				       sizeof (struct tcpiphdr)
732#ifdef INET6
733				       )
734#endif
735				      );
736		} else
737			ssthresh = 0;
738		metrics.rmx_ssthresh = ssthresh;
739
740		metrics.rmx_rtt = tp->t_srtt;
741		metrics.rmx_rttvar = tp->t_rttvar;
742		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
743		metrics.rmx_bandwidth = tp->snd_bandwidth;
744		metrics.rmx_cwnd = tp->snd_cwnd;
745		metrics.rmx_sendpipe = 0;
746		metrics.rmx_recvpipe = 0;
747
748		tcp_hc_update(&inp->inp_inc, &metrics);
749	}
750
751	/* free the reassembly queue, if any */
752	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
753		LIST_REMOVE(q, tqe_q);
754		m_freem(q->tqe_m);
755		uma_zfree(tcp_reass_zone, q);
756		tp->t_segqlen--;
757		tcp_reass_qsize--;
758	}
759	tcp_free_sackholes(tp);
760	inp->inp_ppcb = NULL;
761	tp->t_inpcb = NULL;
762	uma_zfree(tcpcb_zone, tp);
763
764	/*
765	 * XXXRW: This seems a bit unclean.
766	 */
767	if (so != NULL)
768		soisdisconnected(so);
769}
770
771/*
772 * Close a TCP control block:
773 *    discard all space held by the tcp
774 *    discard internet protocol block
775 *    wake up any sleepers
776 */
777struct tcpcb *
778tcp_close(tp)
779	struct tcpcb *tp;
780{
781	struct inpcb *inp = tp->t_inpcb;
782	struct socket *so;
783
784	INP_INFO_WLOCK_ASSERT(&tcbinfo);
785	INP_LOCK_ASSERT(inp);
786
787	inp->inp_vflag |= INP_DROPPED;
788
789	tcpstat.tcps_closed++;
790	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
791	so = inp->inp_socket;
792	soisdisconnected(so);
793	if (inp->inp_vflag & INP_SOCKREF) {
794		KASSERT(so->so_state & SS_PROTOREF,
795		    ("tcp_close: !SS_PROTOREF"));
796		inp->inp_vflag &= ~INP_SOCKREF;
797		tcp_discardcb(tp);
798#ifdef INET6
799		if (inp->inp_vflag & INP_IPV6PROTO) {
800			in6_pcbdetach(inp);
801			in6_pcbfree(inp);
802		} else {
803#endif
804			in_pcbdetach(inp);
805			in_pcbfree(inp);
806#ifdef INET6
807		}
808#endif
809		ACCEPT_LOCK();
810		SOCK_LOCK(so);
811		so->so_state &= ~SS_PROTOREF;
812		sofree(so);
813		return (NULL);
814	}
815	return (tp);
816}
817
818void
819tcp_drain()
820{
821	if (do_tcpdrain)
822	{
823		struct inpcb *inpb;
824		struct tcpcb *tcpb;
825		struct tseg_qent *te;
826
827	/*
828	 * Walk the tcpbs, if existing, and flush the reassembly queue,
829	 * if there is one...
830	 * XXX: The "Net/3" implementation doesn't imply that the TCP
831	 *      reassembly queue should be flushed, but in a situation
832	 *	where we're really low on mbufs, this is potentially
833	 *	usefull.
834	 */
835		INP_INFO_RLOCK(&tcbinfo);
836		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
837			if (inpb->inp_vflag & INP_TIMEWAIT)
838				continue;
839			INP_LOCK(inpb);
840			if ((tcpb = intotcpcb(inpb)) != NULL) {
841				while ((te = LIST_FIRST(&tcpb->t_segq))
842			            != NULL) {
843					LIST_REMOVE(te, tqe_q);
844					m_freem(te->tqe_m);
845					uma_zfree(tcp_reass_zone, te);
846					tcpb->t_segqlen--;
847					tcp_reass_qsize--;
848				}
849				tcp_clean_sackreport(tcpb);
850			}
851			INP_UNLOCK(inpb);
852		}
853		INP_INFO_RUNLOCK(&tcbinfo);
854	}
855}
856
857/*
858 * Notify a tcp user of an asynchronous error;
859 * store error as soft error, but wake up user
860 * (for now, won't do anything until can select for soft error).
861 *
862 * Do not wake up user since there currently is no mechanism for
863 * reporting soft errors (yet - a kqueue filter may be added).
864 */
865static struct inpcb *
866tcp_notify(inp, error)
867	struct inpcb *inp;
868	int error;
869{
870	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
871
872	INP_INFO_WLOCK_ASSERT(&tcbinfo);
873	INP_LOCK_ASSERT(inp);
874
875	/*
876	 * Ignore some errors if we are hooked up.
877	 * If connection hasn't completed, has retransmitted several times,
878	 * and receives a second error, give up now.  This is better
879	 * than waiting a long time to establish a connection that
880	 * can never complete.
881	 */
882	if (tp->t_state == TCPS_ESTABLISHED &&
883	    (error == EHOSTUNREACH || error == ENETUNREACH ||
884	     error == EHOSTDOWN)) {
885		return (inp);
886	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
887	    tp->t_softerror) {
888		tp = tcp_drop(tp, error);
889		if (tp != NULL)
890			return (inp);
891		else
892			return (NULL);
893	} else {
894		tp->t_softerror = error;
895		return (inp);
896	}
897#if 0
898	wakeup( &so->so_timeo);
899	sorwakeup(so);
900	sowwakeup(so);
901#endif
902}
903
904static int
905tcp_pcblist(SYSCTL_HANDLER_ARGS)
906{
907	int error, i, n;
908	struct inpcb *inp, **inp_list;
909	inp_gen_t gencnt;
910	struct xinpgen xig;
911
912	/*
913	 * The process of preparing the TCB list is too time-consuming and
914	 * resource-intensive to repeat twice on every request.
915	 */
916	if (req->oldptr == NULL) {
917		n = tcbinfo.ipi_count;
918		req->oldidx = 2 * (sizeof xig)
919			+ (n + n/8) * sizeof(struct xtcpcb);
920		return (0);
921	}
922
923	if (req->newptr != NULL)
924		return (EPERM);
925
926	/*
927	 * OK, now we're committed to doing something.
928	 */
929	INP_INFO_RLOCK(&tcbinfo);
930	gencnt = tcbinfo.ipi_gencnt;
931	n = tcbinfo.ipi_count;
932	INP_INFO_RUNLOCK(&tcbinfo);
933
934	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
935		+ n * sizeof(struct xtcpcb));
936	if (error != 0)
937		return (error);
938
939	xig.xig_len = sizeof xig;
940	xig.xig_count = n;
941	xig.xig_gen = gencnt;
942	xig.xig_sogen = so_gencnt;
943	error = SYSCTL_OUT(req, &xig, sizeof xig);
944	if (error)
945		return (error);
946
947	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
948	if (inp_list == NULL)
949		return (ENOMEM);
950
951	INP_INFO_RLOCK(&tcbinfo);
952	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
953	     inp = LIST_NEXT(inp, inp_list)) {
954		INP_LOCK(inp);
955		if (inp->inp_gencnt <= gencnt) {
956			/*
957			 * XXX: This use of cr_cansee(), introduced with
958			 * TCP state changes, is not quite right, but for
959			 * now, better than nothing.
960			 */
961			if (inp->inp_vflag & INP_TIMEWAIT)
962				error = cr_cansee(req->td->td_ucred,
963				    intotw(inp)->tw_cred);
964			else
965				error = cr_canseesocket(req->td->td_ucred,
966				    inp->inp_socket);
967			if (error == 0)
968				inp_list[i++] = inp;
969		}
970		INP_UNLOCK(inp);
971	}
972	INP_INFO_RUNLOCK(&tcbinfo);
973	n = i;
974
975	error = 0;
976	for (i = 0; i < n; i++) {
977		inp = inp_list[i];
978		if (inp->inp_gencnt <= gencnt) {
979			struct xtcpcb xt;
980			caddr_t inp_ppcb;
981
982			bzero(&xt, sizeof(xt));
983			xt.xt_len = sizeof xt;
984			/* XXX should avoid extra copy */
985			bcopy(inp, &xt.xt_inp, sizeof *inp);
986			inp_ppcb = inp->inp_ppcb;
987			if (inp_ppcb == NULL)
988				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
989			else if (inp->inp_vflag & INP_TIMEWAIT) {
990				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
991				xt.xt_tp.t_state = TCPS_TIME_WAIT;
992			} else
993				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
994			if (inp->inp_socket != NULL)
995				sotoxsocket(inp->inp_socket, &xt.xt_socket);
996			else {
997				bzero(&xt.xt_socket, sizeof xt.xt_socket);
998				xt.xt_socket.xso_protocol = IPPROTO_TCP;
999			}
1000			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1001			error = SYSCTL_OUT(req, &xt, sizeof xt);
1002		}
1003	}
1004	if (!error) {
1005		/*
1006		 * Give the user an updated idea of our state.
1007		 * If the generation differs from what we told
1008		 * her before, she knows that something happened
1009		 * while we were processing this request, and it
1010		 * might be necessary to retry.
1011		 */
1012		INP_INFO_RLOCK(&tcbinfo);
1013		xig.xig_gen = tcbinfo.ipi_gencnt;
1014		xig.xig_sogen = so_gencnt;
1015		xig.xig_count = tcbinfo.ipi_count;
1016		INP_INFO_RUNLOCK(&tcbinfo);
1017		error = SYSCTL_OUT(req, &xig, sizeof xig);
1018	}
1019	free(inp_list, M_TEMP);
1020	return (error);
1021}
1022
1023SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1024	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1025
1026static int
1027tcp_getcred(SYSCTL_HANDLER_ARGS)
1028{
1029	struct xucred xuc;
1030	struct sockaddr_in addrs[2];
1031	struct inpcb *inp;
1032	int error;
1033
1034	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1035	if (error)
1036		return (error);
1037	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1038	if (error)
1039		return (error);
1040	INP_INFO_RLOCK(&tcbinfo);
1041	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1042	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1043	if (inp == NULL) {
1044		error = ENOENT;
1045		goto outunlocked;
1046	}
1047	INP_LOCK(inp);
1048	if (inp->inp_socket == NULL) {
1049		error = ENOENT;
1050		goto out;
1051	}
1052	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1053	if (error)
1054		goto out;
1055	cru2x(inp->inp_socket->so_cred, &xuc);
1056out:
1057	INP_UNLOCK(inp);
1058outunlocked:
1059	INP_INFO_RUNLOCK(&tcbinfo);
1060	if (error == 0)
1061		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1062	return (error);
1063}
1064
1065SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1066    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1067    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1068
1069#ifdef INET6
1070static int
1071tcp6_getcred(SYSCTL_HANDLER_ARGS)
1072{
1073	struct xucred xuc;
1074	struct sockaddr_in6 addrs[2];
1075	struct inpcb *inp;
1076	int error, mapped = 0;
1077
1078	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1079	if (error)
1080		return (error);
1081	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1082	if (error)
1083		return (error);
1084	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1085	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1086		return (error);
1087	}
1088	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1089		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1090			mapped = 1;
1091		else
1092			return (EINVAL);
1093	}
1094
1095	INP_INFO_RLOCK(&tcbinfo);
1096	if (mapped == 1)
1097		inp = in_pcblookup_hash(&tcbinfo,
1098			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1099			addrs[1].sin6_port,
1100			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1101			addrs[0].sin6_port,
1102			0, NULL);
1103	else
1104		inp = in6_pcblookup_hash(&tcbinfo,
1105			&addrs[1].sin6_addr, addrs[1].sin6_port,
1106			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1107	if (inp == NULL) {
1108		error = ENOENT;
1109		goto outunlocked;
1110	}
1111	INP_LOCK(inp);
1112	if (inp->inp_socket == NULL) {
1113		error = ENOENT;
1114		goto out;
1115	}
1116	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1117	if (error)
1118		goto out;
1119	cru2x(inp->inp_socket->so_cred, &xuc);
1120out:
1121	INP_UNLOCK(inp);
1122outunlocked:
1123	INP_INFO_RUNLOCK(&tcbinfo);
1124	if (error == 0)
1125		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1126	return (error);
1127}
1128
1129SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1130    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1131    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1132#endif
1133
1134
1135void
1136tcp_ctlinput(cmd, sa, vip)
1137	int cmd;
1138	struct sockaddr *sa;
1139	void *vip;
1140{
1141	struct ip *ip = vip;
1142	struct tcphdr *th;
1143	struct in_addr faddr;
1144	struct inpcb *inp;
1145	struct tcpcb *tp;
1146	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1147	struct icmp *icp;
1148	struct in_conninfo inc;
1149	tcp_seq icmp_tcp_seq;
1150	int mtu;
1151
1152	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1153	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1154		return;
1155
1156	if (cmd == PRC_MSGSIZE)
1157		notify = tcp_mtudisc;
1158	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1159		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1160		notify = tcp_drop_syn_sent;
1161	/*
1162	 * Redirects don't need to be handled up here.
1163	 */
1164	else if (PRC_IS_REDIRECT(cmd))
1165		return;
1166	/*
1167	 * Source quench is depreciated.
1168	 */
1169	else if (cmd == PRC_QUENCH)
1170		return;
1171	/*
1172	 * Hostdead is ugly because it goes linearly through all PCBs.
1173	 * XXX: We never get this from ICMP, otherwise it makes an
1174	 * excellent DoS attack on machines with many connections.
1175	 */
1176	else if (cmd == PRC_HOSTDEAD)
1177		ip = NULL;
1178	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1179		return;
1180	if (ip != NULL) {
1181		icp = (struct icmp *)((caddr_t)ip
1182				      - offsetof(struct icmp, icmp_ip));
1183		th = (struct tcphdr *)((caddr_t)ip
1184				       + (ip->ip_hl << 2));
1185		INP_INFO_WLOCK(&tcbinfo);
1186		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1187		    ip->ip_src, th->th_sport, 0, NULL);
1188		if (inp != NULL)  {
1189			INP_LOCK(inp);
1190			if (inp->inp_socket != NULL) {
1191				icmp_tcp_seq = htonl(th->th_seq);
1192				tp = intotcpcb(inp);
1193				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1194				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1195					if (cmd == PRC_MSGSIZE) {
1196					    /*
1197					     * MTU discovery:
1198					     * If we got a needfrag set the MTU
1199					     * in the route to the suggested new
1200					     * value (if given) and then notify.
1201					     */
1202					    bzero(&inc, sizeof(inc));
1203					    inc.inc_flags = 0;	/* IPv4 */
1204					    inc.inc_faddr = faddr;
1205
1206					    mtu = ntohs(icp->icmp_nextmtu);
1207					    /*
1208					     * If no alternative MTU was
1209					     * proposed, try the next smaller
1210					     * one.  ip->ip_len has already
1211					     * been swapped in icmp_input().
1212					     */
1213					    if (!mtu)
1214						mtu = ip_next_mtu(ip->ip_len,
1215						 1);
1216					    if (mtu < max(296, (tcp_minmss)
1217						 + sizeof(struct tcpiphdr)))
1218						mtu = 0;
1219					    if (!mtu)
1220						mtu = tcp_mssdflt
1221						 + sizeof(struct tcpiphdr);
1222					    /*
1223					     * Only cache the the MTU if it
1224					     * is smaller than the interface
1225					     * or route MTU.  tcp_mtudisc()
1226					     * will do right thing by itself.
1227					     */
1228					    if (mtu <= tcp_maxmtu(&inc))
1229						tcp_hc_updatemtu(&inc, mtu);
1230					}
1231
1232					inp = (*notify)(inp, inetctlerrmap[cmd]);
1233				}
1234			}
1235			if (inp != NULL)
1236				INP_UNLOCK(inp);
1237		} else {
1238			inc.inc_fport = th->th_dport;
1239			inc.inc_lport = th->th_sport;
1240			inc.inc_faddr = faddr;
1241			inc.inc_laddr = ip->ip_src;
1242#ifdef INET6
1243			inc.inc_isipv6 = 0;
1244#endif
1245			syncache_unreach(&inc, th);
1246		}
1247		INP_INFO_WUNLOCK(&tcbinfo);
1248	} else
1249		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1250}
1251
1252#ifdef INET6
1253void
1254tcp6_ctlinput(cmd, sa, d)
1255	int cmd;
1256	struct sockaddr *sa;
1257	void *d;
1258{
1259	struct tcphdr th;
1260	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1261	struct ip6_hdr *ip6;
1262	struct mbuf *m;
1263	struct ip6ctlparam *ip6cp = NULL;
1264	const struct sockaddr_in6 *sa6_src = NULL;
1265	int off;
1266	struct tcp_portonly {
1267		u_int16_t th_sport;
1268		u_int16_t th_dport;
1269	} *thp;
1270
1271	if (sa->sa_family != AF_INET6 ||
1272	    sa->sa_len != sizeof(struct sockaddr_in6))
1273		return;
1274
1275	if (cmd == PRC_MSGSIZE)
1276		notify = tcp_mtudisc;
1277	else if (!PRC_IS_REDIRECT(cmd) &&
1278		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1279		return;
1280	/* Source quench is depreciated. */
1281	else if (cmd == PRC_QUENCH)
1282		return;
1283
1284	/* if the parameter is from icmp6, decode it. */
1285	if (d != NULL) {
1286		ip6cp = (struct ip6ctlparam *)d;
1287		m = ip6cp->ip6c_m;
1288		ip6 = ip6cp->ip6c_ip6;
1289		off = ip6cp->ip6c_off;
1290		sa6_src = ip6cp->ip6c_src;
1291	} else {
1292		m = NULL;
1293		ip6 = NULL;
1294		off = 0;	/* fool gcc */
1295		sa6_src = &sa6_any;
1296	}
1297
1298	if (ip6 != NULL) {
1299		struct in_conninfo inc;
1300		/*
1301		 * XXX: We assume that when IPV6 is non NULL,
1302		 * M and OFF are valid.
1303		 */
1304
1305		/* check if we can safely examine src and dst ports */
1306		if (m->m_pkthdr.len < off + sizeof(*thp))
1307			return;
1308
1309		bzero(&th, sizeof(th));
1310		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1311
1312		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1313		    (struct sockaddr *)ip6cp->ip6c_src,
1314		    th.th_sport, cmd, NULL, notify);
1315
1316		inc.inc_fport = th.th_dport;
1317		inc.inc_lport = th.th_sport;
1318		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1319		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1320		inc.inc_isipv6 = 1;
1321		INP_INFO_WLOCK(&tcbinfo);
1322		syncache_unreach(&inc, &th);
1323		INP_INFO_WUNLOCK(&tcbinfo);
1324	} else
1325		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1326			      0, cmd, NULL, notify);
1327}
1328#endif /* INET6 */
1329
1330
1331/*
1332 * Following is where TCP initial sequence number generation occurs.
1333 *
1334 * There are two places where we must use initial sequence numbers:
1335 * 1.  In SYN-ACK packets.
1336 * 2.  In SYN packets.
1337 *
1338 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1339 * tcp_syncache.c for details.
1340 *
1341 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1342 * depends on this property.  In addition, these ISNs should be
1343 * unguessable so as to prevent connection hijacking.  To satisfy
1344 * the requirements of this situation, the algorithm outlined in
1345 * RFC 1948 is used, with only small modifications.
1346 *
1347 * Implementation details:
1348 *
1349 * Time is based off the system timer, and is corrected so that it
1350 * increases by one megabyte per second.  This allows for proper
1351 * recycling on high speed LANs while still leaving over an hour
1352 * before rollover.
1353 *
1354 * As reading the *exact* system time is too expensive to be done
1355 * whenever setting up a TCP connection, we increment the time
1356 * offset in two ways.  First, a small random positive increment
1357 * is added to isn_offset for each connection that is set up.
1358 * Second, the function tcp_isn_tick fires once per clock tick
1359 * and increments isn_offset as necessary so that sequence numbers
1360 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1361 * random positive increments serve only to ensure that the same
1362 * exact sequence number is never sent out twice (as could otherwise
1363 * happen when a port is recycled in less than the system tick
1364 * interval.)
1365 *
1366 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1367 * between seeding of isn_secret.  This is normally set to zero,
1368 * as reseeding should not be necessary.
1369 *
1370 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1371 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1372 * general, this means holding an exclusive (write) lock.
1373 */
1374
1375#define ISN_BYTES_PER_SECOND 1048576
1376#define ISN_STATIC_INCREMENT 4096
1377#define ISN_RANDOM_INCREMENT (4096 - 1)
1378
1379static u_char isn_secret[32];
1380static int isn_last_reseed;
1381static u_int32_t isn_offset, isn_offset_old;
1382static MD5_CTX isn_ctx;
1383
1384tcp_seq
1385tcp_new_isn(tp)
1386	struct tcpcb *tp;
1387{
1388	u_int32_t md5_buffer[4];
1389	tcp_seq new_isn;
1390
1391	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1392	INP_LOCK_ASSERT(tp->t_inpcb);
1393
1394	/* Seed if this is the first use, reseed if requested. */
1395	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1396	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1397		< (u_int)ticks))) {
1398		read_random(&isn_secret, sizeof(isn_secret));
1399		isn_last_reseed = ticks;
1400	}
1401
1402	/* Compute the md5 hash and return the ISN. */
1403	MD5Init(&isn_ctx);
1404	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1405	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1406#ifdef INET6
1407	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1408		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1409			  sizeof(struct in6_addr));
1410		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1411			  sizeof(struct in6_addr));
1412	} else
1413#endif
1414	{
1415		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1416			  sizeof(struct in_addr));
1417		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1418			  sizeof(struct in_addr));
1419	}
1420	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1421	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1422	new_isn = (tcp_seq) md5_buffer[0];
1423	isn_offset += ISN_STATIC_INCREMENT +
1424		(arc4random() & ISN_RANDOM_INCREMENT);
1425	new_isn += isn_offset;
1426	return (new_isn);
1427}
1428
1429/*
1430 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1431 * to keep time flowing at a relatively constant rate.  If the random
1432 * increments have already pushed us past the projected offset, do nothing.
1433 */
1434static void
1435tcp_isn_tick(xtp)
1436	void *xtp;
1437{
1438	u_int32_t projected_offset;
1439
1440	INP_INFO_WLOCK(&tcbinfo);
1441	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1442
1443	if (projected_offset > isn_offset)
1444		isn_offset = projected_offset;
1445
1446	isn_offset_old = isn_offset;
1447	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1448	INP_INFO_WUNLOCK(&tcbinfo);
1449}
1450
1451/*
1452 * When a specific ICMP unreachable message is received and the
1453 * connection state is SYN-SENT, drop the connection.  This behavior
1454 * is controlled by the icmp_may_rst sysctl.
1455 */
1456struct inpcb *
1457tcp_drop_syn_sent(inp, errno)
1458	struct inpcb *inp;
1459	int errno;
1460{
1461	struct tcpcb *tp = intotcpcb(inp);
1462
1463	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1464	INP_LOCK_ASSERT(inp);
1465
1466	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1467		tp = tcp_drop(tp, errno);
1468		if (tp != NULL)
1469			return (inp);
1470		else
1471			return (NULL);
1472	}
1473	return (inp);
1474}
1475
1476/*
1477 * When `need fragmentation' ICMP is received, update our idea of the MSS
1478 * based on the new value in the route.  Also nudge TCP to send something,
1479 * since we know the packet we just sent was dropped.
1480 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1481 */
1482struct inpcb *
1483tcp_mtudisc(inp, errno)
1484	struct inpcb *inp;
1485	int errno;
1486{
1487	struct tcpcb *tp = intotcpcb(inp);
1488	struct socket *so = inp->inp_socket;
1489	u_int maxmtu;
1490	u_int romtu;
1491	int mss;
1492#ifdef INET6
1493	int isipv6;
1494#endif /* INET6 */
1495
1496	INP_LOCK_ASSERT(inp);
1497	if (tp != NULL) {
1498#ifdef INET6
1499		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1500#endif
1501		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1502		romtu =
1503#ifdef INET6
1504		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1505#endif /* INET6 */
1506		    tcp_maxmtu(&inp->inp_inc);
1507		if (!maxmtu)
1508			maxmtu = romtu;
1509		else
1510			maxmtu = min(maxmtu, romtu);
1511		if (!maxmtu) {
1512			tp->t_maxopd = tp->t_maxseg =
1513#ifdef INET6
1514				isipv6 ? tcp_v6mssdflt :
1515#endif /* INET6 */
1516				tcp_mssdflt;
1517			return (inp);
1518		}
1519		mss = maxmtu -
1520#ifdef INET6
1521			(isipv6 ?
1522			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1523#endif /* INET6 */
1524			 sizeof(struct tcpiphdr)
1525#ifdef INET6
1526			 )
1527#endif /* INET6 */
1528			;
1529
1530		/*
1531		 * XXX - The above conditional probably violates the TCP
1532		 * spec.  The problem is that, since we don't know the
1533		 * other end's MSS, we are supposed to use a conservative
1534		 * default.  But, if we do that, then MTU discovery will
1535		 * never actually take place, because the conservative
1536		 * default is much less than the MTUs typically seen
1537		 * on the Internet today.  For the moment, we'll sweep
1538		 * this under the carpet.
1539		 *
1540		 * The conservative default might not actually be a problem
1541		 * if the only case this occurs is when sending an initial
1542		 * SYN with options and data to a host we've never talked
1543		 * to before.  Then, they will reply with an MSS value which
1544		 * will get recorded and the new parameters should get
1545		 * recomputed.  For Further Study.
1546		 */
1547		if (tp->t_maxopd <= mss)
1548			return (inp);
1549		tp->t_maxopd = mss;
1550
1551		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1552		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1553			mss -= TCPOLEN_TSTAMP_APPA;
1554#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1555		if (mss > MCLBYTES)
1556			mss &= ~(MCLBYTES-1);
1557#else
1558		if (mss > MCLBYTES)
1559			mss = mss / MCLBYTES * MCLBYTES;
1560#endif
1561		if (so->so_snd.sb_hiwat < mss)
1562			mss = so->so_snd.sb_hiwat;
1563
1564		tp->t_maxseg = mss;
1565
1566		tcpstat.tcps_mturesent++;
1567		tp->t_rtttime = 0;
1568		tp->snd_nxt = tp->snd_una;
1569		tcp_output(tp);
1570	}
1571	return (inp);
1572}
1573
1574/*
1575 * Look-up the routing entry to the peer of this inpcb.  If no route
1576 * is found and it cannot be allocated, then return NULL.  This routine
1577 * is called by TCP routines that access the rmx structure and by tcp_mss
1578 * to get the interface MTU.
1579 */
1580u_long
1581tcp_maxmtu(inc)
1582	struct in_conninfo *inc;
1583{
1584	struct route sro;
1585	struct sockaddr_in *dst;
1586	struct ifnet *ifp;
1587	u_long maxmtu = 0;
1588
1589	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1590
1591	bzero(&sro, sizeof(sro));
1592	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1593	        dst = (struct sockaddr_in *)&sro.ro_dst;
1594		dst->sin_family = AF_INET;
1595		dst->sin_len = sizeof(*dst);
1596		dst->sin_addr = inc->inc_faddr;
1597		rtalloc_ign(&sro, RTF_CLONING);
1598	}
1599	if (sro.ro_rt != NULL) {
1600		ifp = sro.ro_rt->rt_ifp;
1601		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1602			maxmtu = ifp->if_mtu;
1603		else
1604			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1605		RTFREE(sro.ro_rt);
1606	}
1607	return (maxmtu);
1608}
1609
1610#ifdef INET6
1611u_long
1612tcp_maxmtu6(inc)
1613	struct in_conninfo *inc;
1614{
1615	struct route_in6 sro6;
1616	struct ifnet *ifp;
1617	u_long maxmtu = 0;
1618
1619	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1620
1621	bzero(&sro6, sizeof(sro6));
1622	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1623		sro6.ro_dst.sin6_family = AF_INET6;
1624		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1625		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1626		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1627	}
1628	if (sro6.ro_rt != NULL) {
1629		ifp = sro6.ro_rt->rt_ifp;
1630		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1631			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1632		else
1633			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1634				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1635		RTFREE(sro6.ro_rt);
1636	}
1637
1638	return (maxmtu);
1639}
1640#endif /* INET6 */
1641
1642#ifdef IPSEC
1643/* compute ESP/AH header size for TCP, including outer IP header. */
1644size_t
1645ipsec_hdrsiz_tcp(tp)
1646	struct tcpcb *tp;
1647{
1648	struct inpcb *inp;
1649	struct mbuf *m;
1650	size_t hdrsiz;
1651	struct ip *ip;
1652#ifdef INET6
1653	struct ip6_hdr *ip6;
1654#endif
1655	struct tcphdr *th;
1656
1657	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1658		return (0);
1659	MGETHDR(m, M_DONTWAIT, MT_DATA);
1660	if (!m)
1661		return (0);
1662
1663#ifdef INET6
1664	if ((inp->inp_vflag & INP_IPV6) != 0) {
1665		ip6 = mtod(m, struct ip6_hdr *);
1666		th = (struct tcphdr *)(ip6 + 1);
1667		m->m_pkthdr.len = m->m_len =
1668			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1669		tcpip_fillheaders(inp, ip6, th);
1670		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1671	} else
1672#endif /* INET6 */
1673	{
1674		ip = mtod(m, struct ip *);
1675		th = (struct tcphdr *)(ip + 1);
1676		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1677		tcpip_fillheaders(inp, ip, th);
1678		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1679	}
1680
1681	m_free(m);
1682	return (hdrsiz);
1683}
1684#endif /*IPSEC*/
1685
1686/*
1687 * Move a TCP connection into TIME_WAIT state.
1688 *    tcbinfo is locked.
1689 *    inp is locked, and is unlocked before returning.
1690 */
1691void
1692tcp_twstart(tp)
1693	struct tcpcb *tp;
1694{
1695	struct tcptw *tw;
1696	struct inpcb *inp;
1697	int tw_time, acknow;
1698	struct socket *so;
1699
1700	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1701	INP_LOCK_ASSERT(tp->t_inpcb);
1702
1703	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1704	if (tw == NULL) {
1705		tw = tcp_timer_2msl_tw(1);
1706		if (tw == NULL) {
1707			tp = tcp_close(tp);
1708			if (tp != NULL)
1709				INP_UNLOCK(tp->t_inpcb);
1710			return;
1711		}
1712	}
1713	inp = tp->t_inpcb;
1714	tw->tw_inpcb = inp;
1715
1716	/*
1717	 * Recover last window size sent.
1718	 */
1719	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1720
1721	/*
1722	 * Set t_recent if timestamps are used on the connection.
1723	 */
1724	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1725	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1726		tw->t_recent = tp->ts_recent;
1727	else
1728		tw->t_recent = 0;
1729
1730	tw->snd_nxt = tp->snd_nxt;
1731	tw->rcv_nxt = tp->rcv_nxt;
1732	tw->iss     = tp->iss;
1733	tw->irs     = tp->irs;
1734	tw->t_starttime = tp->t_starttime;
1735	tw->tw_time = 0;
1736
1737/* XXX
1738 * If this code will
1739 * be used for fin-wait-2 state also, then we may need
1740 * a ts_recent from the last segment.
1741 */
1742	tw_time = 2 * tcp_msl;
1743	acknow = tp->t_flags & TF_ACKNOW;
1744
1745	/*
1746	 * First, discard tcpcb state, which includes stopping its timers and
1747	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1748	 * that work is now done in the caller.
1749	 */
1750	tcp_discardcb(tp);
1751	so = inp->inp_socket;
1752	SOCK_LOCK(so);
1753	tw->tw_cred = crhold(so->so_cred);
1754	tw->tw_so_options = so->so_options;
1755	SOCK_UNLOCK(so);
1756	if (acknow)
1757		tcp_twrespond(tw, TH_ACK);
1758	inp->inp_ppcb = (caddr_t)tw;
1759	inp->inp_vflag |= INP_TIMEWAIT;
1760	tcp_timer_2msl_reset(tw, tw_time);
1761
1762	/*
1763	 * If the inpcb owns the sole reference to the socket, then we can
1764	 * detach and free the socket as it is not needed in time wait.
1765	 */
1766	if (inp->inp_vflag & INP_SOCKREF) {
1767		KASSERT(so->so_state & SS_PROTOREF,
1768		    ("tcp_twstart: !SS_PROTOREF"));
1769		inp->inp_vflag &= ~INP_SOCKREF;
1770#ifdef INET6
1771		if (inp->inp_vflag & INP_IPV6PROTO)
1772			in6_pcbdetach(inp);
1773		else
1774#endif
1775			in_pcbdetach(inp);
1776		INP_UNLOCK(inp);
1777		ACCEPT_LOCK();
1778		SOCK_LOCK(so);
1779		so->so_state &= ~SS_PROTOREF;
1780		sofree(so);
1781	} else
1782		INP_UNLOCK(inp);
1783}
1784
1785/*
1786 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1787 * the actual rate is slightly higher due to the addition of
1788 * random positive increments.
1789 *
1790 * Most other new OSes use semi-randomized ISN values, so we
1791 * do not need to worry about them.
1792 */
1793#define MS_ISN_BYTES_PER_SECOND		250000
1794
1795/*
1796 * Determine if the ISN we will generate has advanced beyond the last
1797 * sequence number used by the previous connection.  If so, indicate
1798 * that it is safe to recycle this tw socket by returning 1.
1799 *
1800 * XXXRW: This function should assert the inpcb lock as it does multiple
1801 * non-atomic reads from the tcptw, but is currently called without it from
1802 * in_pcb.c:in_pcblookup_local().
1803 */
1804int
1805tcp_twrecycleable(struct tcptw *tw)
1806{
1807	tcp_seq new_iss = tw->iss;
1808	tcp_seq new_irs = tw->irs;
1809
1810	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1811	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1812
1813	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1814		return (1);
1815	else
1816		return (0);
1817}
1818
1819void
1820tcp_twclose(struct tcptw *tw, int reuse)
1821{
1822	struct socket *so;
1823	struct inpcb *inp;
1824
1825	/*
1826	 * At this point, we are in one of two situations:
1827	 *
1828	 * (1) We have no socket, just an inpcb<->twtcp pair.  Release it all
1829	 * after validating.
1830	 *
1831	 * (2) We have a socket, which we may or may now own the reference
1832	 * for.  If we own the reference, release all the state after
1833	 * validating.  If not, leave it for the socket close to clean up.
1834	 */
1835	inp = tw->tw_inpcb;
1836	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1837	KASSERT(inp->inp_ppcb == (void *)tw, ("tcp_twclose: inp_ppcb != tw"));
1838	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1839	INP_LOCK_ASSERT(inp);
1840
1841	tw->tw_inpcb = NULL;
1842	tcp_timer_2msl_stop(tw);
1843	inp->inp_ppcb = NULL;
1844	inp->inp_vflag |= INP_DROPPED;
1845
1846	so = inp->inp_socket;
1847	if (so != NULL) {
1848		if (inp->inp_vflag & INP_SOCKREF) {
1849			/*
1850			 * If a socket is present, and we own the only
1851			 * reference, we need to tear down the socket and the
1852			 * inpcb.
1853			 */
1854			inp->inp_vflag &= ~INP_SOCKREF;
1855#ifdef INET6
1856			if (inp->inp_vflag & INP_IPV6PROTO) {
1857				in6_pcbdetach(inp);
1858				in6_pcbfree(inp);
1859			} else {
1860				in_pcbdetach(inp);
1861				in_pcbfree(inp);
1862			}
1863#endif
1864			ACCEPT_LOCK();
1865			SOCK_LOCK(so);
1866			KASSERT(so->so_state & SS_PROTOREF,
1867			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1868			so->so_state &= ~SS_PROTOREF;
1869			sofree(so);
1870		} else {
1871			/*
1872			 * If we don't own the only reference, the socket and
1873			 * inpcb need to be left around to be handled by
1874			 * tcp_usr_detach() later.
1875			 */
1876			INP_UNLOCK(inp);
1877		}
1878	} else {
1879#ifdef INET6
1880		if (inp->inp_vflag & INP_IPV6PROTO)
1881			in6_pcbfree(inp);
1882		else
1883#endif
1884			in_pcbfree(inp);
1885	}
1886	tcpstat.tcps_closed++;
1887	crfree(tw->tw_cred);
1888	tw->tw_cred = NULL;
1889	if (reuse)
1890		return;
1891	uma_zfree(tcptw_zone, tw);
1892}
1893
1894int
1895tcp_twrespond(struct tcptw *tw, int flags)
1896{
1897	struct inpcb *inp = tw->tw_inpcb;
1898	struct tcphdr *th;
1899	struct mbuf *m;
1900	struct ip *ip = NULL;
1901	u_int8_t *optp;
1902	u_int hdrlen, optlen;
1903	int error;
1904#ifdef INET6
1905	struct ip6_hdr *ip6 = NULL;
1906	int isipv6 = inp->inp_inc.inc_isipv6;
1907#endif
1908
1909	INP_LOCK_ASSERT(inp);
1910
1911	m = m_gethdr(M_DONTWAIT, MT_DATA);
1912	if (m == NULL)
1913		return (ENOBUFS);
1914	m->m_data += max_linkhdr;
1915
1916#ifdef MAC
1917	mac_create_mbuf_from_inpcb(inp, m);
1918#endif
1919
1920#ifdef INET6
1921	if (isipv6) {
1922		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1923		ip6 = mtod(m, struct ip6_hdr *);
1924		th = (struct tcphdr *)(ip6 + 1);
1925		tcpip_fillheaders(inp, ip6, th);
1926	} else
1927#endif
1928	{
1929		hdrlen = sizeof(struct tcpiphdr);
1930		ip = mtod(m, struct ip *);
1931		th = (struct tcphdr *)(ip + 1);
1932		tcpip_fillheaders(inp, ip, th);
1933	}
1934	optp = (u_int8_t *)(th + 1);
1935
1936	/*
1937	 * Send a timestamp and echo-reply if both our side and our peer
1938	 * have sent timestamps in our SYN's and this is not a RST.
1939	 */
1940	if (tw->t_recent && flags == TH_ACK) {
1941		u_int32_t *lp = (u_int32_t *)optp;
1942
1943		/* Form timestamp option as shown in appendix A of RFC 1323. */
1944		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1945		*lp++ = htonl(ticks);
1946		*lp   = htonl(tw->t_recent);
1947		optp += TCPOLEN_TSTAMP_APPA;
1948	}
1949
1950	optlen = optp - (u_int8_t *)(th + 1);
1951
1952	m->m_len = hdrlen + optlen;
1953	m->m_pkthdr.len = m->m_len;
1954
1955	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1956
1957	th->th_seq = htonl(tw->snd_nxt);
1958	th->th_ack = htonl(tw->rcv_nxt);
1959	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1960	th->th_flags = flags;
1961	th->th_win = htons(tw->last_win);
1962
1963#ifdef INET6
1964	if (isipv6) {
1965		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1966		    sizeof(struct tcphdr) + optlen);
1967		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1968		error = ip6_output(m, inp->in6p_outputopts, NULL,
1969		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1970	} else
1971#endif
1972	{
1973		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1974		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1975		m->m_pkthdr.csum_flags = CSUM_TCP;
1976		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1977		ip->ip_len = m->m_pkthdr.len;
1978		if (path_mtu_discovery)
1979			ip->ip_off |= IP_DF;
1980		error = ip_output(m, inp->inp_options, NULL,
1981		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1982		    NULL, inp);
1983	}
1984	if (flags & TH_ACK)
1985		tcpstat.tcps_sndacks++;
1986	else
1987		tcpstat.tcps_sndctrl++;
1988	tcpstat.tcps_sndtotal++;
1989	return (error);
1990}
1991
1992/*
1993 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1994 *
1995 * This code attempts to calculate the bandwidth-delay product as a
1996 * means of determining the optimal window size to maximize bandwidth,
1997 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1998 * routers.  This code also does a fairly good job keeping RTTs in check
1999 * across slow links like modems.  We implement an algorithm which is very
2000 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2001 * transmitter side of a TCP connection and so only effects the transmit
2002 * side of the connection.
2003 *
2004 * BACKGROUND:  TCP makes no provision for the management of buffer space
2005 * at the end points or at the intermediate routers and switches.  A TCP
2006 * stream, whether using NewReno or not, will eventually buffer as
2007 * many packets as it is able and the only reason this typically works is
2008 * due to the fairly small default buffers made available for a connection
2009 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2010 * scaling it is now fairly easy for even a single TCP connection to blow-out
2011 * all available buffer space not only on the local interface, but on
2012 * intermediate routers and switches as well.  NewReno makes a misguided
2013 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2014 * then backing off, then steadily increasing the window again until another
2015 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2016 * is only made worse as network loads increase and the idea of intentionally
2017 * blowing out network buffers is, frankly, a terrible way to manage network
2018 * resources.
2019 *
2020 * It is far better to limit the transmit window prior to the failure
2021 * condition being achieved.  There are two general ways to do this:  First
2022 * you can 'scan' through different transmit window sizes and locate the
2023 * point where the RTT stops increasing, indicating that you have filled the
2024 * pipe, then scan backwards until you note that RTT stops decreasing, then
2025 * repeat ad-infinitum.  This method works in principle but has severe
2026 * implementation issues due to RTT variances, timer granularity, and
2027 * instability in the algorithm which can lead to many false positives and
2028 * create oscillations as well as interact badly with other TCP streams
2029 * implementing the same algorithm.
2030 *
2031 * The second method is to limit the window to the bandwidth delay product
2032 * of the link.  This is the method we implement.  RTT variances and our
2033 * own manipulation of the congestion window, bwnd, can potentially
2034 * destabilize the algorithm.  For this reason we have to stabilize the
2035 * elements used to calculate the window.  We do this by using the minimum
2036 * observed RTT, the long term average of the observed bandwidth, and
2037 * by adding two segments worth of slop.  It isn't perfect but it is able
2038 * to react to changing conditions and gives us a very stable basis on
2039 * which to extend the algorithm.
2040 */
2041void
2042tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2043{
2044	u_long bw;
2045	u_long bwnd;
2046	int save_ticks;
2047
2048	INP_LOCK_ASSERT(tp->t_inpcb);
2049
2050	/*
2051	 * If inflight_enable is disabled in the middle of a tcp connection,
2052	 * make sure snd_bwnd is effectively disabled.
2053	 */
2054	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2055		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2056		tp->snd_bandwidth = 0;
2057		return;
2058	}
2059
2060	/*
2061	 * Figure out the bandwidth.  Due to the tick granularity this
2062	 * is a very rough number and it MUST be averaged over a fairly
2063	 * long period of time.  XXX we need to take into account a link
2064	 * that is not using all available bandwidth, but for now our
2065	 * slop will ramp us up if this case occurs and the bandwidth later
2066	 * increases.
2067	 *
2068	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2069	 * effectively reset t_bw_rtttime for this case.
2070	 */
2071	save_ticks = ticks;
2072	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2073		return;
2074
2075	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2076	    (save_ticks - tp->t_bw_rtttime);
2077	tp->t_bw_rtttime = save_ticks;
2078	tp->t_bw_rtseq = ack_seq;
2079	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2080		return;
2081	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2082
2083	tp->snd_bandwidth = bw;
2084
2085	/*
2086	 * Calculate the semi-static bandwidth delay product, plus two maximal
2087	 * segments.  The additional slop puts us squarely in the sweet
2088	 * spot and also handles the bandwidth run-up case and stabilization.
2089	 * Without the slop we could be locking ourselves into a lower
2090	 * bandwidth.
2091	 *
2092	 * Situations Handled:
2093	 *	(1) Prevents over-queueing of packets on LANs, especially on
2094	 *	    high speed LANs, allowing larger TCP buffers to be
2095	 *	    specified, and also does a good job preventing
2096	 *	    over-queueing of packets over choke points like modems
2097	 *	    (at least for the transmit side).
2098	 *
2099	 *	(2) Is able to handle changing network loads (bandwidth
2100	 *	    drops so bwnd drops, bandwidth increases so bwnd
2101	 *	    increases).
2102	 *
2103	 *	(3) Theoretically should stabilize in the face of multiple
2104	 *	    connections implementing the same algorithm (this may need
2105	 *	    a little work).
2106	 *
2107	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2108	 *	    be adjusted with a sysctl but typically only needs to be
2109	 *	    on very slow connections.  A value no smaller then 5
2110	 *	    should be used, but only reduce this default if you have
2111	 *	    no other choice.
2112	 */
2113#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2114	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2115#undef USERTT
2116
2117	if (tcp_inflight_debug > 0) {
2118		static int ltime;
2119		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2120			ltime = ticks;
2121			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2122			    tp,
2123			    bw,
2124			    tp->t_rttbest,
2125			    tp->t_srtt,
2126			    bwnd
2127			);
2128		}
2129	}
2130	if ((long)bwnd < tcp_inflight_min)
2131		bwnd = tcp_inflight_min;
2132	if (bwnd > tcp_inflight_max)
2133		bwnd = tcp_inflight_max;
2134	if ((long)bwnd < tp->t_maxseg * 2)
2135		bwnd = tp->t_maxseg * 2;
2136	tp->snd_bwnd = bwnd;
2137}
2138
2139#ifdef TCP_SIGNATURE
2140/*
2141 * Callback function invoked by m_apply() to digest TCP segment data
2142 * contained within an mbuf chain.
2143 */
2144static int
2145tcp_signature_apply(void *fstate, void *data, u_int len)
2146{
2147
2148	MD5Update(fstate, (u_char *)data, len);
2149	return (0);
2150}
2151
2152/*
2153 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2154 *
2155 * Parameters:
2156 * m		pointer to head of mbuf chain
2157 * off0		offset to TCP header within the mbuf chain
2158 * len		length of TCP segment data, excluding options
2159 * optlen	length of TCP segment options
2160 * buf		pointer to storage for computed MD5 digest
2161 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2162 *
2163 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2164 * When called from tcp_input(), we can be sure that th_sum has been
2165 * zeroed out and verified already.
2166 *
2167 * This function is for IPv4 use only. Calling this function with an
2168 * IPv6 packet in the mbuf chain will yield undefined results.
2169 *
2170 * Return 0 if successful, otherwise return -1.
2171 *
2172 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2173 * search with the destination IP address, and a 'magic SPI' to be
2174 * determined by the application. This is hardcoded elsewhere to 1179
2175 * right now. Another branch of this code exists which uses the SPD to
2176 * specify per-application flows but it is unstable.
2177 */
2178int
2179tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2180    u_char *buf, u_int direction)
2181{
2182	union sockaddr_union dst;
2183	struct ippseudo ippseudo;
2184	MD5_CTX ctx;
2185	int doff;
2186	struct ip *ip;
2187	struct ipovly *ipovly;
2188	struct secasvar *sav;
2189	struct tcphdr *th;
2190	u_short savecsum;
2191
2192	KASSERT(m != NULL, ("NULL mbuf chain"));
2193	KASSERT(buf != NULL, ("NULL signature pointer"));
2194
2195	/* Extract the destination from the IP header in the mbuf. */
2196	ip = mtod(m, struct ip *);
2197	bzero(&dst, sizeof(union sockaddr_union));
2198	dst.sa.sa_len = sizeof(struct sockaddr_in);
2199	dst.sa.sa_family = AF_INET;
2200	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2201	    ip->ip_src : ip->ip_dst;
2202
2203	/* Look up an SADB entry which matches the address of the peer. */
2204	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2205	if (sav == NULL) {
2206		printf("%s: SADB lookup failed for %s\n", __func__,
2207		    inet_ntoa(dst.sin.sin_addr));
2208		return (EINVAL);
2209	}
2210
2211	MD5Init(&ctx);
2212	ipovly = (struct ipovly *)ip;
2213	th = (struct tcphdr *)((u_char *)ip + off0);
2214	doff = off0 + sizeof(struct tcphdr) + optlen;
2215
2216	/*
2217	 * Step 1: Update MD5 hash with IP pseudo-header.
2218	 *
2219	 * XXX The ippseudo header MUST be digested in network byte order,
2220	 * or else we'll fail the regression test. Assume all fields we've
2221	 * been doing arithmetic on have been in host byte order.
2222	 * XXX One cannot depend on ipovly->ih_len here. When called from
2223	 * tcp_output(), the underlying ip_len member has not yet been set.
2224	 */
2225	ippseudo.ippseudo_src = ipovly->ih_src;
2226	ippseudo.ippseudo_dst = ipovly->ih_dst;
2227	ippseudo.ippseudo_pad = 0;
2228	ippseudo.ippseudo_p = IPPROTO_TCP;
2229	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2230	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2231
2232	/*
2233	 * Step 2: Update MD5 hash with TCP header, excluding options.
2234	 * The TCP checksum must be set to zero.
2235	 */
2236	savecsum = th->th_sum;
2237	th->th_sum = 0;
2238	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2239	th->th_sum = savecsum;
2240
2241	/*
2242	 * Step 3: Update MD5 hash with TCP segment data.
2243	 *         Use m_apply() to avoid an early m_pullup().
2244	 */
2245	if (len > 0)
2246		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2247
2248	/*
2249	 * Step 4: Update MD5 hash with shared secret.
2250	 */
2251	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2252	MD5Final(buf, &ctx);
2253
2254	key_sa_recordxfer(sav, m);
2255	KEY_FREESAV(&sav);
2256	return (0);
2257}
2258#endif /* TCP_SIGNATURE */
2259
2260static int
2261sysctl_drop(SYSCTL_HANDLER_ARGS)
2262{
2263	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2264	struct sockaddr_storage addrs[2];
2265	struct inpcb *inp;
2266	struct tcpcb *tp;
2267	struct tcptw *tw;
2268	struct sockaddr_in *fin, *lin;
2269#ifdef INET6
2270	struct sockaddr_in6 *fin6, *lin6;
2271	struct in6_addr f6, l6;
2272#endif
2273	int error;
2274
2275	inp = NULL;
2276	fin = lin = NULL;
2277#ifdef INET6
2278	fin6 = lin6 = NULL;
2279#endif
2280	error = 0;
2281
2282	if (req->oldptr != NULL || req->oldlen != 0)
2283		return (EINVAL);
2284	if (req->newptr == NULL)
2285		return (EPERM);
2286	if (req->newlen < sizeof(addrs))
2287		return (ENOMEM);
2288	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2289	if (error)
2290		return (error);
2291
2292	switch (addrs[0].ss_family) {
2293#ifdef INET6
2294	case AF_INET6:
2295		fin6 = (struct sockaddr_in6 *)&addrs[0];
2296		lin6 = (struct sockaddr_in6 *)&addrs[1];
2297		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2298		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2299			return (EINVAL);
2300		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2301			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2302				return (EINVAL);
2303			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2304			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2305			fin = (struct sockaddr_in *)&addrs[0];
2306			lin = (struct sockaddr_in *)&addrs[1];
2307			break;
2308		}
2309		error = sa6_embedscope(fin6, ip6_use_defzone);
2310		if (error)
2311			return (error);
2312		error = sa6_embedscope(lin6, ip6_use_defzone);
2313		if (error)
2314			return (error);
2315		break;
2316#endif
2317	case AF_INET:
2318		fin = (struct sockaddr_in *)&addrs[0];
2319		lin = (struct sockaddr_in *)&addrs[1];
2320		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2321		    lin->sin_len != sizeof(struct sockaddr_in))
2322			return (EINVAL);
2323		break;
2324	default:
2325		return (EINVAL);
2326	}
2327	INP_INFO_WLOCK(&tcbinfo);
2328	switch (addrs[0].ss_family) {
2329#ifdef INET6
2330	case AF_INET6:
2331		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2332		    &l6, lin6->sin6_port, 0, NULL);
2333		break;
2334#endif
2335	case AF_INET:
2336		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2337		    lin->sin_addr, lin->sin_port, 0, NULL);
2338		break;
2339	}
2340	if (inp != NULL) {
2341		INP_LOCK(inp);
2342		if (inp->inp_vflag & INP_TIMEWAIT) {
2343			tw = intotw(inp);
2344			tcp_twclose(tw, 0);
2345		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2346			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2347			tp = intotcpcb(inp);
2348			tcp_drop(tp, ECONNABORTED);
2349		}
2350		INP_UNLOCK(inp);
2351	} else
2352		error = ESRCH;
2353	INP_INFO_WUNLOCK(&tcbinfo);
2354	return (error);
2355}
2356
2357SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2358    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2359    0, sysctl_drop, "", "Drop TCP connection");
2360