tcp_timewait.c revision 145869
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 145869 2005-05-04 13:48:44Z andre $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/nd6.h>
78#endif
79#include <netinet/ip_icmp.h>
80#include <netinet/tcp.h>
81#include <netinet/tcp_fsm.h>
82#include <netinet/tcp_seq.h>
83#include <netinet/tcp_timer.h>
84#include <netinet/tcp_var.h>
85#ifdef INET6
86#include <netinet6/tcp6_var.h>
87#endif
88#include <netinet/tcpip.h>
89#ifdef TCPDEBUG
90#include <netinet/tcp_debug.h>
91#endif
92#include <netinet6/ip6protosw.h>
93
94#ifdef IPSEC
95#include <netinet6/ipsec.h>
96#ifdef INET6
97#include <netinet6/ipsec6.h>
98#endif
99#include <netkey/key.h>
100#endif /*IPSEC*/
101
102#ifdef FAST_IPSEC
103#include <netipsec/ipsec.h>
104#include <netipsec/xform.h>
105#ifdef INET6
106#include <netipsec/ipsec6.h>
107#endif
108#include <netipsec/key.h>
109#define	IPSEC
110#endif /*FAST_IPSEC*/
111
112#include <machine/in_cksum.h>
113#include <sys/md5.h>
114
115int	tcp_mssdflt = TCP_MSS;
116SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
117    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
118
119#ifdef INET6
120int	tcp_v6mssdflt = TCP6_MSS;
121SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
122	CTLFLAG_RW, &tcp_v6mssdflt , 0,
123	"Default TCP Maximum Segment Size for IPv6");
124#endif
125
126/*
127 * Minimum MSS we accept and use. This prevents DoS attacks where
128 * we are forced to a ridiculous low MSS like 20 and send hundreds
129 * of packets instead of one. The effect scales with the available
130 * bandwidth and quickly saturates the CPU and network interface
131 * with packet generation and sending. Set to zero to disable MINMSS
132 * checking. This setting prevents us from sending too small packets.
133 */
134int	tcp_minmss = TCP_MINMSS;
135SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
136    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
137/*
138 * Number of TCP segments per second we accept from remote host
139 * before we start to calculate average segment size. If average
140 * segment size drops below the minimum TCP MSS we assume a DoS
141 * attack and reset+drop the connection. Care has to be taken not to
142 * set this value too small to not kill interactive type connections
143 * (telnet, SSH) which send many small packets.
144 */
145int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
146SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
147    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
148    "be under the MINMSS Size");
149
150#if 0
151static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
152SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
153    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
154#endif
155
156int	tcp_do_rfc1323 = 1;
157SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
158    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
159
160static int	tcp_tcbhashsize = 0;
161SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
162     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
163
164static int	do_tcpdrain = 1;
165SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
166     "Enable tcp_drain routine for extra help when low on mbufs");
167
168SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
169    &tcbinfo.ipi_count, 0, "Number of active PCBs");
170
171static int	icmp_may_rst = 1;
172SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
173    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
174
175static int	tcp_isn_reseed_interval = 0;
176SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
177    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
178
179/*
180 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
181 * 1024 exists only for debugging.  A good production default would be
182 * something like 6100.
183 */
184SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
185    "TCP inflight data limiting");
186
187static int	tcp_inflight_enable = 1;
188SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
189    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
190
191static int	tcp_inflight_debug = 0;
192SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
193    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
194
195static int	tcp_inflight_min = 6144;
196SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
197    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
198
199static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
200SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
201    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
202
203static int	tcp_inflight_stab = 20;
204SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
205    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
206
207uma_zone_t sack_hole_zone;
208
209static struct inpcb *tcp_notify(struct inpcb *, int);
210static void	tcp_discardcb(struct tcpcb *);
211static void	tcp_isn_tick(void *);
212
213/*
214 * Target size of TCP PCB hash tables. Must be a power of two.
215 *
216 * Note that this can be overridden by the kernel environment
217 * variable net.inet.tcp.tcbhashsize
218 */
219#ifndef TCBHASHSIZE
220#define TCBHASHSIZE	512
221#endif
222
223/*
224 * XXX
225 * Callouts should be moved into struct tcp directly.  They are currently
226 * separate because the tcpcb structure is exported to userland for sysctl
227 * parsing purposes, which do not know about callouts.
228 */
229struct	tcpcb_mem {
230	struct	tcpcb tcb;
231	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
232	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
233};
234
235static uma_zone_t tcpcb_zone;
236static uma_zone_t tcptw_zone;
237struct callout isn_callout;
238
239/*
240 * Tcp initialization
241 */
242void
243tcp_init()
244{
245	int hashsize = TCBHASHSIZE;
246
247	tcp_delacktime = TCPTV_DELACK;
248	tcp_keepinit = TCPTV_KEEP_INIT;
249	tcp_keepidle = TCPTV_KEEP_IDLE;
250	tcp_keepintvl = TCPTV_KEEPINTVL;
251	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
252	tcp_msl = TCPTV_MSL;
253	tcp_rexmit_min = TCPTV_MIN;
254	tcp_rexmit_slop = TCPTV_CPU_VAR;
255
256	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
257	LIST_INIT(&tcb);
258	tcbinfo.listhead = &tcb;
259	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
260	if (!powerof2(hashsize)) {
261		printf("WARNING: TCB hash size not a power of 2\n");
262		hashsize = 512; /* safe default */
263	}
264	tcp_tcbhashsize = hashsize;
265	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
266	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
267					&tcbinfo.porthashmask);
268	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
269	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
270	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
271#ifdef INET6
272#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
273#else /* INET6 */
274#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
275#endif /* INET6 */
276	if (max_protohdr < TCP_MINPROTOHDR)
277		max_protohdr = TCP_MINPROTOHDR;
278	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
279		panic("tcp_init");
280#undef TCP_MINPROTOHDR
281	/*
282	 * These have to be type stable for the benefit of the timers.
283	 */
284	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
285	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
286	uma_zone_set_max(tcpcb_zone, maxsockets);
287	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
288	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
289	uma_zone_set_max(tcptw_zone, maxsockets / 5);
290	tcp_timer_init();
291	syncache_init();
292	tcp_hc_init();
293	tcp_reass_init();
294	callout_init(&isn_callout, CALLOUT_MPSAFE);
295	tcp_isn_tick(NULL);
296	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
297		SHUTDOWN_PRI_DEFAULT);
298	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
299	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
300}
301
302void
303tcp_fini(xtp)
304	void *xtp;
305{
306	callout_stop(&isn_callout);
307
308}
309
310/*
311 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
312 * tcp_template used to store this data in mbufs, but we now recopy it out
313 * of the tcpcb each time to conserve mbufs.
314 */
315void
316tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
317	struct inpcb *inp;
318	void *ip_ptr;
319	void *tcp_ptr;
320{
321	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
322
323	INP_LOCK_ASSERT(inp);
324
325#ifdef INET6
326	if ((inp->inp_vflag & INP_IPV6) != 0) {
327		struct ip6_hdr *ip6;
328
329		ip6 = (struct ip6_hdr *)ip_ptr;
330		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
331			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
332		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
333			(IPV6_VERSION & IPV6_VERSION_MASK);
334		ip6->ip6_nxt = IPPROTO_TCP;
335		ip6->ip6_plen = sizeof(struct tcphdr);
336		ip6->ip6_src = inp->in6p_laddr;
337		ip6->ip6_dst = inp->in6p_faddr;
338	} else
339#endif
340	{
341		struct ip *ip;
342
343		ip = (struct ip *)ip_ptr;
344		ip->ip_v = IPVERSION;
345		ip->ip_hl = 5;
346		ip->ip_tos = inp->inp_ip_tos;
347		ip->ip_len = 0;
348		ip->ip_id = 0;
349		ip->ip_off = 0;
350		ip->ip_ttl = inp->inp_ip_ttl;
351		ip->ip_sum = 0;
352		ip->ip_p = IPPROTO_TCP;
353		ip->ip_src = inp->inp_laddr;
354		ip->ip_dst = inp->inp_faddr;
355	}
356	th->th_sport = inp->inp_lport;
357	th->th_dport = inp->inp_fport;
358	th->th_seq = 0;
359	th->th_ack = 0;
360	th->th_x2 = 0;
361	th->th_off = 5;
362	th->th_flags = 0;
363	th->th_win = 0;
364	th->th_urp = 0;
365	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
366}
367
368/*
369 * Create template to be used to send tcp packets on a connection.
370 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
371 * use for this function is in keepalives, which use tcp_respond.
372 */
373struct tcptemp *
374tcpip_maketemplate(inp)
375	struct inpcb *inp;
376{
377	struct mbuf *m;
378	struct tcptemp *n;
379
380	m = m_get(M_DONTWAIT, MT_HEADER);
381	if (m == NULL)
382		return (0);
383	m->m_len = sizeof(struct tcptemp);
384	n = mtod(m, struct tcptemp *);
385
386	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
387	return (n);
388}
389
390/*
391 * Send a single message to the TCP at address specified by
392 * the given TCP/IP header.  If m == NULL, then we make a copy
393 * of the tcpiphdr at ti and send directly to the addressed host.
394 * This is used to force keep alive messages out using the TCP
395 * template for a connection.  If flags are given then we send
396 * a message back to the TCP which originated the * segment ti,
397 * and discard the mbuf containing it and any other attached mbufs.
398 *
399 * In any case the ack and sequence number of the transmitted
400 * segment are as specified by the parameters.
401 *
402 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
403 */
404void
405tcp_respond(tp, ipgen, th, m, ack, seq, flags)
406	struct tcpcb *tp;
407	void *ipgen;
408	register struct tcphdr *th;
409	register struct mbuf *m;
410	tcp_seq ack, seq;
411	int flags;
412{
413	register int tlen;
414	int win = 0;
415	struct ip *ip;
416	struct tcphdr *nth;
417#ifdef INET6
418	struct ip6_hdr *ip6;
419	int isipv6;
420#endif /* INET6 */
421	int ipflags = 0;
422	struct inpcb *inp;
423
424	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
425
426#ifdef INET6
427	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
428	ip6 = ipgen;
429#endif /* INET6 */
430	ip = ipgen;
431
432	if (tp != NULL) {
433		inp = tp->t_inpcb;
434		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
435		INP_INFO_WLOCK_ASSERT(&tcbinfo);
436		INP_LOCK_ASSERT(inp);
437	} else
438		inp = NULL;
439
440	if (tp != NULL) {
441		if (!(flags & TH_RST)) {
442			win = sbspace(&inp->inp_socket->so_rcv);
443			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
444				win = (long)TCP_MAXWIN << tp->rcv_scale;
445		}
446	}
447	if (m == NULL) {
448		m = m_gethdr(M_DONTWAIT, MT_HEADER);
449		if (m == NULL)
450			return;
451		tlen = 0;
452		m->m_data += max_linkhdr;
453#ifdef INET6
454		if (isipv6) {
455			bcopy((caddr_t)ip6, mtod(m, caddr_t),
456			      sizeof(struct ip6_hdr));
457			ip6 = mtod(m, struct ip6_hdr *);
458			nth = (struct tcphdr *)(ip6 + 1);
459		} else
460#endif /* INET6 */
461	      {
462		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
463		ip = mtod(m, struct ip *);
464		nth = (struct tcphdr *)(ip + 1);
465	      }
466		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
467		flags = TH_ACK;
468	} else {
469		m_freem(m->m_next);
470		m->m_next = NULL;
471		m->m_data = (caddr_t)ipgen;
472		/* m_len is set later */
473		tlen = 0;
474#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
475#ifdef INET6
476		if (isipv6) {
477			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
478			nth = (struct tcphdr *)(ip6 + 1);
479		} else
480#endif /* INET6 */
481	      {
482		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
483		nth = (struct tcphdr *)(ip + 1);
484	      }
485		if (th != nth) {
486			/*
487			 * this is usually a case when an extension header
488			 * exists between the IPv6 header and the
489			 * TCP header.
490			 */
491			nth->th_sport = th->th_sport;
492			nth->th_dport = th->th_dport;
493		}
494		xchg(nth->th_dport, nth->th_sport, n_short);
495#undef xchg
496	}
497#ifdef INET6
498	if (isipv6) {
499		ip6->ip6_flow = 0;
500		ip6->ip6_vfc = IPV6_VERSION;
501		ip6->ip6_nxt = IPPROTO_TCP;
502		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
503						tlen));
504		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
505	} else
506#endif
507	{
508		tlen += sizeof (struct tcpiphdr);
509		ip->ip_len = tlen;
510		ip->ip_ttl = ip_defttl;
511		if (path_mtu_discovery)
512			ip->ip_off |= IP_DF;
513	}
514	m->m_len = tlen;
515	m->m_pkthdr.len = tlen;
516	m->m_pkthdr.rcvif = NULL;
517#ifdef MAC
518	if (inp != NULL) {
519		/*
520		 * Packet is associated with a socket, so allow the
521		 * label of the response to reflect the socket label.
522		 */
523		INP_LOCK_ASSERT(inp);
524		mac_create_mbuf_from_inpcb(inp, m);
525	} else {
526		/*
527		 * Packet is not associated with a socket, so possibly
528		 * update the label in place.
529		 */
530		mac_reflect_mbuf_tcp(m);
531	}
532#endif
533	nth->th_seq = htonl(seq);
534	nth->th_ack = htonl(ack);
535	nth->th_x2 = 0;
536	nth->th_off = sizeof (struct tcphdr) >> 2;
537	nth->th_flags = flags;
538	if (tp != NULL)
539		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
540	else
541		nth->th_win = htons((u_short)win);
542	nth->th_urp = 0;
543#ifdef INET6
544	if (isipv6) {
545		nth->th_sum = 0;
546		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
547					sizeof(struct ip6_hdr),
548					tlen - sizeof(struct ip6_hdr));
549		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
550		    NULL, NULL);
551	} else
552#endif /* INET6 */
553	{
554		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
555		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
556		m->m_pkthdr.csum_flags = CSUM_TCP;
557		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
558	}
559#ifdef TCPDEBUG
560	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
561		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
562#endif
563#ifdef INET6
564	if (isipv6)
565		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
566	else
567#endif /* INET6 */
568	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
569}
570
571/*
572 * Create a new TCP control block, making an
573 * empty reassembly queue and hooking it to the argument
574 * protocol control block.  The `inp' parameter must have
575 * come from the zone allocator set up in tcp_init().
576 */
577struct tcpcb *
578tcp_newtcpcb(inp)
579	struct inpcb *inp;
580{
581	struct tcpcb_mem *tm;
582	struct tcpcb *tp;
583#ifdef INET6
584	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
585#endif /* INET6 */
586
587	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
588	if (tm == NULL)
589		return (NULL);
590	tp = &tm->tcb;
591	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
592	tp->t_maxseg = tp->t_maxopd =
593#ifdef INET6
594		isipv6 ? tcp_v6mssdflt :
595#endif /* INET6 */
596		tcp_mssdflt;
597
598	/* Set up our timeouts. */
599	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
600	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
601	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
602	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
603	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
604
605	if (tcp_do_rfc1323)
606		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
607	tp->sack_enable = tcp_do_sack;
608	if (tp->sack_enable)
609		TAILQ_INIT(&tp->snd_holes);
610	tp->t_inpcb = inp;	/* XXX */
611	/*
612	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
613	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
614	 * reasonable initial retransmit time.
615	 */
616	tp->t_srtt = TCPTV_SRTTBASE;
617	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
618	tp->t_rttmin = tcp_rexmit_min;
619	tp->t_rxtcur = TCPTV_RTOBASE;
620	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
621	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
622	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
623	tp->t_rcvtime = ticks;
624	tp->t_bw_rtttime = ticks;
625	/*
626	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
627	 * because the socket may be bound to an IPv6 wildcard address,
628	 * which may match an IPv4-mapped IPv6 address.
629	 */
630	inp->inp_ip_ttl = ip_defttl;
631	inp->inp_ppcb = (caddr_t)tp;
632	return (tp);		/* XXX */
633}
634
635/*
636 * Drop a TCP connection, reporting
637 * the specified error.  If connection is synchronized,
638 * then send a RST to peer.
639 */
640struct tcpcb *
641tcp_drop(tp, errno)
642	register struct tcpcb *tp;
643	int errno;
644{
645	struct socket *so = tp->t_inpcb->inp_socket;
646
647	INP_LOCK_ASSERT(tp->t_inpcb);
648	if (TCPS_HAVERCVDSYN(tp->t_state)) {
649		tp->t_state = TCPS_CLOSED;
650		(void) tcp_output(tp);
651		tcpstat.tcps_drops++;
652	} else
653		tcpstat.tcps_conndrops++;
654	if (errno == ETIMEDOUT && tp->t_softerror)
655		errno = tp->t_softerror;
656	so->so_error = errno;
657	return (tcp_close(tp));
658}
659
660static void
661tcp_discardcb(tp)
662	struct tcpcb *tp;
663{
664	struct tseg_qent *q;
665	struct inpcb *inp = tp->t_inpcb;
666	struct socket *so = inp->inp_socket;
667#ifdef INET6
668	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
669#endif /* INET6 */
670
671	INP_LOCK_ASSERT(inp);
672
673	/*
674	 * Make sure that all of our timers are stopped before we
675	 * delete the PCB.
676	 */
677	callout_stop(tp->tt_rexmt);
678	callout_stop(tp->tt_persist);
679	callout_stop(tp->tt_keep);
680	callout_stop(tp->tt_2msl);
681	callout_stop(tp->tt_delack);
682
683	/*
684	 * If we got enough samples through the srtt filter,
685	 * save the rtt and rttvar in the routing entry.
686	 * 'Enough' is arbitrarily defined as 4 rtt samples.
687	 * 4 samples is enough for the srtt filter to converge
688	 * to within enough % of the correct value; fewer samples
689	 * and we could save a bogus rtt. The danger is not high
690	 * as tcp quickly recovers from everything.
691	 * XXX: Works very well but needs some more statistics!
692	 */
693	if (tp->t_rttupdated >= 4) {
694		struct hc_metrics_lite metrics;
695		u_long ssthresh;
696
697		bzero(&metrics, sizeof(metrics));
698		/*
699		 * Update the ssthresh always when the conditions below
700		 * are satisfied. This gives us better new start value
701		 * for the congestion avoidance for new connections.
702		 * ssthresh is only set if packet loss occured on a session.
703		 */
704		ssthresh = tp->snd_ssthresh;
705		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
706			/*
707			 * convert the limit from user data bytes to
708			 * packets then to packet data bytes.
709			 */
710			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
711			if (ssthresh < 2)
712				ssthresh = 2;
713			ssthresh *= (u_long)(tp->t_maxseg +
714#ifdef INET6
715				      (isipv6 ? sizeof (struct ip6_hdr) +
716					       sizeof (struct tcphdr) :
717#endif
718				       sizeof (struct tcpiphdr)
719#ifdef INET6
720				       )
721#endif
722				      );
723		} else
724			ssthresh = 0;
725		metrics.rmx_ssthresh = ssthresh;
726
727		metrics.rmx_rtt = tp->t_srtt;
728		metrics.rmx_rttvar = tp->t_rttvar;
729		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
730		metrics.rmx_bandwidth = tp->snd_bandwidth;
731		metrics.rmx_cwnd = tp->snd_cwnd;
732		metrics.rmx_sendpipe = 0;
733		metrics.rmx_recvpipe = 0;
734
735		tcp_hc_update(&inp->inp_inc, &metrics);
736	}
737
738	/* free the reassembly queue, if any */
739	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
740		LIST_REMOVE(q, tqe_q);
741		m_freem(q->tqe_m);
742		uma_zfree(tcp_reass_zone, q);
743		tp->t_segqlen--;
744		tcp_reass_qsize--;
745	}
746	tcp_free_sackholes(tp);
747	inp->inp_ppcb = NULL;
748	tp->t_inpcb = NULL;
749	uma_zfree(tcpcb_zone, tp);
750	soisdisconnected(so);
751}
752
753/*
754 * Close a TCP control block:
755 *    discard all space held by the tcp
756 *    discard internet protocol block
757 *    wake up any sleepers
758 */
759struct tcpcb *
760tcp_close(tp)
761	struct tcpcb *tp;
762{
763	struct inpcb *inp = tp->t_inpcb;
764#ifdef INET6
765	struct socket *so = inp->inp_socket;
766#endif
767
768	INP_LOCK_ASSERT(inp);
769
770	tcp_discardcb(tp);
771#ifdef INET6
772	if (INP_CHECK_SOCKAF(so, AF_INET6))
773		in6_pcbdetach(inp);
774	else
775#endif
776		in_pcbdetach(inp);
777	tcpstat.tcps_closed++;
778	return (NULL);
779}
780
781void
782tcp_drain()
783{
784	if (do_tcpdrain)
785	{
786		struct inpcb *inpb;
787		struct tcpcb *tcpb;
788		struct tseg_qent *te;
789
790	/*
791	 * Walk the tcpbs, if existing, and flush the reassembly queue,
792	 * if there is one...
793	 * XXX: The "Net/3" implementation doesn't imply that the TCP
794	 *      reassembly queue should be flushed, but in a situation
795	 *	where we're really low on mbufs, this is potentially
796	 *	usefull.
797	 */
798		INP_INFO_RLOCK(&tcbinfo);
799		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
800			if (inpb->inp_vflag & INP_TIMEWAIT)
801				continue;
802			INP_LOCK(inpb);
803			if ((tcpb = intotcpcb(inpb)) != NULL) {
804				while ((te = LIST_FIRST(&tcpb->t_segq))
805			            != NULL) {
806					LIST_REMOVE(te, tqe_q);
807					m_freem(te->tqe_m);
808					uma_zfree(tcp_reass_zone, te);
809					tcpb->t_segqlen--;
810					tcp_reass_qsize--;
811				}
812				tcp_clean_sackreport(tcpb);
813			}
814			INP_UNLOCK(inpb);
815		}
816		INP_INFO_RUNLOCK(&tcbinfo);
817	}
818}
819
820/*
821 * Notify a tcp user of an asynchronous error;
822 * store error as soft error, but wake up user
823 * (for now, won't do anything until can select for soft error).
824 *
825 * Do not wake up user since there currently is no mechanism for
826 * reporting soft errors (yet - a kqueue filter may be added).
827 */
828static struct inpcb *
829tcp_notify(inp, error)
830	struct inpcb *inp;
831	int error;
832{
833	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
834
835	INP_LOCK_ASSERT(inp);
836
837	/*
838	 * Ignore some errors if we are hooked up.
839	 * If connection hasn't completed, has retransmitted several times,
840	 * and receives a second error, give up now.  This is better
841	 * than waiting a long time to establish a connection that
842	 * can never complete.
843	 */
844	if (tp->t_state == TCPS_ESTABLISHED &&
845	    (error == EHOSTUNREACH || error == ENETUNREACH ||
846	     error == EHOSTDOWN)) {
847		return (inp);
848	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
849	    tp->t_softerror) {
850		tcp_drop(tp, error);
851		return (struct inpcb *)0;
852	} else {
853		tp->t_softerror = error;
854		return (inp);
855	}
856#if 0
857	wakeup( &so->so_timeo);
858	sorwakeup(so);
859	sowwakeup(so);
860#endif
861}
862
863static int
864tcp_pcblist(SYSCTL_HANDLER_ARGS)
865{
866	int error, i, n, s;
867	struct inpcb *inp, **inp_list;
868	inp_gen_t gencnt;
869	struct xinpgen xig;
870
871	/*
872	 * The process of preparing the TCB list is too time-consuming and
873	 * resource-intensive to repeat twice on every request.
874	 */
875	if (req->oldptr == NULL) {
876		n = tcbinfo.ipi_count;
877		req->oldidx = 2 * (sizeof xig)
878			+ (n + n/8) * sizeof(struct xtcpcb);
879		return (0);
880	}
881
882	if (req->newptr != NULL)
883		return (EPERM);
884
885	/*
886	 * OK, now we're committed to doing something.
887	 */
888	s = splnet();
889	INP_INFO_RLOCK(&tcbinfo);
890	gencnt = tcbinfo.ipi_gencnt;
891	n = tcbinfo.ipi_count;
892	INP_INFO_RUNLOCK(&tcbinfo);
893	splx(s);
894
895	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
896		+ n * sizeof(struct xtcpcb));
897	if (error != 0)
898		return (error);
899
900	xig.xig_len = sizeof xig;
901	xig.xig_count = n;
902	xig.xig_gen = gencnt;
903	xig.xig_sogen = so_gencnt;
904	error = SYSCTL_OUT(req, &xig, sizeof xig);
905	if (error)
906		return (error);
907
908	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
909	if (inp_list == NULL)
910		return (ENOMEM);
911
912	s = splnet();
913	INP_INFO_RLOCK(&tcbinfo);
914	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
915	     inp = LIST_NEXT(inp, inp_list)) {
916		INP_LOCK(inp);
917		if (inp->inp_gencnt <= gencnt) {
918			/*
919			 * XXX: This use of cr_cansee(), introduced with
920			 * TCP state changes, is not quite right, but for
921			 * now, better than nothing.
922			 */
923			if (inp->inp_vflag & INP_TIMEWAIT)
924				error = cr_cansee(req->td->td_ucred,
925				    intotw(inp)->tw_cred);
926			else
927				error = cr_canseesocket(req->td->td_ucred,
928				    inp->inp_socket);
929			if (error == 0)
930				inp_list[i++] = inp;
931		}
932		INP_UNLOCK(inp);
933	}
934	INP_INFO_RUNLOCK(&tcbinfo);
935	splx(s);
936	n = i;
937
938	error = 0;
939	for (i = 0; i < n; i++) {
940		inp = inp_list[i];
941		if (inp->inp_gencnt <= gencnt) {
942			struct xtcpcb xt;
943			caddr_t inp_ppcb;
944			xt.xt_len = sizeof xt;
945			/* XXX should avoid extra copy */
946			bcopy(inp, &xt.xt_inp, sizeof *inp);
947			inp_ppcb = inp->inp_ppcb;
948			if (inp_ppcb == NULL)
949				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
950			else if (inp->inp_vflag & INP_TIMEWAIT) {
951				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
952				xt.xt_tp.t_state = TCPS_TIME_WAIT;
953			} else
954				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
955			if (inp->inp_socket != NULL)
956				sotoxsocket(inp->inp_socket, &xt.xt_socket);
957			else {
958				bzero(&xt.xt_socket, sizeof xt.xt_socket);
959				xt.xt_socket.xso_protocol = IPPROTO_TCP;
960			}
961			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
962			error = SYSCTL_OUT(req, &xt, sizeof xt);
963		}
964	}
965	if (!error) {
966		/*
967		 * Give the user an updated idea of our state.
968		 * If the generation differs from what we told
969		 * her before, she knows that something happened
970		 * while we were processing this request, and it
971		 * might be necessary to retry.
972		 */
973		s = splnet();
974		INP_INFO_RLOCK(&tcbinfo);
975		xig.xig_gen = tcbinfo.ipi_gencnt;
976		xig.xig_sogen = so_gencnt;
977		xig.xig_count = tcbinfo.ipi_count;
978		INP_INFO_RUNLOCK(&tcbinfo);
979		splx(s);
980		error = SYSCTL_OUT(req, &xig, sizeof xig);
981	}
982	free(inp_list, M_TEMP);
983	return (error);
984}
985
986SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
987	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
988
989static int
990tcp_getcred(SYSCTL_HANDLER_ARGS)
991{
992	struct xucred xuc;
993	struct sockaddr_in addrs[2];
994	struct inpcb *inp;
995	int error, s;
996
997	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
998	if (error)
999		return (error);
1000	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1001	if (error)
1002		return (error);
1003	s = splnet();
1004	INP_INFO_RLOCK(&tcbinfo);
1005	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1006	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1007	if (inp == NULL) {
1008		error = ENOENT;
1009		goto outunlocked;
1010	}
1011	INP_LOCK(inp);
1012	if (inp->inp_socket == NULL) {
1013		error = ENOENT;
1014		goto out;
1015	}
1016	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1017	if (error)
1018		goto out;
1019	cru2x(inp->inp_socket->so_cred, &xuc);
1020out:
1021	INP_UNLOCK(inp);
1022outunlocked:
1023	INP_INFO_RUNLOCK(&tcbinfo);
1024	splx(s);
1025	if (error == 0)
1026		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1027	return (error);
1028}
1029
1030SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1031    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1032    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1033
1034#ifdef INET6
1035static int
1036tcp6_getcred(SYSCTL_HANDLER_ARGS)
1037{
1038	struct xucred xuc;
1039	struct sockaddr_in6 addrs[2];
1040	struct in6_addr a6[2];
1041	struct inpcb *inp;
1042	int error, s, mapped = 0;
1043
1044	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1045	if (error)
1046		return (error);
1047	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1048	if (error)
1049		return (error);
1050	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1051		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1052			mapped = 1;
1053		else
1054			return (EINVAL);
1055	} else {
1056		error = in6_embedscope(&a6[0], &addrs[0], NULL, NULL);
1057		if (error)
1058			return (EINVAL);
1059		error = in6_embedscope(&a6[1], &addrs[1], NULL, NULL);
1060		if (error)
1061			return (EINVAL);
1062	}
1063	s = splnet();
1064	INP_INFO_RLOCK(&tcbinfo);
1065	if (mapped == 1)
1066		inp = in_pcblookup_hash(&tcbinfo,
1067			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1068			addrs[1].sin6_port,
1069			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1070			addrs[0].sin6_port,
1071			0, NULL);
1072	else
1073		inp = in6_pcblookup_hash(&tcbinfo, &a6[1], addrs[1].sin6_port,
1074			&a6[0], addrs[0].sin6_port, 0, NULL);
1075	if (inp == NULL) {
1076		error = ENOENT;
1077		goto outunlocked;
1078	}
1079	INP_LOCK(inp);
1080	if (inp->inp_socket == NULL) {
1081		error = ENOENT;
1082		goto out;
1083	}
1084	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1085	if (error)
1086		goto out;
1087	cru2x(inp->inp_socket->so_cred, &xuc);
1088out:
1089	INP_UNLOCK(inp);
1090outunlocked:
1091	INP_INFO_RUNLOCK(&tcbinfo);
1092	splx(s);
1093	if (error == 0)
1094		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1095	return (error);
1096}
1097
1098SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1099    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1100    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1101#endif
1102
1103
1104void
1105tcp_ctlinput(cmd, sa, vip)
1106	int cmd;
1107	struct sockaddr *sa;
1108	void *vip;
1109{
1110	struct ip *ip = vip;
1111	struct tcphdr *th;
1112	struct in_addr faddr;
1113	struct inpcb *inp;
1114	struct tcpcb *tp;
1115	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1116	struct icmp *icp;
1117	struct in_conninfo inc;
1118	tcp_seq icmp_tcp_seq;
1119	int mtu, s;
1120
1121	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1122	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1123		return;
1124
1125	if (cmd == PRC_MSGSIZE)
1126		notify = tcp_mtudisc;
1127	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1128		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1129		notify = tcp_drop_syn_sent;
1130	/*
1131	 * Redirects don't need to be handled up here.
1132	 */
1133	else if (PRC_IS_REDIRECT(cmd))
1134		return;
1135	/*
1136	 * Source quench is depreciated.
1137	 */
1138	else if (cmd == PRC_QUENCH)
1139		return;
1140	/*
1141	 * Hostdead is ugly because it goes linearly through all PCBs.
1142	 * XXX: We never get this from ICMP, otherwise it makes an
1143	 * excellent DoS attack on machines with many connections.
1144	 */
1145	else if (cmd == PRC_HOSTDEAD)
1146		ip = NULL;
1147	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1148		return;
1149	if (ip != NULL) {
1150		s = splnet();
1151		icp = (struct icmp *)((caddr_t)ip
1152				      - offsetof(struct icmp, icmp_ip));
1153		th = (struct tcphdr *)((caddr_t)ip
1154				       + (ip->ip_hl << 2));
1155		INP_INFO_WLOCK(&tcbinfo);
1156		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1157		    ip->ip_src, th->th_sport, 0, NULL);
1158		if (inp != NULL)  {
1159			INP_LOCK(inp);
1160			if (inp->inp_socket != NULL) {
1161				icmp_tcp_seq = htonl(th->th_seq);
1162				tp = intotcpcb(inp);
1163				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1164				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1165					if (cmd == PRC_MSGSIZE) {
1166					    /*
1167					     * MTU discovery:
1168					     * If we got a needfrag set the MTU
1169					     * in the route to the suggested new
1170					     * value (if given) and then notify.
1171					     */
1172					    bzero(&inc, sizeof(inc));
1173					    inc.inc_flags = 0;	/* IPv4 */
1174					    inc.inc_faddr = faddr;
1175
1176					    mtu = ntohs(icp->icmp_nextmtu);
1177					    /*
1178					     * If no alternative MTU was
1179					     * proposed, try the next smaller
1180					     * one.
1181					     */
1182					    if (!mtu)
1183						mtu = ip_next_mtu(ntohs(ip->ip_len),
1184						 1);
1185					    if (mtu < max(296, (tcp_minmss)
1186						 + sizeof(struct tcpiphdr)))
1187						mtu = 0;
1188					    if (!mtu)
1189						mtu = tcp_mssdflt
1190						 + sizeof(struct tcpiphdr);
1191					    /*
1192					     * Only cache the the MTU if it
1193					     * is smaller than the interface
1194					     * or route MTU.  tcp_mtudisc()
1195					     * will do right thing by itself.
1196					     */
1197					    if (mtu <= tcp_maxmtu(&inc))
1198						tcp_hc_updatemtu(&inc, mtu);
1199					}
1200
1201					inp = (*notify)(inp, inetctlerrmap[cmd]);
1202				}
1203			}
1204			if (inp != NULL)
1205				INP_UNLOCK(inp);
1206		} else {
1207			inc.inc_fport = th->th_dport;
1208			inc.inc_lport = th->th_sport;
1209			inc.inc_faddr = faddr;
1210			inc.inc_laddr = ip->ip_src;
1211#ifdef INET6
1212			inc.inc_isipv6 = 0;
1213#endif
1214			syncache_unreach(&inc, th);
1215		}
1216		INP_INFO_WUNLOCK(&tcbinfo);
1217		splx(s);
1218	} else
1219		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1220}
1221
1222#ifdef INET6
1223void
1224tcp6_ctlinput(cmd, sa, d)
1225	int cmd;
1226	struct sockaddr *sa;
1227	void *d;
1228{
1229	struct tcphdr th;
1230	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1231	struct ip6_hdr *ip6;
1232	struct mbuf *m;
1233	struct ip6ctlparam *ip6cp = NULL;
1234	const struct sockaddr_in6 *sa6_src = NULL;
1235	int off;
1236	struct tcp_portonly {
1237		u_int16_t th_sport;
1238		u_int16_t th_dport;
1239	} *thp;
1240
1241	if (sa->sa_family != AF_INET6 ||
1242	    sa->sa_len != sizeof(struct sockaddr_in6))
1243		return;
1244
1245	if (cmd == PRC_MSGSIZE)
1246		notify = tcp_mtudisc;
1247	else if (!PRC_IS_REDIRECT(cmd) &&
1248		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1249		return;
1250	/* Source quench is depreciated. */
1251	else if (cmd == PRC_QUENCH)
1252		return;
1253
1254	/* if the parameter is from icmp6, decode it. */
1255	if (d != NULL) {
1256		ip6cp = (struct ip6ctlparam *)d;
1257		m = ip6cp->ip6c_m;
1258		ip6 = ip6cp->ip6c_ip6;
1259		off = ip6cp->ip6c_off;
1260		sa6_src = ip6cp->ip6c_src;
1261	} else {
1262		m = NULL;
1263		ip6 = NULL;
1264		off = 0;	/* fool gcc */
1265		sa6_src = &sa6_any;
1266	}
1267
1268	if (ip6 != NULL) {
1269		struct in_conninfo inc;
1270		/*
1271		 * XXX: We assume that when IPV6 is non NULL,
1272		 * M and OFF are valid.
1273		 */
1274
1275		/* check if we can safely examine src and dst ports */
1276		if (m->m_pkthdr.len < off + sizeof(*thp))
1277			return;
1278
1279		bzero(&th, sizeof(th));
1280		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1281
1282		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1283		    (struct sockaddr *)ip6cp->ip6c_src,
1284		    th.th_sport, cmd, NULL, notify);
1285
1286		inc.inc_fport = th.th_dport;
1287		inc.inc_lport = th.th_sport;
1288		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1289		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1290		inc.inc_isipv6 = 1;
1291		INP_INFO_WLOCK(&tcbinfo);
1292		syncache_unreach(&inc, &th);
1293		INP_INFO_WUNLOCK(&tcbinfo);
1294	} else
1295		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1296			      0, cmd, NULL, notify);
1297}
1298#endif /* INET6 */
1299
1300
1301/*
1302 * Following is where TCP initial sequence number generation occurs.
1303 *
1304 * There are two places where we must use initial sequence numbers:
1305 * 1.  In SYN-ACK packets.
1306 * 2.  In SYN packets.
1307 *
1308 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1309 * tcp_syncache.c for details.
1310 *
1311 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1312 * depends on this property.  In addition, these ISNs should be
1313 * unguessable so as to prevent connection hijacking.  To satisfy
1314 * the requirements of this situation, the algorithm outlined in
1315 * RFC 1948 is used, with only small modifications.
1316 *
1317 * Implementation details:
1318 *
1319 * Time is based off the system timer, and is corrected so that it
1320 * increases by one megabyte per second.  This allows for proper
1321 * recycling on high speed LANs while still leaving over an hour
1322 * before rollover.
1323 *
1324 * As reading the *exact* system time is too expensive to be done
1325 * whenever setting up a TCP connection, we increment the time
1326 * offset in two ways.  First, a small random positive increment
1327 * is added to isn_offset for each connection that is set up.
1328 * Second, the function tcp_isn_tick fires once per clock tick
1329 * and increments isn_offset as necessary so that sequence numbers
1330 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1331 * random positive increments serve only to ensure that the same
1332 * exact sequence number is never sent out twice (as could otherwise
1333 * happen when a port is recycled in less than the system tick
1334 * interval.)
1335 *
1336 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1337 * between seeding of isn_secret.  This is normally set to zero,
1338 * as reseeding should not be necessary.
1339 *
1340 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1341 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1342 * general, this means holding an exclusive (write) lock.
1343 */
1344
1345#define ISN_BYTES_PER_SECOND 1048576
1346#define ISN_STATIC_INCREMENT 4096
1347#define ISN_RANDOM_INCREMENT (4096 - 1)
1348
1349static u_char isn_secret[32];
1350static int isn_last_reseed;
1351static u_int32_t isn_offset, isn_offset_old;
1352static MD5_CTX isn_ctx;
1353
1354tcp_seq
1355tcp_new_isn(tp)
1356	struct tcpcb *tp;
1357{
1358	u_int32_t md5_buffer[4];
1359	tcp_seq new_isn;
1360
1361	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1362	INP_LOCK_ASSERT(tp->t_inpcb);
1363
1364	/* Seed if this is the first use, reseed if requested. */
1365	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1366	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1367		< (u_int)ticks))) {
1368		read_random(&isn_secret, sizeof(isn_secret));
1369		isn_last_reseed = ticks;
1370	}
1371
1372	/* Compute the md5 hash and return the ISN. */
1373	MD5Init(&isn_ctx);
1374	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1375	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1376#ifdef INET6
1377	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1378		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1379			  sizeof(struct in6_addr));
1380		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1381			  sizeof(struct in6_addr));
1382	} else
1383#endif
1384	{
1385		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1386			  sizeof(struct in_addr));
1387		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1388			  sizeof(struct in_addr));
1389	}
1390	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1391	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1392	new_isn = (tcp_seq) md5_buffer[0];
1393	isn_offset += ISN_STATIC_INCREMENT +
1394		(arc4random() & ISN_RANDOM_INCREMENT);
1395	new_isn += isn_offset;
1396	return (new_isn);
1397}
1398
1399/*
1400 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1401 * to keep time flowing at a relatively constant rate.  If the random
1402 * increments have already pushed us past the projected offset, do nothing.
1403 */
1404static void
1405tcp_isn_tick(xtp)
1406	void *xtp;
1407{
1408	u_int32_t projected_offset;
1409
1410	INP_INFO_WLOCK(&tcbinfo);
1411	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1412
1413	if (projected_offset > isn_offset)
1414		isn_offset = projected_offset;
1415
1416	isn_offset_old = isn_offset;
1417	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1418	INP_INFO_WUNLOCK(&tcbinfo);
1419}
1420
1421/*
1422 * When a specific ICMP unreachable message is received and the
1423 * connection state is SYN-SENT, drop the connection.  This behavior
1424 * is controlled by the icmp_may_rst sysctl.
1425 */
1426struct inpcb *
1427tcp_drop_syn_sent(inp, errno)
1428	struct inpcb *inp;
1429	int errno;
1430{
1431	struct tcpcb *tp = intotcpcb(inp);
1432
1433	INP_LOCK_ASSERT(inp);
1434	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1435		tcp_drop(tp, errno);
1436		return (NULL);
1437	}
1438	return (inp);
1439}
1440
1441/*
1442 * When `need fragmentation' ICMP is received, update our idea of the MSS
1443 * based on the new value in the route.  Also nudge TCP to send something,
1444 * since we know the packet we just sent was dropped.
1445 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1446 */
1447struct inpcb *
1448tcp_mtudisc(inp, errno)
1449	struct inpcb *inp;
1450	int errno;
1451{
1452	struct tcpcb *tp = intotcpcb(inp);
1453	struct socket *so = inp->inp_socket;
1454	u_int maxmtu;
1455	u_int romtu;
1456	int mss;
1457#ifdef INET6
1458	int isipv6;
1459#endif /* INET6 */
1460
1461	INP_LOCK_ASSERT(inp);
1462	if (tp != NULL) {
1463#ifdef INET6
1464		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1465#endif
1466		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1467		romtu =
1468#ifdef INET6
1469		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1470#endif /* INET6 */
1471		    tcp_maxmtu(&inp->inp_inc);
1472		if (!maxmtu)
1473			maxmtu = romtu;
1474		else
1475			maxmtu = min(maxmtu, romtu);
1476		if (!maxmtu) {
1477			tp->t_maxopd = tp->t_maxseg =
1478#ifdef INET6
1479				isipv6 ? tcp_v6mssdflt :
1480#endif /* INET6 */
1481				tcp_mssdflt;
1482			return (inp);
1483		}
1484		mss = maxmtu -
1485#ifdef INET6
1486			(isipv6 ?
1487			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1488#endif /* INET6 */
1489			 sizeof(struct tcpiphdr)
1490#ifdef INET6
1491			 )
1492#endif /* INET6 */
1493			;
1494
1495		/*
1496		 * XXX - The above conditional probably violates the TCP
1497		 * spec.  The problem is that, since we don't know the
1498		 * other end's MSS, we are supposed to use a conservative
1499		 * default.  But, if we do that, then MTU discovery will
1500		 * never actually take place, because the conservative
1501		 * default is much less than the MTUs typically seen
1502		 * on the Internet today.  For the moment, we'll sweep
1503		 * this under the carpet.
1504		 *
1505		 * The conservative default might not actually be a problem
1506		 * if the only case this occurs is when sending an initial
1507		 * SYN with options and data to a host we've never talked
1508		 * to before.  Then, they will reply with an MSS value which
1509		 * will get recorded and the new parameters should get
1510		 * recomputed.  For Further Study.
1511		 */
1512		if (tp->t_maxopd <= mss)
1513			return (inp);
1514		tp->t_maxopd = mss;
1515
1516		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1517		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1518			mss -= TCPOLEN_TSTAMP_APPA;
1519#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1520		if (mss > MCLBYTES)
1521			mss &= ~(MCLBYTES-1);
1522#else
1523		if (mss > MCLBYTES)
1524			mss = mss / MCLBYTES * MCLBYTES;
1525#endif
1526		if (so->so_snd.sb_hiwat < mss)
1527			mss = so->so_snd.sb_hiwat;
1528
1529		tp->t_maxseg = mss;
1530
1531		tcpstat.tcps_mturesent++;
1532		tp->t_rtttime = 0;
1533		tp->snd_nxt = tp->snd_una;
1534		tcp_output(tp);
1535	}
1536	return (inp);
1537}
1538
1539/*
1540 * Look-up the routing entry to the peer of this inpcb.  If no route
1541 * is found and it cannot be allocated, then return NULL.  This routine
1542 * is called by TCP routines that access the rmx structure and by tcp_mss
1543 * to get the interface MTU.
1544 */
1545u_long
1546tcp_maxmtu(inc)
1547	struct in_conninfo *inc;
1548{
1549	struct route sro;
1550	struct sockaddr_in *dst;
1551	struct ifnet *ifp;
1552	u_long maxmtu = 0;
1553
1554	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1555
1556	bzero(&sro, sizeof(sro));
1557	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1558	        dst = (struct sockaddr_in *)&sro.ro_dst;
1559		dst->sin_family = AF_INET;
1560		dst->sin_len = sizeof(*dst);
1561		dst->sin_addr = inc->inc_faddr;
1562		rtalloc_ign(&sro, RTF_CLONING);
1563	}
1564	if (sro.ro_rt != NULL) {
1565		ifp = sro.ro_rt->rt_ifp;
1566		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1567			maxmtu = ifp->if_mtu;
1568		else
1569			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1570		RTFREE(sro.ro_rt);
1571	}
1572	return (maxmtu);
1573}
1574
1575#ifdef INET6
1576u_long
1577tcp_maxmtu6(inc)
1578	struct in_conninfo *inc;
1579{
1580	struct route_in6 sro6;
1581	struct ifnet *ifp;
1582	u_long maxmtu = 0;
1583
1584	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1585
1586	bzero(&sro6, sizeof(sro6));
1587	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1588		sro6.ro_dst.sin6_family = AF_INET6;
1589		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1590		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1591		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1592	}
1593	if (sro6.ro_rt != NULL) {
1594		ifp = sro6.ro_rt->rt_ifp;
1595		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1596			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1597		else
1598			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1599				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1600		RTFREE(sro6.ro_rt);
1601	}
1602
1603	return (maxmtu);
1604}
1605#endif /* INET6 */
1606
1607#ifdef IPSEC
1608/* compute ESP/AH header size for TCP, including outer IP header. */
1609size_t
1610ipsec_hdrsiz_tcp(tp)
1611	struct tcpcb *tp;
1612{
1613	struct inpcb *inp;
1614	struct mbuf *m;
1615	size_t hdrsiz;
1616	struct ip *ip;
1617#ifdef INET6
1618	struct ip6_hdr *ip6;
1619#endif
1620	struct tcphdr *th;
1621
1622	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1623		return (0);
1624	MGETHDR(m, M_DONTWAIT, MT_DATA);
1625	if (!m)
1626		return (0);
1627
1628#ifdef INET6
1629	if ((inp->inp_vflag & INP_IPV6) != 0) {
1630		ip6 = mtod(m, struct ip6_hdr *);
1631		th = (struct tcphdr *)(ip6 + 1);
1632		m->m_pkthdr.len = m->m_len =
1633			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1634		tcpip_fillheaders(inp, ip6, th);
1635		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1636	} else
1637#endif /* INET6 */
1638	{
1639		ip = mtod(m, struct ip *);
1640		th = (struct tcphdr *)(ip + 1);
1641		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1642		tcpip_fillheaders(inp, ip, th);
1643		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1644	}
1645
1646	m_free(m);
1647	return (hdrsiz);
1648}
1649#endif /*IPSEC*/
1650
1651/*
1652 * Move a TCP connection into TIME_WAIT state.
1653 *    tcbinfo is locked.
1654 *    inp is locked, and is unlocked before returning.
1655 */
1656void
1657tcp_twstart(tp)
1658	struct tcpcb *tp;
1659{
1660	struct tcptw *tw;
1661	struct inpcb *inp;
1662	int tw_time, acknow;
1663	struct socket *so;
1664
1665	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1666	INP_LOCK_ASSERT(tp->t_inpcb);
1667
1668	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1669	if (tw == NULL) {
1670		tw = tcp_timer_2msl_tw(1);
1671		if (tw == NULL) {
1672			tcp_close(tp);
1673			return;
1674		}
1675	}
1676	inp = tp->t_inpcb;
1677	tw->tw_inpcb = inp;
1678
1679	/*
1680	 * Recover last window size sent.
1681	 */
1682	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1683
1684	/*
1685	 * Set t_recent if timestamps are used on the connection.
1686	 */
1687	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1688	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1689		tw->t_recent = tp->ts_recent;
1690	else
1691		tw->t_recent = 0;
1692
1693	tw->snd_nxt = tp->snd_nxt;
1694	tw->rcv_nxt = tp->rcv_nxt;
1695	tw->iss     = tp->iss;
1696	tw->irs     = tp->irs;
1697	tw->t_starttime = tp->t_starttime;
1698	tw->tw_time = 0;
1699
1700/* XXX
1701 * If this code will
1702 * be used for fin-wait-2 state also, then we may need
1703 * a ts_recent from the last segment.
1704 */
1705	tw_time = 2 * tcp_msl;
1706	acknow = tp->t_flags & TF_ACKNOW;
1707	tcp_discardcb(tp);
1708	so = inp->inp_socket;
1709	ACCEPT_LOCK();
1710	SOCK_LOCK(so);
1711	so->so_pcb = NULL;
1712	tw->tw_cred = crhold(so->so_cred);
1713	tw->tw_so_options = so->so_options;
1714	sotryfree(so);
1715	inp->inp_socket = NULL;
1716	if (acknow)
1717		tcp_twrespond(tw, TH_ACK);
1718	inp->inp_ppcb = (caddr_t)tw;
1719	inp->inp_vflag |= INP_TIMEWAIT;
1720	tcp_timer_2msl_reset(tw, tw_time);
1721	INP_UNLOCK(inp);
1722}
1723
1724/*
1725 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1726 * the actual rate is slightly higher due to the addition of
1727 * random positive increments.
1728 *
1729 * Most other new OSes use semi-randomized ISN values, so we
1730 * do not need to worry about them.
1731 */
1732#define MS_ISN_BYTES_PER_SECOND		250000
1733
1734/*
1735 * Determine if the ISN we will generate has advanced beyond the last
1736 * sequence number used by the previous connection.  If so, indicate
1737 * that it is safe to recycle this tw socket by returning 1.
1738 *
1739 * XXXRW: This function should assert the inpcb lock as it does multiple
1740 * non-atomic reads from the tcptw, but is currently called without it from
1741 * in_pcb.c:in_pcblookup_local().
1742 */
1743int
1744tcp_twrecycleable(struct tcptw *tw)
1745{
1746	tcp_seq new_iss = tw->iss;
1747	tcp_seq new_irs = tw->irs;
1748
1749	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1750	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1751
1752	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1753		return (1);
1754	else
1755		return (0);
1756}
1757
1758struct tcptw *
1759tcp_twclose(struct tcptw *tw, int reuse)
1760{
1761	struct inpcb *inp;
1762
1763	inp = tw->tw_inpcb;
1764	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1765	INP_LOCK_ASSERT(inp);
1766
1767	tw->tw_inpcb = NULL;
1768	tcp_timer_2msl_stop(tw);
1769	inp->inp_ppcb = NULL;
1770#ifdef INET6
1771	if (inp->inp_vflag & INP_IPV6PROTO)
1772		in6_pcbdetach(inp);
1773	else
1774#endif
1775		in_pcbdetach(inp);
1776	tcpstat.tcps_closed++;
1777	crfree(tw->tw_cred);
1778	tw->tw_cred = NULL;
1779	if (reuse)
1780		return (tw);
1781	uma_zfree(tcptw_zone, tw);
1782	return (NULL);
1783}
1784
1785int
1786tcp_twrespond(struct tcptw *tw, int flags)
1787{
1788	struct inpcb *inp = tw->tw_inpcb;
1789	struct tcphdr *th;
1790	struct mbuf *m;
1791	struct ip *ip = NULL;
1792	u_int8_t *optp;
1793	u_int hdrlen, optlen;
1794	int error;
1795#ifdef INET6
1796	struct ip6_hdr *ip6 = NULL;
1797	int isipv6 = inp->inp_inc.inc_isipv6;
1798#endif
1799
1800	INP_LOCK_ASSERT(inp);
1801
1802	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1803	if (m == NULL)
1804		return (ENOBUFS);
1805	m->m_data += max_linkhdr;
1806
1807#ifdef MAC
1808	mac_create_mbuf_from_inpcb(inp, m);
1809#endif
1810
1811#ifdef INET6
1812	if (isipv6) {
1813		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1814		ip6 = mtod(m, struct ip6_hdr *);
1815		th = (struct tcphdr *)(ip6 + 1);
1816		tcpip_fillheaders(inp, ip6, th);
1817	} else
1818#endif
1819	{
1820		hdrlen = sizeof(struct tcpiphdr);
1821		ip = mtod(m, struct ip *);
1822		th = (struct tcphdr *)(ip + 1);
1823		tcpip_fillheaders(inp, ip, th);
1824	}
1825	optp = (u_int8_t *)(th + 1);
1826
1827	/*
1828	 * Send a timestamp and echo-reply if both our side and our peer
1829	 * have sent timestamps in our SYN's and this is not a RST.
1830	 */
1831	if (tw->t_recent && flags == TH_ACK) {
1832		u_int32_t *lp = (u_int32_t *)optp;
1833
1834		/* Form timestamp option as shown in appendix A of RFC 1323. */
1835		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1836		*lp++ = htonl(ticks);
1837		*lp   = htonl(tw->t_recent);
1838		optp += TCPOLEN_TSTAMP_APPA;
1839	}
1840
1841	optlen = optp - (u_int8_t *)(th + 1);
1842
1843	m->m_len = hdrlen + optlen;
1844	m->m_pkthdr.len = m->m_len;
1845
1846	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1847
1848	th->th_seq = htonl(tw->snd_nxt);
1849	th->th_ack = htonl(tw->rcv_nxt);
1850	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1851	th->th_flags = flags;
1852	th->th_win = htons(tw->last_win);
1853
1854#ifdef INET6
1855	if (isipv6) {
1856		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1857		    sizeof(struct tcphdr) + optlen);
1858		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1859		error = ip6_output(m, inp->in6p_outputopts, NULL,
1860		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1861	} else
1862#endif
1863	{
1864		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1865		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1866		m->m_pkthdr.csum_flags = CSUM_TCP;
1867		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1868		ip->ip_len = m->m_pkthdr.len;
1869		if (path_mtu_discovery)
1870			ip->ip_off |= IP_DF;
1871		error = ip_output(m, inp->inp_options, NULL,
1872		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1873		    NULL, inp);
1874	}
1875	if (flags & TH_ACK)
1876		tcpstat.tcps_sndacks++;
1877	else
1878		tcpstat.tcps_sndctrl++;
1879	tcpstat.tcps_sndtotal++;
1880	return (error);
1881}
1882
1883/*
1884 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1885 *
1886 * This code attempts to calculate the bandwidth-delay product as a
1887 * means of determining the optimal window size to maximize bandwidth,
1888 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1889 * routers.  This code also does a fairly good job keeping RTTs in check
1890 * across slow links like modems.  We implement an algorithm which is very
1891 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1892 * transmitter side of a TCP connection and so only effects the transmit
1893 * side of the connection.
1894 *
1895 * BACKGROUND:  TCP makes no provision for the management of buffer space
1896 * at the end points or at the intermediate routers and switches.  A TCP
1897 * stream, whether using NewReno or not, will eventually buffer as
1898 * many packets as it is able and the only reason this typically works is
1899 * due to the fairly small default buffers made available for a connection
1900 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1901 * scaling it is now fairly easy for even a single TCP connection to blow-out
1902 * all available buffer space not only on the local interface, but on
1903 * intermediate routers and switches as well.  NewReno makes a misguided
1904 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1905 * then backing off, then steadily increasing the window again until another
1906 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1907 * is only made worse as network loads increase and the idea of intentionally
1908 * blowing out network buffers is, frankly, a terrible way to manage network
1909 * resources.
1910 *
1911 * It is far better to limit the transmit window prior to the failure
1912 * condition being achieved.  There are two general ways to do this:  First
1913 * you can 'scan' through different transmit window sizes and locate the
1914 * point where the RTT stops increasing, indicating that you have filled the
1915 * pipe, then scan backwards until you note that RTT stops decreasing, then
1916 * repeat ad-infinitum.  This method works in principle but has severe
1917 * implementation issues due to RTT variances, timer granularity, and
1918 * instability in the algorithm which can lead to many false positives and
1919 * create oscillations as well as interact badly with other TCP streams
1920 * implementing the same algorithm.
1921 *
1922 * The second method is to limit the window to the bandwidth delay product
1923 * of the link.  This is the method we implement.  RTT variances and our
1924 * own manipulation of the congestion window, bwnd, can potentially
1925 * destabilize the algorithm.  For this reason we have to stabilize the
1926 * elements used to calculate the window.  We do this by using the minimum
1927 * observed RTT, the long term average of the observed bandwidth, and
1928 * by adding two segments worth of slop.  It isn't perfect but it is able
1929 * to react to changing conditions and gives us a very stable basis on
1930 * which to extend the algorithm.
1931 */
1932void
1933tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1934{
1935	u_long bw;
1936	u_long bwnd;
1937	int save_ticks;
1938
1939	INP_LOCK_ASSERT(tp->t_inpcb);
1940
1941	/*
1942	 * If inflight_enable is disabled in the middle of a tcp connection,
1943	 * make sure snd_bwnd is effectively disabled.
1944	 */
1945	if (tcp_inflight_enable == 0) {
1946		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1947		tp->snd_bandwidth = 0;
1948		return;
1949	}
1950
1951	/*
1952	 * Figure out the bandwidth.  Due to the tick granularity this
1953	 * is a very rough number and it MUST be averaged over a fairly
1954	 * long period of time.  XXX we need to take into account a link
1955	 * that is not using all available bandwidth, but for now our
1956	 * slop will ramp us up if this case occurs and the bandwidth later
1957	 * increases.
1958	 *
1959	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1960	 * effectively reset t_bw_rtttime for this case.
1961	 */
1962	save_ticks = ticks;
1963	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1964		return;
1965
1966	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1967	    (save_ticks - tp->t_bw_rtttime);
1968	tp->t_bw_rtttime = save_ticks;
1969	tp->t_bw_rtseq = ack_seq;
1970	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1971		return;
1972	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1973
1974	tp->snd_bandwidth = bw;
1975
1976	/*
1977	 * Calculate the semi-static bandwidth delay product, plus two maximal
1978	 * segments.  The additional slop puts us squarely in the sweet
1979	 * spot and also handles the bandwidth run-up case and stabilization.
1980	 * Without the slop we could be locking ourselves into a lower
1981	 * bandwidth.
1982	 *
1983	 * Situations Handled:
1984	 *	(1) Prevents over-queueing of packets on LANs, especially on
1985	 *	    high speed LANs, allowing larger TCP buffers to be
1986	 *	    specified, and also does a good job preventing
1987	 *	    over-queueing of packets over choke points like modems
1988	 *	    (at least for the transmit side).
1989	 *
1990	 *	(2) Is able to handle changing network loads (bandwidth
1991	 *	    drops so bwnd drops, bandwidth increases so bwnd
1992	 *	    increases).
1993	 *
1994	 *	(3) Theoretically should stabilize in the face of multiple
1995	 *	    connections implementing the same algorithm (this may need
1996	 *	    a little work).
1997	 *
1998	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1999	 *	    be adjusted with a sysctl but typically only needs to be
2000	 *	    on very slow connections.  A value no smaller then 5
2001	 *	    should be used, but only reduce this default if you have
2002	 *	    no other choice.
2003	 */
2004#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2005	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2006#undef USERTT
2007
2008	if (tcp_inflight_debug > 0) {
2009		static int ltime;
2010		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2011			ltime = ticks;
2012			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2013			    tp,
2014			    bw,
2015			    tp->t_rttbest,
2016			    tp->t_srtt,
2017			    bwnd
2018			);
2019		}
2020	}
2021	if ((long)bwnd < tcp_inflight_min)
2022		bwnd = tcp_inflight_min;
2023	if (bwnd > tcp_inflight_max)
2024		bwnd = tcp_inflight_max;
2025	if ((long)bwnd < tp->t_maxseg * 2)
2026		bwnd = tp->t_maxseg * 2;
2027	tp->snd_bwnd = bwnd;
2028}
2029
2030#ifdef TCP_SIGNATURE
2031/*
2032 * Callback function invoked by m_apply() to digest TCP segment data
2033 * contained within an mbuf chain.
2034 */
2035static int
2036tcp_signature_apply(void *fstate, void *data, u_int len)
2037{
2038
2039	MD5Update(fstate, (u_char *)data, len);
2040	return (0);
2041}
2042
2043/*
2044 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2045 *
2046 * Parameters:
2047 * m		pointer to head of mbuf chain
2048 * off0		offset to TCP header within the mbuf chain
2049 * len		length of TCP segment data, excluding options
2050 * optlen	length of TCP segment options
2051 * buf		pointer to storage for computed MD5 digest
2052 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2053 *
2054 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2055 * When called from tcp_input(), we can be sure that th_sum has been
2056 * zeroed out and verified already.
2057 *
2058 * This function is for IPv4 use only. Calling this function with an
2059 * IPv6 packet in the mbuf chain will yield undefined results.
2060 *
2061 * Return 0 if successful, otherwise return -1.
2062 *
2063 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2064 * search with the destination IP address, and a 'magic SPI' to be
2065 * determined by the application. This is hardcoded elsewhere to 1179
2066 * right now. Another branch of this code exists which uses the SPD to
2067 * specify per-application flows but it is unstable.
2068 */
2069int
2070tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2071    u_char *buf, u_int direction)
2072{
2073	union sockaddr_union dst;
2074	struct ippseudo ippseudo;
2075	MD5_CTX ctx;
2076	int doff;
2077	struct ip *ip;
2078	struct ipovly *ipovly;
2079	struct secasvar *sav;
2080	struct tcphdr *th;
2081	u_short savecsum;
2082
2083	KASSERT(m != NULL, ("NULL mbuf chain"));
2084	KASSERT(buf != NULL, ("NULL signature pointer"));
2085
2086	/* Extract the destination from the IP header in the mbuf. */
2087	ip = mtod(m, struct ip *);
2088	bzero(&dst, sizeof(union sockaddr_union));
2089	dst.sa.sa_len = sizeof(struct sockaddr_in);
2090	dst.sa.sa_family = AF_INET;
2091	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2092	    ip->ip_src : ip->ip_dst;
2093
2094	/* Look up an SADB entry which matches the address of the peer. */
2095	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2096	if (sav == NULL) {
2097		printf("%s: SADB lookup failed for %s\n", __func__,
2098		    inet_ntoa(dst.sin.sin_addr));
2099		return (EINVAL);
2100	}
2101
2102	MD5Init(&ctx);
2103	ipovly = (struct ipovly *)ip;
2104	th = (struct tcphdr *)((u_char *)ip + off0);
2105	doff = off0 + sizeof(struct tcphdr) + optlen;
2106
2107	/*
2108	 * Step 1: Update MD5 hash with IP pseudo-header.
2109	 *
2110	 * XXX The ippseudo header MUST be digested in network byte order,
2111	 * or else we'll fail the regression test. Assume all fields we've
2112	 * been doing arithmetic on have been in host byte order.
2113	 * XXX One cannot depend on ipovly->ih_len here. When called from
2114	 * tcp_output(), the underlying ip_len member has not yet been set.
2115	 */
2116	ippseudo.ippseudo_src = ipovly->ih_src;
2117	ippseudo.ippseudo_dst = ipovly->ih_dst;
2118	ippseudo.ippseudo_pad = 0;
2119	ippseudo.ippseudo_p = IPPROTO_TCP;
2120	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2121	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2122
2123	/*
2124	 * Step 2: Update MD5 hash with TCP header, excluding options.
2125	 * The TCP checksum must be set to zero.
2126	 */
2127	savecsum = th->th_sum;
2128	th->th_sum = 0;
2129	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2130	th->th_sum = savecsum;
2131
2132	/*
2133	 * Step 3: Update MD5 hash with TCP segment data.
2134	 *         Use m_apply() to avoid an early m_pullup().
2135	 */
2136	if (len > 0)
2137		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2138
2139	/*
2140	 * Step 4: Update MD5 hash with shared secret.
2141	 */
2142	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2143	MD5Final(buf, &ctx);
2144
2145	key_sa_recordxfer(sav, m);
2146	KEY_FREESAV(&sav);
2147	return (0);
2148}
2149#endif /* TCP_SIGNATURE */
2150
2151static int
2152sysctl_drop(SYSCTL_HANDLER_ARGS)
2153{
2154	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2155	struct sockaddr_storage addrs[2];
2156	struct inpcb *inp;
2157	struct tcpcb *tp;
2158	struct sockaddr_in *fin, *lin;
2159#ifdef INET6
2160	struct sockaddr_in6 *fin6, *lin6;
2161	struct in6_addr f6, l6;
2162#endif
2163	int error;
2164
2165	inp = NULL;
2166	fin = lin = NULL;
2167#ifdef INET6
2168	fin6 = lin6 = NULL;
2169#endif
2170	error = 0;
2171
2172	if (req->oldptr != NULL || req->oldlen != 0)
2173		return (EINVAL);
2174	if (req->newptr == NULL)
2175		return (EPERM);
2176	if (req->newlen < sizeof(addrs))
2177		return (ENOMEM);
2178	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2179	if (error)
2180		return (error);
2181
2182	switch (addrs[0].ss_family) {
2183#ifdef INET6
2184	case AF_INET6:
2185		fin6 = (struct sockaddr_in6 *)&addrs[0];
2186		lin6 = (struct sockaddr_in6 *)&addrs[1];
2187		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2188		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2189			return (EINVAL);
2190		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2191			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2192				return (EINVAL);
2193			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2194			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2195			fin = (struct sockaddr_in *)&addrs[0];
2196			lin = (struct sockaddr_in *)&addrs[1];
2197			break;
2198		}
2199		error = in6_embedscope(&f6, fin6, NULL, NULL);
2200		if (error)
2201			return (EINVAL);
2202		error = in6_embedscope(&l6, lin6, NULL, NULL);
2203		if (error)
2204			return (EINVAL);
2205		break;
2206#endif
2207	case AF_INET:
2208		fin = (struct sockaddr_in *)&addrs[0];
2209		lin = (struct sockaddr_in *)&addrs[1];
2210		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2211		    lin->sin_len != sizeof(struct sockaddr_in))
2212			return (EINVAL);
2213		break;
2214	default:
2215		return (EINVAL);
2216	}
2217	INP_INFO_WLOCK(&tcbinfo);
2218	switch (addrs[0].ss_family) {
2219#ifdef INET6
2220	case AF_INET6:
2221		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2222		    &l6, lin6->sin6_port, 0, NULL);
2223		break;
2224#endif
2225	case AF_INET:
2226		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2227		    lin->sin_addr, lin->sin_port, 0, NULL);
2228		break;
2229	}
2230	if (inp != NULL) {
2231		INP_LOCK(inp);
2232		if ((tp = intotcpcb(inp)) &&
2233		    ((inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
2234			tp = tcp_drop(tp, ECONNABORTED);
2235			if (tp != NULL)
2236				INP_UNLOCK(inp);
2237		} else
2238			INP_UNLOCK(inp);
2239	} else
2240		error = ESRCH;
2241	INP_INFO_WUNLOCK(&tcbinfo);
2242	return (error);
2243}
2244
2245SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2246    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2247    0, sysctl_drop, "", "Drop TCP connection");
2248