tcp_timewait.c revision 137139
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 137139 2004-11-02 22:22:22Z andre $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/nd6.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#ifdef FAST_IPSEC
101#include <netipsec/ipsec.h>
102#include <netipsec/xform.h>
103#ifdef INET6
104#include <netipsec/ipsec6.h>
105#endif
106#include <netipsec/key.h>
107#define	IPSEC
108#endif /*FAST_IPSEC*/
109
110#include <machine/in_cksum.h>
111#include <sys/md5.h>
112
113int	tcp_mssdflt = TCP_MSS;
114SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
115    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
116
117#ifdef INET6
118int	tcp_v6mssdflt = TCP6_MSS;
119SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
120	CTLFLAG_RW, &tcp_v6mssdflt , 0,
121	"Default TCP Maximum Segment Size for IPv6");
122#endif
123
124/*
125 * Minimum MSS we accept and use. This prevents DoS attacks where
126 * we are forced to a ridiculous low MSS like 20 and send hundreds
127 * of packets instead of one. The effect scales with the available
128 * bandwidth and quickly saturates the CPU and network interface
129 * with packet generation and sending. Set to zero to disable MINMSS
130 * checking. This setting prevents us from sending too small packets.
131 */
132int	tcp_minmss = TCP_MINMSS;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
134    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
135/*
136 * Number of TCP segments per second we accept from remote host
137 * before we start to calculate average segment size. If average
138 * segment size drops below the minimum TCP MSS we assume a DoS
139 * attack and reset+drop the connection. Care has to be taken not to
140 * set this value too small to not kill interactive type connections
141 * (telnet, SSH) which send many small packets.
142 */
143int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
144SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
145    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
146    "be under the MINMSS Size");
147
148#if 0
149static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
150SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
151    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
152#endif
153
154int	tcp_do_rfc1323 = 1;
155SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
156    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
157
158static int	tcp_tcbhashsize = 0;
159SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
160     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
161
162static int	do_tcpdrain = 1;
163SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
164     "Enable tcp_drain routine for extra help when low on mbufs");
165
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
167    &tcbinfo.ipi_count, 0, "Number of active PCBs");
168
169static int	icmp_may_rst = 1;
170SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
171    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
172
173static int	tcp_isn_reseed_interval = 0;
174SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
175    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
176
177/*
178 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
179 * 1024 exists only for debugging.  A good production default would be
180 * something like 6100.
181 */
182SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
183    "TCP inflight data limiting");
184
185static int	tcp_inflight_enable = 1;
186SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
187    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
188
189static int	tcp_inflight_debug = 0;
190SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
191    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
192
193static int	tcp_inflight_min = 6144;
194SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
195    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
196
197static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
198SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
199    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
200
201static int	tcp_inflight_stab = 20;
202SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
203    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
204
205uma_zone_t sack_hole_zone;
206
207static struct inpcb *tcp_notify(struct inpcb *, int);
208static void	tcp_discardcb(struct tcpcb *);
209static void	tcp_isn_tick(void *);
210
211/*
212 * Target size of TCP PCB hash tables. Must be a power of two.
213 *
214 * Note that this can be overridden by the kernel environment
215 * variable net.inet.tcp.tcbhashsize
216 */
217#ifndef TCBHASHSIZE
218#define TCBHASHSIZE	512
219#endif
220
221/*
222 * XXX
223 * Callouts should be moved into struct tcp directly.  They are currently
224 * separate because the tcpcb structure is exported to userland for sysctl
225 * parsing purposes, which do not know about callouts.
226 */
227struct	tcpcb_mem {
228	struct	tcpcb tcb;
229	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
230	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
231};
232
233static uma_zone_t tcpcb_zone;
234static uma_zone_t tcptw_zone;
235struct callout isn_callout;
236
237/*
238 * Tcp initialization
239 */
240void
241tcp_init()
242{
243	int hashsize = TCBHASHSIZE;
244
245	tcp_delacktime = TCPTV_DELACK;
246	tcp_keepinit = TCPTV_KEEP_INIT;
247	tcp_keepidle = TCPTV_KEEP_IDLE;
248	tcp_keepintvl = TCPTV_KEEPINTVL;
249	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
250	tcp_msl = TCPTV_MSL;
251	tcp_rexmit_min = TCPTV_MIN;
252	tcp_rexmit_slop = TCPTV_CPU_VAR;
253
254	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
255	LIST_INIT(&tcb);
256	tcbinfo.listhead = &tcb;
257	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
258	if (!powerof2(hashsize)) {
259		printf("WARNING: TCB hash size not a power of 2\n");
260		hashsize = 512; /* safe default */
261	}
262	tcp_tcbhashsize = hashsize;
263	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
264	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
265					&tcbinfo.porthashmask);
266	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
267	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
268	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
269#ifdef INET6
270#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
271#else /* INET6 */
272#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
273#endif /* INET6 */
274	if (max_protohdr < TCP_MINPROTOHDR)
275		max_protohdr = TCP_MINPROTOHDR;
276	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
277		panic("tcp_init");
278#undef TCP_MINPROTOHDR
279	/*
280	 * These have to be type stable for the benefit of the timers.
281	 */
282	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
283	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
284	uma_zone_set_max(tcpcb_zone, maxsockets);
285	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
286	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287	uma_zone_set_max(tcptw_zone, maxsockets / 5);
288	tcp_timer_init();
289	syncache_init();
290	tcp_hc_init();
291	tcp_reass_init();
292	callout_init(&isn_callout, CALLOUT_MPSAFE);
293	tcp_isn_tick(NULL);
294	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
295		SHUTDOWN_PRI_DEFAULT);
296	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
297	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
298}
299
300void
301tcp_fini(xtp)
302	void *xtp;
303{
304	callout_stop(&isn_callout);
305
306}
307
308/*
309 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
310 * tcp_template used to store this data in mbufs, but we now recopy it out
311 * of the tcpcb each time to conserve mbufs.
312 */
313void
314tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
315	struct inpcb *inp;
316	void *ip_ptr;
317	void *tcp_ptr;
318{
319	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
320
321#ifdef INET6
322	if ((inp->inp_vflag & INP_IPV6) != 0) {
323		struct ip6_hdr *ip6;
324
325		ip6 = (struct ip6_hdr *)ip_ptr;
326		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
327			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
328		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
329			(IPV6_VERSION & IPV6_VERSION_MASK);
330		ip6->ip6_nxt = IPPROTO_TCP;
331		ip6->ip6_plen = sizeof(struct tcphdr);
332		ip6->ip6_src = inp->in6p_laddr;
333		ip6->ip6_dst = inp->in6p_faddr;
334	} else
335#endif
336	{
337		struct ip *ip;
338
339		ip = (struct ip *)ip_ptr;
340		ip->ip_v = IPVERSION;
341		ip->ip_hl = 5;
342		ip->ip_tos = inp->inp_ip_tos;
343		ip->ip_len = 0;
344		ip->ip_id = 0;
345		ip->ip_off = 0;
346		ip->ip_ttl = inp->inp_ip_ttl;
347		ip->ip_sum = 0;
348		ip->ip_p = IPPROTO_TCP;
349		ip->ip_src = inp->inp_laddr;
350		ip->ip_dst = inp->inp_faddr;
351	}
352	th->th_sport = inp->inp_lport;
353	th->th_dport = inp->inp_fport;
354	th->th_seq = 0;
355	th->th_ack = 0;
356	th->th_x2 = 0;
357	th->th_off = 5;
358	th->th_flags = 0;
359	th->th_win = 0;
360	th->th_urp = 0;
361	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
362}
363
364/*
365 * Create template to be used to send tcp packets on a connection.
366 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
367 * use for this function is in keepalives, which use tcp_respond.
368 */
369struct tcptemp *
370tcpip_maketemplate(inp)
371	struct inpcb *inp;
372{
373	struct mbuf *m;
374	struct tcptemp *n;
375
376	m = m_get(M_DONTWAIT, MT_HEADER);
377	if (m == NULL)
378		return (0);
379	m->m_len = sizeof(struct tcptemp);
380	n = mtod(m, struct tcptemp *);
381
382	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
383	return (n);
384}
385
386/*
387 * Send a single message to the TCP at address specified by
388 * the given TCP/IP header.  If m == NULL, then we make a copy
389 * of the tcpiphdr at ti and send directly to the addressed host.
390 * This is used to force keep alive messages out using the TCP
391 * template for a connection.  If flags are given then we send
392 * a message back to the TCP which originated the * segment ti,
393 * and discard the mbuf containing it and any other attached mbufs.
394 *
395 * In any case the ack and sequence number of the transmitted
396 * segment are as specified by the parameters.
397 *
398 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
399 */
400void
401tcp_respond(tp, ipgen, th, m, ack, seq, flags)
402	struct tcpcb *tp;
403	void *ipgen;
404	register struct tcphdr *th;
405	register struct mbuf *m;
406	tcp_seq ack, seq;
407	int flags;
408{
409	register int tlen;
410	int win = 0;
411	struct ip *ip;
412	struct tcphdr *nth;
413#ifdef INET6
414	struct ip6_hdr *ip6;
415	int isipv6;
416#endif /* INET6 */
417	int ipflags = 0;
418	struct inpcb *inp;
419
420	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
421
422#ifdef INET6
423	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
424	ip6 = ipgen;
425#endif /* INET6 */
426	ip = ipgen;
427
428	if (tp != NULL) {
429		inp = tp->t_inpcb;
430		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
431		INP_INFO_WLOCK_ASSERT(&tcbinfo);
432		INP_LOCK_ASSERT(inp);
433	} else
434		inp = NULL;
435
436	if (tp != NULL) {
437		if (!(flags & TH_RST)) {
438			win = sbspace(&inp->inp_socket->so_rcv);
439			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
440				win = (long)TCP_MAXWIN << tp->rcv_scale;
441		}
442	}
443	if (m == NULL) {
444		m = m_gethdr(M_DONTWAIT, MT_HEADER);
445		if (m == NULL)
446			return;
447		tlen = 0;
448		m->m_data += max_linkhdr;
449#ifdef INET6
450		if (isipv6) {
451			bcopy((caddr_t)ip6, mtod(m, caddr_t),
452			      sizeof(struct ip6_hdr));
453			ip6 = mtod(m, struct ip6_hdr *);
454			nth = (struct tcphdr *)(ip6 + 1);
455		} else
456#endif /* INET6 */
457	      {
458		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
459		ip = mtod(m, struct ip *);
460		nth = (struct tcphdr *)(ip + 1);
461	      }
462		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
463		flags = TH_ACK;
464	} else {
465		m_freem(m->m_next);
466		m->m_next = NULL;
467		m->m_data = (caddr_t)ipgen;
468		/* m_len is set later */
469		tlen = 0;
470#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
471#ifdef INET6
472		if (isipv6) {
473			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
474			nth = (struct tcphdr *)(ip6 + 1);
475		} else
476#endif /* INET6 */
477	      {
478		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
479		nth = (struct tcphdr *)(ip + 1);
480	      }
481		if (th != nth) {
482			/*
483			 * this is usually a case when an extension header
484			 * exists between the IPv6 header and the
485			 * TCP header.
486			 */
487			nth->th_sport = th->th_sport;
488			nth->th_dport = th->th_dport;
489		}
490		xchg(nth->th_dport, nth->th_sport, n_short);
491#undef xchg
492	}
493#ifdef INET6
494	if (isipv6) {
495		ip6->ip6_flow = 0;
496		ip6->ip6_vfc = IPV6_VERSION;
497		ip6->ip6_nxt = IPPROTO_TCP;
498		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
499						tlen));
500		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
501	} else
502#endif
503	{
504		tlen += sizeof (struct tcpiphdr);
505		ip->ip_len = tlen;
506		ip->ip_ttl = ip_defttl;
507		if (path_mtu_discovery)
508			ip->ip_off |= IP_DF;
509	}
510	m->m_len = tlen;
511	m->m_pkthdr.len = tlen;
512	m->m_pkthdr.rcvif = NULL;
513#ifdef MAC
514	if (inp != NULL) {
515		/*
516		 * Packet is associated with a socket, so allow the
517		 * label of the response to reflect the socket label.
518		 */
519		INP_LOCK_ASSERT(inp);
520		mac_create_mbuf_from_inpcb(inp, m);
521	} else {
522		/*
523		 * Packet is not associated with a socket, so possibly
524		 * update the label in place.
525		 */
526		mac_reflect_mbuf_tcp(m);
527	}
528#endif
529	nth->th_seq = htonl(seq);
530	nth->th_ack = htonl(ack);
531	nth->th_x2 = 0;
532	nth->th_off = sizeof (struct tcphdr) >> 2;
533	nth->th_flags = flags;
534	if (tp != NULL)
535		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
536	else
537		nth->th_win = htons((u_short)win);
538	nth->th_urp = 0;
539#ifdef INET6
540	if (isipv6) {
541		nth->th_sum = 0;
542		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
543					sizeof(struct ip6_hdr),
544					tlen - sizeof(struct ip6_hdr));
545		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
546		    NULL, NULL);
547	} else
548#endif /* INET6 */
549	{
550		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
551		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
552		m->m_pkthdr.csum_flags = CSUM_TCP;
553		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
554	}
555#ifdef TCPDEBUG
556	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
557		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
558#endif
559#ifdef INET6
560	if (isipv6)
561		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
562	else
563#endif /* INET6 */
564	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
565}
566
567/*
568 * Create a new TCP control block, making an
569 * empty reassembly queue and hooking it to the argument
570 * protocol control block.  The `inp' parameter must have
571 * come from the zone allocator set up in tcp_init().
572 */
573struct tcpcb *
574tcp_newtcpcb(inp)
575	struct inpcb *inp;
576{
577	struct tcpcb_mem *tm;
578	struct tcpcb *tp;
579#ifdef INET6
580	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
581#endif /* INET6 */
582	int callout_flag;
583
584	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
585	if (tm == NULL)
586		return (NULL);
587	tp = &tm->tcb;
588	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
589	tp->t_maxseg = tp->t_maxopd =
590#ifdef INET6
591		isipv6 ? tcp_v6mssdflt :
592#endif /* INET6 */
593		tcp_mssdflt;
594
595	/* Set up our timeouts. */
596	/*
597	 * XXXRW: Are these actually MPSAFE?  I think so, but need to
598	 * review the timed wait code, as it has some list variables,
599	 * etc, that are global.
600	 */
601	callout_flag = debug_mpsafenet ? CALLOUT_MPSAFE : 0;
602	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, callout_flag);
603	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, callout_flag);
604	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, callout_flag);
605	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, callout_flag);
606	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, callout_flag);
607
608	if (tcp_do_rfc1323)
609		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
610	tp->sack_enable = tcp_do_sack;
611	tp->t_inpcb = inp;	/* XXX */
612	/*
613	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
614	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
615	 * reasonable initial retransmit time.
616	 */
617	tp->t_srtt = TCPTV_SRTTBASE;
618	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
619	tp->t_rttmin = tcp_rexmit_min;
620	tp->t_rxtcur = TCPTV_RTOBASE;
621	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
622	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
623	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
624	tp->t_rcvtime = ticks;
625	tp->t_bw_rtttime = ticks;
626	/*
627	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
628	 * because the socket may be bound to an IPv6 wildcard address,
629	 * which may match an IPv4-mapped IPv6 address.
630	 */
631	inp->inp_ip_ttl = ip_defttl;
632	inp->inp_ppcb = (caddr_t)tp;
633	return (tp);		/* XXX */
634}
635
636/*
637 * Drop a TCP connection, reporting
638 * the specified error.  If connection is synchronized,
639 * then send a RST to peer.
640 */
641struct tcpcb *
642tcp_drop(tp, errno)
643	register struct tcpcb *tp;
644	int errno;
645{
646	struct socket *so = tp->t_inpcb->inp_socket;
647
648	if (TCPS_HAVERCVDSYN(tp->t_state)) {
649		tp->t_state = TCPS_CLOSED;
650		(void) tcp_output(tp);
651		tcpstat.tcps_drops++;
652	} else
653		tcpstat.tcps_conndrops++;
654	if (errno == ETIMEDOUT && tp->t_softerror)
655		errno = tp->t_softerror;
656	so->so_error = errno;
657	return (tcp_close(tp));
658}
659
660static void
661tcp_discardcb(tp)
662	struct tcpcb *tp;
663{
664	struct tseg_qent *q;
665	struct inpcb *inp = tp->t_inpcb;
666	struct socket *so = inp->inp_socket;
667#ifdef INET6
668	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
669#endif /* INET6 */
670
671	/*
672	 * Make sure that all of our timers are stopped before we
673	 * delete the PCB.
674	 */
675	callout_stop(tp->tt_rexmt);
676	callout_stop(tp->tt_persist);
677	callout_stop(tp->tt_keep);
678	callout_stop(tp->tt_2msl);
679	callout_stop(tp->tt_delack);
680
681	/*
682	 * If we got enough samples through the srtt filter,
683	 * save the rtt and rttvar in the routing entry.
684	 * 'Enough' is arbitrarily defined as 4 rtt samples.
685	 * 4 samples is enough for the srtt filter to converge
686	 * to within enough % of the correct value; fewer samples
687	 * and we could save a bogus rtt. The danger is not high
688	 * as tcp quickly recovers from everything.
689	 * XXX: Works very well but needs some more statistics!
690	 */
691	if (tp->t_rttupdated >= 4) {
692		struct hc_metrics_lite metrics;
693		u_long ssthresh;
694
695		bzero(&metrics, sizeof(metrics));
696		/*
697		 * Update the ssthresh always when the conditions below
698		 * are satisfied. This gives us better new start value
699		 * for the congestion avoidance for new connections.
700		 * ssthresh is only set if packet loss occured on a session.
701		 */
702		ssthresh = tp->snd_ssthresh;
703		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
704			/*
705			 * convert the limit from user data bytes to
706			 * packets then to packet data bytes.
707			 */
708			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
709			if (ssthresh < 2)
710				ssthresh = 2;
711			ssthresh *= (u_long)(tp->t_maxseg +
712#ifdef INET6
713				      (isipv6 ? sizeof (struct ip6_hdr) +
714					       sizeof (struct tcphdr) :
715#endif
716				       sizeof (struct tcpiphdr)
717#ifdef INET6
718				       )
719#endif
720				      );
721		} else
722			ssthresh = 0;
723		metrics.rmx_ssthresh = ssthresh;
724
725		metrics.rmx_rtt = tp->t_srtt;
726		metrics.rmx_rttvar = tp->t_rttvar;
727		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
728		metrics.rmx_bandwidth = tp->snd_bandwidth;
729		metrics.rmx_cwnd = tp->snd_cwnd;
730		metrics.rmx_sendpipe = 0;
731		metrics.rmx_recvpipe = 0;
732
733		tcp_hc_update(&inp->inp_inc, &metrics);
734	}
735
736	/* free the reassembly queue, if any */
737	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
738		LIST_REMOVE(q, tqe_q);
739		m_freem(q->tqe_m);
740		uma_zfree(tcp_reass_zone, q);
741		tp->t_segqlen--;
742		tcp_reass_qsize--;
743	}
744	tcp_free_sackholes(tp);
745	inp->inp_ppcb = NULL;
746	tp->t_inpcb = NULL;
747	uma_zfree(tcpcb_zone, tp);
748	soisdisconnected(so);
749}
750
751/*
752 * Close a TCP control block:
753 *    discard all space held by the tcp
754 *    discard internet protocol block
755 *    wake up any sleepers
756 */
757struct tcpcb *
758tcp_close(tp)
759	struct tcpcb *tp;
760{
761	struct inpcb *inp = tp->t_inpcb;
762#ifdef INET6
763	struct socket *so = inp->inp_socket;
764#endif
765
766	tcp_discardcb(tp);
767#ifdef INET6
768	if (INP_CHECK_SOCKAF(so, AF_INET6))
769		in6_pcbdetach(inp);
770	else
771#endif
772		in_pcbdetach(inp);
773	tcpstat.tcps_closed++;
774	return (NULL);
775}
776
777void
778tcp_drain()
779{
780	if (do_tcpdrain)
781	{
782		struct inpcb *inpb;
783		struct tcpcb *tcpb;
784		struct tseg_qent *te;
785
786	/*
787	 * Walk the tcpbs, if existing, and flush the reassembly queue,
788	 * if there is one...
789	 * XXX: The "Net/3" implementation doesn't imply that the TCP
790	 *      reassembly queue should be flushed, but in a situation
791	 *	where we're really low on mbufs, this is potentially
792	 *	usefull.
793	 */
794		INP_INFO_RLOCK(&tcbinfo);
795		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
796			if (inpb->inp_vflag & INP_TIMEWAIT)
797				continue;
798			INP_LOCK(inpb);
799			if ((tcpb = intotcpcb(inpb)) != NULL) {
800				while ((te = LIST_FIRST(&tcpb->t_segq))
801			            != NULL) {
802					LIST_REMOVE(te, tqe_q);
803					m_freem(te->tqe_m);
804					uma_zfree(tcp_reass_zone, te);
805					tcpb->t_segqlen--;
806					tcp_reass_qsize--;
807				}
808			}
809			INP_UNLOCK(inpb);
810		}
811		INP_INFO_RUNLOCK(&tcbinfo);
812	}
813}
814
815/*
816 * Notify a tcp user of an asynchronous error;
817 * store error as soft error, but wake up user
818 * (for now, won't do anything until can select for soft error).
819 *
820 * Do not wake up user since there currently is no mechanism for
821 * reporting soft errors (yet - a kqueue filter may be added).
822 */
823static struct inpcb *
824tcp_notify(inp, error)
825	struct inpcb *inp;
826	int error;
827{
828	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
829
830	/*
831	 * Ignore some errors if we are hooked up.
832	 * If connection hasn't completed, has retransmitted several times,
833	 * and receives a second error, give up now.  This is better
834	 * than waiting a long time to establish a connection that
835	 * can never complete.
836	 */
837	if (tp->t_state == TCPS_ESTABLISHED &&
838	    (error == EHOSTUNREACH || error == ENETUNREACH ||
839	     error == EHOSTDOWN)) {
840		return inp;
841	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
842	    tp->t_softerror) {
843		tcp_drop(tp, error);
844		return (struct inpcb *)0;
845	} else {
846		tp->t_softerror = error;
847		return inp;
848	}
849#if 0
850	wakeup( &so->so_timeo);
851	sorwakeup(so);
852	sowwakeup(so);
853#endif
854}
855
856static int
857tcp_pcblist(SYSCTL_HANDLER_ARGS)
858{
859	int error, i, n, s;
860	struct inpcb *inp, **inp_list;
861	inp_gen_t gencnt;
862	struct xinpgen xig;
863
864	/*
865	 * The process of preparing the TCB list is too time-consuming and
866	 * resource-intensive to repeat twice on every request.
867	 */
868	if (req->oldptr == NULL) {
869		n = tcbinfo.ipi_count;
870		req->oldidx = 2 * (sizeof xig)
871			+ (n + n/8) * sizeof(struct xtcpcb);
872		return 0;
873	}
874
875	if (req->newptr != NULL)
876		return EPERM;
877
878	/*
879	 * OK, now we're committed to doing something.
880	 */
881	s = splnet();
882	INP_INFO_RLOCK(&tcbinfo);
883	gencnt = tcbinfo.ipi_gencnt;
884	n = tcbinfo.ipi_count;
885	INP_INFO_RUNLOCK(&tcbinfo);
886	splx(s);
887
888	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
889		+ n * sizeof(struct xtcpcb));
890	if (error != 0)
891		return (error);
892
893	xig.xig_len = sizeof xig;
894	xig.xig_count = n;
895	xig.xig_gen = gencnt;
896	xig.xig_sogen = so_gencnt;
897	error = SYSCTL_OUT(req, &xig, sizeof xig);
898	if (error)
899		return error;
900
901	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
902	if (inp_list == NULL)
903		return ENOMEM;
904
905	s = splnet();
906	INP_INFO_RLOCK(&tcbinfo);
907	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
908	     inp = LIST_NEXT(inp, inp_list)) {
909		INP_LOCK(inp);
910		if (inp->inp_gencnt <= gencnt) {
911			/*
912			 * XXX: This use of cr_cansee(), introduced with
913			 * TCP state changes, is not quite right, but for
914			 * now, better than nothing.
915			 */
916			if (inp->inp_vflag & INP_TIMEWAIT)
917				error = cr_cansee(req->td->td_ucred,
918				    intotw(inp)->tw_cred);
919			else
920				error = cr_canseesocket(req->td->td_ucred,
921				    inp->inp_socket);
922			if (error == 0)
923				inp_list[i++] = inp;
924		}
925		INP_UNLOCK(inp);
926	}
927	INP_INFO_RUNLOCK(&tcbinfo);
928	splx(s);
929	n = i;
930
931	error = 0;
932	for (i = 0; i < n; i++) {
933		inp = inp_list[i];
934		if (inp->inp_gencnt <= gencnt) {
935			struct xtcpcb xt;
936			caddr_t inp_ppcb;
937			xt.xt_len = sizeof xt;
938			/* XXX should avoid extra copy */
939			bcopy(inp, &xt.xt_inp, sizeof *inp);
940			inp_ppcb = inp->inp_ppcb;
941			if (inp_ppcb == NULL)
942				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
943			else if (inp->inp_vflag & INP_TIMEWAIT) {
944				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
945				xt.xt_tp.t_state = TCPS_TIME_WAIT;
946			} else
947				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
948			if (inp->inp_socket != NULL)
949				sotoxsocket(inp->inp_socket, &xt.xt_socket);
950			else {
951				bzero(&xt.xt_socket, sizeof xt.xt_socket);
952				xt.xt_socket.xso_protocol = IPPROTO_TCP;
953			}
954			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
955			error = SYSCTL_OUT(req, &xt, sizeof xt);
956		}
957	}
958	if (!error) {
959		/*
960		 * Give the user an updated idea of our state.
961		 * If the generation differs from what we told
962		 * her before, she knows that something happened
963		 * while we were processing this request, and it
964		 * might be necessary to retry.
965		 */
966		s = splnet();
967		INP_INFO_RLOCK(&tcbinfo);
968		xig.xig_gen = tcbinfo.ipi_gencnt;
969		xig.xig_sogen = so_gencnt;
970		xig.xig_count = tcbinfo.ipi_count;
971		INP_INFO_RUNLOCK(&tcbinfo);
972		splx(s);
973		error = SYSCTL_OUT(req, &xig, sizeof xig);
974	}
975	free(inp_list, M_TEMP);
976	return error;
977}
978
979SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
980	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
981
982static int
983tcp_getcred(SYSCTL_HANDLER_ARGS)
984{
985	struct xucred xuc;
986	struct sockaddr_in addrs[2];
987	struct inpcb *inp;
988	int error, s;
989
990	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
991	if (error)
992		return (error);
993	error = SYSCTL_IN(req, addrs, sizeof(addrs));
994	if (error)
995		return (error);
996	s = splnet();
997	INP_INFO_RLOCK(&tcbinfo);
998	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
999	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1000	if (inp == NULL) {
1001		error = ENOENT;
1002		goto outunlocked;
1003	}
1004	INP_LOCK(inp);
1005	if (inp->inp_socket == NULL) {
1006		error = ENOENT;
1007		goto out;
1008	}
1009	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1010	if (error)
1011		goto out;
1012	cru2x(inp->inp_socket->so_cred, &xuc);
1013out:
1014	INP_UNLOCK(inp);
1015outunlocked:
1016	INP_INFO_RUNLOCK(&tcbinfo);
1017	splx(s);
1018	if (error == 0)
1019		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1020	return (error);
1021}
1022
1023SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1024    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1025    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1026
1027#ifdef INET6
1028static int
1029tcp6_getcred(SYSCTL_HANDLER_ARGS)
1030{
1031	struct xucred xuc;
1032	struct sockaddr_in6 addrs[2];
1033	struct inpcb *inp;
1034	int error, s, mapped = 0;
1035
1036	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1037	if (error)
1038		return (error);
1039	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1040	if (error)
1041		return (error);
1042	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1043		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1044			mapped = 1;
1045		else
1046			return (EINVAL);
1047	}
1048	s = splnet();
1049	INP_INFO_RLOCK(&tcbinfo);
1050	if (mapped == 1)
1051		inp = in_pcblookup_hash(&tcbinfo,
1052			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1053			addrs[1].sin6_port,
1054			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1055			addrs[0].sin6_port,
1056			0, NULL);
1057	else
1058		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1059				 addrs[1].sin6_port,
1060				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1061				 0, NULL);
1062	if (inp == NULL) {
1063		error = ENOENT;
1064		goto outunlocked;
1065	}
1066	INP_LOCK(inp);
1067	if (inp->inp_socket == NULL) {
1068		error = ENOENT;
1069		goto out;
1070	}
1071	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1072	if (error)
1073		goto out;
1074	cru2x(inp->inp_socket->so_cred, &xuc);
1075out:
1076	INP_UNLOCK(inp);
1077outunlocked:
1078	INP_INFO_RUNLOCK(&tcbinfo);
1079	splx(s);
1080	if (error == 0)
1081		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1082	return (error);
1083}
1084
1085SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1086    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1087    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1088#endif
1089
1090
1091void
1092tcp_ctlinput(cmd, sa, vip)
1093	int cmd;
1094	struct sockaddr *sa;
1095	void *vip;
1096{
1097	struct ip *ip = vip;
1098	struct tcphdr *th;
1099	struct in_addr faddr;
1100	struct inpcb *inp;
1101	struct tcpcb *tp;
1102	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1103	tcp_seq icmp_seq;
1104	int s;
1105
1106	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1107	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1108		return;
1109
1110	if (cmd == PRC_QUENCH)
1111		notify = tcp_quench;
1112	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1113		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1114		notify = tcp_drop_syn_sent;
1115	else if (cmd == PRC_MSGSIZE)
1116		notify = tcp_mtudisc;
1117	/*
1118	 * Redirects don't need to be handled up here.
1119	 */
1120	else if (PRC_IS_REDIRECT(cmd))
1121		return;
1122	/*
1123	 * Hostdead is ugly because it goes linearly through all PCBs.
1124	 * XXX: We never get this from ICMP, otherwise it makes an
1125	 * excellent DoS attack on machines with many connections.
1126	 */
1127	else if (cmd == PRC_HOSTDEAD)
1128		ip = NULL;
1129	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1130		return;
1131	if (ip != NULL) {
1132		s = splnet();
1133		th = (struct tcphdr *)((caddr_t)ip
1134				       + (ip->ip_hl << 2));
1135		INP_INFO_WLOCK(&tcbinfo);
1136		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1137		    ip->ip_src, th->th_sport, 0, NULL);
1138		if (inp != NULL)  {
1139			INP_LOCK(inp);
1140			if (inp->inp_socket != NULL) {
1141				icmp_seq = htonl(th->th_seq);
1142				tp = intotcpcb(inp);
1143				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1144					SEQ_LT(icmp_seq, tp->snd_max))
1145					inp = (*notify)(inp, inetctlerrmap[cmd]);
1146			}
1147			if (inp != NULL)
1148				INP_UNLOCK(inp);
1149		} else {
1150			struct in_conninfo inc;
1151
1152			inc.inc_fport = th->th_dport;
1153			inc.inc_lport = th->th_sport;
1154			inc.inc_faddr = faddr;
1155			inc.inc_laddr = ip->ip_src;
1156#ifdef INET6
1157			inc.inc_isipv6 = 0;
1158#endif
1159			syncache_unreach(&inc, th);
1160		}
1161		INP_INFO_WUNLOCK(&tcbinfo);
1162		splx(s);
1163	} else
1164		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1165}
1166
1167#ifdef INET6
1168void
1169tcp6_ctlinput(cmd, sa, d)
1170	int cmd;
1171	struct sockaddr *sa;
1172	void *d;
1173{
1174	struct tcphdr th;
1175	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1176	struct ip6_hdr *ip6;
1177	struct mbuf *m;
1178	struct ip6ctlparam *ip6cp = NULL;
1179	const struct sockaddr_in6 *sa6_src = NULL;
1180	int off;
1181	struct tcp_portonly {
1182		u_int16_t th_sport;
1183		u_int16_t th_dport;
1184	} *thp;
1185
1186	if (sa->sa_family != AF_INET6 ||
1187	    sa->sa_len != sizeof(struct sockaddr_in6))
1188		return;
1189
1190	if (cmd == PRC_QUENCH)
1191		notify = tcp_quench;
1192	else if (cmd == PRC_MSGSIZE)
1193		notify = tcp_mtudisc;
1194	else if (!PRC_IS_REDIRECT(cmd) &&
1195		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1196		return;
1197
1198	/* if the parameter is from icmp6, decode it. */
1199	if (d != NULL) {
1200		ip6cp = (struct ip6ctlparam *)d;
1201		m = ip6cp->ip6c_m;
1202		ip6 = ip6cp->ip6c_ip6;
1203		off = ip6cp->ip6c_off;
1204		sa6_src = ip6cp->ip6c_src;
1205	} else {
1206		m = NULL;
1207		ip6 = NULL;
1208		off = 0;	/* fool gcc */
1209		sa6_src = &sa6_any;
1210	}
1211
1212	if (ip6 != NULL) {
1213		struct in_conninfo inc;
1214		/*
1215		 * XXX: We assume that when IPV6 is non NULL,
1216		 * M and OFF are valid.
1217		 */
1218
1219		/* check if we can safely examine src and dst ports */
1220		if (m->m_pkthdr.len < off + sizeof(*thp))
1221			return;
1222
1223		bzero(&th, sizeof(th));
1224		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1225
1226		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1227		    (struct sockaddr *)ip6cp->ip6c_src,
1228		    th.th_sport, cmd, NULL, notify);
1229
1230		inc.inc_fport = th.th_dport;
1231		inc.inc_lport = th.th_sport;
1232		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1233		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1234		inc.inc_isipv6 = 1;
1235		INP_INFO_WLOCK(&tcbinfo);
1236		syncache_unreach(&inc, &th);
1237		INP_INFO_WUNLOCK(&tcbinfo);
1238	} else
1239		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1240			      0, cmd, NULL, notify);
1241}
1242#endif /* INET6 */
1243
1244
1245/*
1246 * Following is where TCP initial sequence number generation occurs.
1247 *
1248 * There are two places where we must use initial sequence numbers:
1249 * 1.  In SYN-ACK packets.
1250 * 2.  In SYN packets.
1251 *
1252 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1253 * tcp_syncache.c for details.
1254 *
1255 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1256 * depends on this property.  In addition, these ISNs should be
1257 * unguessable so as to prevent connection hijacking.  To satisfy
1258 * the requirements of this situation, the algorithm outlined in
1259 * RFC 1948 is used, with only small modifications.
1260 *
1261 * Implementation details:
1262 *
1263 * Time is based off the system timer, and is corrected so that it
1264 * increases by one megabyte per second.  This allows for proper
1265 * recycling on high speed LANs while still leaving over an hour
1266 * before rollover.
1267 *
1268 * As reading the *exact* system time is too expensive to be done
1269 * whenever setting up a TCP connection, we increment the time
1270 * offset in two ways.  First, a small random positive increment
1271 * is added to isn_offset for each connection that is set up.
1272 * Second, the function tcp_isn_tick fires once per clock tick
1273 * and increments isn_offset as necessary so that sequence numbers
1274 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1275 * random positive increments serve only to ensure that the same
1276 * exact sequence number is never sent out twice (as could otherwise
1277 * happen when a port is recycled in less than the system tick
1278 * interval.)
1279 *
1280 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1281 * between seeding of isn_secret.  This is normally set to zero,
1282 * as reseeding should not be necessary.
1283 *
1284 */
1285
1286#define ISN_BYTES_PER_SECOND 1048576
1287#define ISN_STATIC_INCREMENT 4096
1288#define ISN_RANDOM_INCREMENT (4096 - 1)
1289
1290u_char isn_secret[32];
1291int isn_last_reseed;
1292u_int32_t isn_offset, isn_offset_old;
1293MD5_CTX isn_ctx;
1294
1295tcp_seq
1296tcp_new_isn(tp)
1297	struct tcpcb *tp;
1298{
1299	u_int32_t md5_buffer[4];
1300	tcp_seq new_isn;
1301
1302	/* Seed if this is the first use, reseed if requested. */
1303	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1304	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1305		< (u_int)ticks))) {
1306		read_random(&isn_secret, sizeof(isn_secret));
1307		isn_last_reseed = ticks;
1308	}
1309
1310	/* Compute the md5 hash and return the ISN. */
1311	MD5Init(&isn_ctx);
1312	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1313	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1314#ifdef INET6
1315	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1316		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1317			  sizeof(struct in6_addr));
1318		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1319			  sizeof(struct in6_addr));
1320	} else
1321#endif
1322	{
1323		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1324			  sizeof(struct in_addr));
1325		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1326			  sizeof(struct in_addr));
1327	}
1328	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1329	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1330	new_isn = (tcp_seq) md5_buffer[0];
1331	isn_offset += ISN_STATIC_INCREMENT +
1332		(arc4random() & ISN_RANDOM_INCREMENT);
1333	new_isn += isn_offset;
1334	return new_isn;
1335}
1336
1337/*
1338 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1339 * to keep time flowing at a relatively constant rate.  If the random
1340 * increments have already pushed us past the projected offset, do nothing.
1341 */
1342static void
1343tcp_isn_tick(xtp)
1344	void *xtp;
1345{
1346	u_int32_t projected_offset;
1347
1348	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / hz;
1349
1350	if (projected_offset > isn_offset)
1351		isn_offset = projected_offset;
1352
1353	isn_offset_old = isn_offset;
1354	callout_reset(&isn_callout, 1, tcp_isn_tick, NULL);
1355}
1356
1357/*
1358 * When a source quench is received, close congestion window
1359 * to one segment.  We will gradually open it again as we proceed.
1360 */
1361struct inpcb *
1362tcp_quench(inp, errno)
1363	struct inpcb *inp;
1364	int errno;
1365{
1366	struct tcpcb *tp = intotcpcb(inp);
1367
1368	if (tp != NULL)
1369		tp->snd_cwnd = tp->t_maxseg;
1370	return (inp);
1371}
1372
1373/*
1374 * When a specific ICMP unreachable message is received and the
1375 * connection state is SYN-SENT, drop the connection.  This behavior
1376 * is controlled by the icmp_may_rst sysctl.
1377 */
1378struct inpcb *
1379tcp_drop_syn_sent(inp, errno)
1380	struct inpcb *inp;
1381	int errno;
1382{
1383	struct tcpcb *tp = intotcpcb(inp);
1384
1385	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1386		tcp_drop(tp, errno);
1387		return (struct inpcb *)0;
1388	}
1389	return inp;
1390}
1391
1392/*
1393 * When `need fragmentation' ICMP is received, update our idea of the MSS
1394 * based on the new value in the route.  Also nudge TCP to send something,
1395 * since we know the packet we just sent was dropped.
1396 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1397 */
1398struct inpcb *
1399tcp_mtudisc(inp, errno)
1400	struct inpcb *inp;
1401	int errno;
1402{
1403	struct tcpcb *tp = intotcpcb(inp);
1404	struct socket *so = inp->inp_socket;
1405	u_int maxmtu;
1406	u_int romtu;
1407	int mss;
1408#ifdef INET6
1409	int isipv6;
1410#endif /* INET6 */
1411
1412	if (tp != NULL) {
1413#ifdef INET6
1414		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1415#endif
1416		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1417		romtu =
1418#ifdef INET6
1419		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1420#endif /* INET6 */
1421		    tcp_maxmtu(&inp->inp_inc);
1422		if (!maxmtu)
1423			maxmtu = romtu;
1424		else
1425			maxmtu = min(maxmtu, romtu);
1426		if (!maxmtu) {
1427			tp->t_maxopd = tp->t_maxseg =
1428#ifdef INET6
1429				isipv6 ? tcp_v6mssdflt :
1430#endif /* INET6 */
1431				tcp_mssdflt;
1432			return inp;
1433		}
1434		mss = maxmtu -
1435#ifdef INET6
1436			(isipv6 ?
1437			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1438#endif /* INET6 */
1439			 sizeof(struct tcpiphdr)
1440#ifdef INET6
1441			 )
1442#endif /* INET6 */
1443			;
1444
1445		/*
1446		 * XXX - The above conditional probably violates the TCP
1447		 * spec.  The problem is that, since we don't know the
1448		 * other end's MSS, we are supposed to use a conservative
1449		 * default.  But, if we do that, then MTU discovery will
1450		 * never actually take place, because the conservative
1451		 * default is much less than the MTUs typically seen
1452		 * on the Internet today.  For the moment, we'll sweep
1453		 * this under the carpet.
1454		 *
1455		 * The conservative default might not actually be a problem
1456		 * if the only case this occurs is when sending an initial
1457		 * SYN with options and data to a host we've never talked
1458		 * to before.  Then, they will reply with an MSS value which
1459		 * will get recorded and the new parameters should get
1460		 * recomputed.  For Further Study.
1461		 */
1462		if (tp->t_maxopd <= mss)
1463			return inp;
1464		tp->t_maxopd = mss;
1465
1466		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1467		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1468			mss -= TCPOLEN_TSTAMP_APPA;
1469#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1470		if (mss > MCLBYTES)
1471			mss &= ~(MCLBYTES-1);
1472#else
1473		if (mss > MCLBYTES)
1474			mss = mss / MCLBYTES * MCLBYTES;
1475#endif
1476		if (so->so_snd.sb_hiwat < mss)
1477			mss = so->so_snd.sb_hiwat;
1478
1479		tp->t_maxseg = mss;
1480
1481		tcpstat.tcps_mturesent++;
1482		tp->t_rtttime = 0;
1483		tp->snd_nxt = tp->snd_una;
1484		tcp_output(tp);
1485	}
1486	return inp;
1487}
1488
1489/*
1490 * Look-up the routing entry to the peer of this inpcb.  If no route
1491 * is found and it cannot be allocated, then return NULL.  This routine
1492 * is called by TCP routines that access the rmx structure and by tcp_mss
1493 * to get the interface MTU.
1494 */
1495u_long
1496tcp_maxmtu(inc)
1497	struct in_conninfo *inc;
1498{
1499	struct route sro;
1500	struct sockaddr_in *dst;
1501	struct ifnet *ifp;
1502	u_long maxmtu = 0;
1503
1504	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1505
1506	bzero(&sro, sizeof(sro));
1507	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1508	        dst = (struct sockaddr_in *)&sro.ro_dst;
1509		dst->sin_family = AF_INET;
1510		dst->sin_len = sizeof(*dst);
1511		dst->sin_addr = inc->inc_faddr;
1512		rtalloc_ign(&sro, RTF_CLONING);
1513	}
1514	if (sro.ro_rt != NULL) {
1515		ifp = sro.ro_rt->rt_ifp;
1516		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1517			maxmtu = ifp->if_mtu;
1518		else
1519			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1520		RTFREE(sro.ro_rt);
1521	}
1522	return (maxmtu);
1523}
1524
1525#ifdef INET6
1526u_long
1527tcp_maxmtu6(inc)
1528	struct in_conninfo *inc;
1529{
1530	struct route_in6 sro6;
1531	struct ifnet *ifp;
1532	u_long maxmtu = 0;
1533
1534	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1535
1536	bzero(&sro6, sizeof(sro6));
1537	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1538		sro6.ro_dst.sin6_family = AF_INET6;
1539		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1540		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1541		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1542	}
1543	if (sro6.ro_rt != NULL) {
1544		ifp = sro6.ro_rt->rt_ifp;
1545		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1546			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1547		else
1548			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1549				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1550		RTFREE(sro6.ro_rt);
1551	}
1552
1553	return (maxmtu);
1554}
1555#endif /* INET6 */
1556
1557#ifdef IPSEC
1558/* compute ESP/AH header size for TCP, including outer IP header. */
1559size_t
1560ipsec_hdrsiz_tcp(tp)
1561	struct tcpcb *tp;
1562{
1563	struct inpcb *inp;
1564	struct mbuf *m;
1565	size_t hdrsiz;
1566	struct ip *ip;
1567#ifdef INET6
1568	struct ip6_hdr *ip6;
1569#endif
1570	struct tcphdr *th;
1571
1572	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1573		return 0;
1574	MGETHDR(m, M_DONTWAIT, MT_DATA);
1575	if (!m)
1576		return 0;
1577
1578#ifdef INET6
1579	if ((inp->inp_vflag & INP_IPV6) != 0) {
1580		ip6 = mtod(m, struct ip6_hdr *);
1581		th = (struct tcphdr *)(ip6 + 1);
1582		m->m_pkthdr.len = m->m_len =
1583			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1584		tcpip_fillheaders(inp, ip6, th);
1585		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1586	} else
1587#endif /* INET6 */
1588	{
1589		ip = mtod(m, struct ip *);
1590		th = (struct tcphdr *)(ip + 1);
1591		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1592		tcpip_fillheaders(inp, ip, th);
1593		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1594	}
1595
1596	m_free(m);
1597	return hdrsiz;
1598}
1599#endif /*IPSEC*/
1600
1601/*
1602 * Move a TCP connection into TIME_WAIT state.
1603 *    tcbinfo is unlocked.
1604 *    inp is locked, and is unlocked before returning.
1605 */
1606void
1607tcp_twstart(tp)
1608	struct tcpcb *tp;
1609{
1610	struct tcptw *tw;
1611	struct inpcb *inp;
1612	int tw_time, acknow;
1613	struct socket *so;
1614
1615	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1616	if (tw == NULL) {
1617		tw = tcp_timer_2msl_tw(1);
1618		if (tw == NULL) {
1619			tcp_close(tp);
1620			return;
1621		}
1622	}
1623	inp = tp->t_inpcb;
1624	tw->tw_inpcb = inp;
1625
1626	/*
1627	 * Recover last window size sent.
1628	 */
1629	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1630
1631	/*
1632	 * Set t_recent if timestamps are used on the connection.
1633	 */
1634	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1635	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1636		tw->t_recent = tp->ts_recent;
1637	else
1638		tw->t_recent = 0;
1639
1640	tw->snd_nxt = tp->snd_nxt;
1641	tw->rcv_nxt = tp->rcv_nxt;
1642	tw->iss     = tp->iss;
1643	tw->irs     = tp->irs;
1644	tw->t_starttime = tp->t_starttime;
1645	tw->tw_time = 0;
1646
1647/* XXX
1648 * If this code will
1649 * be used for fin-wait-2 state also, then we may need
1650 * a ts_recent from the last segment.
1651 */
1652	tw_time = 2 * tcp_msl;
1653	acknow = tp->t_flags & TF_ACKNOW;
1654	tcp_discardcb(tp);
1655	so = inp->inp_socket;
1656	ACCEPT_LOCK();
1657	SOCK_LOCK(so);
1658	so->so_pcb = NULL;
1659	tw->tw_cred = crhold(so->so_cred);
1660	tw->tw_so_options = so->so_options;
1661	sotryfree(so);
1662	inp->inp_socket = NULL;
1663	if (acknow)
1664		tcp_twrespond(tw, TH_ACK);
1665	inp->inp_ppcb = (caddr_t)tw;
1666	inp->inp_vflag |= INP_TIMEWAIT;
1667	tcp_timer_2msl_reset(tw, tw_time);
1668	INP_UNLOCK(inp);
1669}
1670
1671/*
1672 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1673 * the actual rate is slightly higher due to the addition of
1674 * random positive increments.
1675 *
1676 * Most other new OSes use semi-randomized ISN values, so we
1677 * do not need to worry about them.
1678 */
1679#define MS_ISN_BYTES_PER_SECOND		250000
1680
1681/*
1682 * Determine if the ISN we will generate has advanced beyond the last
1683 * sequence number used by the previous connection.  If so, indicate
1684 * that it is safe to recycle this tw socket by returning 1.
1685 */
1686int
1687tcp_twrecycleable(struct tcptw *tw)
1688{
1689	tcp_seq new_iss = tw->iss;
1690	tcp_seq new_irs = tw->irs;
1691
1692	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1693	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1694
1695	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1696		return 1;
1697	else
1698		return 0;
1699}
1700
1701struct tcptw *
1702tcp_twclose(struct tcptw *tw, int reuse)
1703{
1704	struct inpcb *inp;
1705
1706	inp = tw->tw_inpcb;
1707	tw->tw_inpcb = NULL;
1708	tcp_timer_2msl_stop(tw);
1709	inp->inp_ppcb = NULL;
1710#ifdef INET6
1711	if (inp->inp_vflag & INP_IPV6PROTO)
1712		in6_pcbdetach(inp);
1713	else
1714#endif
1715		in_pcbdetach(inp);
1716	tcpstat.tcps_closed++;
1717	crfree(tw->tw_cred);
1718	tw->tw_cred = NULL;
1719	if (reuse)
1720		return (tw);
1721	uma_zfree(tcptw_zone, tw);
1722	return (NULL);
1723}
1724
1725int
1726tcp_twrespond(struct tcptw *tw, int flags)
1727{
1728	struct inpcb *inp = tw->tw_inpcb;
1729	struct tcphdr *th;
1730	struct mbuf *m;
1731	struct ip *ip = NULL;
1732	u_int8_t *optp;
1733	u_int hdrlen, optlen;
1734	int error;
1735#ifdef INET6
1736	struct ip6_hdr *ip6 = NULL;
1737	int isipv6 = inp->inp_inc.inc_isipv6;
1738#endif
1739
1740	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1741	if (m == NULL)
1742		return (ENOBUFS);
1743	m->m_data += max_linkhdr;
1744
1745#ifdef MAC
1746	mac_create_mbuf_from_inpcb(inp, m);
1747#endif
1748
1749#ifdef INET6
1750	if (isipv6) {
1751		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1752		ip6 = mtod(m, struct ip6_hdr *);
1753		th = (struct tcphdr *)(ip6 + 1);
1754		tcpip_fillheaders(inp, ip6, th);
1755	} else
1756#endif
1757	{
1758		hdrlen = sizeof(struct tcpiphdr);
1759		ip = mtod(m, struct ip *);
1760		th = (struct tcphdr *)(ip + 1);
1761		tcpip_fillheaders(inp, ip, th);
1762	}
1763	optp = (u_int8_t *)(th + 1);
1764
1765	/*
1766	 * Send a timestamp and echo-reply if both our side and our peer
1767	 * have sent timestamps in our SYN's and this is not a RST.
1768	 */
1769	if (tw->t_recent && flags == TH_ACK) {
1770		u_int32_t *lp = (u_int32_t *)optp;
1771
1772		/* Form timestamp option as shown in appendix A of RFC 1323. */
1773		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1774		*lp++ = htonl(ticks);
1775		*lp   = htonl(tw->t_recent);
1776		optp += TCPOLEN_TSTAMP_APPA;
1777	}
1778
1779	optlen = optp - (u_int8_t *)(th + 1);
1780
1781	m->m_len = hdrlen + optlen;
1782	m->m_pkthdr.len = m->m_len;
1783
1784	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1785
1786	th->th_seq = htonl(tw->snd_nxt);
1787	th->th_ack = htonl(tw->rcv_nxt);
1788	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1789	th->th_flags = flags;
1790	th->th_win = htons(tw->last_win);
1791
1792#ifdef INET6
1793	if (isipv6) {
1794		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1795		    sizeof(struct tcphdr) + optlen);
1796		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1797		error = ip6_output(m, inp->in6p_outputopts, NULL,
1798		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1799	} else
1800#endif
1801	{
1802		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1803		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1804		m->m_pkthdr.csum_flags = CSUM_TCP;
1805		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1806		ip->ip_len = m->m_pkthdr.len;
1807		if (path_mtu_discovery)
1808			ip->ip_off |= IP_DF;
1809		error = ip_output(m, inp->inp_options, NULL,
1810		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1811		    NULL, inp);
1812	}
1813	if (flags & TH_ACK)
1814		tcpstat.tcps_sndacks++;
1815	else
1816		tcpstat.tcps_sndctrl++;
1817	tcpstat.tcps_sndtotal++;
1818	return (error);
1819}
1820
1821/*
1822 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1823 *
1824 * This code attempts to calculate the bandwidth-delay product as a
1825 * means of determining the optimal window size to maximize bandwidth,
1826 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1827 * routers.  This code also does a fairly good job keeping RTTs in check
1828 * across slow links like modems.  We implement an algorithm which is very
1829 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1830 * transmitter side of a TCP connection and so only effects the transmit
1831 * side of the connection.
1832 *
1833 * BACKGROUND:  TCP makes no provision for the management of buffer space
1834 * at the end points or at the intermediate routers and switches.  A TCP
1835 * stream, whether using NewReno or not, will eventually buffer as
1836 * many packets as it is able and the only reason this typically works is
1837 * due to the fairly small default buffers made available for a connection
1838 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1839 * scaling it is now fairly easy for even a single TCP connection to blow-out
1840 * all available buffer space not only on the local interface, but on
1841 * intermediate routers and switches as well.  NewReno makes a misguided
1842 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1843 * then backing off, then steadily increasing the window again until another
1844 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1845 * is only made worse as network loads increase and the idea of intentionally
1846 * blowing out network buffers is, frankly, a terrible way to manage network
1847 * resources.
1848 *
1849 * It is far better to limit the transmit window prior to the failure
1850 * condition being achieved.  There are two general ways to do this:  First
1851 * you can 'scan' through different transmit window sizes and locate the
1852 * point where the RTT stops increasing, indicating that you have filled the
1853 * pipe, then scan backwards until you note that RTT stops decreasing, then
1854 * repeat ad-infinitum.  This method works in principle but has severe
1855 * implementation issues due to RTT variances, timer granularity, and
1856 * instability in the algorithm which can lead to many false positives and
1857 * create oscillations as well as interact badly with other TCP streams
1858 * implementing the same algorithm.
1859 *
1860 * The second method is to limit the window to the bandwidth delay product
1861 * of the link.  This is the method we implement.  RTT variances and our
1862 * own manipulation of the congestion window, bwnd, can potentially
1863 * destabilize the algorithm.  For this reason we have to stabilize the
1864 * elements used to calculate the window.  We do this by using the minimum
1865 * observed RTT, the long term average of the observed bandwidth, and
1866 * by adding two segments worth of slop.  It isn't perfect but it is able
1867 * to react to changing conditions and gives us a very stable basis on
1868 * which to extend the algorithm.
1869 */
1870void
1871tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1872{
1873	u_long bw;
1874	u_long bwnd;
1875	int save_ticks;
1876
1877	/*
1878	 * If inflight_enable is disabled in the middle of a tcp connection,
1879	 * make sure snd_bwnd is effectively disabled.
1880	 */
1881	if (tcp_inflight_enable == 0) {
1882		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1883		tp->snd_bandwidth = 0;
1884		return;
1885	}
1886
1887	/*
1888	 * Figure out the bandwidth.  Due to the tick granularity this
1889	 * is a very rough number and it MUST be averaged over a fairly
1890	 * long period of time.  XXX we need to take into account a link
1891	 * that is not using all available bandwidth, but for now our
1892	 * slop will ramp us up if this case occurs and the bandwidth later
1893	 * increases.
1894	 *
1895	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1896	 * effectively reset t_bw_rtttime for this case.
1897	 */
1898	save_ticks = ticks;
1899	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1900		return;
1901
1902	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1903	    (save_ticks - tp->t_bw_rtttime);
1904	tp->t_bw_rtttime = save_ticks;
1905	tp->t_bw_rtseq = ack_seq;
1906	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1907		return;
1908	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1909
1910	tp->snd_bandwidth = bw;
1911
1912	/*
1913	 * Calculate the semi-static bandwidth delay product, plus two maximal
1914	 * segments.  The additional slop puts us squarely in the sweet
1915	 * spot and also handles the bandwidth run-up case and stabilization.
1916	 * Without the slop we could be locking ourselves into a lower
1917	 * bandwidth.
1918	 *
1919	 * Situations Handled:
1920	 *	(1) Prevents over-queueing of packets on LANs, especially on
1921	 *	    high speed LANs, allowing larger TCP buffers to be
1922	 *	    specified, and also does a good job preventing
1923	 *	    over-queueing of packets over choke points like modems
1924	 *	    (at least for the transmit side).
1925	 *
1926	 *	(2) Is able to handle changing network loads (bandwidth
1927	 *	    drops so bwnd drops, bandwidth increases so bwnd
1928	 *	    increases).
1929	 *
1930	 *	(3) Theoretically should stabilize in the face of multiple
1931	 *	    connections implementing the same algorithm (this may need
1932	 *	    a little work).
1933	 *
1934	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1935	 *	    be adjusted with a sysctl but typically only needs to be
1936	 *	    on very slow connections.  A value no smaller then 5
1937	 *	    should be used, but only reduce this default if you have
1938	 *	    no other choice.
1939	 */
1940#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1941	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1942#undef USERTT
1943
1944	if (tcp_inflight_debug > 0) {
1945		static int ltime;
1946		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1947			ltime = ticks;
1948			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1949			    tp,
1950			    bw,
1951			    tp->t_rttbest,
1952			    tp->t_srtt,
1953			    bwnd
1954			);
1955		}
1956	}
1957	if ((long)bwnd < tcp_inflight_min)
1958		bwnd = tcp_inflight_min;
1959	if (bwnd > tcp_inflight_max)
1960		bwnd = tcp_inflight_max;
1961	if ((long)bwnd < tp->t_maxseg * 2)
1962		bwnd = tp->t_maxseg * 2;
1963	tp->snd_bwnd = bwnd;
1964}
1965
1966#ifdef TCP_SIGNATURE
1967/*
1968 * Callback function invoked by m_apply() to digest TCP segment data
1969 * contained within an mbuf chain.
1970 */
1971static int
1972tcp_signature_apply(void *fstate, void *data, u_int len)
1973{
1974
1975	MD5Update(fstate, (u_char *)data, len);
1976	return (0);
1977}
1978
1979/*
1980 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
1981 *
1982 * Parameters:
1983 * m		pointer to head of mbuf chain
1984 * off0		offset to TCP header within the mbuf chain
1985 * len		length of TCP segment data, excluding options
1986 * optlen	length of TCP segment options
1987 * buf		pointer to storage for computed MD5 digest
1988 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1989 *
1990 * We do this over ip, tcphdr, segment data, and the key in the SADB.
1991 * When called from tcp_input(), we can be sure that th_sum has been
1992 * zeroed out and verified already.
1993 *
1994 * This function is for IPv4 use only. Calling this function with an
1995 * IPv6 packet in the mbuf chain will yield undefined results.
1996 *
1997 * Return 0 if successful, otherwise return -1.
1998 *
1999 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2000 * search with the destination IP address, and a 'magic SPI' to be
2001 * determined by the application. This is hardcoded elsewhere to 1179
2002 * right now. Another branch of this code exists which uses the SPD to
2003 * specify per-application flows but it is unstable.
2004 */
2005int
2006tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2007    u_char *buf, u_int direction)
2008{
2009	union sockaddr_union dst;
2010	struct ippseudo ippseudo;
2011	MD5_CTX ctx;
2012	int doff;
2013	struct ip *ip;
2014	struct ipovly *ipovly;
2015	struct secasvar *sav;
2016	struct tcphdr *th;
2017	u_short savecsum;
2018
2019	KASSERT(m != NULL, ("NULL mbuf chain"));
2020	KASSERT(buf != NULL, ("NULL signature pointer"));
2021
2022	/* Extract the destination from the IP header in the mbuf. */
2023	ip = mtod(m, struct ip *);
2024	bzero(&dst, sizeof(union sockaddr_union));
2025	dst.sa.sa_len = sizeof(struct sockaddr_in);
2026	dst.sa.sa_family = AF_INET;
2027	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2028	    ip->ip_src : ip->ip_dst;
2029
2030	/* Look up an SADB entry which matches the address of the peer. */
2031	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2032	if (sav == NULL) {
2033		printf("%s: SADB lookup failed for %s\n", __func__,
2034		    inet_ntoa(dst.sin.sin_addr));
2035		return (EINVAL);
2036	}
2037
2038	MD5Init(&ctx);
2039	ipovly = (struct ipovly *)ip;
2040	th = (struct tcphdr *)((u_char *)ip + off0);
2041	doff = off0 + sizeof(struct tcphdr) + optlen;
2042
2043	/*
2044	 * Step 1: Update MD5 hash with IP pseudo-header.
2045	 *
2046	 * XXX The ippseudo header MUST be digested in network byte order,
2047	 * or else we'll fail the regression test. Assume all fields we've
2048	 * been doing arithmetic on have been in host byte order.
2049	 * XXX One cannot depend on ipovly->ih_len here. When called from
2050	 * tcp_output(), the underlying ip_len member has not yet been set.
2051	 */
2052	ippseudo.ippseudo_src = ipovly->ih_src;
2053	ippseudo.ippseudo_dst = ipovly->ih_dst;
2054	ippseudo.ippseudo_pad = 0;
2055	ippseudo.ippseudo_p = IPPROTO_TCP;
2056	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2057	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2058
2059	/*
2060	 * Step 2: Update MD5 hash with TCP header, excluding options.
2061	 * The TCP checksum must be set to zero.
2062	 */
2063	savecsum = th->th_sum;
2064	th->th_sum = 0;
2065	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2066	th->th_sum = savecsum;
2067
2068	/*
2069	 * Step 3: Update MD5 hash with TCP segment data.
2070	 *         Use m_apply() to avoid an early m_pullup().
2071	 */
2072	if (len > 0)
2073		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2074
2075	/*
2076	 * Step 4: Update MD5 hash with shared secret.
2077	 */
2078	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2079	MD5Final(buf, &ctx);
2080
2081	key_sa_recordxfer(sav, m);
2082	KEY_FREESAV(&sav);
2083	return (0);
2084}
2085#endif /* TCP_SIGNATURE */
2086