tcp_timewait.c revision 128452
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 128452 2004-04-20 06:33:39Z silby $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/mac.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#ifdef INET6
49#include <sys/domain.h>
50#endif
51#include <sys/proc.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/protosw.h>
55#include <sys/random.h>
56
57#include <vm/uma.h>
58
59#include <net/route.h>
60#include <net/if.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/ip.h>
65#ifdef INET6
66#include <netinet/ip6.h>
67#endif
68#include <netinet/in_pcb.h>
69#ifdef INET6
70#include <netinet6/in6_pcb.h>
71#endif
72#include <netinet/in_var.h>
73#include <netinet/ip_var.h>
74#ifdef INET6
75#include <netinet6/ip6_var.h>
76#include <netinet6/nd6.h>
77#endif
78#include <netinet/tcp.h>
79#include <netinet/tcp_fsm.h>
80#include <netinet/tcp_seq.h>
81#include <netinet/tcp_timer.h>
82#include <netinet/tcp_var.h>
83#ifdef INET6
84#include <netinet6/tcp6_var.h>
85#endif
86#include <netinet/tcpip.h>
87#ifdef TCPDEBUG
88#include <netinet/tcp_debug.h>
89#endif
90#include <netinet6/ip6protosw.h>
91
92#ifdef IPSEC
93#include <netinet6/ipsec.h>
94#ifdef INET6
95#include <netinet6/ipsec6.h>
96#endif
97#endif /*IPSEC*/
98
99#ifdef FAST_IPSEC
100#include <netipsec/ipsec.h>
101#include <netipsec/xform.h>
102#ifdef INET6
103#include <netipsec/ipsec6.h>
104#endif
105#include <netipsec/key.h>
106#define	IPSEC
107#endif /*FAST_IPSEC*/
108
109#include <machine/in_cksum.h>
110#include <sys/md5.h>
111
112int 	tcp_mssdflt = TCP_MSS;
113SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115
116#ifdef INET6
117int	tcp_v6mssdflt = TCP6_MSS;
118SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120	"Default TCP Maximum Segment Size for IPv6");
121#endif
122
123/*
124 * Minimum MSS we accept and use. This prevents DoS attacks where
125 * we are forced to a ridiculous low MSS like 20 and send hundreds
126 * of packets instead of one. The effect scales with the available
127 * bandwidth and quickly saturates the CPU and network interface
128 * with packet generation and sending. Set to zero to disable MINMSS
129 * checking. This setting prevents us from sending too small packets.
130 */
131int	tcp_minmss = TCP_MINMSS;
132SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
133    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
134/*
135 * Number of TCP segments per second we accept from remote host
136 * before we start to calculate average segment size. If average
137 * segment size drops below the minimum TCP MSS we assume a DoS
138 * attack and reset+drop the connection. Care has to be taken not to
139 * set this value too small to not kill interactive type connections
140 * (telnet, SSH) which send many small packets.
141 */
142int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
143SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
144    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
145    "be under the MINMSS Size");
146
147#if 0
148static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
149SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
150    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
151#endif
152
153int	tcp_do_rfc1323 = 1;
154SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
155    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
156
157int	tcp_do_rfc1644 = 0;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
159    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180/*
181 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
182 * 1024 exists only for debugging.  A good production default would be
183 * something like 6100.
184 */
185static int	tcp_inflight_enable = 1;
186SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
187    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
188
189static int	tcp_inflight_debug = 0;
190SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
191    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
192
193static int	tcp_inflight_min = 6144;
194SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
195    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
196
197static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
198SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
199    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
200static int	tcp_inflight_stab = 20;
201SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
202    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
203
204static struct inpcb *tcp_notify(struct inpcb *, int);
205static void	tcp_discardcb(struct tcpcb *);
206static void	tcp_isn_tick(void *);
207
208/*
209 * Target size of TCP PCB hash tables. Must be a power of two.
210 *
211 * Note that this can be overridden by the kernel environment
212 * variable net.inet.tcp.tcbhashsize
213 */
214#ifndef TCBHASHSIZE
215#define TCBHASHSIZE	512
216#endif
217
218/*
219 * XXX
220 * Callouts should be moved into struct tcp directly.  They are currently
221 * separate because the tcpcb structure is exported to userland for sysctl
222 * parsing purposes, which do not know about callouts.
223 */
224struct	tcpcb_mem {
225	struct	tcpcb tcb;
226	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
227	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
228};
229
230static uma_zone_t tcpcb_zone;
231static uma_zone_t tcptw_zone;
232struct callout isn_callout;
233
234/*
235 * Tcp initialization
236 */
237void
238tcp_init()
239{
240	int hashsize = TCBHASHSIZE;
241
242	tcp_ccgen = 1;
243
244	tcp_delacktime = TCPTV_DELACK;
245	tcp_keepinit = TCPTV_KEEP_INIT;
246	tcp_keepidle = TCPTV_KEEP_IDLE;
247	tcp_keepintvl = TCPTV_KEEPINTVL;
248	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
249	tcp_msl = TCPTV_MSL;
250	tcp_rexmit_min = TCPTV_MIN;
251	tcp_rexmit_slop = TCPTV_CPU_VAR;
252
253	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
254	LIST_INIT(&tcb);
255	tcbinfo.listhead = &tcb;
256	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
257	if (!powerof2(hashsize)) {
258		printf("WARNING: TCB hash size not a power of 2\n");
259		hashsize = 512; /* safe default */
260	}
261	tcp_tcbhashsize = hashsize;
262	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
263	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
264					&tcbinfo.porthashmask);
265	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
266	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
267	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
268#ifdef INET6
269#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
270#else /* INET6 */
271#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
272#endif /* INET6 */
273	if (max_protohdr < TCP_MINPROTOHDR)
274		max_protohdr = TCP_MINPROTOHDR;
275	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
276		panic("tcp_init");
277#undef TCP_MINPROTOHDR
278	/*
279	 * These have to be type stable for the benefit of the timers.
280	 */
281	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
282	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
283	uma_zone_set_max(tcpcb_zone, maxsockets);
284	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
285	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
286	uma_zone_set_max(tcptw_zone, maxsockets / 5);
287	tcp_timer_init();
288	syncache_init();
289	tcp_hc_init();
290	tcp_reass_init();
291	callout_init(&isn_callout, CALLOUT_MPSAFE);
292	tcp_isn_tick(NULL);
293	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
294		SHUTDOWN_PRI_DEFAULT);
295}
296
297void
298tcp_fini(xtp)
299	void *xtp;
300{
301	callout_stop(&isn_callout);
302
303}
304
305/*
306 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
307 * tcp_template used to store this data in mbufs, but we now recopy it out
308 * of the tcpcb each time to conserve mbufs.
309 */
310void
311tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
312	struct inpcb *inp;
313	void *ip_ptr;
314	void *tcp_ptr;
315{
316	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
317
318#ifdef INET6
319	if ((inp->inp_vflag & INP_IPV6) != 0) {
320		struct ip6_hdr *ip6;
321
322		ip6 = (struct ip6_hdr *)ip_ptr;
323		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
324			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
325		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
326			(IPV6_VERSION & IPV6_VERSION_MASK);
327		ip6->ip6_nxt = IPPROTO_TCP;
328		ip6->ip6_plen = sizeof(struct tcphdr);
329		ip6->ip6_src = inp->in6p_laddr;
330		ip6->ip6_dst = inp->in6p_faddr;
331	} else
332#endif
333	{
334		struct ip *ip;
335
336		ip = (struct ip *)ip_ptr;
337		ip->ip_v = IPVERSION;
338		ip->ip_hl = 5;
339		ip->ip_tos = inp->inp_ip_tos;
340		ip->ip_len = 0;
341		ip->ip_id = 0;
342		ip->ip_off = 0;
343		ip->ip_ttl = inp->inp_ip_ttl;
344		ip->ip_sum = 0;
345		ip->ip_p = IPPROTO_TCP;
346		ip->ip_src = inp->inp_laddr;
347		ip->ip_dst = inp->inp_faddr;
348	}
349	th->th_sport = inp->inp_lport;
350	th->th_dport = inp->inp_fport;
351	th->th_seq = 0;
352	th->th_ack = 0;
353	th->th_x2 = 0;
354	th->th_off = 5;
355	th->th_flags = 0;
356	th->th_win = 0;
357	th->th_urp = 0;
358	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
359}
360
361/*
362 * Create template to be used to send tcp packets on a connection.
363 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
364 * use for this function is in keepalives, which use tcp_respond.
365 */
366struct tcptemp *
367tcpip_maketemplate(inp)
368	struct inpcb *inp;
369{
370	struct mbuf *m;
371	struct tcptemp *n;
372
373	m = m_get(M_DONTWAIT, MT_HEADER);
374	if (m == NULL)
375		return (0);
376	m->m_len = sizeof(struct tcptemp);
377	n = mtod(m, struct tcptemp *);
378
379	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
380	return (n);
381}
382
383/*
384 * Send a single message to the TCP at address specified by
385 * the given TCP/IP header.  If m == NULL, then we make a copy
386 * of the tcpiphdr at ti and send directly to the addressed host.
387 * This is used to force keep alive messages out using the TCP
388 * template for a connection.  If flags are given then we send
389 * a message back to the TCP which originated the * segment ti,
390 * and discard the mbuf containing it and any other attached mbufs.
391 *
392 * In any case the ack and sequence number of the transmitted
393 * segment are as specified by the parameters.
394 *
395 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
396 */
397void
398tcp_respond(tp, ipgen, th, m, ack, seq, flags)
399	struct tcpcb *tp;
400	void *ipgen;
401	register struct tcphdr *th;
402	register struct mbuf *m;
403	tcp_seq ack, seq;
404	int flags;
405{
406	register int tlen;
407	int win = 0;
408	struct ip *ip;
409	struct tcphdr *nth;
410#ifdef INET6
411	struct ip6_hdr *ip6;
412	int isipv6;
413#endif /* INET6 */
414	int ipflags = 0;
415	struct inpcb *inp = NULL;
416
417	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
418
419#ifdef INET6
420	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
421	ip6 = ipgen;
422#endif /* INET6 */
423	ip = ipgen;
424
425	if (tp != NULL) {
426		inp = tp->t_inpcb;
427		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
428		INP_INFO_WLOCK_ASSERT(&tcbinfo);
429		INP_LOCK_ASSERT(inp);
430		if (!(flags & TH_RST)) {
431			win = sbspace(&inp->inp_socket->so_rcv);
432			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
433				win = (long)TCP_MAXWIN << tp->rcv_scale;
434		}
435	}
436	if (m == NULL) {
437		m = m_gethdr(M_DONTWAIT, MT_HEADER);
438		if (m == NULL)
439			return;
440		tlen = 0;
441		m->m_data += max_linkhdr;
442#ifdef INET6
443		if (isipv6) {
444			bcopy((caddr_t)ip6, mtod(m, caddr_t),
445			      sizeof(struct ip6_hdr));
446			ip6 = mtod(m, struct ip6_hdr *);
447			nth = (struct tcphdr *)(ip6 + 1);
448		} else
449#endif /* INET6 */
450	      {
451		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
452		ip = mtod(m, struct ip *);
453		nth = (struct tcphdr *)(ip + 1);
454	      }
455		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
456		flags = TH_ACK;
457	} else {
458		m_freem(m->m_next);
459		m->m_next = NULL;
460		m->m_data = (caddr_t)ipgen;
461		/* m_len is set later */
462		tlen = 0;
463#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
464#ifdef INET6
465		if (isipv6) {
466			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
467			nth = (struct tcphdr *)(ip6 + 1);
468		} else
469#endif /* INET6 */
470	      {
471		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
472		nth = (struct tcphdr *)(ip + 1);
473	      }
474		if (th != nth) {
475			/*
476			 * this is usually a case when an extension header
477			 * exists between the IPv6 header and the
478			 * TCP header.
479			 */
480			nth->th_sport = th->th_sport;
481			nth->th_dport = th->th_dport;
482		}
483		xchg(nth->th_dport, nth->th_sport, n_short);
484#undef xchg
485	}
486#ifdef INET6
487	if (isipv6) {
488		ip6->ip6_flow = 0;
489		ip6->ip6_vfc = IPV6_VERSION;
490		ip6->ip6_nxt = IPPROTO_TCP;
491		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
492						tlen));
493		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
494	} else
495#endif
496      {
497	tlen += sizeof (struct tcpiphdr);
498	ip->ip_len = tlen;
499	ip->ip_ttl = ip_defttl;
500	if (path_mtu_discovery)
501		ip->ip_off |= IP_DF;
502      }
503	m->m_len = tlen;
504	m->m_pkthdr.len = tlen;
505	m->m_pkthdr.rcvif = NULL;
506#ifdef MAC
507	if (inp != NULL) {
508		/*
509		 * Packet is associated with a socket, so allow the
510		 * label of the response to reflect the socket label.
511		 */
512		mac_create_mbuf_from_socket(inp->inp_socket, m);
513	} else {
514		/*
515		 * Packet is not associated with a socket, so possibly
516		 * update the label in place.
517		 */
518		mac_reflect_mbuf_tcp(m);
519	}
520#endif
521	nth->th_seq = htonl(seq);
522	nth->th_ack = htonl(ack);
523	nth->th_x2 = 0;
524	nth->th_off = sizeof (struct tcphdr) >> 2;
525	nth->th_flags = flags;
526	if (tp != NULL)
527		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
528	else
529		nth->th_win = htons((u_short)win);
530	nth->th_urp = 0;
531#ifdef INET6
532	if (isipv6) {
533		nth->th_sum = 0;
534		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
535					sizeof(struct ip6_hdr),
536					tlen - sizeof(struct ip6_hdr));
537		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
538		    NULL, NULL);
539	} else
540#endif /* INET6 */
541      {
542        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
543	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
544        m->m_pkthdr.csum_flags = CSUM_TCP;
545        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
546      }
547#ifdef TCPDEBUG
548	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
549		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
550#endif
551#ifdef INET6
552	if (isipv6)
553		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
554	else
555#endif /* INET6 */
556	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
557}
558
559/*
560 * Create a new TCP control block, making an
561 * empty reassembly queue and hooking it to the argument
562 * protocol control block.  The `inp' parameter must have
563 * come from the zone allocator set up in tcp_init().
564 */
565struct tcpcb *
566tcp_newtcpcb(inp)
567	struct inpcb *inp;
568{
569	struct tcpcb_mem *tm;
570	struct tcpcb *tp;
571#ifdef INET6
572	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
573#endif /* INET6 */
574
575	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
576	if (tm == NULL)
577		return (NULL);
578	tp = &tm->tcb;
579	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
580	tp->t_maxseg = tp->t_maxopd =
581#ifdef INET6
582		isipv6 ? tcp_v6mssdflt :
583#endif /* INET6 */
584		tcp_mssdflt;
585
586	/* Set up our timeouts. */
587	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, 0);
588	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, 0);
589	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, 0);
590	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, 0);
591	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, 0);
592
593	if (tcp_do_rfc1323)
594		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
595	if (tcp_do_rfc1644)
596		tp->t_flags |= TF_REQ_CC;
597	tp->t_inpcb = inp;	/* XXX */
598	/*
599	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
600	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
601	 * reasonable initial retransmit time.
602	 */
603	tp->t_srtt = TCPTV_SRTTBASE;
604	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
605	tp->t_rttmin = tcp_rexmit_min;
606	tp->t_rxtcur = TCPTV_RTOBASE;
607	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
608	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
609	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
610	tp->t_rcvtime = ticks;
611	tp->t_bw_rtttime = ticks;
612        /*
613	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
614	 * because the socket may be bound to an IPv6 wildcard address,
615	 * which may match an IPv4-mapped IPv6 address.
616	 */
617	inp->inp_ip_ttl = ip_defttl;
618	inp->inp_ppcb = (caddr_t)tp;
619	return (tp);		/* XXX */
620}
621
622/*
623 * Drop a TCP connection, reporting
624 * the specified error.  If connection is synchronized,
625 * then send a RST to peer.
626 */
627struct tcpcb *
628tcp_drop(tp, errno)
629	register struct tcpcb *tp;
630	int errno;
631{
632	struct socket *so = tp->t_inpcb->inp_socket;
633
634	if (TCPS_HAVERCVDSYN(tp->t_state)) {
635		tp->t_state = TCPS_CLOSED;
636		(void) tcp_output(tp);
637		tcpstat.tcps_drops++;
638	} else
639		tcpstat.tcps_conndrops++;
640	if (errno == ETIMEDOUT && tp->t_softerror)
641		errno = tp->t_softerror;
642	so->so_error = errno;
643	return (tcp_close(tp));
644}
645
646static void
647tcp_discardcb(tp)
648	struct tcpcb *tp;
649{
650	struct tseg_qent *q;
651	struct inpcb *inp = tp->t_inpcb;
652	struct socket *so = inp->inp_socket;
653#ifdef INET6
654	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
655#endif /* INET6 */
656
657	/*
658	 * Make sure that all of our timers are stopped before we
659	 * delete the PCB.
660	 */
661	callout_stop(tp->tt_rexmt);
662	callout_stop(tp->tt_persist);
663	callout_stop(tp->tt_keep);
664	callout_stop(tp->tt_2msl);
665	callout_stop(tp->tt_delack);
666
667	/*
668	 * If we got enough samples through the srtt filter,
669	 * save the rtt and rttvar in the routing entry.
670	 * 'Enough' is arbitrarily defined as 4 rtt samples.
671	 * 4 samples is enough for the srtt filter to converge
672	 * to within enough % of the correct value; fewer samples
673	 * and we could save a bogus rtt. The danger is not high
674	 * as tcp quickly recovers from everything.
675	 * XXX: Works very well but needs some more statistics!
676	 */
677	if (tp->t_rttupdated >= 4) {
678		struct hc_metrics_lite metrics;
679		u_long ssthresh;
680
681		bzero(&metrics, sizeof(metrics));
682		/*
683		 * Update the ssthresh always when the conditions below
684		 * are satisfied. This gives us better new start value
685		 * for the congestion avoidance for new connections.
686		 * ssthresh is only set if packet loss occured on a session.
687		 */
688		ssthresh = tp->snd_ssthresh;
689		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
690			/*
691			 * convert the limit from user data bytes to
692			 * packets then to packet data bytes.
693			 */
694			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
695			if (ssthresh < 2)
696				ssthresh = 2;
697			ssthresh *= (u_long)(tp->t_maxseg +
698#ifdef INET6
699				      (isipv6 ? sizeof (struct ip6_hdr) +
700					       sizeof (struct tcphdr) :
701#endif
702				       sizeof (struct tcpiphdr)
703#ifdef INET6
704				       )
705#endif
706				      );
707		} else
708			ssthresh = 0;
709		metrics.rmx_ssthresh = ssthresh;
710
711		metrics.rmx_rtt = tp->t_srtt;
712		metrics.rmx_rttvar = tp->t_rttvar;
713		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
714		metrics.rmx_bandwidth = tp->snd_bandwidth;
715		metrics.rmx_cwnd = tp->snd_cwnd;
716		metrics.rmx_sendpipe = 0;
717		metrics.rmx_recvpipe = 0;
718
719		tcp_hc_update(&inp->inp_inc, &metrics);
720	}
721
722	/* free the reassembly queue, if any */
723	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
724		LIST_REMOVE(q, tqe_q);
725		m_freem(q->tqe_m);
726		uma_zfree(tcp_reass_zone, q);
727		tp->t_segqlen--;
728		tcp_reass_qsize--;
729	}
730	inp->inp_ppcb = NULL;
731	tp->t_inpcb = NULL;
732	uma_zfree(tcpcb_zone, tp);
733	soisdisconnected(so);
734}
735
736/*
737 * Close a TCP control block:
738 *    discard all space held by the tcp
739 *    discard internet protocol block
740 *    wake up any sleepers
741 */
742struct tcpcb *
743tcp_close(tp)
744	struct tcpcb *tp;
745{
746	struct inpcb *inp = tp->t_inpcb;
747#ifdef INET6
748	struct socket *so = inp->inp_socket;
749#endif
750
751	tcp_discardcb(tp);
752#ifdef INET6
753	if (INP_CHECK_SOCKAF(so, AF_INET6))
754		in6_pcbdetach(inp);
755	else
756#endif
757		in_pcbdetach(inp);
758	tcpstat.tcps_closed++;
759	return (NULL);
760}
761
762void
763tcp_drain()
764{
765	if (do_tcpdrain)
766	{
767		struct inpcb *inpb;
768		struct tcpcb *tcpb;
769		struct tseg_qent *te;
770
771	/*
772	 * Walk the tcpbs, if existing, and flush the reassembly queue,
773	 * if there is one...
774	 * XXX: The "Net/3" implementation doesn't imply that the TCP
775	 *      reassembly queue should be flushed, but in a situation
776	 * 	where we're really low on mbufs, this is potentially
777	 *  	usefull.
778	 */
779		INP_INFO_RLOCK(&tcbinfo);
780		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
781			if (inpb->inp_vflag & INP_TIMEWAIT)
782				continue;
783			INP_LOCK(inpb);
784			if ((tcpb = intotcpcb(inpb)) != NULL) {
785				while ((te = LIST_FIRST(&tcpb->t_segq))
786			            != NULL) {
787					LIST_REMOVE(te, tqe_q);
788					m_freem(te->tqe_m);
789					uma_zfree(tcp_reass_zone, te);
790					tcpb->t_segqlen--;
791					tcp_reass_qsize--;
792				}
793			}
794			INP_UNLOCK(inpb);
795		}
796		INP_INFO_RUNLOCK(&tcbinfo);
797	}
798}
799
800/*
801 * Notify a tcp user of an asynchronous error;
802 * store error as soft error, but wake up user
803 * (for now, won't do anything until can select for soft error).
804 *
805 * Do not wake up user since there currently is no mechanism for
806 * reporting soft errors (yet - a kqueue filter may be added).
807 */
808static struct inpcb *
809tcp_notify(inp, error)
810	struct inpcb *inp;
811	int error;
812{
813	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
814
815	/*
816	 * Ignore some errors if we are hooked up.
817	 * If connection hasn't completed, has retransmitted several times,
818	 * and receives a second error, give up now.  This is better
819	 * than waiting a long time to establish a connection that
820	 * can never complete.
821	 */
822	if (tp->t_state == TCPS_ESTABLISHED &&
823	    (error == EHOSTUNREACH || error == ENETUNREACH ||
824	     error == EHOSTDOWN)) {
825		return inp;
826	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
827	    tp->t_softerror) {
828		tcp_drop(tp, error);
829		return (struct inpcb *)0;
830	} else {
831		tp->t_softerror = error;
832		return inp;
833	}
834#if 0
835	wakeup( &so->so_timeo);
836	sorwakeup(so);
837	sowwakeup(so);
838#endif
839}
840
841static int
842tcp_pcblist(SYSCTL_HANDLER_ARGS)
843{
844	int error, i, n, s;
845	struct inpcb *inp, **inp_list;
846	inp_gen_t gencnt;
847	struct xinpgen xig;
848
849	/*
850	 * The process of preparing the TCB list is too time-consuming and
851	 * resource-intensive to repeat twice on every request.
852	 */
853	if (req->oldptr == NULL) {
854		n = tcbinfo.ipi_count;
855		req->oldidx = 2 * (sizeof xig)
856			+ (n + n/8) * sizeof(struct xtcpcb);
857		return 0;
858	}
859
860	if (req->newptr != NULL)
861		return EPERM;
862
863	/*
864	 * OK, now we're committed to doing something.
865	 */
866	s = splnet();
867	INP_INFO_RLOCK(&tcbinfo);
868	gencnt = tcbinfo.ipi_gencnt;
869	n = tcbinfo.ipi_count;
870	INP_INFO_RUNLOCK(&tcbinfo);
871	splx(s);
872
873	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
874		+ n * sizeof(struct xtcpcb));
875	if (error != 0)
876		return (error);
877
878	xig.xig_len = sizeof xig;
879	xig.xig_count = n;
880	xig.xig_gen = gencnt;
881	xig.xig_sogen = so_gencnt;
882	error = SYSCTL_OUT(req, &xig, sizeof xig);
883	if (error)
884		return error;
885
886	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
887	if (inp_list == NULL)
888		return ENOMEM;
889
890	s = splnet();
891	INP_INFO_RLOCK(&tcbinfo);
892	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
893	     inp = LIST_NEXT(inp, inp_list)) {
894		INP_LOCK(inp);
895		if (inp->inp_gencnt <= gencnt) {
896			/*
897			 * XXX: This use of cr_cansee(), introduced with
898			 * TCP state changes, is not quite right, but for
899			 * now, better than nothing.
900			 */
901			if (inp->inp_vflag & INP_TIMEWAIT)
902				error = cr_cansee(req->td->td_ucred,
903				    intotw(inp)->tw_cred);
904			else
905				error = cr_canseesocket(req->td->td_ucred,
906				    inp->inp_socket);
907			if (error == 0)
908				inp_list[i++] = inp;
909		}
910		INP_UNLOCK(inp);
911	}
912	INP_INFO_RUNLOCK(&tcbinfo);
913	splx(s);
914	n = i;
915
916	error = 0;
917	for (i = 0; i < n; i++) {
918		inp = inp_list[i];
919		if (inp->inp_gencnt <= gencnt) {
920			struct xtcpcb xt;
921			caddr_t inp_ppcb;
922			xt.xt_len = sizeof xt;
923			/* XXX should avoid extra copy */
924			bcopy(inp, &xt.xt_inp, sizeof *inp);
925			inp_ppcb = inp->inp_ppcb;
926			if (inp_ppcb == NULL)
927				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
928			else if (inp->inp_vflag & INP_TIMEWAIT) {
929				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
930				xt.xt_tp.t_state = TCPS_TIME_WAIT;
931			} else
932				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
933			if (inp->inp_socket != NULL)
934				sotoxsocket(inp->inp_socket, &xt.xt_socket);
935			else {
936				bzero(&xt.xt_socket, sizeof xt.xt_socket);
937				xt.xt_socket.xso_protocol = IPPROTO_TCP;
938			}
939			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
940			error = SYSCTL_OUT(req, &xt, sizeof xt);
941		}
942	}
943	if (!error) {
944		/*
945		 * Give the user an updated idea of our state.
946		 * If the generation differs from what we told
947		 * her before, she knows that something happened
948		 * while we were processing this request, and it
949		 * might be necessary to retry.
950		 */
951		s = splnet();
952		INP_INFO_RLOCK(&tcbinfo);
953		xig.xig_gen = tcbinfo.ipi_gencnt;
954		xig.xig_sogen = so_gencnt;
955		xig.xig_count = tcbinfo.ipi_count;
956		INP_INFO_RUNLOCK(&tcbinfo);
957		splx(s);
958		error = SYSCTL_OUT(req, &xig, sizeof xig);
959	}
960	free(inp_list, M_TEMP);
961	return error;
962}
963
964SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
965	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
966
967static int
968tcp_getcred(SYSCTL_HANDLER_ARGS)
969{
970	struct xucred xuc;
971	struct sockaddr_in addrs[2];
972	struct inpcb *inp;
973	int error, s;
974
975	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
976	if (error)
977		return (error);
978	error = SYSCTL_IN(req, addrs, sizeof(addrs));
979	if (error)
980		return (error);
981	s = splnet();
982	INP_INFO_RLOCK(&tcbinfo);
983	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
984	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
985	if (inp == NULL) {
986		error = ENOENT;
987		goto outunlocked;
988	}
989	INP_LOCK(inp);
990	if (inp->inp_socket == NULL) {
991		error = ENOENT;
992		goto out;
993	}
994	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
995	if (error)
996		goto out;
997	cru2x(inp->inp_socket->so_cred, &xuc);
998out:
999	INP_UNLOCK(inp);
1000outunlocked:
1001	INP_INFO_RUNLOCK(&tcbinfo);
1002	splx(s);
1003	if (error == 0)
1004		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1005	return (error);
1006}
1007
1008SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1009    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1010    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1011
1012#ifdef INET6
1013static int
1014tcp6_getcred(SYSCTL_HANDLER_ARGS)
1015{
1016	struct xucred xuc;
1017	struct sockaddr_in6 addrs[2];
1018	struct inpcb *inp;
1019	int error, s, mapped = 0;
1020
1021	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1022	if (error)
1023		return (error);
1024	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1025	if (error)
1026		return (error);
1027	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1028		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1029			mapped = 1;
1030		else
1031			return (EINVAL);
1032	}
1033	s = splnet();
1034	INP_INFO_RLOCK(&tcbinfo);
1035	if (mapped == 1)
1036		inp = in_pcblookup_hash(&tcbinfo,
1037			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1038			addrs[1].sin6_port,
1039			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1040			addrs[0].sin6_port,
1041			0, NULL);
1042	else
1043		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1044				 addrs[1].sin6_port,
1045				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1046				 0, NULL);
1047	if (inp == NULL) {
1048		error = ENOENT;
1049		goto outunlocked;
1050	}
1051	INP_LOCK(inp);
1052	if (inp->inp_socket == NULL) {
1053		error = ENOENT;
1054		goto out;
1055	}
1056	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1057	if (error)
1058		goto out;
1059	cru2x(inp->inp_socket->so_cred, &xuc);
1060out:
1061	INP_UNLOCK(inp);
1062outunlocked:
1063	INP_INFO_RUNLOCK(&tcbinfo);
1064	splx(s);
1065	if (error == 0)
1066		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1067	return (error);
1068}
1069
1070SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1071    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1072    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1073#endif
1074
1075
1076void
1077tcp_ctlinput(cmd, sa, vip)
1078	int cmd;
1079	struct sockaddr *sa;
1080	void *vip;
1081{
1082	struct ip *ip = vip;
1083	struct tcphdr *th;
1084	struct in_addr faddr;
1085	struct inpcb *inp;
1086	struct tcpcb *tp;
1087	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1088	tcp_seq icmp_seq;
1089	int s;
1090
1091	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1092	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1093		return;
1094
1095	if (cmd == PRC_QUENCH)
1096		notify = tcp_quench;
1097	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1098		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1099		notify = tcp_drop_syn_sent;
1100	else if (cmd == PRC_MSGSIZE)
1101		notify = tcp_mtudisc;
1102	/*
1103	 * Redirects don't need to be handled up here.
1104	 */
1105	else if (PRC_IS_REDIRECT(cmd))
1106		return;
1107	/*
1108	 * Hostdead is ugly because it goes linearly through all PCBs.
1109	 * XXX: We never get this from ICMP, otherwise it makes an
1110	 * excellent DoS attack on machines with many connections.
1111	 */
1112	else if (cmd == PRC_HOSTDEAD)
1113		ip = NULL;
1114	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1115		return;
1116	if (ip != NULL) {
1117		s = splnet();
1118		th = (struct tcphdr *)((caddr_t)ip
1119				       + (ip->ip_hl << 2));
1120		INP_INFO_WLOCK(&tcbinfo);
1121		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1122		    ip->ip_src, th->th_sport, 0, NULL);
1123		if (inp != NULL)  {
1124			INP_LOCK(inp);
1125			if (inp->inp_socket != NULL) {
1126				icmp_seq = htonl(th->th_seq);
1127				tp = intotcpcb(inp);
1128				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1129			    		SEQ_LT(icmp_seq, tp->snd_max))
1130					inp = (*notify)(inp, inetctlerrmap[cmd]);
1131			}
1132			if (inp != NULL)
1133				INP_UNLOCK(inp);
1134		} else {
1135			struct in_conninfo inc;
1136
1137			inc.inc_fport = th->th_dport;
1138			inc.inc_lport = th->th_sport;
1139			inc.inc_faddr = faddr;
1140			inc.inc_laddr = ip->ip_src;
1141#ifdef INET6
1142			inc.inc_isipv6 = 0;
1143#endif
1144			syncache_unreach(&inc, th);
1145		}
1146		INP_INFO_WUNLOCK(&tcbinfo);
1147		splx(s);
1148	} else
1149		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1150}
1151
1152#ifdef INET6
1153void
1154tcp6_ctlinput(cmd, sa, d)
1155	int cmd;
1156	struct sockaddr *sa;
1157	void *d;
1158{
1159	struct tcphdr th;
1160	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1161	struct ip6_hdr *ip6;
1162	struct mbuf *m;
1163	struct ip6ctlparam *ip6cp = NULL;
1164	const struct sockaddr_in6 *sa6_src = NULL;
1165	int off;
1166	struct tcp_portonly {
1167		u_int16_t th_sport;
1168		u_int16_t th_dport;
1169	} *thp;
1170
1171	if (sa->sa_family != AF_INET6 ||
1172	    sa->sa_len != sizeof(struct sockaddr_in6))
1173		return;
1174
1175	if (cmd == PRC_QUENCH)
1176		notify = tcp_quench;
1177	else if (cmd == PRC_MSGSIZE)
1178		notify = tcp_mtudisc;
1179	else if (!PRC_IS_REDIRECT(cmd) &&
1180		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1181		return;
1182
1183	/* if the parameter is from icmp6, decode it. */
1184	if (d != NULL) {
1185		ip6cp = (struct ip6ctlparam *)d;
1186		m = ip6cp->ip6c_m;
1187		ip6 = ip6cp->ip6c_ip6;
1188		off = ip6cp->ip6c_off;
1189		sa6_src = ip6cp->ip6c_src;
1190	} else {
1191		m = NULL;
1192		ip6 = NULL;
1193		off = 0;	/* fool gcc */
1194		sa6_src = &sa6_any;
1195	}
1196
1197	if (ip6 != NULL) {
1198		struct in_conninfo inc;
1199		/*
1200		 * XXX: We assume that when IPV6 is non NULL,
1201		 * M and OFF are valid.
1202		 */
1203
1204		/* check if we can safely examine src and dst ports */
1205		if (m->m_pkthdr.len < off + sizeof(*thp))
1206			return;
1207
1208		bzero(&th, sizeof(th));
1209		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1210
1211		in6_pcbnotify(&tcb, sa, th.th_dport,
1212		    (struct sockaddr *)ip6cp->ip6c_src,
1213		    th.th_sport, cmd, NULL, notify);
1214
1215		inc.inc_fport = th.th_dport;
1216		inc.inc_lport = th.th_sport;
1217		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1218		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1219		inc.inc_isipv6 = 1;
1220		syncache_unreach(&inc, &th);
1221	} else
1222		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1223			      0, cmd, NULL, notify);
1224}
1225#endif /* INET6 */
1226
1227
1228/*
1229 * Following is where TCP initial sequence number generation occurs.
1230 *
1231 * There are two places where we must use initial sequence numbers:
1232 * 1.  In SYN-ACK packets.
1233 * 2.  In SYN packets.
1234 *
1235 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1236 * tcp_syncache.c for details.
1237 *
1238 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1239 * depends on this property.  In addition, these ISNs should be
1240 * unguessable so as to prevent connection hijacking.  To satisfy
1241 * the requirements of this situation, the algorithm outlined in
1242 * RFC 1948 is used, with only small modifications.
1243 *
1244 * Implementation details:
1245 *
1246 * Time is based off the system timer, and is corrected so that it
1247 * increases by one megabyte per second.  This allows for proper
1248 * recycling on high speed LANs while still leaving over an hour
1249 * before rollover.
1250 *
1251 * As reading the *exact* system time is too expensive to be done
1252 * whenever setting up a TCP connection, we increment the time
1253 * offset in two ways.  First, a small random positive increment
1254 * is added to isn_offset for each connection that is set up.
1255 * Second, the function tcp_isn_tick fires once per clock tick
1256 * and increments isn_offset as necessary so that sequence numbers
1257 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1258 * random positive increments serve only to ensure that the same
1259 * exact sequence number is never sent out twice (as could otherwise
1260 * happen when a port is recycled in less than the system tick
1261 * interval.)
1262 *
1263 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1264 * between seeding of isn_secret.  This is normally set to zero,
1265 * as reseeding should not be necessary.
1266 *
1267 */
1268
1269#define ISN_BYTES_PER_SECOND 1048576
1270#define ISN_STATIC_INCREMENT 4096
1271#define ISN_RANDOM_INCREMENT (4096 - 1)
1272
1273u_char isn_secret[32];
1274int isn_last_reseed;
1275u_int32_t isn_offset, isn_offset_old;
1276MD5_CTX isn_ctx;
1277
1278tcp_seq
1279tcp_new_isn(tp)
1280	struct tcpcb *tp;
1281{
1282	u_int32_t md5_buffer[4];
1283	tcp_seq new_isn;
1284
1285	/* Seed if this is the first use, reseed if requested. */
1286	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1287	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1288		< (u_int)ticks))) {
1289		read_random(&isn_secret, sizeof(isn_secret));
1290		isn_last_reseed = ticks;
1291	}
1292
1293	/* Compute the md5 hash and return the ISN. */
1294	MD5Init(&isn_ctx);
1295	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1296	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1297#ifdef INET6
1298	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1299		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1300			  sizeof(struct in6_addr));
1301		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1302			  sizeof(struct in6_addr));
1303	} else
1304#endif
1305	{
1306		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1307			  sizeof(struct in_addr));
1308		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1309			  sizeof(struct in_addr));
1310	}
1311	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1312	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1313	new_isn = (tcp_seq) md5_buffer[0];
1314	isn_offset += ISN_STATIC_INCREMENT +
1315		(arc4random() & ISN_RANDOM_INCREMENT);
1316	new_isn += isn_offset;
1317	return new_isn;
1318}
1319
1320/*
1321 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1322 * to keep time flowing at a relatively constant rate.  If the random
1323 * increments have already pushed us past the projected offset, do nothing.
1324 */
1325static void
1326tcp_isn_tick(xtp)
1327	void *xtp;
1328{
1329	u_int32_t projected_offset;
1330
1331	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / hz;
1332
1333	if (projected_offset > isn_offset)
1334		isn_offset = projected_offset;
1335
1336	isn_offset_old = isn_offset;
1337	callout_reset(&isn_callout, 1, tcp_isn_tick, NULL);
1338}
1339
1340/*
1341 * When a source quench is received, close congestion window
1342 * to one segment.  We will gradually open it again as we proceed.
1343 */
1344struct inpcb *
1345tcp_quench(inp, errno)
1346	struct inpcb *inp;
1347	int errno;
1348{
1349	struct tcpcb *tp = intotcpcb(inp);
1350
1351	if (tp != NULL)
1352		tp->snd_cwnd = tp->t_maxseg;
1353	return (inp);
1354}
1355
1356/*
1357 * When a specific ICMP unreachable message is received and the
1358 * connection state is SYN-SENT, drop the connection.  This behavior
1359 * is controlled by the icmp_may_rst sysctl.
1360 */
1361struct inpcb *
1362tcp_drop_syn_sent(inp, errno)
1363	struct inpcb *inp;
1364	int errno;
1365{
1366	struct tcpcb *tp = intotcpcb(inp);
1367
1368	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1369		tcp_drop(tp, errno);
1370		return (struct inpcb *)0;
1371	}
1372	return inp;
1373}
1374
1375/*
1376 * When `need fragmentation' ICMP is received, update our idea of the MSS
1377 * based on the new value in the route.  Also nudge TCP to send something,
1378 * since we know the packet we just sent was dropped.
1379 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1380 */
1381struct inpcb *
1382tcp_mtudisc(inp, errno)
1383	struct inpcb *inp;
1384	int errno;
1385{
1386	struct tcpcb *tp = intotcpcb(inp);
1387	struct rmxp_tao tao;
1388	struct socket *so = inp->inp_socket;
1389	u_int maxmtu;
1390	u_int romtu;
1391	int mss;
1392#ifdef INET6
1393	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1394#endif /* INET6 */
1395	bzero(&tao, sizeof(tao));
1396
1397	if (tp != NULL) {
1398		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1399		romtu =
1400#ifdef INET6
1401		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1402#endif /* INET6 */
1403		    tcp_maxmtu(&inp->inp_inc);
1404		if (!maxmtu)
1405			maxmtu = romtu;
1406		else
1407			maxmtu = min(maxmtu, romtu);
1408		if (!maxmtu) {
1409			tp->t_maxopd = tp->t_maxseg =
1410#ifdef INET6
1411				isipv6 ? tcp_v6mssdflt :
1412#endif /* INET6 */
1413				tcp_mssdflt;
1414			return inp;
1415		}
1416		mss = maxmtu -
1417#ifdef INET6
1418			(isipv6 ?
1419			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1420#endif /* INET6 */
1421			 sizeof(struct tcpiphdr)
1422#ifdef INET6
1423			 )
1424#endif /* INET6 */
1425			;
1426
1427		if (tcp_do_rfc1644) {
1428			tcp_hc_gettao(&inp->inp_inc, &tao);
1429			if (tao.tao_mssopt)
1430				mss = min(mss, tao.tao_mssopt);
1431		}
1432		/*
1433		 * XXX - The above conditional probably violates the TCP
1434		 * spec.  The problem is that, since we don't know the
1435		 * other end's MSS, we are supposed to use a conservative
1436		 * default.  But, if we do that, then MTU discovery will
1437		 * never actually take place, because the conservative
1438		 * default is much less than the MTUs typically seen
1439		 * on the Internet today.  For the moment, we'll sweep
1440		 * this under the carpet.
1441		 *
1442		 * The conservative default might not actually be a problem
1443		 * if the only case this occurs is when sending an initial
1444		 * SYN with options and data to a host we've never talked
1445		 * to before.  Then, they will reply with an MSS value which
1446		 * will get recorded and the new parameters should get
1447		 * recomputed.  For Further Study.
1448		 */
1449		if (tp->t_maxopd <= mss)
1450			return inp;
1451		tp->t_maxopd = mss;
1452
1453		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1454		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1455			mss -= TCPOLEN_TSTAMP_APPA;
1456		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1457		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1458			mss -= TCPOLEN_CC_APPA;
1459#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1460		if (mss > MCLBYTES)
1461			mss &= ~(MCLBYTES-1);
1462#else
1463		if (mss > MCLBYTES)
1464			mss = mss / MCLBYTES * MCLBYTES;
1465#endif
1466		if (so->so_snd.sb_hiwat < mss)
1467			mss = so->so_snd.sb_hiwat;
1468
1469		tp->t_maxseg = mss;
1470
1471		tcpstat.tcps_mturesent++;
1472		tp->t_rtttime = 0;
1473		tp->snd_nxt = tp->snd_una;
1474		tcp_output(tp);
1475	}
1476	return inp;
1477}
1478
1479/*
1480 * Look-up the routing entry to the peer of this inpcb.  If no route
1481 * is found and it cannot be allocated, then return NULL.  This routine
1482 * is called by TCP routines that access the rmx structure and by tcp_mss
1483 * to get the interface MTU.
1484 */
1485u_long
1486tcp_maxmtu(inc)
1487	struct in_conninfo *inc;
1488{
1489	struct route sro;
1490	struct sockaddr_in *dst;
1491	struct ifnet *ifp;
1492	u_long maxmtu = 0;
1493
1494	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1495
1496	bzero(&sro, sizeof(sro));
1497	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1498	        dst = (struct sockaddr_in *)&sro.ro_dst;
1499		dst->sin_family = AF_INET;
1500		dst->sin_len = sizeof(*dst);
1501		dst->sin_addr = inc->inc_faddr;
1502		rtalloc_ign(&sro, RTF_CLONING);
1503	}
1504	if (sro.ro_rt != NULL) {
1505		ifp = sro.ro_rt->rt_ifp;
1506		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1507			maxmtu = ifp->if_mtu;
1508		else
1509			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1510		RTFREE(sro.ro_rt);
1511	}
1512	return (maxmtu);
1513}
1514
1515#ifdef INET6
1516u_long
1517tcp_maxmtu6(inc)
1518	struct in_conninfo *inc;
1519{
1520	struct route_in6 sro6;
1521	struct ifnet *ifp;
1522	u_long maxmtu = 0;
1523
1524	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1525
1526	bzero(&sro6, sizeof(sro6));
1527	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1528		sro6.ro_dst.sin6_family = AF_INET6;
1529		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1530		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1531		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1532	}
1533	if (sro6.ro_rt != NULL) {
1534		ifp = sro6.ro_rt->rt_ifp;
1535		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1536			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1537		else
1538			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1539				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1540		RTFREE(sro6.ro_rt);
1541	}
1542
1543	return (maxmtu);
1544}
1545#endif /* INET6 */
1546
1547#ifdef IPSEC
1548/* compute ESP/AH header size for TCP, including outer IP header. */
1549size_t
1550ipsec_hdrsiz_tcp(tp)
1551	struct tcpcb *tp;
1552{
1553	struct inpcb *inp;
1554	struct mbuf *m;
1555	size_t hdrsiz;
1556	struct ip *ip;
1557#ifdef INET6
1558	struct ip6_hdr *ip6;
1559#endif
1560	struct tcphdr *th;
1561
1562	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1563		return 0;
1564	MGETHDR(m, M_DONTWAIT, MT_DATA);
1565	if (!m)
1566		return 0;
1567
1568#ifdef INET6
1569	if ((inp->inp_vflag & INP_IPV6) != 0) {
1570		ip6 = mtod(m, struct ip6_hdr *);
1571		th = (struct tcphdr *)(ip6 + 1);
1572		m->m_pkthdr.len = m->m_len =
1573			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1574		tcpip_fillheaders(inp, ip6, th);
1575		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1576	} else
1577#endif /* INET6 */
1578      {
1579	ip = mtod(m, struct ip *);
1580	th = (struct tcphdr *)(ip + 1);
1581	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1582	tcpip_fillheaders(inp, ip, th);
1583	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1584      }
1585
1586	m_free(m);
1587	return hdrsiz;
1588}
1589#endif /*IPSEC*/
1590
1591/*
1592 * Move a TCP connection into TIME_WAIT state.
1593 *    tcbinfo is unlocked.
1594 *    inp is locked, and is unlocked before returning.
1595 */
1596void
1597tcp_twstart(tp)
1598	struct tcpcb *tp;
1599{
1600	struct tcptw *tw;
1601	struct inpcb *inp;
1602	int tw_time, acknow;
1603	struct socket *so;
1604
1605	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1606	if (tw == NULL) {
1607		tw = tcp_timer_2msl_tw(1);
1608		if (tw == NULL) {
1609			tcp_close(tp);
1610			return;
1611		}
1612	}
1613	inp = tp->t_inpcb;
1614	tw->tw_inpcb = inp;
1615
1616	/*
1617	 * Recover last window size sent.
1618	 */
1619	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1620
1621	/*
1622	 * Set t_recent if timestamps are used on the connection.
1623	 */
1624        if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1625            (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1626		tw->t_recent = tp->ts_recent;
1627	else
1628		tw->t_recent = 0;
1629
1630	tw->snd_nxt = tp->snd_nxt;
1631	tw->rcv_nxt = tp->rcv_nxt;
1632	tw->iss     = tp->iss;
1633	tw->irs     = tp->irs;
1634	tw->cc_recv = tp->cc_recv;
1635	tw->cc_send = tp->cc_send;
1636	tw->t_starttime = tp->t_starttime;
1637	tw->tw_time = 0;
1638
1639/* XXX
1640 * If this code will
1641 * be used for fin-wait-2 state also, then we may need
1642 * a ts_recent from the last segment.
1643 */
1644	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1645	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1646		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1647		/* For T/TCP client, force ACK now. */
1648		acknow = 1;
1649	} else {
1650		tw_time = 2 * tcp_msl;
1651		acknow = tp->t_flags & TF_ACKNOW;
1652	}
1653	tcp_discardcb(tp);
1654	so = inp->inp_socket;
1655	so->so_pcb = NULL;
1656	tw->tw_cred = crhold(so->so_cred);
1657	tw->tw_so_options = so->so_options;
1658	if (acknow)
1659		tcp_twrespond(tw, TH_ACK);
1660	sotryfree(so);
1661	inp->inp_socket = NULL;
1662	inp->inp_ppcb = (caddr_t)tw;
1663	inp->inp_vflag |= INP_TIMEWAIT;
1664	tcp_timer_2msl_reset(tw, tw_time);
1665	INP_UNLOCK(inp);
1666}
1667
1668/*
1669 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1670 * the actual rate is slightly higher due to the addition of
1671 * random positive increments.
1672 *
1673 * Most other new OSes use semi-randomized ISN values, so we
1674 * do not need to worry about them.
1675 */
1676#define MS_ISN_BYTES_PER_SECOND		250000
1677
1678/*
1679 * Determine if the ISN we will generate has advanced beyond the last
1680 * sequence number used by the previous connection.  If so, indicate
1681 * that it is safe to recycle this tw socket by returning 1.
1682 */
1683int
1684tcp_twrecycleable(struct tcptw *tw)
1685{
1686	tcp_seq new_iss = tw->iss;
1687	tcp_seq new_irs = tw->irs;
1688
1689	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1690	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1691
1692	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1693		return 1;
1694	else
1695		return 0;
1696}
1697
1698struct tcptw *
1699tcp_twclose(struct tcptw *tw, int reuse)
1700{
1701	struct inpcb *inp;
1702
1703	inp = tw->tw_inpcb;
1704	tw->tw_inpcb = NULL;
1705	tcp_timer_2msl_stop(tw);
1706	inp->inp_ppcb = NULL;
1707#ifdef INET6
1708	if (inp->inp_vflag & INP_IPV6PROTO)
1709		in6_pcbdetach(inp);
1710	else
1711#endif
1712		in_pcbdetach(inp);
1713	tcpstat.tcps_closed++;
1714	crfree(tw->tw_cred);
1715	tw->tw_cred = NULL;
1716	if (reuse)
1717		return (tw);
1718	uma_zfree(tcptw_zone, tw);
1719	return (NULL);
1720}
1721
1722int
1723tcp_twrespond(struct tcptw *tw, int flags)
1724{
1725	struct inpcb *inp = tw->tw_inpcb;
1726	struct tcphdr *th;
1727	struct mbuf *m;
1728	struct ip *ip = NULL;
1729	u_int8_t *optp;
1730	u_int hdrlen, optlen;
1731	int error;
1732#ifdef INET6
1733	struct ip6_hdr *ip6 = NULL;
1734	int isipv6 = inp->inp_inc.inc_isipv6;
1735#endif
1736
1737	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1738	if (m == NULL)
1739		return (ENOBUFS);
1740	m->m_data += max_linkhdr;
1741
1742#ifdef MAC
1743	mac_create_mbuf_from_inpcb(inp, m);
1744#endif
1745
1746#ifdef INET6
1747	if (isipv6) {
1748		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1749		ip6 = mtod(m, struct ip6_hdr *);
1750		th = (struct tcphdr *)(ip6 + 1);
1751		tcpip_fillheaders(inp, ip6, th);
1752	} else
1753#endif
1754	{
1755		hdrlen = sizeof(struct tcpiphdr);
1756		ip = mtod(m, struct ip *);
1757		th = (struct tcphdr *)(ip + 1);
1758		tcpip_fillheaders(inp, ip, th);
1759	}
1760	optp = (u_int8_t *)(th + 1);
1761
1762 	/*
1763	 * Send a timestamp and echo-reply if both our side and our peer
1764	 * have sent timestamps in our SYN's and this is not a RST.
1765 	 */
1766	if (tw->t_recent && flags == TH_ACK) {
1767		u_int32_t *lp = (u_int32_t *)optp;
1768
1769 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1770 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1771 		*lp++ = htonl(ticks);
1772 		*lp   = htonl(tw->t_recent);
1773 		optp += TCPOLEN_TSTAMP_APPA;
1774 	}
1775
1776 	/*
1777	 * Send `CC-family' options if needed, and it's not a RST.
1778 	 */
1779	if (tw->cc_recv != 0 && flags == TH_ACK) {
1780		u_int32_t *lp = (u_int32_t *)optp;
1781
1782		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1783		*lp   = htonl(tw->cc_send);
1784		optp += TCPOLEN_CC_APPA;
1785 	}
1786	optlen = optp - (u_int8_t *)(th + 1);
1787
1788	m->m_len = hdrlen + optlen;
1789	m->m_pkthdr.len = m->m_len;
1790
1791	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1792
1793	th->th_seq = htonl(tw->snd_nxt);
1794	th->th_ack = htonl(tw->rcv_nxt);
1795	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1796	th->th_flags = flags;
1797	th->th_win = htons(tw->last_win);
1798
1799#ifdef INET6
1800	if (isipv6) {
1801		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1802		    sizeof(struct tcphdr) + optlen);
1803		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1804		error = ip6_output(m, inp->in6p_outputopts, NULL,
1805		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1806	} else
1807#endif
1808	{
1809		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1810                    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1811		m->m_pkthdr.csum_flags = CSUM_TCP;
1812		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1813		ip->ip_len = m->m_pkthdr.len;
1814		if (path_mtu_discovery)
1815			ip->ip_off |= IP_DF;
1816		error = ip_output(m, inp->inp_options, NULL,
1817		    (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
1818	}
1819	if (flags & TH_ACK)
1820		tcpstat.tcps_sndacks++;
1821	else
1822		tcpstat.tcps_sndctrl++;
1823	tcpstat.tcps_sndtotal++;
1824	return (error);
1825}
1826
1827/*
1828 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1829 *
1830 * This code attempts to calculate the bandwidth-delay product as a
1831 * means of determining the optimal window size to maximize bandwidth,
1832 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1833 * routers.  This code also does a fairly good job keeping RTTs in check
1834 * across slow links like modems.  We implement an algorithm which is very
1835 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1836 * transmitter side of a TCP connection and so only effects the transmit
1837 * side of the connection.
1838 *
1839 * BACKGROUND:  TCP makes no provision for the management of buffer space
1840 * at the end points or at the intermediate routers and switches.  A TCP
1841 * stream, whether using NewReno or not, will eventually buffer as
1842 * many packets as it is able and the only reason this typically works is
1843 * due to the fairly small default buffers made available for a connection
1844 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1845 * scaling it is now fairly easy for even a single TCP connection to blow-out
1846 * all available buffer space not only on the local interface, but on
1847 * intermediate routers and switches as well.  NewReno makes a misguided
1848 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1849 * then backing off, then steadily increasing the window again until another
1850 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1851 * is only made worse as network loads increase and the idea of intentionally
1852 * blowing out network buffers is, frankly, a terrible way to manage network
1853 * resources.
1854 *
1855 * It is far better to limit the transmit window prior to the failure
1856 * condition being achieved.  There are two general ways to do this:  First
1857 * you can 'scan' through different transmit window sizes and locate the
1858 * point where the RTT stops increasing, indicating that you have filled the
1859 * pipe, then scan backwards until you note that RTT stops decreasing, then
1860 * repeat ad-infinitum.  This method works in principle but has severe
1861 * implementation issues due to RTT variances, timer granularity, and
1862 * instability in the algorithm which can lead to many false positives and
1863 * create oscillations as well as interact badly with other TCP streams
1864 * implementing the same algorithm.
1865 *
1866 * The second method is to limit the window to the bandwidth delay product
1867 * of the link.  This is the method we implement.  RTT variances and our
1868 * own manipulation of the congestion window, bwnd, can potentially
1869 * destabilize the algorithm.  For this reason we have to stabilize the
1870 * elements used to calculate the window.  We do this by using the minimum
1871 * observed RTT, the long term average of the observed bandwidth, and
1872 * by adding two segments worth of slop.  It isn't perfect but it is able
1873 * to react to changing conditions and gives us a very stable basis on
1874 * which to extend the algorithm.
1875 */
1876void
1877tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1878{
1879	u_long bw;
1880	u_long bwnd;
1881	int save_ticks;
1882
1883	/*
1884	 * If inflight_enable is disabled in the middle of a tcp connection,
1885	 * make sure snd_bwnd is effectively disabled.
1886	 */
1887	if (tcp_inflight_enable == 0) {
1888		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1889		tp->snd_bandwidth = 0;
1890		return;
1891	}
1892
1893	/*
1894	 * Figure out the bandwidth.  Due to the tick granularity this
1895	 * is a very rough number and it MUST be averaged over a fairly
1896	 * long period of time.  XXX we need to take into account a link
1897	 * that is not using all available bandwidth, but for now our
1898	 * slop will ramp us up if this case occurs and the bandwidth later
1899	 * increases.
1900	 *
1901	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1902	 * effectively reset t_bw_rtttime for this case.
1903	 */
1904	save_ticks = ticks;
1905	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1906		return;
1907
1908	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1909	    (save_ticks - tp->t_bw_rtttime);
1910	tp->t_bw_rtttime = save_ticks;
1911	tp->t_bw_rtseq = ack_seq;
1912	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1913		return;
1914	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1915
1916	tp->snd_bandwidth = bw;
1917
1918	/*
1919	 * Calculate the semi-static bandwidth delay product, plus two maximal
1920	 * segments.  The additional slop puts us squarely in the sweet
1921	 * spot and also handles the bandwidth run-up case and stabilization.
1922	 * Without the slop we could be locking ourselves into a lower
1923	 * bandwidth.
1924	 *
1925	 * Situations Handled:
1926	 *	(1) Prevents over-queueing of packets on LANs, especially on
1927	 *	    high speed LANs, allowing larger TCP buffers to be
1928	 *	    specified, and also does a good job preventing
1929	 *	    over-queueing of packets over choke points like modems
1930	 *	    (at least for the transmit side).
1931	 *
1932	 *	(2) Is able to handle changing network loads (bandwidth
1933	 *	    drops so bwnd drops, bandwidth increases so bwnd
1934	 *	    increases).
1935	 *
1936	 *	(3) Theoretically should stabilize in the face of multiple
1937	 *	    connections implementing the same algorithm (this may need
1938	 *	    a little work).
1939	 *
1940	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1941	 *	    be adjusted with a sysctl but typically only needs to be
1942	 *	    on very slow connections.  A value no smaller then 5
1943	 *	    should be used, but only reduce this default if you have
1944	 *	    no other choice.
1945	 */
1946#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1947	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1948#undef USERTT
1949
1950	if (tcp_inflight_debug > 0) {
1951		static int ltime;
1952		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1953			ltime = ticks;
1954			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1955			    tp,
1956			    bw,
1957			    tp->t_rttbest,
1958			    tp->t_srtt,
1959			    bwnd
1960			);
1961		}
1962	}
1963	if ((long)bwnd < tcp_inflight_min)
1964		bwnd = tcp_inflight_min;
1965	if (bwnd > tcp_inflight_max)
1966		bwnd = tcp_inflight_max;
1967	if ((long)bwnd < tp->t_maxseg * 2)
1968		bwnd = tp->t_maxseg * 2;
1969	tp->snd_bwnd = bwnd;
1970}
1971
1972#ifdef TCP_SIGNATURE
1973/*
1974 * Callback function invoked by m_apply() to digest TCP segment data
1975 * contained within an mbuf chain.
1976 */
1977static int
1978tcp_signature_apply(void *fstate, void *data, u_int len)
1979{
1980
1981	MD5Update(fstate, (u_char *)data, len);
1982	return (0);
1983}
1984
1985/*
1986 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
1987 *
1988 * Parameters:
1989 * m		pointer to head of mbuf chain
1990 * off0		offset to TCP header within the mbuf chain
1991 * len		length of TCP segment data, excluding options
1992 * optlen	length of TCP segment options
1993 * buf		pointer to storage for computed MD5 digest
1994 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1995 *
1996 * We do this over ip, tcphdr, segment data, and the key in the SADB.
1997 * When called from tcp_input(), we can be sure that th_sum has been
1998 * zeroed out and verified already.
1999 *
2000 * This function is for IPv4 use only. Calling this function with an
2001 * IPv6 packet in the mbuf chain will yield undefined results.
2002 *
2003 * Return 0 if successful, otherwise return -1.
2004 *
2005 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2006 * search with the destination IP address, and a 'magic SPI' to be
2007 * determined by the application. This is hardcoded elsewhere to 1179
2008 * right now. Another branch of this code exists which uses the SPD to
2009 * specify per-application flows but it is unstable.
2010 */
2011int
2012tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2013    u_char *buf, u_int direction)
2014{
2015	union sockaddr_union dst;
2016	struct ippseudo ippseudo;
2017	MD5_CTX ctx;
2018	int doff;
2019	struct ip *ip;
2020	struct ipovly *ipovly;
2021	struct secasvar *sav;
2022	struct tcphdr *th;
2023	u_short savecsum;
2024
2025	KASSERT(m != NULL, ("NULL mbuf chain"));
2026	KASSERT(buf != NULL, ("NULL signature pointer"));
2027
2028	/* Extract the destination from the IP header in the mbuf. */
2029	ip = mtod(m, struct ip *);
2030	bzero(&dst, sizeof(union sockaddr_union));
2031	dst.sa.sa_len = sizeof(struct sockaddr_in);
2032	dst.sa.sa_family = AF_INET;
2033	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2034	    ip->ip_src : ip->ip_dst;
2035
2036	/* Look up an SADB entry which matches the address of the peer. */
2037	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2038	if (sav == NULL) {
2039		printf("%s: SADB lookup failed for %s\n", __func__,
2040		    inet_ntoa(dst.sin.sin_addr));
2041		return (EINVAL);
2042	}
2043
2044	MD5Init(&ctx);
2045	ipovly = (struct ipovly *)ip;
2046	th = (struct tcphdr *)((u_char *)ip + off0);
2047	doff = off0 + sizeof(struct tcphdr) + optlen;
2048
2049	/*
2050	 * Step 1: Update MD5 hash with IP pseudo-header.
2051	 *
2052	 * XXX The ippseudo header MUST be digested in network byte order,
2053	 * or else we'll fail the regression test. Assume all fields we've
2054	 * been doing arithmetic on have been in host byte order.
2055	 * XXX One cannot depend on ipovly->ih_len here. When called from
2056	 * tcp_output(), the underlying ip_len member has not yet been set.
2057	 */
2058	ippseudo.ippseudo_src = ipovly->ih_src;
2059	ippseudo.ippseudo_dst = ipovly->ih_dst;
2060	ippseudo.ippseudo_pad = 0;
2061	ippseudo.ippseudo_p = IPPROTO_TCP;
2062	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2063	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2064
2065	/*
2066	 * Step 2: Update MD5 hash with TCP header, excluding options.
2067	 * The TCP checksum must be set to zero.
2068	 */
2069	savecsum = th->th_sum;
2070	th->th_sum = 0;
2071	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2072	th->th_sum = savecsum;
2073
2074	/*
2075	 * Step 3: Update MD5 hash with TCP segment data.
2076	 *         Use m_apply() to avoid an early m_pullup().
2077	 */
2078	if (len > 0)
2079		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2080
2081	/*
2082	 * Step 4: Update MD5 hash with shared secret.
2083	 */
2084	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2085	MD5Final(buf, &ctx);
2086
2087	key_sa_recordxfer(sav, m);
2088	KEY_FREESAV(&sav);
2089	return (0);
2090}
2091#endif /* TCP_SIGNATURE */
2092