tcp_timewait.c revision 126253
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 126253 2004-02-26 00:27:04Z truckman $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet.h"
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41#include "opt_mac.h"
42#include "opt_tcpdebug.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/callout.h>
47#include <sys/kernel.h>
48#include <sys/sysctl.h>
49#include <sys/mac.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#ifdef INET6
53#include <sys/domain.h>
54#endif
55#include <sys/proc.h>
56#include <sys/socket.h>
57#include <sys/socketvar.h>
58#include <sys/protosw.h>
59#include <sys/random.h>
60
61#include <vm/uma.h>
62
63#include <net/route.h>
64#include <net/if.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#ifdef INET6
70#include <netinet/ip6.h>
71#endif
72#include <netinet/in_pcb.h>
73#ifdef INET6
74#include <netinet6/in6_pcb.h>
75#endif
76#include <netinet/in_var.h>
77#include <netinet/ip_var.h>
78#ifdef INET6
79#include <netinet6/ip6_var.h>
80#include <netinet6/nd6.h>
81#endif
82#include <netinet/tcp.h>
83#include <netinet/tcp_fsm.h>
84#include <netinet/tcp_seq.h>
85#include <netinet/tcp_timer.h>
86#include <netinet/tcp_var.h>
87#ifdef INET6
88#include <netinet6/tcp6_var.h>
89#endif
90#include <netinet/tcpip.h>
91#ifdef TCPDEBUG
92#include <netinet/tcp_debug.h>
93#endif
94#include <netinet6/ip6protosw.h>
95
96#ifdef IPSEC
97#include <netinet6/ipsec.h>
98#ifdef INET6
99#include <netinet6/ipsec6.h>
100#endif
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int 	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161int	tcp_do_rfc1644 = 0;
162SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
163    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
164
165static int	tcp_tcbhashsize = 0;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
167     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
168
169static int	do_tcpdrain = 1;
170SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
171     "Enable tcp_drain routine for extra help when low on mbufs");
172
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
174    &tcbinfo.ipi_count, 0, "Number of active PCBs");
175
176static int	icmp_may_rst = 1;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
178    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
179
180static int	tcp_isn_reseed_interval = 0;
181SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
182    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
183
184/*
185 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
186 * 1024 exists only for debugging.  A good production default would be
187 * something like 6100.
188 */
189static int	tcp_inflight_enable = 1;
190SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
191    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
192
193static int	tcp_inflight_debug = 0;
194SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
195    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
196
197static int	tcp_inflight_min = 6144;
198SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
199    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
200
201static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
202SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
203    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
204static int	tcp_inflight_stab = 20;
205SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
206    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
207
208static struct inpcb *tcp_notify(struct inpcb *, int);
209static void	tcp_discardcb(struct tcpcb *);
210
211/*
212 * Target size of TCP PCB hash tables. Must be a power of two.
213 *
214 * Note that this can be overridden by the kernel environment
215 * variable net.inet.tcp.tcbhashsize
216 */
217#ifndef TCBHASHSIZE
218#define TCBHASHSIZE	512
219#endif
220
221/*
222 * XXX
223 * Callouts should be moved into struct tcp directly.  They are currently
224 * separate because the tcpcb structure is exported to userland for sysctl
225 * parsing purposes, which do not know about callouts.
226 */
227struct	tcpcb_mem {
228	struct	tcpcb tcb;
229	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
230	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
231};
232
233static uma_zone_t tcpcb_zone;
234static uma_zone_t tcptw_zone;
235
236/*
237 * Tcp initialization
238 */
239void
240tcp_init()
241{
242	int hashsize = TCBHASHSIZE;
243
244	tcp_ccgen = 1;
245
246	tcp_delacktime = TCPTV_DELACK;
247	tcp_keepinit = TCPTV_KEEP_INIT;
248	tcp_keepidle = TCPTV_KEEP_IDLE;
249	tcp_keepintvl = TCPTV_KEEPINTVL;
250	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
251	tcp_msl = TCPTV_MSL;
252	tcp_rexmit_min = TCPTV_MIN;
253	tcp_rexmit_slop = TCPTV_CPU_VAR;
254
255	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
256	LIST_INIT(&tcb);
257	tcbinfo.listhead = &tcb;
258	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
259	if (!powerof2(hashsize)) {
260		printf("WARNING: TCB hash size not a power of 2\n");
261		hashsize = 512; /* safe default */
262	}
263	tcp_tcbhashsize = hashsize;
264	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
265	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
266					&tcbinfo.porthashmask);
267	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
268	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
269	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
270#ifdef INET6
271#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
272#else /* INET6 */
273#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
274#endif /* INET6 */
275	if (max_protohdr < TCP_MINPROTOHDR)
276		max_protohdr = TCP_MINPROTOHDR;
277	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
278		panic("tcp_init");
279#undef TCP_MINPROTOHDR
280	/*
281	 * These have to be type stable for the benefit of the timers.
282	 */
283	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
284	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
285	uma_zone_set_max(tcpcb_zone, maxsockets);
286	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
287	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
288	uma_zone_set_max(tcptw_zone, maxsockets / 5);
289	tcp_timer_init();
290	syncache_init();
291	tcp_hc_init();
292	tcp_reass_init();
293}
294
295/*
296 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
297 * tcp_template used to store this data in mbufs, but we now recopy it out
298 * of the tcpcb each time to conserve mbufs.
299 */
300void
301tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
302	struct inpcb *inp;
303	void *ip_ptr;
304	void *tcp_ptr;
305{
306	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
307
308#ifdef INET6
309	if ((inp->inp_vflag & INP_IPV6) != 0) {
310		struct ip6_hdr *ip6;
311
312		ip6 = (struct ip6_hdr *)ip_ptr;
313		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
314			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
315		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
316			(IPV6_VERSION & IPV6_VERSION_MASK);
317		ip6->ip6_nxt = IPPROTO_TCP;
318		ip6->ip6_plen = sizeof(struct tcphdr);
319		ip6->ip6_src = inp->in6p_laddr;
320		ip6->ip6_dst = inp->in6p_faddr;
321	} else
322#endif
323	{
324		struct ip *ip;
325
326		ip = (struct ip *)ip_ptr;
327		ip->ip_v = IPVERSION;
328		ip->ip_hl = 5;
329		ip->ip_tos = inp->inp_ip_tos;
330		ip->ip_len = 0;
331		ip->ip_id = 0;
332		ip->ip_off = 0;
333		ip->ip_ttl = inp->inp_ip_ttl;
334		ip->ip_sum = 0;
335		ip->ip_p = IPPROTO_TCP;
336		ip->ip_src = inp->inp_laddr;
337		ip->ip_dst = inp->inp_faddr;
338	}
339	th->th_sport = inp->inp_lport;
340	th->th_dport = inp->inp_fport;
341	th->th_seq = 0;
342	th->th_ack = 0;
343	th->th_x2 = 0;
344	th->th_off = 5;
345	th->th_flags = 0;
346	th->th_win = 0;
347	th->th_urp = 0;
348	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
349}
350
351/*
352 * Create template to be used to send tcp packets on a connection.
353 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
354 * use for this function is in keepalives, which use tcp_respond.
355 */
356struct tcptemp *
357tcpip_maketemplate(inp)
358	struct inpcb *inp;
359{
360	struct mbuf *m;
361	struct tcptemp *n;
362
363	m = m_get(M_DONTWAIT, MT_HEADER);
364	if (m == NULL)
365		return (0);
366	m->m_len = sizeof(struct tcptemp);
367	n = mtod(m, struct tcptemp *);
368
369	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
370	return (n);
371}
372
373/*
374 * Send a single message to the TCP at address specified by
375 * the given TCP/IP header.  If m == 0, then we make a copy
376 * of the tcpiphdr at ti and send directly to the addressed host.
377 * This is used to force keep alive messages out using the TCP
378 * template for a connection.  If flags are given then we send
379 * a message back to the TCP which originated the * segment ti,
380 * and discard the mbuf containing it and any other attached mbufs.
381 *
382 * In any case the ack and sequence number of the transmitted
383 * segment are as specified by the parameters.
384 *
385 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
386 */
387void
388tcp_respond(tp, ipgen, th, m, ack, seq, flags)
389	struct tcpcb *tp;
390	void *ipgen;
391	register struct tcphdr *th;
392	register struct mbuf *m;
393	tcp_seq ack, seq;
394	int flags;
395{
396	register int tlen;
397	int win = 0;
398	struct ip *ip;
399	struct tcphdr *nth;
400#ifdef INET6
401	struct ip6_hdr *ip6;
402	int isipv6;
403#endif /* INET6 */
404	int ipflags = 0;
405	struct inpcb *inp = NULL;
406
407	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
408
409#ifdef INET6
410	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
411	ip6 = ipgen;
412#endif /* INET6 */
413	ip = ipgen;
414
415	if (tp) {
416		inp = tp->t_inpcb;
417		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
418		INP_INFO_WLOCK_ASSERT(&tcbinfo);
419		INP_LOCK_ASSERT(inp);
420		if (!(flags & TH_RST)) {
421			win = sbspace(&inp->inp_socket->so_rcv);
422			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
423				win = (long)TCP_MAXWIN << tp->rcv_scale;
424		}
425	}
426	if (m == 0) {
427		m = m_gethdr(M_DONTWAIT, MT_HEADER);
428		if (m == NULL)
429			return;
430		tlen = 0;
431		m->m_data += max_linkhdr;
432#ifdef INET6
433		if (isipv6) {
434			bcopy((caddr_t)ip6, mtod(m, caddr_t),
435			      sizeof(struct ip6_hdr));
436			ip6 = mtod(m, struct ip6_hdr *);
437			nth = (struct tcphdr *)(ip6 + 1);
438		} else
439#endif /* INET6 */
440	      {
441		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
442		ip = mtod(m, struct ip *);
443		nth = (struct tcphdr *)(ip + 1);
444	      }
445		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
446		flags = TH_ACK;
447	} else {
448		m_freem(m->m_next);
449		m->m_next = 0;
450		m->m_data = (caddr_t)ipgen;
451		/* m_len is set later */
452		tlen = 0;
453#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
454#ifdef INET6
455		if (isipv6) {
456			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
457			nth = (struct tcphdr *)(ip6 + 1);
458		} else
459#endif /* INET6 */
460	      {
461		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
462		nth = (struct tcphdr *)(ip + 1);
463	      }
464		if (th != nth) {
465			/*
466			 * this is usually a case when an extension header
467			 * exists between the IPv6 header and the
468			 * TCP header.
469			 */
470			nth->th_sport = th->th_sport;
471			nth->th_dport = th->th_dport;
472		}
473		xchg(nth->th_dport, nth->th_sport, n_short);
474#undef xchg
475	}
476#ifdef INET6
477	if (isipv6) {
478		ip6->ip6_flow = 0;
479		ip6->ip6_vfc = IPV6_VERSION;
480		ip6->ip6_nxt = IPPROTO_TCP;
481		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
482						tlen));
483		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
484	} else
485#endif
486      {
487	tlen += sizeof (struct tcpiphdr);
488	ip->ip_len = tlen;
489	ip->ip_ttl = ip_defttl;
490	if (path_mtu_discovery)
491		ip->ip_off |= IP_DF;
492      }
493	m->m_len = tlen;
494	m->m_pkthdr.len = tlen;
495	m->m_pkthdr.rcvif = (struct ifnet *) 0;
496#ifdef MAC
497	if (inp != NULL) {
498		/*
499		 * Packet is associated with a socket, so allow the
500		 * label of the response to reflect the socket label.
501		 */
502		mac_create_mbuf_from_socket(inp->inp_socket, m);
503	} else {
504		/*
505		 * Packet is not associated with a socket, so possibly
506		 * update the label in place.
507		 */
508		mac_reflect_mbuf_tcp(m);
509	}
510#endif
511	nth->th_seq = htonl(seq);
512	nth->th_ack = htonl(ack);
513	nth->th_x2 = 0;
514	nth->th_off = sizeof (struct tcphdr) >> 2;
515	nth->th_flags = flags;
516	if (tp)
517		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
518	else
519		nth->th_win = htons((u_short)win);
520	nth->th_urp = 0;
521#ifdef INET6
522	if (isipv6) {
523		nth->th_sum = 0;
524		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
525					sizeof(struct ip6_hdr),
526					tlen - sizeof(struct ip6_hdr));
527		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, NULL);
528	} else
529#endif /* INET6 */
530      {
531        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
532	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
533        m->m_pkthdr.csum_flags = CSUM_TCP;
534        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
535      }
536#ifdef TCPDEBUG
537	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
538		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
539#endif
540#ifdef INET6
541	if (isipv6)
542		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
543	else
544#endif /* INET6 */
545	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
546}
547
548/*
549 * Create a new TCP control block, making an
550 * empty reassembly queue and hooking it to the argument
551 * protocol control block.  The `inp' parameter must have
552 * come from the zone allocator set up in tcp_init().
553 */
554struct tcpcb *
555tcp_newtcpcb(inp)
556	struct inpcb *inp;
557{
558	struct tcpcb_mem *tm;
559	struct tcpcb *tp;
560#ifdef INET6
561	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
562#endif /* INET6 */
563
564	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
565	if (tm == NULL)
566		return (NULL);
567	tp = &tm->tcb;
568	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
569	tp->t_maxseg = tp->t_maxopd =
570#ifdef INET6
571		isipv6 ? tcp_v6mssdflt :
572#endif /* INET6 */
573		tcp_mssdflt;
574
575	/* Set up our timeouts. */
576	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, 0);
577	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, 0);
578	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, 0);
579	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, 0);
580	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, 0);
581
582	if (tcp_do_rfc1323)
583		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
584	if (tcp_do_rfc1644)
585		tp->t_flags |= TF_REQ_CC;
586	tp->t_inpcb = inp;	/* XXX */
587	/*
588	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
589	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
590	 * reasonable initial retransmit time.
591	 */
592	tp->t_srtt = TCPTV_SRTTBASE;
593	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
594	tp->t_rttmin = tcp_rexmit_min;
595	tp->t_rxtcur = TCPTV_RTOBASE;
596	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
597	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
598	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
599	tp->t_rcvtime = ticks;
600	tp->t_bw_rtttime = ticks;
601        /*
602	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
603	 * because the socket may be bound to an IPv6 wildcard address,
604	 * which may match an IPv4-mapped IPv6 address.
605	 */
606	inp->inp_ip_ttl = ip_defttl;
607	inp->inp_ppcb = (caddr_t)tp;
608	return (tp);		/* XXX */
609}
610
611/*
612 * Drop a TCP connection, reporting
613 * the specified error.  If connection is synchronized,
614 * then send a RST to peer.
615 */
616struct tcpcb *
617tcp_drop(tp, errno)
618	register struct tcpcb *tp;
619	int errno;
620{
621	struct socket *so = tp->t_inpcb->inp_socket;
622
623	if (TCPS_HAVERCVDSYN(tp->t_state)) {
624		tp->t_state = TCPS_CLOSED;
625		(void) tcp_output(tp);
626		tcpstat.tcps_drops++;
627	} else
628		tcpstat.tcps_conndrops++;
629	if (errno == ETIMEDOUT && tp->t_softerror)
630		errno = tp->t_softerror;
631	so->so_error = errno;
632	return (tcp_close(tp));
633}
634
635static void
636tcp_discardcb(tp)
637	struct tcpcb *tp;
638{
639	struct tseg_qent *q;
640	struct inpcb *inp = tp->t_inpcb;
641	struct socket *so = inp->inp_socket;
642#ifdef INET6
643	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
644#endif /* INET6 */
645
646	/*
647	 * Make sure that all of our timers are stopped before we
648	 * delete the PCB.
649	 */
650	callout_stop(tp->tt_rexmt);
651	callout_stop(tp->tt_persist);
652	callout_stop(tp->tt_keep);
653	callout_stop(tp->tt_2msl);
654	callout_stop(tp->tt_delack);
655
656	/*
657	 * If we got enough samples through the srtt filter,
658	 * save the rtt and rttvar in the routing entry.
659	 * 'Enough' is arbitrarily defined as 4 rtt samples.
660	 * 4 samples is enough for the srtt filter to converge
661	 * to within enough % of the correct value; fewer samples
662	 * and we could save a bogus rtt. The danger is not high
663	 * as tcp quickly recovers from everything.
664	 * XXX: Works very well but needs some more statistics!
665	 */
666	if (tp->t_rttupdated >= 4) {
667		struct hc_metrics_lite metrics;
668		u_long ssthresh;
669
670		bzero(&metrics, sizeof(metrics));
671		/*
672		 * Update the ssthresh always when the conditions below
673		 * are satisfied. This gives us better new start value
674		 * for the congestion avoidance for new connections.
675		 * ssthresh is only set if packet loss occured on a session.
676		 */
677		ssthresh = tp->snd_ssthresh;
678		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
679			/*
680			 * convert the limit from user data bytes to
681			 * packets then to packet data bytes.
682			 */
683			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
684			if (ssthresh < 2)
685				ssthresh = 2;
686			ssthresh *= (u_long)(tp->t_maxseg +
687#ifdef INET6
688				      (isipv6 ? sizeof (struct ip6_hdr) +
689					       sizeof (struct tcphdr) :
690#endif
691				       sizeof (struct tcpiphdr)
692#ifdef INET6
693				       )
694#endif
695				      );
696		} else
697			ssthresh = 0;
698		metrics.rmx_ssthresh = ssthresh;
699
700		metrics.rmx_rtt = tp->t_srtt;
701		metrics.rmx_rttvar = tp->t_rttvar;
702		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
703		metrics.rmx_bandwidth = tp->snd_bandwidth;
704		metrics.rmx_cwnd = tp->snd_cwnd;
705		metrics.rmx_sendpipe = 0;
706		metrics.rmx_recvpipe = 0;
707
708		tcp_hc_update(&inp->inp_inc, &metrics);
709	}
710
711	/* free the reassembly queue, if any */
712	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
713		LIST_REMOVE(q, tqe_q);
714		m_freem(q->tqe_m);
715		uma_zfree(tcp_reass_zone, q);
716		tp->t_segqlen--;
717		tcp_reass_qsize--;
718	}
719	inp->inp_ppcb = NULL;
720	tp->t_inpcb = NULL;
721	uma_zfree(tcpcb_zone, tp);
722	soisdisconnected(so);
723}
724
725/*
726 * Close a TCP control block:
727 *    discard all space held by the tcp
728 *    discard internet protocol block
729 *    wake up any sleepers
730 */
731struct tcpcb *
732tcp_close(tp)
733	struct tcpcb *tp;
734{
735	struct inpcb *inp = tp->t_inpcb;
736#ifdef INET6
737	struct socket *so = inp->inp_socket;
738#endif
739
740	tcp_discardcb(tp);
741#ifdef INET6
742	if (INP_CHECK_SOCKAF(so, AF_INET6))
743		in6_pcbdetach(inp);
744	else
745#endif
746		in_pcbdetach(inp);
747	tcpstat.tcps_closed++;
748	return ((struct tcpcb *)0);
749}
750
751void
752tcp_drain()
753{
754	if (do_tcpdrain)
755	{
756		struct inpcb *inpb;
757		struct tcpcb *tcpb;
758		struct tseg_qent *te;
759
760	/*
761	 * Walk the tcpbs, if existing, and flush the reassembly queue,
762	 * if there is one...
763	 * XXX: The "Net/3" implementation doesn't imply that the TCP
764	 *      reassembly queue should be flushed, but in a situation
765	 * 	where we're really low on mbufs, this is potentially
766	 *  	usefull.
767	 */
768		INP_INFO_RLOCK(&tcbinfo);
769		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
770			if (inpb->inp_vflag & INP_TIMEWAIT)
771				continue;
772			INP_LOCK(inpb);
773			if ((tcpb = intotcpcb(inpb))) {
774				while ((te = LIST_FIRST(&tcpb->t_segq))
775			            != NULL) {
776					LIST_REMOVE(te, tqe_q);
777					m_freem(te->tqe_m);
778					uma_zfree(tcp_reass_zone, te);
779					tcpb->t_segqlen--;
780					tcp_reass_qsize--;
781				}
782			}
783			INP_UNLOCK(inpb);
784		}
785		INP_INFO_RUNLOCK(&tcbinfo);
786	}
787}
788
789/*
790 * Notify a tcp user of an asynchronous error;
791 * store error as soft error, but wake up user
792 * (for now, won't do anything until can select for soft error).
793 *
794 * Do not wake up user since there currently is no mechanism for
795 * reporting soft errors (yet - a kqueue filter may be added).
796 */
797static struct inpcb *
798tcp_notify(inp, error)
799	struct inpcb *inp;
800	int error;
801{
802	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
803
804	/*
805	 * Ignore some errors if we are hooked up.
806	 * If connection hasn't completed, has retransmitted several times,
807	 * and receives a second error, give up now.  This is better
808	 * than waiting a long time to establish a connection that
809	 * can never complete.
810	 */
811	if (tp->t_state == TCPS_ESTABLISHED &&
812	    (error == EHOSTUNREACH || error == ENETUNREACH ||
813	     error == EHOSTDOWN)) {
814		return inp;
815	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
816	    tp->t_softerror) {
817		tcp_drop(tp, error);
818		return (struct inpcb *)0;
819	} else {
820		tp->t_softerror = error;
821		return inp;
822	}
823#if 0
824	wakeup( &so->so_timeo);
825	sorwakeup(so);
826	sowwakeup(so);
827#endif
828}
829
830static int
831tcp_pcblist(SYSCTL_HANDLER_ARGS)
832{
833	int error, i, n, s;
834	struct inpcb *inp, **inp_list;
835	inp_gen_t gencnt;
836	struct xinpgen xig;
837
838	/*
839	 * The process of preparing the TCB list is too time-consuming and
840	 * resource-intensive to repeat twice on every request.
841	 */
842	if (req->oldptr == 0) {
843		n = tcbinfo.ipi_count;
844		req->oldidx = 2 * (sizeof xig)
845			+ (n + n/8) * sizeof(struct xtcpcb);
846		return 0;
847	}
848
849	if (req->newptr != 0)
850		return EPERM;
851
852	/*
853	 * OK, now we're committed to doing something.
854	 */
855	s = splnet();
856	INP_INFO_RLOCK(&tcbinfo);
857	gencnt = tcbinfo.ipi_gencnt;
858	n = tcbinfo.ipi_count;
859	INP_INFO_RUNLOCK(&tcbinfo);
860	splx(s);
861
862	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
863		+ n * sizeof(struct xtcpcb));
864	if (error != 0)
865		return (error);
866
867	xig.xig_len = sizeof xig;
868	xig.xig_count = n;
869	xig.xig_gen = gencnt;
870	xig.xig_sogen = so_gencnt;
871	error = SYSCTL_OUT(req, &xig, sizeof xig);
872	if (error)
873		return error;
874
875	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
876	if (inp_list == 0)
877		return ENOMEM;
878
879	s = splnet();
880	INP_INFO_RLOCK(&tcbinfo);
881	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
882	     inp = LIST_NEXT(inp, inp_list)) {
883		INP_LOCK(inp);
884		if (inp->inp_gencnt <= gencnt) {
885			/*
886			 * XXX: This use of cr_cansee(), introduced with
887			 * TCP state changes, is not quite right, but for
888			 * now, better than nothing.
889			 */
890			if (inp->inp_vflag & INP_TIMEWAIT)
891				error = cr_cansee(req->td->td_ucred,
892				    intotw(inp)->tw_cred);
893			else
894				error = cr_canseesocket(req->td->td_ucred,
895				    inp->inp_socket);
896			if (error == 0)
897				inp_list[i++] = inp;
898		}
899		INP_UNLOCK(inp);
900	}
901	INP_INFO_RUNLOCK(&tcbinfo);
902	splx(s);
903	n = i;
904
905	error = 0;
906	for (i = 0; i < n; i++) {
907		inp = inp_list[i];
908		if (inp->inp_gencnt <= gencnt) {
909			struct xtcpcb xt;
910			caddr_t inp_ppcb;
911			xt.xt_len = sizeof xt;
912			/* XXX should avoid extra copy */
913			bcopy(inp, &xt.xt_inp, sizeof *inp);
914			inp_ppcb = inp->inp_ppcb;
915			if (inp_ppcb == NULL)
916				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
917			else if (inp->inp_vflag & INP_TIMEWAIT) {
918				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
919				xt.xt_tp.t_state = TCPS_TIME_WAIT;
920			} else
921				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
922			if (inp->inp_socket)
923				sotoxsocket(inp->inp_socket, &xt.xt_socket);
924			else {
925				bzero(&xt.xt_socket, sizeof xt.xt_socket);
926				xt.xt_socket.xso_protocol = IPPROTO_TCP;
927			}
928			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
929			error = SYSCTL_OUT(req, &xt, sizeof xt);
930		}
931	}
932	if (!error) {
933		/*
934		 * Give the user an updated idea of our state.
935		 * If the generation differs from what we told
936		 * her before, she knows that something happened
937		 * while we were processing this request, and it
938		 * might be necessary to retry.
939		 */
940		s = splnet();
941		INP_INFO_RLOCK(&tcbinfo);
942		xig.xig_gen = tcbinfo.ipi_gencnt;
943		xig.xig_sogen = so_gencnt;
944		xig.xig_count = tcbinfo.ipi_count;
945		INP_INFO_RUNLOCK(&tcbinfo);
946		splx(s);
947		error = SYSCTL_OUT(req, &xig, sizeof xig);
948	}
949	free(inp_list, M_TEMP);
950	return error;
951}
952
953SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
954	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
955
956static int
957tcp_getcred(SYSCTL_HANDLER_ARGS)
958{
959	struct xucred xuc;
960	struct sockaddr_in addrs[2];
961	struct inpcb *inp;
962	int error, s;
963
964	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
965	if (error)
966		return (error);
967	error = SYSCTL_IN(req, addrs, sizeof(addrs));
968	if (error)
969		return (error);
970	s = splnet();
971	INP_INFO_RLOCK(&tcbinfo);
972	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
973	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
974	if (inp == NULL) {
975		error = ENOENT;
976		goto outunlocked;
977	}
978	INP_LOCK(inp);
979	if (inp->inp_socket == NULL) {
980		error = ENOENT;
981		goto out;
982	}
983	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
984	if (error)
985		goto out;
986	cru2x(inp->inp_socket->so_cred, &xuc);
987out:
988	INP_UNLOCK(inp);
989outunlocked:
990	INP_INFO_RUNLOCK(&tcbinfo);
991	splx(s);
992	if (error == 0)
993		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
994	return (error);
995}
996
997SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
998    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
999    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1000
1001#ifdef INET6
1002static int
1003tcp6_getcred(SYSCTL_HANDLER_ARGS)
1004{
1005	struct xucred xuc;
1006	struct sockaddr_in6 addrs[2];
1007	struct inpcb *inp;
1008	int error, s, mapped = 0;
1009
1010	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1011	if (error)
1012		return (error);
1013	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1014	if (error)
1015		return (error);
1016	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1017		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1018			mapped = 1;
1019		else
1020			return (EINVAL);
1021	}
1022	s = splnet();
1023	INP_INFO_RLOCK(&tcbinfo);
1024	if (mapped == 1)
1025		inp = in_pcblookup_hash(&tcbinfo,
1026			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1027			addrs[1].sin6_port,
1028			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1029			addrs[0].sin6_port,
1030			0, NULL);
1031	else
1032		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1033				 addrs[1].sin6_port,
1034				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1035				 0, NULL);
1036	if (inp == NULL) {
1037		error = ENOENT;
1038		goto outunlocked;
1039	}
1040	INP_LOCK(inp);
1041	if (inp->inp_socket == NULL) {
1042		error = ENOENT;
1043		goto out;
1044	}
1045	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1046	if (error)
1047		goto out;
1048	cru2x(inp->inp_socket->so_cred, &xuc);
1049out:
1050	INP_UNLOCK(inp);
1051outunlocked:
1052	INP_INFO_RUNLOCK(&tcbinfo);
1053	splx(s);
1054	if (error == 0)
1055		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1056	return (error);
1057}
1058
1059SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1060    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1061    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1062#endif
1063
1064
1065void
1066tcp_ctlinput(cmd, sa, vip)
1067	int cmd;
1068	struct sockaddr *sa;
1069	void *vip;
1070{
1071	struct ip *ip = vip;
1072	struct tcphdr *th;
1073	struct in_addr faddr;
1074	struct inpcb *inp;
1075	struct tcpcb *tp;
1076	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1077	tcp_seq icmp_seq;
1078	int s;
1079
1080	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1081	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1082		return;
1083
1084	if (cmd == PRC_QUENCH)
1085		notify = tcp_quench;
1086	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1087		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1088		notify = tcp_drop_syn_sent;
1089	else if (cmd == PRC_MSGSIZE)
1090		notify = tcp_mtudisc;
1091	/*
1092	 * Redirects don't need to be handled up here.
1093	 */
1094	else if (PRC_IS_REDIRECT(cmd))
1095		return;
1096	/*
1097	 * Hostdead is ugly because it goes linearly through all PCBs.
1098	 * XXX: We never get this from ICMP, otherwise it makes an
1099	 * excellent DoS attack on machines with many connections.
1100	 */
1101	else if (cmd == PRC_HOSTDEAD)
1102		ip = 0;
1103	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1104		return;
1105	if (ip) {
1106		s = splnet();
1107		th = (struct tcphdr *)((caddr_t)ip
1108				       + (ip->ip_hl << 2));
1109		INP_INFO_WLOCK(&tcbinfo);
1110		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1111		    ip->ip_src, th->th_sport, 0, NULL);
1112		if (inp != NULL)  {
1113			INP_LOCK(inp);
1114			if (inp->inp_socket != NULL) {
1115				icmp_seq = htonl(th->th_seq);
1116				tp = intotcpcb(inp);
1117				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1118			    		SEQ_LT(icmp_seq, tp->snd_max))
1119					inp = (*notify)(inp, inetctlerrmap[cmd]);
1120			}
1121			if (inp)
1122				INP_UNLOCK(inp);
1123		} else {
1124			struct in_conninfo inc;
1125
1126			inc.inc_fport = th->th_dport;
1127			inc.inc_lport = th->th_sport;
1128			inc.inc_faddr = faddr;
1129			inc.inc_laddr = ip->ip_src;
1130#ifdef INET6
1131			inc.inc_isipv6 = 0;
1132#endif
1133			syncache_unreach(&inc, th);
1134		}
1135		INP_INFO_WUNLOCK(&tcbinfo);
1136		splx(s);
1137	} else
1138		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1139}
1140
1141#ifdef INET6
1142void
1143tcp6_ctlinput(cmd, sa, d)
1144	int cmd;
1145	struct sockaddr *sa;
1146	void *d;
1147{
1148	struct tcphdr th;
1149	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1150	struct ip6_hdr *ip6;
1151	struct mbuf *m;
1152	struct ip6ctlparam *ip6cp = NULL;
1153	const struct sockaddr_in6 *sa6_src = NULL;
1154	int off;
1155	struct tcp_portonly {
1156		u_int16_t th_sport;
1157		u_int16_t th_dport;
1158	} *thp;
1159
1160	if (sa->sa_family != AF_INET6 ||
1161	    sa->sa_len != sizeof(struct sockaddr_in6))
1162		return;
1163
1164	if (cmd == PRC_QUENCH)
1165		notify = tcp_quench;
1166	else if (cmd == PRC_MSGSIZE)
1167		notify = tcp_mtudisc;
1168	else if (!PRC_IS_REDIRECT(cmd) &&
1169		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1170		return;
1171
1172	/* if the parameter is from icmp6, decode it. */
1173	if (d != NULL) {
1174		ip6cp = (struct ip6ctlparam *)d;
1175		m = ip6cp->ip6c_m;
1176		ip6 = ip6cp->ip6c_ip6;
1177		off = ip6cp->ip6c_off;
1178		sa6_src = ip6cp->ip6c_src;
1179	} else {
1180		m = NULL;
1181		ip6 = NULL;
1182		off = 0;	/* fool gcc */
1183		sa6_src = &sa6_any;
1184	}
1185
1186	if (ip6) {
1187		struct in_conninfo inc;
1188		/*
1189		 * XXX: We assume that when IPV6 is non NULL,
1190		 * M and OFF are valid.
1191		 */
1192
1193		/* check if we can safely examine src and dst ports */
1194		if (m->m_pkthdr.len < off + sizeof(*thp))
1195			return;
1196
1197		bzero(&th, sizeof(th));
1198		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1199
1200		in6_pcbnotify(&tcb, sa, th.th_dport,
1201		    (struct sockaddr *)ip6cp->ip6c_src,
1202		    th.th_sport, cmd, NULL, notify);
1203
1204		inc.inc_fport = th.th_dport;
1205		inc.inc_lport = th.th_sport;
1206		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1207		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1208		inc.inc_isipv6 = 1;
1209		syncache_unreach(&inc, &th);
1210	} else
1211		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1212			      0, cmd, NULL, notify);
1213}
1214#endif /* INET6 */
1215
1216
1217/*
1218 * Following is where TCP initial sequence number generation occurs.
1219 *
1220 * There are two places where we must use initial sequence numbers:
1221 * 1.  In SYN-ACK packets.
1222 * 2.  In SYN packets.
1223 *
1224 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1225 * tcp_syncache.c for details.
1226 *
1227 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1228 * depends on this property.  In addition, these ISNs should be
1229 * unguessable so as to prevent connection hijacking.  To satisfy
1230 * the requirements of this situation, the algorithm outlined in
1231 * RFC 1948 is used to generate sequence numbers.
1232 *
1233 * Implementation details:
1234 *
1235 * Time is based off the system timer, and is corrected so that it
1236 * increases by one megabyte per second.  This allows for proper
1237 * recycling on high speed LANs while still leaving over an hour
1238 * before rollover.
1239 *
1240 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1241 * between seeding of isn_secret.  This is normally set to zero,
1242 * as reseeding should not be necessary.
1243 *
1244 */
1245
1246#define ISN_BYTES_PER_SECOND 1048576
1247
1248u_char isn_secret[32];
1249int isn_last_reseed;
1250MD5_CTX isn_ctx;
1251
1252tcp_seq
1253tcp_new_isn(tp)
1254	struct tcpcb *tp;
1255{
1256	u_int32_t md5_buffer[4];
1257	tcp_seq new_isn;
1258
1259	/* Seed if this is the first use, reseed if requested. */
1260	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1261	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1262		< (u_int)ticks))) {
1263		read_random(&isn_secret, sizeof(isn_secret));
1264		isn_last_reseed = ticks;
1265	}
1266
1267	/* Compute the md5 hash and return the ISN. */
1268	MD5Init(&isn_ctx);
1269	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1270	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1271#ifdef INET6
1272	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1273		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1274			  sizeof(struct in6_addr));
1275		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1276			  sizeof(struct in6_addr));
1277	} else
1278#endif
1279	{
1280		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1281			  sizeof(struct in_addr));
1282		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1283			  sizeof(struct in_addr));
1284	}
1285	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1286	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1287	new_isn = (tcp_seq) md5_buffer[0];
1288	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1289	return new_isn;
1290}
1291
1292/*
1293 * When a source quench is received, close congestion window
1294 * to one segment.  We will gradually open it again as we proceed.
1295 */
1296struct inpcb *
1297tcp_quench(inp, errno)
1298	struct inpcb *inp;
1299	int errno;
1300{
1301	struct tcpcb *tp = intotcpcb(inp);
1302
1303	if (tp)
1304		tp->snd_cwnd = tp->t_maxseg;
1305	return (inp);
1306}
1307
1308/*
1309 * When a specific ICMP unreachable message is received and the
1310 * connection state is SYN-SENT, drop the connection.  This behavior
1311 * is controlled by the icmp_may_rst sysctl.
1312 */
1313struct inpcb *
1314tcp_drop_syn_sent(inp, errno)
1315	struct inpcb *inp;
1316	int errno;
1317{
1318	struct tcpcb *tp = intotcpcb(inp);
1319
1320	if (tp && tp->t_state == TCPS_SYN_SENT) {
1321		tcp_drop(tp, errno);
1322		return (struct inpcb *)0;
1323	}
1324	return inp;
1325}
1326
1327/*
1328 * When `need fragmentation' ICMP is received, update our idea of the MSS
1329 * based on the new value in the route.  Also nudge TCP to send something,
1330 * since we know the packet we just sent was dropped.
1331 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1332 */
1333struct inpcb *
1334tcp_mtudisc(inp, errno)
1335	struct inpcb *inp;
1336	int errno;
1337{
1338	struct tcpcb *tp = intotcpcb(inp);
1339	struct rmxp_tao tao;
1340	struct socket *so = inp->inp_socket;
1341	u_int maxmtu;
1342	u_int romtu;
1343	int mss;
1344#ifdef INET6
1345	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1346#endif /* INET6 */
1347	bzero(&tao, sizeof(tao));
1348
1349	if (tp) {
1350		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1351		romtu =
1352#ifdef INET6
1353		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1354#endif /* INET6 */
1355		    tcp_maxmtu(&inp->inp_inc);
1356		if (!maxmtu)
1357			maxmtu = romtu;
1358		else
1359			maxmtu = min(maxmtu, romtu);
1360		if (!maxmtu) {
1361			tp->t_maxopd = tp->t_maxseg =
1362#ifdef INET6
1363				isipv6 ? tcp_v6mssdflt :
1364#endif /* INET6 */
1365				tcp_mssdflt;
1366			return inp;
1367		}
1368		mss = maxmtu -
1369#ifdef INET6
1370			(isipv6 ?
1371			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1372#endif /* INET6 */
1373			 sizeof(struct tcpiphdr)
1374#ifdef INET6
1375			 )
1376#endif /* INET6 */
1377			;
1378
1379		if (tcp_do_rfc1644) {
1380			tcp_hc_gettao(&inp->inp_inc, &tao);
1381			if (tao.tao_mssopt)
1382				mss = min(mss, tao.tao_mssopt);
1383		}
1384		/*
1385		 * XXX - The above conditional probably violates the TCP
1386		 * spec.  The problem is that, since we don't know the
1387		 * other end's MSS, we are supposed to use a conservative
1388		 * default.  But, if we do that, then MTU discovery will
1389		 * never actually take place, because the conservative
1390		 * default is much less than the MTUs typically seen
1391		 * on the Internet today.  For the moment, we'll sweep
1392		 * this under the carpet.
1393		 *
1394		 * The conservative default might not actually be a problem
1395		 * if the only case this occurs is when sending an initial
1396		 * SYN with options and data to a host we've never talked
1397		 * to before.  Then, they will reply with an MSS value which
1398		 * will get recorded and the new parameters should get
1399		 * recomputed.  For Further Study.
1400		 */
1401		if (tp->t_maxopd <= mss)
1402			return inp;
1403		tp->t_maxopd = mss;
1404
1405		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1406		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1407			mss -= TCPOLEN_TSTAMP_APPA;
1408		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1409		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1410			mss -= TCPOLEN_CC_APPA;
1411#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1412		if (mss > MCLBYTES)
1413			mss &= ~(MCLBYTES-1);
1414#else
1415		if (mss > MCLBYTES)
1416			mss = mss / MCLBYTES * MCLBYTES;
1417#endif
1418		if (so->so_snd.sb_hiwat < mss)
1419			mss = so->so_snd.sb_hiwat;
1420
1421		tp->t_maxseg = mss;
1422
1423		tcpstat.tcps_mturesent++;
1424		tp->t_rtttime = 0;
1425		tp->snd_nxt = tp->snd_una;
1426		tcp_output(tp);
1427	}
1428	return inp;
1429}
1430
1431/*
1432 * Look-up the routing entry to the peer of this inpcb.  If no route
1433 * is found and it cannot be allocated, then return NULL.  This routine
1434 * is called by TCP routines that access the rmx structure and by tcp_mss
1435 * to get the interface MTU.
1436 */
1437u_long
1438tcp_maxmtu(inc)
1439	struct in_conninfo *inc;
1440{
1441	struct route sro;
1442	struct sockaddr_in *dst;
1443	struct ifnet *ifp;
1444	u_long maxmtu = 0;
1445
1446	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1447
1448	bzero(&sro, sizeof(sro));
1449	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1450	        dst = (struct sockaddr_in *)&sro.ro_dst;
1451		dst->sin_family = AF_INET;
1452		dst->sin_len = sizeof(*dst);
1453		dst->sin_addr = inc->inc_faddr;
1454		rtalloc_ign(&sro, RTF_CLONING);
1455	}
1456	if (sro.ro_rt != NULL) {
1457		ifp = sro.ro_rt->rt_ifp;
1458		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1459			maxmtu = ifp->if_mtu;
1460		else
1461			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1462		RTFREE(sro.ro_rt);
1463	}
1464	return (maxmtu);
1465}
1466
1467#ifdef INET6
1468u_long
1469tcp_maxmtu6(inc)
1470	struct in_conninfo *inc;
1471{
1472	struct route_in6 sro6;
1473	struct ifnet *ifp;
1474	u_long maxmtu = 0;
1475
1476	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1477
1478	bzero(&sro6, sizeof(sro6));
1479	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1480		sro6.ro_dst.sin6_family = AF_INET6;
1481		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1482		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1483		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1484	}
1485	if (sro6.ro_rt != NULL) {
1486		ifp = sro6.ro_rt->rt_ifp;
1487		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1488			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1489		else
1490			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1491				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1492		RTFREE(sro6.ro_rt);
1493	}
1494
1495	return (maxmtu);
1496}
1497#endif /* INET6 */
1498
1499#ifdef IPSEC
1500/* compute ESP/AH header size for TCP, including outer IP header. */
1501size_t
1502ipsec_hdrsiz_tcp(tp)
1503	struct tcpcb *tp;
1504{
1505	struct inpcb *inp;
1506	struct mbuf *m;
1507	size_t hdrsiz;
1508	struct ip *ip;
1509#ifdef INET6
1510	struct ip6_hdr *ip6;
1511#endif
1512	struct tcphdr *th;
1513
1514	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1515		return 0;
1516	MGETHDR(m, M_DONTWAIT, MT_DATA);
1517	if (!m)
1518		return 0;
1519
1520#ifdef INET6
1521	if ((inp->inp_vflag & INP_IPV6) != 0) {
1522		ip6 = mtod(m, struct ip6_hdr *);
1523		th = (struct tcphdr *)(ip6 + 1);
1524		m->m_pkthdr.len = m->m_len =
1525			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1526		tcpip_fillheaders(inp, ip6, th);
1527		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1528	} else
1529#endif /* INET6 */
1530      {
1531	ip = mtod(m, struct ip *);
1532	th = (struct tcphdr *)(ip + 1);
1533	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1534	tcpip_fillheaders(inp, ip, th);
1535	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1536      }
1537
1538	m_free(m);
1539	return hdrsiz;
1540}
1541#endif /*IPSEC*/
1542
1543/*
1544 * Move a TCP connection into TIME_WAIT state.
1545 *    tcbinfo is unlocked.
1546 *    inp is locked, and is unlocked before returning.
1547 */
1548void
1549tcp_twstart(tp)
1550	struct tcpcb *tp;
1551{
1552	struct tcptw *tw;
1553	struct inpcb *inp;
1554	int tw_time, acknow;
1555	struct socket *so;
1556
1557	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1558	if (tw == NULL) {
1559		tw = tcp_timer_2msl_tw(1);
1560		if (tw == NULL) {
1561			tcp_close(tp);
1562			return;
1563		}
1564	}
1565	inp = tp->t_inpcb;
1566	tw->tw_inpcb = inp;
1567
1568	/*
1569	 * Recover last window size sent.
1570	 */
1571	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1572
1573	/*
1574	 * Set t_recent if timestamps are used on the connection.
1575	 */
1576        if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1577            (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1578		tw->t_recent = tp->ts_recent;
1579	else
1580		tw->t_recent = 0;
1581
1582	tw->snd_nxt = tp->snd_nxt;
1583	tw->rcv_nxt = tp->rcv_nxt;
1584	tw->iss     = tp->iss;
1585	tw->irs     = tp->irs;
1586	tw->cc_recv = tp->cc_recv;
1587	tw->cc_send = tp->cc_send;
1588	tw->t_starttime = tp->t_starttime;
1589	tw->tw_time = 0;
1590
1591/* XXX
1592 * If this code will
1593 * be used for fin-wait-2 state also, then we may need
1594 * a ts_recent from the last segment.
1595 */
1596	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1597	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1598		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1599		/* For T/TCP client, force ACK now. */
1600		acknow = 1;
1601	} else {
1602		tw_time = 2 * tcp_msl;
1603		acknow = tp->t_flags & TF_ACKNOW;
1604	}
1605	tcp_discardcb(tp);
1606	so = inp->inp_socket;
1607	so->so_pcb = NULL;
1608	tw->tw_cred = crhold(so->so_cred);
1609	tw->tw_so_options = so->so_options;
1610	if (acknow)
1611		tcp_twrespond(tw, so, NULL, TH_ACK);
1612	sotryfree(so);
1613	inp->inp_socket = NULL;
1614	inp->inp_ppcb = (caddr_t)tw;
1615	inp->inp_vflag |= INP_TIMEWAIT;
1616	tcp_timer_2msl_reset(tw, tw_time);
1617	INP_UNLOCK(inp);
1618}
1619
1620/*
1621 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1622 * the actual rate is slightly higher due to the addition of
1623 * random positive increments.
1624 *
1625 * Most other new OSes use semi-randomized ISN values, so we
1626 * do not need to worry about them.
1627 */
1628#define MS_ISN_BYTES_PER_SECOND		250000
1629
1630/*
1631 * Determine if the ISN we will generate has advanced beyond the last
1632 * sequence number used by the previous connection.  If so, indicate
1633 * that it is safe to recycle this tw socket by returning 1.
1634 */
1635int
1636tcp_twrecycleable(struct tcptw *tw)
1637{
1638	tcp_seq new_iss = tw->iss;
1639	tcp_seq new_irs = tw->irs;
1640
1641	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1642	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1643
1644	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1645		return 1;
1646	else
1647		return 0;
1648}
1649
1650struct tcptw *
1651tcp_twclose(struct tcptw *tw, int reuse)
1652{
1653	struct inpcb *inp;
1654
1655	inp = tw->tw_inpcb;
1656	tw->tw_inpcb = NULL;
1657	tcp_timer_2msl_stop(tw);
1658	inp->inp_ppcb = NULL;
1659#ifdef INET6
1660	if (inp->inp_vflag & INP_IPV6PROTO)
1661		in6_pcbdetach(inp);
1662	else
1663#endif
1664		in_pcbdetach(inp);
1665	tcpstat.tcps_closed++;
1666	crfree(tw->tw_cred);
1667	tw->tw_cred = NULL;
1668	if (reuse)
1669		return (tw);
1670	uma_zfree(tcptw_zone, tw);
1671	return (NULL);
1672}
1673
1674/*
1675 * One of so and msrc must be non-NULL for use by the MAC Framework to
1676 * construct a label for ay resulting packet.
1677 */
1678int
1679tcp_twrespond(struct tcptw *tw, struct socket *so, struct mbuf *msrc,
1680    int flags)
1681{
1682	struct inpcb *inp = tw->tw_inpcb;
1683	struct tcphdr *th;
1684	struct mbuf *m;
1685	struct ip *ip = NULL;
1686	u_int8_t *optp;
1687	u_int hdrlen, optlen;
1688	int error;
1689#ifdef INET6
1690	struct ip6_hdr *ip6 = NULL;
1691	int isipv6 = inp->inp_inc.inc_isipv6;
1692#endif
1693
1694	KASSERT(so != NULL || msrc != NULL,
1695	    ("tcp_twrespond: so and msrc NULL"));
1696
1697	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1698	if (m == NULL)
1699		return (ENOBUFS);
1700	m->m_data += max_linkhdr;
1701
1702#ifdef MAC
1703	mac_create_mbuf_from_inpcb(inp, m);
1704#endif
1705
1706#ifdef INET6
1707	if (isipv6) {
1708		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1709		ip6 = mtod(m, struct ip6_hdr *);
1710		th = (struct tcphdr *)(ip6 + 1);
1711		tcpip_fillheaders(inp, ip6, th);
1712	} else
1713#endif
1714	{
1715		hdrlen = sizeof(struct tcpiphdr);
1716		ip = mtod(m, struct ip *);
1717		th = (struct tcphdr *)(ip + 1);
1718		tcpip_fillheaders(inp, ip, th);
1719	}
1720	optp = (u_int8_t *)(th + 1);
1721
1722 	/*
1723	 * Send a timestamp and echo-reply if both our side and our peer
1724	 * have sent timestamps in our SYN's and this is not a RST.
1725 	 */
1726	if (tw->t_recent && flags == TH_ACK) {
1727		u_int32_t *lp = (u_int32_t *)optp;
1728
1729 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1730 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1731 		*lp++ = htonl(ticks);
1732 		*lp   = htonl(tw->t_recent);
1733 		optp += TCPOLEN_TSTAMP_APPA;
1734 	}
1735
1736 	/*
1737	 * Send `CC-family' options if needed, and it's not a RST.
1738 	 */
1739	if (tw->cc_recv != 0 && flags == TH_ACK) {
1740		u_int32_t *lp = (u_int32_t *)optp;
1741
1742		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1743		*lp   = htonl(tw->cc_send);
1744		optp += TCPOLEN_CC_APPA;
1745 	}
1746	optlen = optp - (u_int8_t *)(th + 1);
1747
1748	m->m_len = hdrlen + optlen;
1749	m->m_pkthdr.len = m->m_len;
1750
1751	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1752
1753	th->th_seq = htonl(tw->snd_nxt);
1754	th->th_ack = htonl(tw->rcv_nxt);
1755	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1756	th->th_flags = flags;
1757	th->th_win = htons(tw->last_win);
1758
1759#ifdef INET6
1760	if (isipv6) {
1761		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1762		    sizeof(struct tcphdr) + optlen);
1763		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1764		error = ip6_output(m, inp->in6p_outputopts, NULL,
1765		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1766	} else
1767#endif
1768	{
1769		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1770                    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1771		m->m_pkthdr.csum_flags = CSUM_TCP;
1772		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1773		ip->ip_len = m->m_pkthdr.len;
1774		if (path_mtu_discovery)
1775			ip->ip_off |= IP_DF;
1776		error = ip_output(m, inp->inp_options, NULL,
1777		    (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
1778	}
1779	if (flags & TH_ACK)
1780		tcpstat.tcps_sndacks++;
1781	else
1782		tcpstat.tcps_sndctrl++;
1783	tcpstat.tcps_sndtotal++;
1784	return (error);
1785}
1786
1787/*
1788 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1789 *
1790 * This code attempts to calculate the bandwidth-delay product as a
1791 * means of determining the optimal window size to maximize bandwidth,
1792 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1793 * routers.  This code also does a fairly good job keeping RTTs in check
1794 * across slow links like modems.  We implement an algorithm which is very
1795 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1796 * transmitter side of a TCP connection and so only effects the transmit
1797 * side of the connection.
1798 *
1799 * BACKGROUND:  TCP makes no provision for the management of buffer space
1800 * at the end points or at the intermediate routers and switches.  A TCP
1801 * stream, whether using NewReno or not, will eventually buffer as
1802 * many packets as it is able and the only reason this typically works is
1803 * due to the fairly small default buffers made available for a connection
1804 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1805 * scaling it is now fairly easy for even a single TCP connection to blow-out
1806 * all available buffer space not only on the local interface, but on
1807 * intermediate routers and switches as well.  NewReno makes a misguided
1808 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1809 * then backing off, then steadily increasing the window again until another
1810 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1811 * is only made worse as network loads increase and the idea of intentionally
1812 * blowing out network buffers is, frankly, a terrible way to manage network
1813 * resources.
1814 *
1815 * It is far better to limit the transmit window prior to the failure
1816 * condition being achieved.  There are two general ways to do this:  First
1817 * you can 'scan' through different transmit window sizes and locate the
1818 * point where the RTT stops increasing, indicating that you have filled the
1819 * pipe, then scan backwards until you note that RTT stops decreasing, then
1820 * repeat ad-infinitum.  This method works in principle but has severe
1821 * implementation issues due to RTT variances, timer granularity, and
1822 * instability in the algorithm which can lead to many false positives and
1823 * create oscillations as well as interact badly with other TCP streams
1824 * implementing the same algorithm.
1825 *
1826 * The second method is to limit the window to the bandwidth delay product
1827 * of the link.  This is the method we implement.  RTT variances and our
1828 * own manipulation of the congestion window, bwnd, can potentially
1829 * destabilize the algorithm.  For this reason we have to stabilize the
1830 * elements used to calculate the window.  We do this by using the minimum
1831 * observed RTT, the long term average of the observed bandwidth, and
1832 * by adding two segments worth of slop.  It isn't perfect but it is able
1833 * to react to changing conditions and gives us a very stable basis on
1834 * which to extend the algorithm.
1835 */
1836void
1837tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1838{
1839	u_long bw;
1840	u_long bwnd;
1841	int save_ticks;
1842
1843	/*
1844	 * If inflight_enable is disabled in the middle of a tcp connection,
1845	 * make sure snd_bwnd is effectively disabled.
1846	 */
1847	if (tcp_inflight_enable == 0) {
1848		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1849		tp->snd_bandwidth = 0;
1850		return;
1851	}
1852
1853	/*
1854	 * Figure out the bandwidth.  Due to the tick granularity this
1855	 * is a very rough number and it MUST be averaged over a fairly
1856	 * long period of time.  XXX we need to take into account a link
1857	 * that is not using all available bandwidth, but for now our
1858	 * slop will ramp us up if this case occurs and the bandwidth later
1859	 * increases.
1860	 *
1861	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1862	 * effectively reset t_bw_rtttime for this case.
1863	 */
1864	save_ticks = ticks;
1865	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1866		return;
1867
1868	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1869	    (save_ticks - tp->t_bw_rtttime);
1870	tp->t_bw_rtttime = save_ticks;
1871	tp->t_bw_rtseq = ack_seq;
1872	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1873		return;
1874	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1875
1876	tp->snd_bandwidth = bw;
1877
1878	/*
1879	 * Calculate the semi-static bandwidth delay product, plus two maximal
1880	 * segments.  The additional slop puts us squarely in the sweet
1881	 * spot and also handles the bandwidth run-up case and stabilization.
1882	 * Without the slop we could be locking ourselves into a lower
1883	 * bandwidth.
1884	 *
1885	 * Situations Handled:
1886	 *	(1) Prevents over-queueing of packets on LANs, especially on
1887	 *	    high speed LANs, allowing larger TCP buffers to be
1888	 *	    specified, and also does a good job preventing
1889	 *	    over-queueing of packets over choke points like modems
1890	 *	    (at least for the transmit side).
1891	 *
1892	 *	(2) Is able to handle changing network loads (bandwidth
1893	 *	    drops so bwnd drops, bandwidth increases so bwnd
1894	 *	    increases).
1895	 *
1896	 *	(3) Theoretically should stabilize in the face of multiple
1897	 *	    connections implementing the same algorithm (this may need
1898	 *	    a little work).
1899	 *
1900	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1901	 *	    be adjusted with a sysctl but typically only needs to be
1902	 *	    on very slow connections.  A value no smaller then 5
1903	 *	    should be used, but only reduce this default if you have
1904	 *	    no other choice.
1905	 */
1906#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1907	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1908#undef USERTT
1909
1910	if (tcp_inflight_debug > 0) {
1911		static int ltime;
1912		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1913			ltime = ticks;
1914			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1915			    tp,
1916			    bw,
1917			    tp->t_rttbest,
1918			    tp->t_srtt,
1919			    bwnd
1920			);
1921		}
1922	}
1923	if ((long)bwnd < tcp_inflight_min)
1924		bwnd = tcp_inflight_min;
1925	if (bwnd > tcp_inflight_max)
1926		bwnd = tcp_inflight_max;
1927	if ((long)bwnd < tp->t_maxseg * 2)
1928		bwnd = tp->t_maxseg * 2;
1929	tp->snd_bwnd = bwnd;
1930}
1931
1932#ifdef TCP_SIGNATURE
1933/*
1934 * Callback function invoked by m_apply() to digest TCP segment data
1935 * contained within an mbuf chain.
1936 */
1937static int
1938tcp_signature_apply(void *fstate, void *data, u_int len)
1939{
1940
1941	MD5Update(fstate, (u_char *)data, len);
1942	return (0);
1943}
1944
1945/*
1946 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
1947 *
1948 * Parameters:
1949 * m		pointer to head of mbuf chain
1950 * off0		offset to TCP header within the mbuf chain
1951 * len		length of TCP segment data, excluding options
1952 * optlen	length of TCP segment options
1953 * buf		pointer to storage for computed MD5 digest
1954 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1955 *
1956 * We do this over ip, tcphdr, segment data, and the key in the SADB.
1957 * When called from tcp_input(), we can be sure that th_sum has been
1958 * zeroed out and verified already.
1959 *
1960 * This function is for IPv4 use only. Calling this function with an
1961 * IPv6 packet in the mbuf chain will yield undefined results.
1962 *
1963 * Return 0 if successful, otherwise return -1.
1964 *
1965 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1966 * search with the destination IP address, and a 'magic SPI' to be
1967 * determined by the application. This is hardcoded elsewhere to 1179
1968 * right now. Another branch of this code exists which uses the SPD to
1969 * specify per-application flows but it is unstable.
1970 */
1971int
1972tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
1973    u_char *buf, u_int direction)
1974{
1975	union sockaddr_union dst;
1976	struct ippseudo ippseudo;
1977	MD5_CTX ctx;
1978	int doff;
1979	struct ip *ip;
1980	struct ipovly *ipovly;
1981	struct secasvar *sav;
1982	struct tcphdr *th;
1983	u_short savecsum;
1984
1985	KASSERT(m != NULL, ("NULL mbuf chain"));
1986	KASSERT(buf != NULL, ("NULL signature pointer"));
1987
1988	/* Extract the destination from the IP header in the mbuf. */
1989	ip = mtod(m, struct ip *);
1990	bzero(&dst, sizeof(union sockaddr_union));
1991	dst.sa.sa_len = sizeof(struct sockaddr_in);
1992	dst.sa.sa_family = AF_INET;
1993	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1994	    ip->ip_src : ip->ip_dst;
1995
1996	/* Look up an SADB entry which matches the address of the peer. */
1997	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1998	if (sav == NULL) {
1999		printf("%s: SADB lookup failed for %s\n", __func__,
2000		    inet_ntoa(dst.sin.sin_addr));
2001		return (EINVAL);
2002	}
2003
2004	MD5Init(&ctx);
2005	ipovly = (struct ipovly *)ip;
2006	th = (struct tcphdr *)((u_char *)ip + off0);
2007	doff = off0 + sizeof(struct tcphdr) + optlen;
2008
2009	/*
2010	 * Step 1: Update MD5 hash with IP pseudo-header.
2011	 *
2012	 * XXX The ippseudo header MUST be digested in network byte order,
2013	 * or else we'll fail the regression test. Assume all fields we've
2014	 * been doing arithmetic on have been in host byte order.
2015	 * XXX One cannot depend on ipovly->ih_len here. When called from
2016	 * tcp_output(), the underlying ip_len member has not yet been set.
2017	 */
2018	ippseudo.ippseudo_src = ipovly->ih_src;
2019	ippseudo.ippseudo_dst = ipovly->ih_dst;
2020	ippseudo.ippseudo_pad = 0;
2021	ippseudo.ippseudo_p = IPPROTO_TCP;
2022	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2023	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2024
2025	/*
2026	 * Step 2: Update MD5 hash with TCP header, excluding options.
2027	 * The TCP checksum must be set to zero.
2028	 */
2029	savecsum = th->th_sum;
2030	th->th_sum = 0;
2031	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2032	th->th_sum = savecsum;
2033
2034	/*
2035	 * Step 3: Update MD5 hash with TCP segment data.
2036	 *         Use m_apply() to avoid an early m_pullup().
2037	 */
2038	if (len > 0)
2039		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2040
2041	/*
2042	 * Step 4: Update MD5 hash with shared secret.
2043	 */
2044	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2045	MD5Final(buf, &ctx);
2046
2047	key_sa_recordxfer(sav, m);
2048	KEY_FREESAV(&sav);
2049	return (0);
2050}
2051#endif /* TCP_SIGNATURE */
2052